

#### Shenzhen Huatongwei International Inspection Co., Ltd.

Keji S,12th, Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China Phone:86-755-26748099 Fax:86-755-26748089 http://www.szhtw.com.cn







#### **MPE TEST REPORT**

### FCC Per 47 CFR 2.1091(b) & RSS-102

| Report Reference No                             | TRE1208004902                                         |
|-------------------------------------------------|-------------------------------------------------------|
| FCC ID                                          | DI2-TDL6192                                           |
| IC                                              | 1700A-TDL6192                                         |
| Compiled by                                     | 7 in thank                                            |
| ( position+printed name+signature):             |                                                       |
| Supervised by                                   |                                                       |
| ( position+printed name+signature):             | Test Engineer Tim Zhang                               |
|                                                 |                                                       |
| Approved by ( position+printed name+signature): | Manager Wenliang Li                                   |
| ( position printed hame signature)              | Manager Wenliang Li                                   |
| Date of issue:                                  | Sep 18, 2012                                          |
| Testing Laboratory Name                         | Shenzhen Huatongwei International Inspection Co., Ltd |
| Address                                         | Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China    |
| Applicant's name                                | Computime Ltd.                                        |
| Address:                                        | 9/F, Tower One, Lippo Centre, 89 Queensway, Hong Kong |
| Test specification:                             |                                                       |
| Standard:                                       | FCC Per 47 CFR 2.1091(b)                              |

# Master TRF...... Dated 2006-06 Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

TRF Originator...... Shenzhen Huatongwei International Inspection CO., Ltd

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

| Test item description: | US SMART PLUG |
|------------------------|---------------|
| Trade Mark:            |               |
| Model/Type reference:  | TDL6192       |
| Listed Models          | 1             |
| Result                 | Positive      |

Report No.: TRE1208004902 Page 2 of 8 Issued:2012-09-18

#### TEST REPORT

| Test Report No. : | TRE1208004902  | Sep 18, 2012  |
|-------------------|----------------|---------------|
|                   | 11/21200004902 | Date of issue |

Equipment under Test : US SMART PLUG

Model /Type : TDL6192

Listed Models : /

Applicant : Computime Ltd.

Address : 9/F, Tower One, Lippo Centre, 89 Queensway, Hong

Kong

Manufacturer Computime Ltd.

Address : Computime Technology Park, DanZhuTou Cun, Buji,

Longgang Region, Shenzhen, China

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

# **Contents**

| <u>1.</u> | SUMMARY                                  | 4        |
|-----------|------------------------------------------|----------|
| 1.1.      | EUT configuration                        | 4        |
| 1.2.      | Power supply system utilised             | 4        |
| 1.3.      | Description of the test mode             | 4        |
| 1.4.      | NOTE                                     | 5        |
| <u>2.</u> | TEST ENVIRONMENT                         | <u>6</u> |
| 2.1.      | Address of the test laboratory           | 6        |
| 2.2.      | Environmental conditions                 | 6        |
| 2.3.      | Statement of the measurement uncertainty | 6        |
| <u>3.</u> | METHOD OF MEASUREMENT                    | 7        |
| 3.1.      | Applicable Standard                      | 7        |
| 3.2.      | Limit                                    | 7        |
| 3.3.      | MPE Calculation Method                   | 7        |
| <u>4.</u> | CONCLUSION                               | 8        |

Report No.: TRE1208004902 Page 4 of 8 Issued:2012-09-18

# 1. SUMMARY

# 1.1. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- - supplied by the lab

| 0 | Power Cable | Length (m):    | 1 |
|---|-------------|----------------|---|
|   |             | Shield :       | 1 |
|   |             | Detachable :   | 1 |
| 0 | Multimeter  | Manufacturer : | 1 |
|   |             | Model No. :    | 1 |

# 1.2. Power supply system utilised

| Power supply voltage | : | • | 120V / 60 Hz                     | 0 | 115V / 60Hz |
|----------------------|---|---|----------------------------------|---|-------------|
|                      |   | 0 | 12 V DC                          | 0 | 24 V DC     |
|                      |   | 0 | Other (specified in blank below) |   | )           |

# 1.3. Description of the test mode

The EUT has been tested under typical operating condition. The Applicant provides AT command to control the EUT for staying in continous transmitting and receiving mode for testing. There are sixteen channels of EUT, and the test carried out at the channel 11(lowest), channel 18(middle) and channel 26 (highest) channels.

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 11      | 2405 MHz  | 19      | 2445 MHz  |
| 12      | 2410 MHz  | 20      | 2450 MHz  |
| 13      | 2415 MHz  | 21      | 2455 MHz  |
| 14      | 2420 MHz  | 22      | 2460 MHz  |
| 15      | 2425 MHz  | 23      | 2465 MHz  |
| 16      | 2430 MHz  | 24      | 2470 MHz  |
| 17      | 2435 MHz  | 25      | 2475 MHz  |
| 18      | 2440 MHz  | 26      | 2480 MHz  |

Report No.: TRE1208004902 Page 5 of 8 Issued:2012-09-18

#### 1.4. **NOTE**

1. The EUT is a an IEEE 802.15 ZigBee Standard type device, The functions of the EUT listed as below:

|        | Test Standards                           | Reference Report |
|--------|------------------------------------------|------------------|
| Zigbee | FCC Part 15 Subpart C<br>(Section15.247) | TRE1208004901    |
| Zigbee | MPE report                               | TRE1208004902    |

2. The frequency bands used in this EUT are listed as follows:

| Frequency Band(MHz) | 2400-2483.5  | 5150-5350 | 5470-5725 | 5725-5850 |
|---------------------|--------------|-----------|-----------|-----------|
| Zigbee              | $\checkmark$ | _         |           | _         |

3. The EUT provides one completed transmitter and receiver.

| Modulation Mode | TX Function |
|-----------------|-------------|
| Zigbee          | 1TX         |

Report No.: TRE1208004902 Page 6 of 8 Issued:2012-09-18

### 2. TEST ENVIRONMENT

# 2.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

#### 2.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 950-1050mbar

#### 2.3. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

| Test Items                  | Measurement Uncertainty | Notes |
|-----------------------------|-------------------------|-------|
| Transmitter power conducted | 0.57 dB                 | (1)   |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: TRE1208004902 Page 7 of 8 Issued:2012-09-18

### 3. Method of measurement

#### 3.1. Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §RSS-102, Devices that have a radiating element normally operating at separation distances greater than 20 cm between the user and the device shall undergo an RF exposure evaluation. SAR evaluation may be performed in lieu of an RF exposure evaluation for devices operating below 6 GHz with a separation distance of greater than 20 cm between the user and the device.

According to §1.1310 and §2.1091 RF exposure is calculated.

OET Bulletin 65 Supplement C [June 2001]: Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields

#### 3.2. Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

| Frequency      | Electric Field                              | Magnetic Field | Power Density | Averaging Time |  |  |
|----------------|---------------------------------------------|----------------|---------------|----------------|--|--|
| Range(MHz)     | Strength(V/m)                               | Strength(A/m)  | (mW/cm²)      | (minute)       |  |  |
|                | Limits for Occupational/Controlled Exposure |                |               |                |  |  |
| 0.3 - 3.0      | 614                                         | 1.63           | (100) *       | 6              |  |  |
| 3.0 - 30       | 1842/f                                      | 4.89/f         | (900/f)*      | 6              |  |  |
| 30 – 300       | 61.4                                        | 0.163          | 1.0           | 6              |  |  |
| 300 – 1500     | 1                                           | 1              | f/300         | 6              |  |  |
| 1500 – 100,000 | 1                                           | 1              | 5             | 6              |  |  |

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

| Frequency                                   | Electric Field | Magnetic Field | Power Density         | Averaging Time |  |  |  |  |
|---------------------------------------------|----------------|----------------|-----------------------|----------------|--|--|--|--|
| Range(MHz)                                  | Strength(V/m)  | Strength(A/m)  | (mW/cm <sup>2</sup> ) | (minute)       |  |  |  |  |
| Limits for Occupational/Controlled Exposure |                |                |                       |                |  |  |  |  |
| 0.3 - 3.0                                   | 614            | 1.63           | (100) *               | 30             |  |  |  |  |
| 3.0 - 30                                    | 824/f          | 2.19/f         | (180/f)*              | 30             |  |  |  |  |
| 30 – 300                                    | 27.5           | 0.073          | 0.2                   | 30             |  |  |  |  |
| 300 – 1500                                  | 1              | 1              | f/1500                | 30             |  |  |  |  |
| 1500 – 100,000                              | 1              | 1              | 1.0                   | 30             |  |  |  |  |

F=frequency in MHz

#### 3.3. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR<sup>2</sup>

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna is -0.32dBi, the RF power density can be obtained.

<sup>\*=</sup>Plane-wave equivalent power density

Report No.: TRE1208004902 Page 8 of 8 Issued:2012-09-18

# **TEST RESULTS**

| Test<br>Frequency<br>(MHz) | Minimum<br>Separation<br>Distance | Output<br>Power<br>(dBm) | Output<br>Power<br>(mW) | Antenna<br>Gain<br>(Numeric) | Power Density Limit (mW/cm²) | Power<br>Density<br>At 20 cm<br>(mW/cm <sup>2</sup> ) | Test<br>Results |
|----------------------------|-----------------------------------|--------------------------|-------------------------|------------------------------|------------------------------|-------------------------------------------------------|-----------------|
| 2405                       | 20.00                             | 19.46                    | 88.31                   | 0.929                        | 1.000                        | 0.016330                                              | Pass            |
| 2440                       | 20.00                             | 19.46                    | 88.31                   | 0.929                        | 1.000                        | 0.016330                                              | Pass            |
| 2480                       | 20.00                             | 0.64                     | 1.16                    | 0.929                        | 1.000                        | 0.000214                                              | Pass            |

# 4. Conclusion

| The measurement results comply with the FCC Limit per 47 CFR 2.1091 (b) for the controlled RF Exposure. |  |
|---------------------------------------------------------------------------------------------------------|--|
| End of Report                                                                                           |  |