

Model Tested: HA01 Report Number: 12960

FCC Rules and Regulations / Intentional Radiators

Operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands

Part 15, Subpart C, Section 15.249

THE FOLLOWING "MEETS" THE ABOVE TEST SPECIFICATION

Formal Name: In-Wall Duplex Receptacle

Kind of Equipment: RF Controlled Duplex Receptacle

Test Configuration: Direct wired to 125VAC main Hot & Neutral wires.

(Tested at 120 vac, 60 Hz)

Model Number(s): HA01

Model(s) Tested: HA01

Serial Number(s): NA

Date of Tests: February 16 & 19, 2007

Test Conducted For: Intermatic Incorporated

7777 Winn Road

Spring Grove, Illinois 60081

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report.

© Copyright 1983- 2006 D.L.S. Electronic Systems, Inc

COPYRIGHT NOTICE

This report or any portion their of, may not be reproduced or modified in any form without the expressed written consent of D.L.S. Electronic Systems, Inc.

Model Tested: HA01 Report Number: 12960

SIGNATURE PAGE

Report By:

Arnom C. Rowe Test Engineer

EMC-001375-NE

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson

General Manager

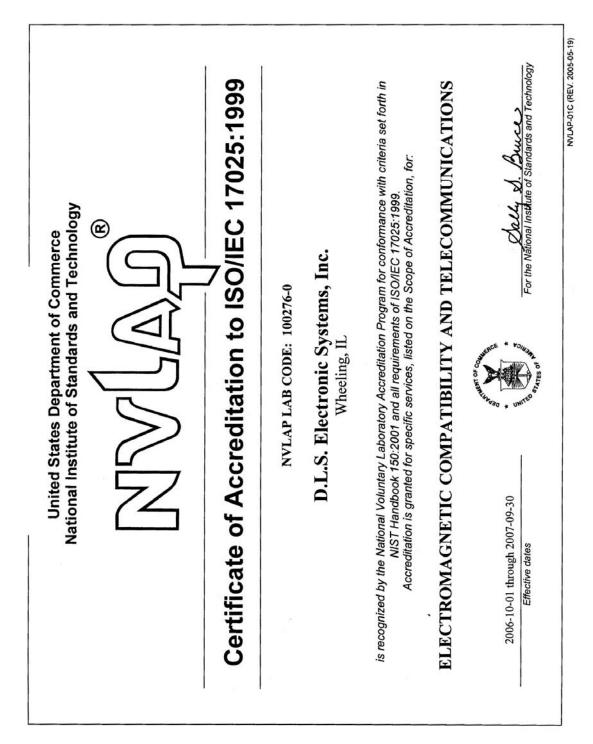
Company Official:

Intermatic Incorporated

Company: Interm Model Tested: HA01 Intermatic Incorporated

Report Number: 12960

TABLE OF CONTENTS


1.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents	3
iv.	NVLAP Certificate of Accreditation	4
1.0	Summary of Test Report	5
2.0	Introduction	5
3.0	Object	5
4.0	Test Set-Up	6
5.0	Test Equipment	7
6.0	Ambient Measurements	8
7.0	Description of Test Sample	9
8.0	Additional Description of Test Sample	10
9.0	Photo Information and Test Set-Up	11
10.0	Radiated Photos Taken During Testing	12
10.0	Conducted Photos Taken During Testing	16
11.0	Results of Tests	17
12.0	Conclusion	17
TAE	BLE 1 – EQUIPMENT LIST	18
App	pendix A – Electric Field Radiated Emissions Test	20
1.0	Conducted Emission Measurements	21
1.0	Conducted Data and Graph(s) taken during testing	22
2.0	Band Edge and Restrict Band Compliance	27
2.0	Data and Graph(s) taken showing the Band Edge Compliance	28
2.0	20 dB Bandwidth Data and Graph(s)	33
2.0	Data and Graph(s) taken showing the Restricted Band Compliance	35
3.0	Field Strength of Spurious Emission Measurements	48
3.0	Fundamental, Harmonic and Spurious Data and Graph(s)	50

Company:

Intermatic Incorporated

Model Tested: **HA01** Report Number: 12960

Model Tested: HA01 Report Number: 12960

1.0 SUMMARY OF TEST REPORT

It was found that the In-Wall Duplex Receptacle, Model Number(s) HA01, "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.249 for operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands.

2.0 INTRODUCTION

On February 16 & 19, 2007, a series of radio frequency interference measurements was performed on In-Wall Duplex Receptacle, Model Number(s) HA01, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in the "Methods of Measurement of Radio-Noise Emissions for Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" found in the American National Standards Institute, ANSI C63.4-2003. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI.

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Sections 15.35(b), 15.37(d), 15.209 & 15.249 for Intentional Radiators operating in the Bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24-24.25 GHz.

Model Tested: HA01 Report Number: 12960

4.0 TEST SET-UP

All emission tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-2003, Section 8, (Figures 11a and 11b). The conducted tests were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the American National Standards Institute, ANSI C63.4-2003, Section 4, (Figure 2).

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-2003, Sections 6 and 8.

Model Tested: HA01 Report Number: 12960

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and/or ESI 26/40 Fixed Tuned Receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/40 Fixed Tuned Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the Spectrum Analyzer.

The bandwidths shown below are specified by ANSI C63.4-2003, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

Model Tested: HA01 Report Number: 12960

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emissions that have the highest amplitude relative to the limit. These methods are performed to the specifications in MP-5 or ANSI C63.4-2003, as appropriate.

Model Tested: HA01 Report Number: 12960

7.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

7.1 Description:

The HA01 is an electronically-controlled duplex-receptacle-style module intended to be used to control the ON and OFF switching of a receptacle outlet. One outlet provides switched operation by means of a local control pushbutton, or by means of a wireless RF controller sold separately. This product is rated for indoor use.

7.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 42.41mm x Width: 43.942mm Height: 104.902mm

7.3 LINE FILTER USED:

NA

7.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

NA

Clock Frequencies:

7.376974 MHz

7.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

1. Pushbutton interface PCB PN: 900-221137-120100 v1.7

2. Main Power Board PCB PN: 900-221157-101100 v2.2

3. Relay mounting PCB PN: 000-221147-111100 v1.7

4. RF module 4-Layer PCB PN: 280100380 RX1

Model Tested: HA01

Report Number: 12960

8.0	ADDITIONAL DESCRIPTION OF TEST S (See also Paragraph 7.0)	AMPLE:
1: Th	ere were no additional descriptions noted at the	e time of test.
	ify that the above, as described in paragraph 7.0 factured as stated.	0, describes the equipment tested and will be
By:		
	Signature	Title
For:	Company	
	Company	Date

Company: Intermatic Incorporated

Model Tested: HA01 Report Number: 12960

9.0 PHOTO INFORMATION AND TEST SET-UP

Item 0 In-Wall Duplex Receptacle

Model Number: HA01 Serial Number: NA

Item 1 Non-shielded AC Power Line Cord. 2.5m

Item 2 Non-shielded AC Output Cable. 2m

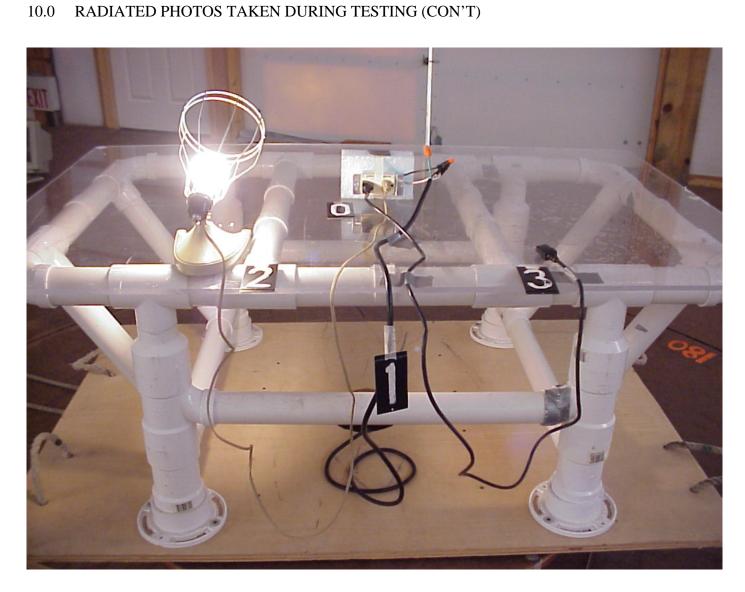
Item 3 Non-shielded AC Output Cable. 1.8m

Intermatic Incorporated

Company: Model Tested: HA01 Report Number: 12960

1250 Peterson Dr., Wheeling, IL 60090

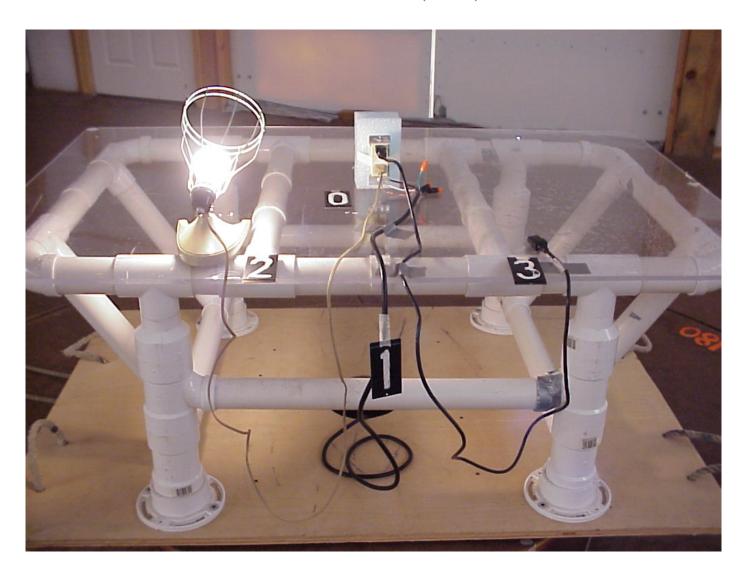
10.0 RADIATED PHOTOS TAKEN DURING TESTING


RADIATED UPSIDE DOWN

10.0

Intermatic Incorporated

Company: Model Tested: HA01 Report Number: 12960


RADIATED "X"

Intermatic Incorporated

Company: Model Tested: HA01 Report Number: 12960

RADIATED PHOTOS TAKEN DURING TESTING (CON'T) 10.0

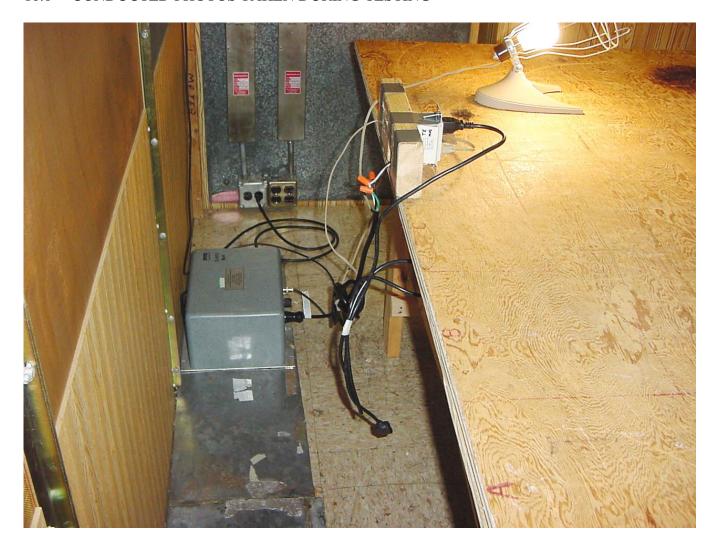
RADIATED "Y"

Intermatic Incorporated

Company: Model Tested: HA01 Report Number: 12960

1250 Peterson Dr., Wheeling, IL 60090

RADIATED PHOTOS TAKEN DURING TESTING (CON'T) 10.0


RADIATED "Z"

Intermatic Incorporated

Company: Model Tested: HA01 Report Number: 12960

10.0 CONDUCTED PHOTOS TAKEN DURING TESTING

Company: Intermatic Incorporated

Model Tested: HA01 Report Number: 12960

11.0 RESULTS OF TESTS

The radio interference emission charts results can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report. Points on the emission charts shown with a yellow mark are background frequencies that were verified during testing.

12.0 CONCLUSION

It was found that the In-Wall Duplex Receptacle, Model Number(s) HA01 "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 15, Subpart C, Section 15.249 for operational in the 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz Bands.

Company: Intermatic Incorporated

Model Tested: HA01 Report Number: 12960

TABLE 1 – EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
Receiver	Rohde &	ESI 26	837491/010	20 Hz – 26 GHz	11/07
	Schwarz				
Receiver	Rohde &	ESI 40	837808/006	20 Hz – 40 GHz	12/07
	Schwarz				
Receiver	Rohde &	ESI 40	837808/005	20 Hz – 40 GHz	12/07
	Schwarz				
Antenna	EMCO	3104C	00054891	20 MHz – 200 MHz	2/07
Antenna	Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/07
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	3/07
Antenna	Electrometrics	3146	1205	200 MHz – 1 GHz	3/07
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	2/08
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	3/07
Antenna	EMCO	3115	2479	1 GHz – 18 GHz	8/07
Antenna	EMCO	3115	99035731	1 GHz – 18 GHz	4/07
Antenna	Rohde &	HUF-Z1	829381001	20 MHz – 1 GHz	2/08
	Schwarz				
Antenna	Rohde & Schwarz	HUF-Z1	829381005	20 MHz – 1 GHz	8/07

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Company: Intermatic Incorporated

Model Tested: HA01 Report Number: 12960

TABLE 1 - EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
LISN	Solar	8012-50-R-	8305116	10 MHz – 30 MHz	8/07
		24-BNC			
LISN	Solar	8012-50-R-	814548	10 MHz – 30 MHz	8/07
		24-BNC			
LISN	Solar	9252-50-R-	961019	10 MHz – 30 MHz	12/07
		24-BNC			
LISN	Solar	9252-50-R-	971612	10 MHz – 30 MHz	10/07
		24-BNC			
LISN	Solar	9252-50-R-	92710620	10 MHz – 30 MHz	7/07
		24-BNC			

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Model Tested: HA01 Report Number: 12960

APPENDIX A

TEST PROCEDURE

Part 15, Subpart C, Section 15.249a-e

OPERATION WITHIN THE BANDS <u>902-928 MHz</u>, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz MHz

Model Tested: HA01 Report Number: 12960

APPENDIX A

1.0 CONDUCTED EMISSION MEASUREMENTS

Conducted emissions were measured over the frequency range from 150 kHz to 30 MHz in accordance with the power line measurements as specified in FCC Part 15, Subpart C, Section 15.207 & ANSI C63.4-2003. Since the device is operated from the public utility lines, the 120 Vac, 60 Hz power leads, high (hot) and low (neutral) sides, were measured by connecting the measuring equipment to the appropriate meter terminal of the LISN. During the test, the cables were placed and items moved (when appropriate) to maximize emissions. All signals were then recorded. The allowed levels for Intentional Radiators which is designed to connected to the public utility (AC) power line shall not exceed 250 uV (47.96 dBuV) from 150 kHz to 30 MHz

NOTE:

All test measurements were made at a screen room temperature of 71°F at 18% relative humidity.

Model Tested: HA01 Report Number: 12960

CONDUCTED <u>DATA</u> AND GRAPH(S)

TAKEN DURING TESTING

PART 15.207

FCC Part 15 Class B

Voltage Mains Test

EUT: HA01

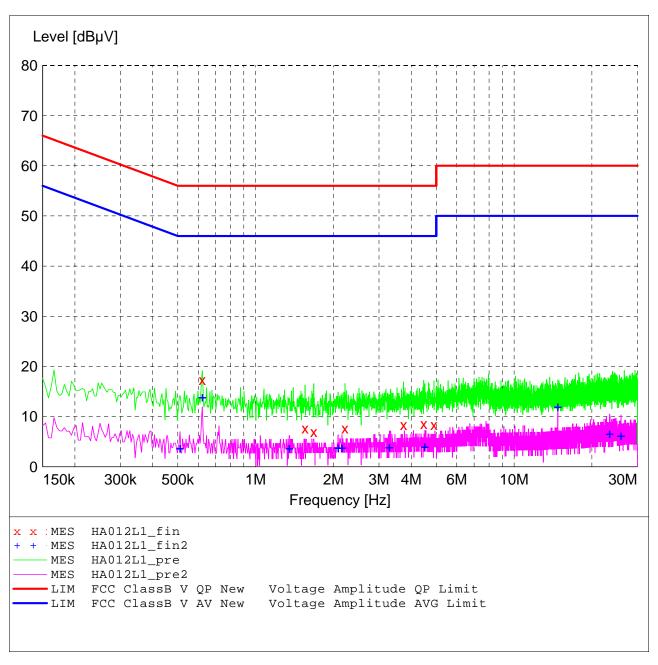
Manufacturer: Intermatic, Inc. Operating Condition: 71 deg. F, 18% R.H.

Test Site: DLS O.F. Site 1 (Screenroom)

Operator: Craig Brandt Test Specification: 120 V 60 Hz

Comment: Line 1

Date: 02-19-2007


SCAN TABLE: "Line Cond Scrn RmFin"

Short Description: Line Conducted Emissions

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.
150.0 kHz 30.0 MHz 4.0 kHz QuasiPeak 2.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "HA012L1_fin"

						51PM	2/19/2007 1:
PE	Line	Detector	Margin	Limit	Transd	Level	Frequency
			dB	dΒμV	dB	dΒμV	MHz
		QP	38.7	56	10.2	17.30	0.622000
		QP	48.4	56	10.3	7.60	1.554000
		QP	49.0	56	10.3	7.00	1.678000
		QP	48.3	56	10.3	7.70	2.218000
		QP	47.6	56	10.4	8.40	3.734000
		QP	47.5	56	10.5	8.50	4.470000
		QP	47.6	56	10.4	8.40	4.898000

MEASUREMENT RESULT: "HA012L1_fin2"

2/19/2007 1:5	1PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dВ	dΒμV	dВ			
0.510000	3.80	10.3	46	42.2	CAV		
0.622000	13.90	10.2	46	32.1	CAV		
1.350000	3.80	10.2	46	42.2	CAV		
2.086000	3.90	10.3	46	42.1	CAV		
2.158000	3.90	10.3	46	42.1	CAV		
3.294000	4.00	10.4	46	42.0	CAV		
4.514000	4.10	10.5	46	41.9	CAV		
14.754000	12.00	11.1	50	38.0	CAV		
23.446000	6.70	11.5	50	43.3	CAV		
25.934000	6.30	11.8	50	43.7	CAV		

FCC Part 15 Class B

Voltage Mains Test

EUT: HA01

Manufacturer: Intermatic, Inc. Operating Condition: 71 deg. F, 18% R.H.

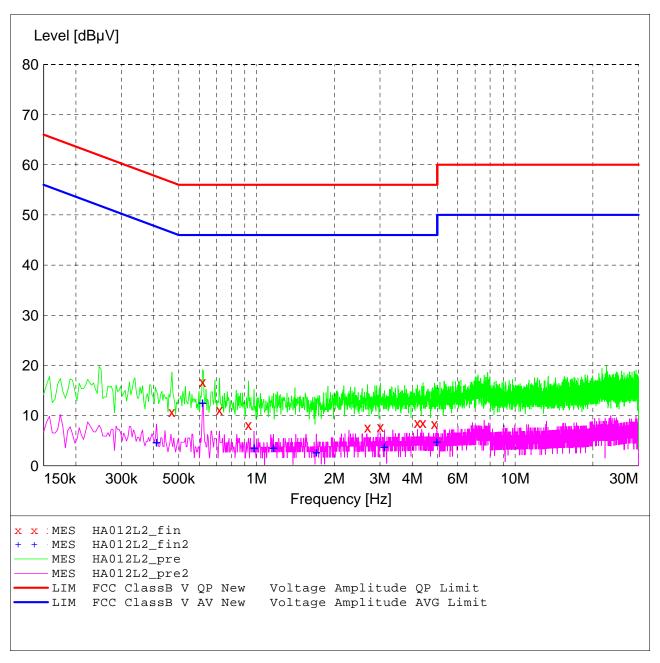
DLS O.F. Site 1 (Screenroom) Test Site:

Operator: Craig Brandt Test Specification: 120 V 60 Hz

Comment: Line 2

Date: 02-19-2007

SCAN TABLE: "Line Cond Scrn RmFin"


Line Conducted Emissions Short Description:

Start Step Detector Meas. IF Transducer Stop

Frequency Frequency Width 150.0 kHz 30.0 MHz 4.0 kHz Time Bandw.

QuasiPeak 2.0 s 9 kHz LISN DLS#128

CISPR AV

MEASUREMENT RESULT: "HA012L2_fin"

						45PM	2/19/2007 1:
PΕ	Line	Detector	Margin	Limit	Transd	Level	Frequency
			dВ	dΒμV	dВ	dΒμV	MHz
		QP	45.8	57	10.3	10.70	0.470000
		QP	39.3	56	10.2	16.70	0.618000
		QP	44.9	56	10.2	11.10	0.718000
		QP	47.8	56	10.2	8.20	0.930000
		QP	48.3	56	10.4	7.70	2.686000
		QP	48.2	56	10.4	7.80	3.014000
		QP	47.5	56	10.5	8.50	4.190000
		QP	47.5	56	10.6	8.50	4.402000
		QP	47.6	56	10.5	8.40	4.874000
		· -					

MEASUREMENT RESULT: "HA012L2_fin2"

2/19/2007 1:	45PM						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dВ	dΒμV	dВ			
0.410000	4.80	10.3	48	42.8	CAV		
0.618000	12.60	10.2	46	33.4	CAV		
0.978000	3.70	10.2	46	42.3	CAV		
1.162000	3.70	10.2	46	42.3	CAV		
1.702000	2.80	10.3	46	43.2	CAV		
3.122000	3.90	10.4	46	42.1	CAV		
4.978000	4.90	10.4	46	41.1	CAV		

Model Tested: HA01 Report Number: 12960

APPENDIX A

2.0 BAND EDGE AND RESTRICTED BAND COMPLIANCE

The field strength of any emissions appearing outside the 902 to 928 MHz band shall not exceed the general radiated emissions limits as stated Section 15.209. The fundamental from the In-Wall Duplex Receptacle transmitter shall not be inside the restricted band 960 to 1240 MHz.

As stated in Section 15.205a, the <u>fundamental</u> emission from the In-Wall Duplex Receptacle shall not fall within any of the bands listed below:

Frequency	Frequency	Frequency	Frequency
in MHz	in MHz	in MHz	in GHz
.0900 to .1100	162.0125 to 167.17	2310.0 to 2390	9.30 to 9.50
.4900 to .5100	167.7200 to 173.20	2483.5 to 2500	10.60 to 12.70
2.1735 to 2.1905	240.000 to 285.00	2655.0 to 2900	13.25 to 13.40
8.362 to 8.3660	322.200 to 335.40	3260.0 to 3267	14.47 to 14.50
13.36 to 13.410	399.900 to 410.00	3332.0 to 3339	15.35 to 16.20
25.50 to 25.670	608.000 to 614.00	3345.8 to 3358	17.70 to 21.40
37.50 to 38.250	960.000 to 1240.00	3600.0 to 4400	22.01 to 23.13
73.00 to 75.500	1300.000 to 1427.00	4500.0 to 5250	23.60 to 24.00
108.00 to 121.94	1435.000 to 1626.50	5350.0 to 5450	31.20 to 31.80
123.00 to 138.00	1660.000 to 1710.00	7250.0 to 7750	36.43 to 36.50
149.90 to 150.00	1718.800 to 1722.20	8025.0 to 8500	ABOVE 38.60
156.70 to 156.90	2200.000 to 2300.00	9000.0 to 9200	

NOTE:

The noise floor within the Restricted Bands for the EMC Receiver and HP Spectrum Analyzer will typically lay 20 dB below the limit.

See the following page (s) for the graph (s) made showing compliance for Band Edge and Restricted Band: Also see the table of measurements made for the Fundamental and Spurious emissions in paragraph 3 of this section.

Model Tested: HA01 Report Number: 12960

DATA AND GRAPH(S) TAKEN SHOWING THE BAND EDGE COMPLIANCE

PART 15.249

Model Tested: HA01 Report Number: 12960

APPENDIX A

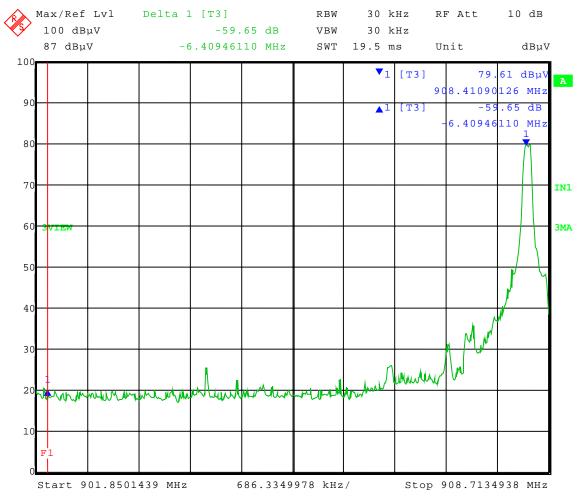
Test Methodology

The EUT was investigated at the low and high channels of operation to determine band-edge compliance. Bandedge compliance was determined using the radiated mark-delta method as outlined in FCC DA 00-705. The radiated field strength of the fundamental emission was first determined and then the mark-delta method was used to determine the field strength of the band-edge emissions.

Lower Band-Edge Marker Delta Method

Frequency (MHz)	Antenn a Polarit y (H/V)	Fundamental Field Strength (dBµV/m)	Duty Cycle Correction (dB)	Delta- Marker (dB)	Band-Edge Field Strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
908.42 (Peak)	V	93.7		59.65	34.05	74	39.95
908.42 (Avg)	V	92.2		59.65	32.55	54	21.45

Model Tested: HA01 Report Number: 12960


APPENDIX A

Test Date: 02-16-2007 Company: Intermatic EUT: HA01

Test: Lower Band-Edge Radiated – Marker Delta Method

Operator: Craig Brandt

Comment: Band edge at 902 MHz

Date: 16.FEB.2007 14:57:01

Model Tested: HA01 Report Number: 12960

APPENDIX A

Test Methodology

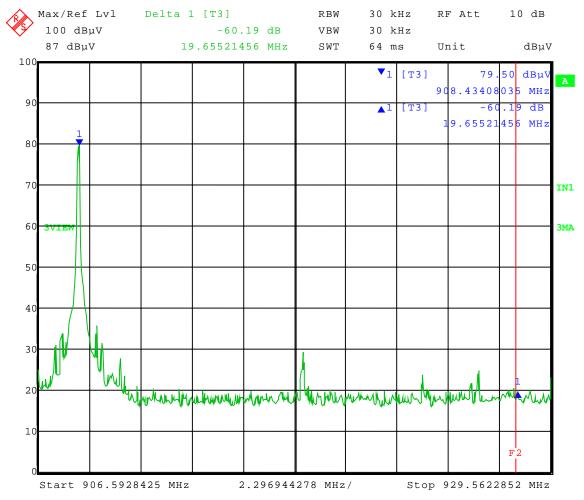
The EUT was investigated at the low and high channels of operation to determine band-edge compliance. Bandedge compliance was determined using the radiated mark-delta method as outlined in FCC DA 00-705. The radiated field strength of the fundamental emission was first determined and then the mark-delta method was used to determine the field strength of the band-edge emissions.

Upper Band-Edge Marker Delta Method

Emaguamay	Antenn	Eundamental Field	Duty Cvcle	Delta- Marker	Band-Edge	Limit	Monain
Frequency (MHz)	a Polarit	Fundamental Field Strength (dBµV/m)	Correction	(dB)	Field Strength	(dBµV/m)	Margin (dB)
, ,	у	~ · · · · · · · · · · · · · · · · · ·	(dB)	,	(dBµV/m)		` '
	(H/V)						
908.42 (Peak)	V	93.7		60.19	33.51	74	40.49
908.42 (Avg)	V	92.2		60.19	32.01	54	21.99

Model Tested: HA01 Report Number: 12960

1250 Peterson Dr., Wheeling, IL 60090


APPENDIX A

Test Date: 02-16-2007 Company: Intermatic EUT: HA01

Test: Upper Band-Edge Radiated – Marker Delta Method

Operator: Craig Brandt

Comment: Band edge at 928 MHz

Date: 16.FEB.2007 15:06:46

Model Tested: HA01 Report Number: 12960

APPENDIX A

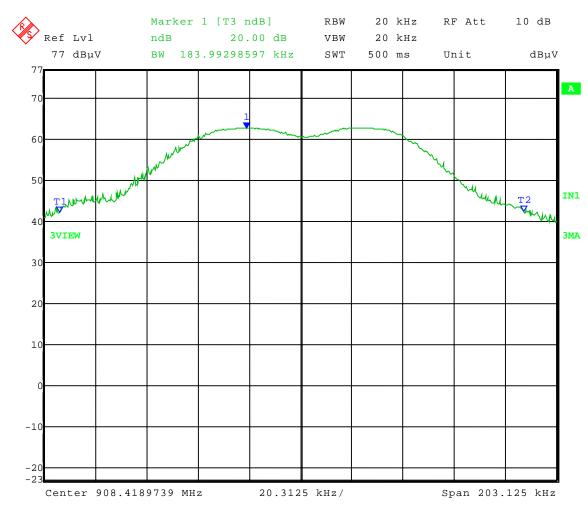
20 dB BANDWIDTH DATA AND GRAPH(S)

PART 15.249

Model Tested: HA01 Report Number: 12960

APPENDIX A

Test Date: 02-16-2007 Company: Intermatic, Inc.


EUT: HA01

Test: 20 dB Bandwidth - Radiated

Operator: Craig Brandt

Comment:

20 dB Bandwidth = 183.99 kHz

Date: 16.FEB.2007 14:18:11

Model Tested: HA01 Report Number: 12960

DATA AND GRAPH(S) TAKEN SHOWING THE

RESTRICTED BAND COMPLIANCE

PART 15.205

FCC Part 15 Class B

Electric Field Strength

EUT: HA01

Manufacturer: Intermatic

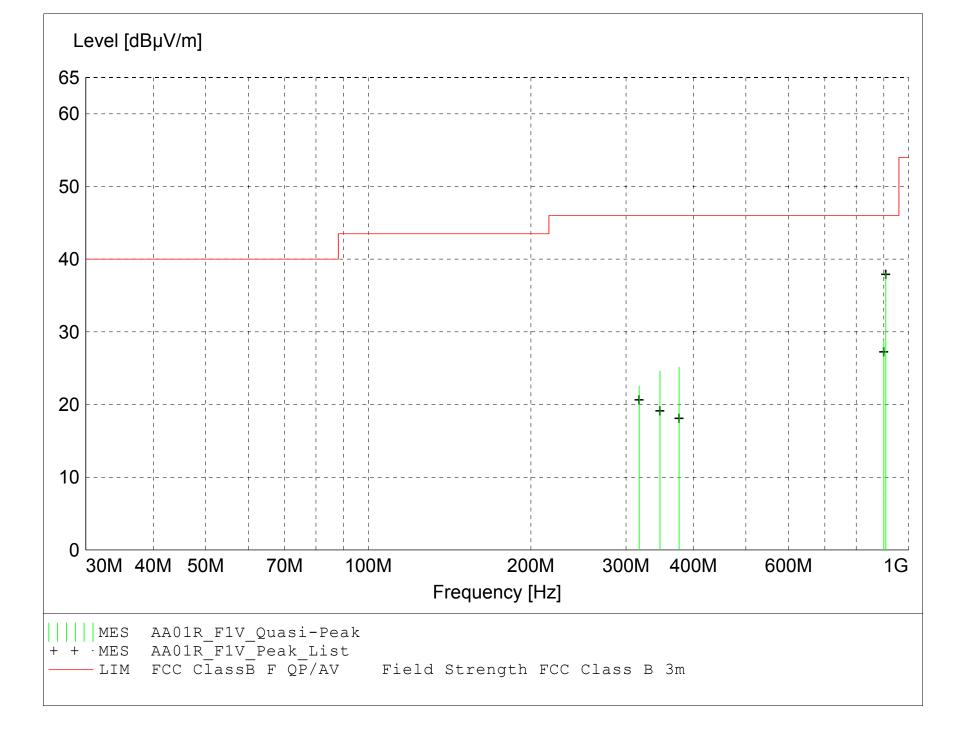
Operating Condition: 70 deg. F; 23% R.H. Test Site: DLS O.F. Site 3

Operator: Craig Brandt
Test Specification: 120 V 60 Hz
Comment: Receive mode

Date: 02-19-2007

TEXT: "Site 3 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

${\it MEASUREMENT~RESULT:~"AA01R_F1V_Fina1"}$

2/19/2007 10:3	34AM									
Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dΒμV	dBμV/m	dB	dBµV/m	dBμV/m	dB	m	deg		
907.668000	34.30	22.08	-18.2	38.1	46.0	7.9	1.00	0	QUASI-PEAK	None
899.970000	25.22	21.87	-18.3	28.7	46.0	17.3	1.00	0	QUASI-PEAK	None
376.210000	31.84	14.85	-21.6	25.1	46.0	20.9	1.80	0	QUASI-PEAK	None
346.700000	31.65	14.42	-21.5	24.6	46.0	21.4	2.00	250	QUASI-PEAK	None
317.200000	30.11	14.30	-21.9	22.6	46.0	23.4	1.10	135	QUASI-PEAK	None

FCC Part 15 Class B

Electric Field Strength

EUT: HA01

Manufacturer: Intermatic

Operating Condition: 70 deg. F; 23% R.H. Test Site:

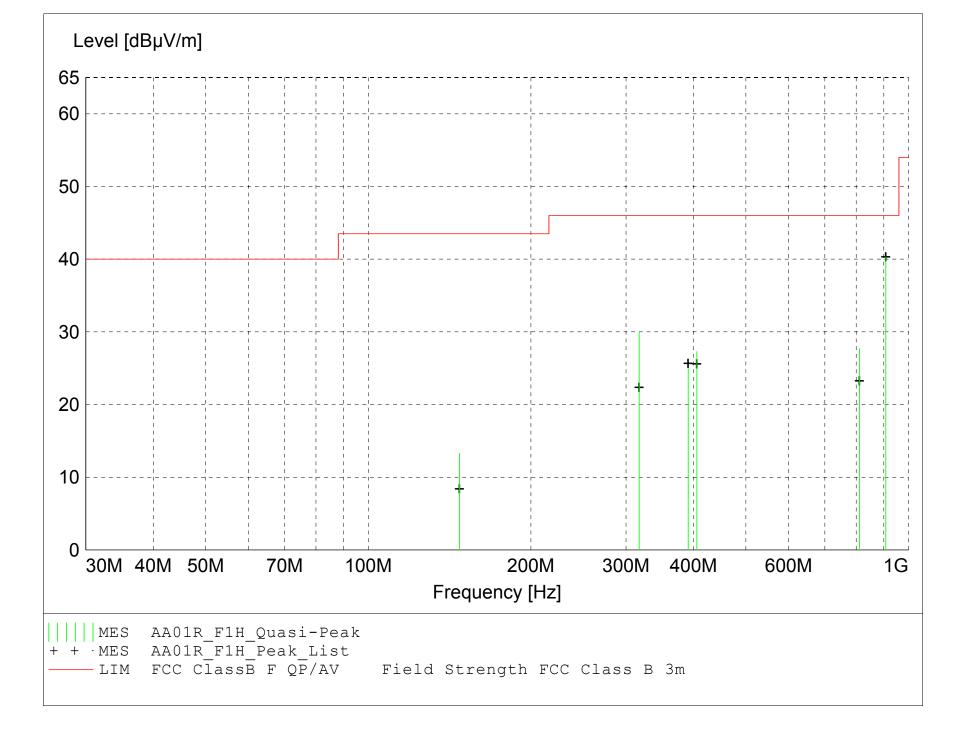
DLS O.F. Site 3

Operator: Craig Brandt
Test Specification: 120 V 60 Hz
Comment: Receive mode

Date: 02-19-2007

TEXT: "Site 3 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

${\it MEASUREMENT~RESULT:~"AA01R_F1H_Fina1"}$

:41AM									
Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
	Factor	Loss	Level			Ant.	Angle	Detector	
dΒμV	dBµV/m	dB	dBµV/m	dBμV/m	dB	m	deg		
36.46	22.08	-18.2	40.3	46.0	5.7	1.00	225	QUASI-PEAK	None
37.51	14.30	-21.9	30.0	46.0	16.0	1.00	45	QUASI-PEAK	None
25.97	20.86	-19.1	27.7	46.0	18.3	1.00	225	QUASI-PEAK	None
33.07	15.47	-21.2	27.3	46.0	18.7	2.00	45	QUASI-PEAK	None
31.24	15.04	-21.3	25.0	46.0	21.0	2.00	45	QUASI-PEAK	None
24.61	11.67	-23.0	13.3	43.5	30.2	2.60	80	QUASI-PEAK	None
	Level dBμV 36.46 37.51 25.97 33.07 31.24	Level Antenna Factor dBμV dBμV/m 36.46 22.08 37.51 14.30 25.97 20.86 33.07 15.47 31.24 15.04	Level Antenna System Factor Loss dBμV dBμV/m dB 36.46 22.08 -18.2 37.51 14.30 -21.9 25.97 20.86 -19.1 33.07 15.47 -21.2 31.24 15.04 -21.3	Level Antenna System Total Factor Loss Level dBμV dBμV/m dB dBμV/m 36.46 22.08 -18.2 40.3 37.51 14.30 -21.9 30.0 25.97 20.86 -19.1 27.7 33.07 15.47 -21.2 27.3 31.24 15.04 -21.3 25.0	Level Antenna Factor dBμV System Level dBμV/m Total dBμV/m Limit dBμV/m 36.46 22.08 -18.2 40.3 46.0 37.51 14.30 -21.9 30.0 46.0 25.97 20.86 -19.1 27.7 46.0 33.07 15.47 -21.2 27.3 46.0 31.24 15.04 -21.3 25.0 46.0	Level Antenna Factor AbμV System Level AbμV/m Total Limit Margin AbμV/m Margin AbμV/m 36.46 22.08 -18.2 40.3 46.0 5.7 37.51 14.30 -21.9 30.0 46.0 16.0 25.97 20.86 -19.1 27.7 46.0 18.3 33.07 15.47 -21.2 27.3 46.0 18.7 31.24 15.04 -21.3 25.0 46.0 21.0	Level Antenna Factor dBμV dBμV/m System Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Ant. dBμV/m 36.46 22.08 -18.2 40.3 46.0 5.7 1.00 37.51 14.30 -21.9 30.0 46.0 16.0 1.00 25.97 20.86 -19.1 27.7 46.0 18.3 1.00 33.07 15.47 -21.2 27.3 46.0 18.7 2.00 31.24 15.04 -21.3 25.0 46.0 21.0 2.00	Level Antenna Factor dBμV System Loss Level dBμV/m Limit dBμV/m Margin dBμV/m Height Ant. Angle dBμV/m EuT Ant. Angle dBμV/m 36.46 22.08 -18.2 40.3 46.0 5.7 1.00 225 37.51 14.30 -21.9 30.0 46.0 16.0 1.00 45 25.97 20.86 -19.1 27.7 46.0 18.3 1.00 225 33.07 15.47 -21.2 27.3 46.0 18.7 2.00 45 31.24 15.04 -21.3 25.0 46.0 21.0 2.00 45	Level Antenna System Total Limit Margin Height EuT Final βμν Hall Hall

FCC Part 15 Class B

Electric Field Strength

EUT: HA01

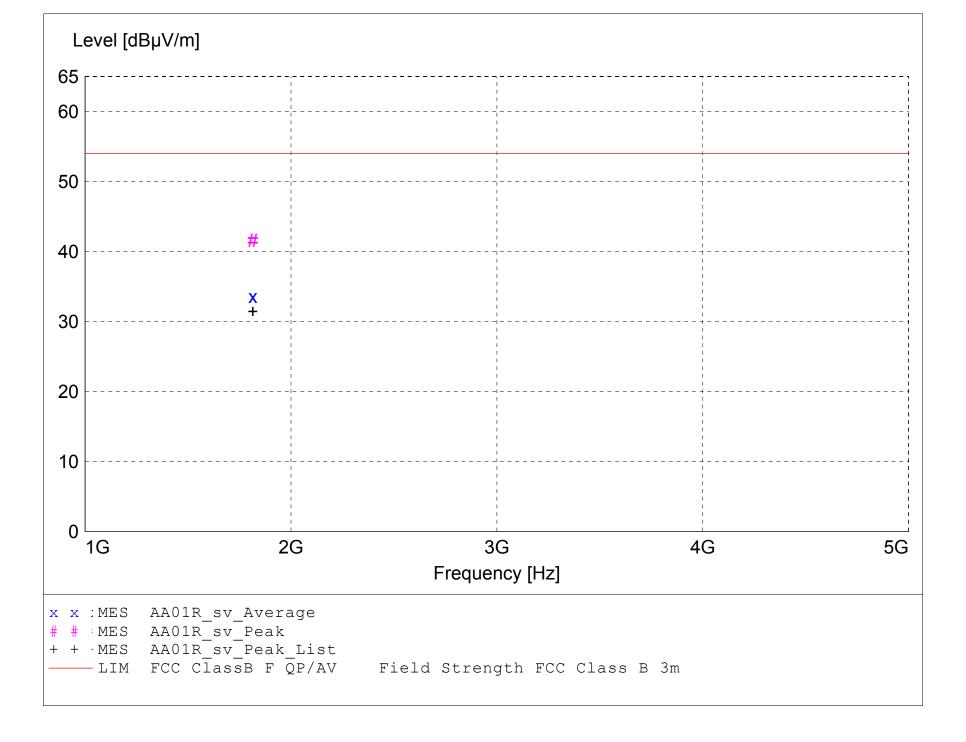
Manufacturer: Intermatic

Operating Condition: 70 deg. F; 23% R.H. Test Site: DLS O.F. Site 3 Operator: Craig Brandt

Test Specification: 120 V 60 Hz
Comment: Receive mode
Date: 02-19-2007

TEXT: "Site 3 5731&106 V3M"

Short Description: Test Set-up Vert1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- EMCO 3115 SN: 9903-5731

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6B-100200-50 SN: 313936 10 - 18 GHz -- Miteq AMF-6D-010100-50 SN: 213976

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

${\tt MEASUREMENT\ RESULT:\ "AA01R_sv_Final"}$

2/19/2007 11:2	21AM									
Frequency	Level	Antenna	_			_	_		Final	Comment
MHz	dΒμV	Factor dBµV/m	Loss dB	dBµV/m	dBµV/m		Ant. m	deg	Detector	
1815.220000 1815.220000	52.15 44.12	26.66 26.66	-37.2 -37.2	41.6 33.5		12.4 20.5	1.00		MAX PEAK AVERAGE	None None

FCC Part 15 Class B

Electric Field Strength

EUT: HA01

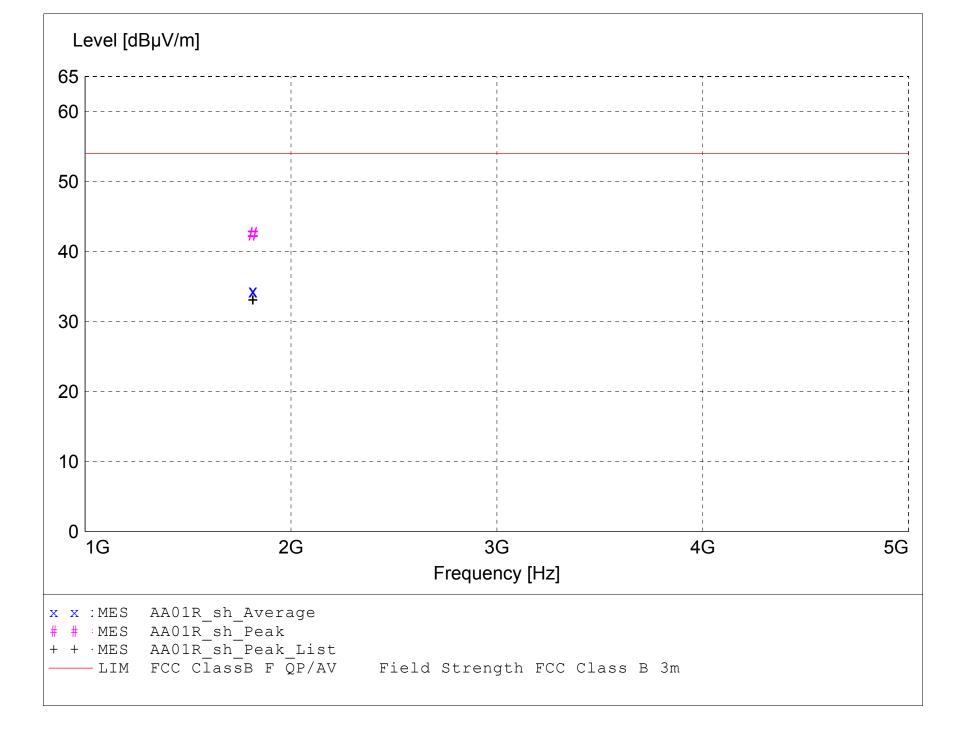
Manufacturer: Intermatic

Operating Condition: 70 deg. F; 23% R.H. Test Site: DLS O.F. Site 3
Operator: Craig Brandt

Test Specification: 120 V 60 Hz
Comment: Receive mode
Date: 02-19-2007

TEXT: "Site 3 5731&106 H3M"

Short Description: Test Set-up Horz1GHz-


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

Horn Antenna --- EMCO 3115 SN: 9903-5731

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 213976 10 - 18 GHz -- Miteq AMF-6B-100200-50 SN: 313936

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "AA01R_sh_Final"

2/19/2007 11:3	3AM									
Frequency	Level	Antenna	-			_	_			Comment
MHz	dΒμV	Factor dBµV/m	Loss dB	dBµV/m	dBµV/m		Ant. m	Angle deg	Detector	
1815.320000 1815.320000	53.10 44.90	26.66 26.66	-37.2 -37.2	42.5 34.3	54.0 54.0	11.5 19.7	1.10 1.10	160 160	MAX PEAK AVERAGE	None None

Model Tested: HA01 Report Number: 12960

APPENDIX A

3.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (SECTION 15.249a-d)

The radiated measurements made at D.L.S. Electronic Systems, Inc., for the In-Wall Duplex Receptacle, Model Number: HA01, are shown in tabulated and graph form. Preliminary radiation measurements were performed at a 3 meter test distance with the limits adjusted linearly when required. The frequency range from 30 MHz to over 960 MHz, depending upon the fundamental frequency as stated in Part 15.33a, was automatically scanned and plotted at various angles.

Measurements for the In-Wall Duplex Receptacle were made up to 10000 MHz, in accordance with Section 15.33a for Intentional Radiators with a fundamental frequency of 908.42 MHz. For intentional radiators, the frequency range to be investigated is determined by the lowest radio frequency generated by the device without going below 30 MHz, up to at least the tenth harmonic of the highest fundamental frequency or 10 GHz, whichever is lower. At those frequencies where significant signals were detected, measurements were made over the entire frequency range specified in FCC Part 15, Subpart C, Section 15.249 at the open field test site, located at Genoa City, Wisconsin, FCC file number 31040/SIT. When required, levels were extrapolated from 10 meters to 3 meters using a linear extrapolation.

All signals in the frequency range of 30 MHz to 2000 MHz were measured with a Biconical Antenna or tuned dipoles and from 200 MHz to 1000 MHz, a Log Periodic or Tuned Dipoles were used. From 1000 MHz to 10 GHz Horn Antennas were used. During the test the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level of emissions. In order to find maximum emissions, the cables were moved through all the positions the equipment would be expected to experience in the field. The EUT, peripheral equipment and cables were configured to meet the conditions in ANSI C63.4-2003, Clauses 6 & 8. Tests were made with the receive antenna(s) in both the horizontal and vertical planes of polarization. In each case, the table was rotated to find the maximum emissions.

Model Tested: HA01 Report Number: 12960

APPENDIX A

3.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T)

For operation in the bands 902 to 928 MHz, 2400 to 2483.5 MHz, 5725 to 5875 MHz, and 24.0 to 24.25 GHz the field strength of any emissions within this band shall not exceed the field strength levels specified in the following table as stated in FCC, Part 15, Section 15.249(a).

Frequency	Field Strength of	Field Strength of	Field Strength of	Field Strength of
range in	Fundamental	Fundamental	Harmonics	Harmonics
MHz	millivolts/meter	dBuV/meter	microvolts/meter	dBuV/meter
902 to 928	50	93.98	500	53.98
2400 to 2483.5	50	93.98	500	53.98
5725 to 5875	50	93.98	500	53.98
24000 to 24250	250	107.96	2500	67.96

Field strength limits are at a distance of 3 meters. The emission limits shown are based on measurement instrumentation employing an average detector.

Emissions radiated outside of the specified frequency bands, except for harmonics are attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

Preliminary radiated emission measurements were performed at a 3 meter test distance. The frequency range from 30 MHz to 1000 MHz was automatically scanned and plotted at various angles.

NOTE:

All radiated emissions measurements were made at a test room temperature of **70°F** at **18%** relative humidity.

Model Tested: HA01 Report Number: 12960

RADIATED DATA AND GRAPH(S) TAKEN FOR

FUNDAMENTAL, HARMONIC AND SPURIOUS

EMISSION MEASUREMENTS

PART 15.249

Model Tested: HA01 Report Number: 12960

1250 Peterson Dr., Wheeling, IL 60090

Radiated Fundamental and Spurious Emissions – 30 MHz to 10 GHz Tested at a 3 Meter Distance

EUT: Model: HA01
Manufacturer: Intermatic, Inc.
Operating Condition: 70 deg F; 18% R.H.

Test Site: Site 3

Operator: Craig Brandt **Test Specification:** FCC Part 15.249

Comment: Continuous transmit – 908.42 MHz

Date: 02/16/2007

Note: All other emissions at least 20 dB under the limit.

Frequency	Measurement	Ant.	Level	Antenna	System	Total	Limit	Margin	Ant.	EUT	
	Detector	Pol.		Factor	Loss	Level			Height	Angle	Comment
(MHz)	Detector	roi.	(dBuV)	(dB/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(m)	(deg)	
908.42	Quasi-Peak	Vert	64.19	22.07	6.9	93.1	94	0.9	1.00	135	Fundamental
908.42	Quasi-Peak	Horz	64.25	22.07	6.9	93.2	94	0.8	1.00	135	Fundamental
1816.84	Max Peak	Vert	63.45	26.67	-36.4	53.8	74	20.2	1.00	60	Harmonic
1816.84	Max Peak	Horz	64.80	26.67	-36.4	55.1	74	18.9	1.00	250	Harmonic
1816.84	Average	Vert	60.62	26.67	-36.4	50.9	54	3.1	1.00	60	Harmonic
1816.84	Average	Horz	62.90	26.67	-36.4	53.2	54	0.8	1.00	250	Harmonic
2725.26	Max Peak	Vert	56.35	29.27	-35.1	50.5	74	23.5	1.00	180	Harmonic
2725.26	Max Peak	Horz	60.71	29.27	-35.1	54.9	74	19.1	1.20	135	Harmonic
2725.26	Average	Vert	52.85	29.27	-35.1	47.0	54	7.0	1.00	180	Harmonic
2725.26	Average	Horz	58.55	29.27	-35.1	52.7	54	1.3	1.20	135	Harmonic
3633.68	Max Peak	Vert	51.14	31.65	-34.4	48.4	74	25.6	1.30	45	Harmonic
3633.68	Max Peak	Horz	50.61	31.65	-34.4	47.8	74	26.2	2.00	300	Harmonic
3633.68	Average	Vert	42.38	31.65	-34.4	39.6	54	14.4	1.30	45	Harmonic
3633.68	Average	Horz	43.05	31.65	-34.4	40.3	54	13.7	2.00	300	Harmonic
4542.10	Max Peak	Vert	55.29	32.21	-33.8	53.7	74	20.3	1.00	0	Harmonic
4542.10	Max Peak	Horz	55.96	32.21	-33.8	54.4	74	19.6	1.20	200	Harmonic
4542.10	Average	Vert	51.16	32.21	-33.8	49.6	54	4.4	1.00	0	Harmonic
4542.10	Average	Horz	52.13	32.21	-33.8	50.6	54	3.4	1.20	200	Harmonic