

Nemko

www.nemko.com

Compliance test report ID

199523-1TRFWL

Date of issue
March 6, 2012

FCC 47 CFR Part 15, Subpart C, Chapter 15.231

Periodic operation in the band 40.66–40.70 MHz and above 70 MHz

Applicant **Tecnoplus srl**

Product **TX device for central vacuum cleaners**

Model **Flisy**

FCC ID **DGO-FLISY**

Test location

Nemko Spa
Via del Carroccio, 4
20853 Biassono (MB)
Italy

Test site FCC ID: 481407 (10 m semi anechoic chamber)

Telephone +39 0392201201
Faxsimile +39 0392201221
Website www.nemko.com

Tested by

March 6, 2012

P. Barbieri

Date**Reviewed by**

March 6, 2012

G. Curioni

Date

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Spa ISO/IEC 17025 accreditation.

Copyright notification

Nemko Spa authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Spa accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Table of Contents

Table of Contents	1
Section 1 Report summary.....	4
1.1 Applicant	4
1.2 Manufacturer.....	4
1.3 Test specifications	4
1.4 Statement of compliance.....	4
1.5 Exclusions.....	4
1.6 Test report revision history.....	4
Section 2 Summary of test results	5
2.1 FCC Part 15 Subpart C – Intentional Radiators, test results	5
Section 3 Equipment under test (EUT) details.....	6
3.1 Sample information.....	6
3.2 EUT information.....	6
3.3 Technical information	6
3.4 Product description and theory of operation.....	6
3.5 EUT exercise details	6
Section 4 Engineering considerations	7
4.1 Modifications incorporated in the EUT.....	7
4.2 Technical judgment	7
4.3 Deviations from laboratory tests procedures.....	7
Section 5 Test conditions.....	8
5.1 Atmospheric conditions	8
5.2 Power supply range.....	8
Section 6 Measurement uncertainty	9
6.1 Uncertainty of measurement.....	9
Section 7 Test equipment.....	10
7.1 Test equipment list	10
Section 8 Testing data	11
8.1 Clause 15.231(a) Conditions for intentional radiators to comply with periodic operation.....	11
8.2 Clause 15.231(b) Field strength of emissions	13
8.3 Clause 15.231(c) Emission bandwidth	19
Section 9 Block diagrams of test set-ups	21
9.1 Radiated emissions set-up.....	21
9.2 Conducted emissions set-up.....	21
Section 10 EUT photos	22
10.1 External photos	22

Section 1 Report summary

1.1 Applicant

Tecnoplus srl
Via Cilavegna n.53
27020 Gravellona Lomellina (PV)
Italy

1.2 Manufacturer

Tecnoplus srl
Via Cilavegna n.53
27020 Gravellona Lomellina (PV)
Italy

1.3 Test specifications

FCC 47 CFR Part 15, Subpart C, Chapter 15.231

Periodic operation in the band 40.66–40.70 MHz and above 70 MHz

1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

1.5 Exclusions

None

1.6 Test report revision history

Revision #	Details of changes made to test report
199523-1TRFWL	Original report issued

Section 2 Summary of test results

2.1 FCC Part 15 Subpart C – Intentional Radiators, test results

Part	Test description	Verdict
§15.207(a)	Conducted limits	Not applicable
§15.231(a)	Conditions for intentional radiators to comply with periodic operation	Pass
§15.231(b)	Field strength of emissions	Pass
§15.231(c)	Emission bandwidth	Pass
§15.231(d)	Requirements for devices operating within 40.66–40.70 MHz band	Not applicable
§15.231(e)	Conditions for intentional radiators to comply with periodic operation	Not applicable

Notes: None

Section 3 Equipment under test (EUT) details

3.1 Sample information

Receipt date February 24, 2012
 Nemko sample ID number 199523

3.2 EUT information

Product name TX device for central vacuum cleaners
 Model Flisy
 Serial number Not provided
 Part number Not provided

3.3 Technical information

Operating band 433.05 to 434.79 MHz
 Operating frequency 433.925 MHz
 Modulation type AM (OOK)
 Occupied bandwidth -
 Emission designator P1D
 Power requirements 80.8 dB μ V/m (All tests were performed with new battery.)
 Antenna information Antenna type and gain
 The EUT uses a unique antenna coupling/ non-detachable antenna to the intentional radiator.

3.4 Product description and theory of operation

The EUT is a radio controller for central vacuum cleaners with the following performance data

TABLE 2 - PERFORMANCE DATA TRANSMITTER CT72					
Frequency	433.925 MHz \pm 150KHz				
Modulation	AM (OOK)				
Output RF power	@3V DC -27 dBm ERP				
Data rate	<table> <tr> <td>Default</td><td>1 kbps</td></tr> <tr> <td>Max</td><td>5 kbps</td></tr> </table>	Default	1 kbps	Max	5 kbps
Default	1 kbps				
Max	5 kbps				
System setup time	25 μ s				
Supply current	<table> <tr> <td>Active</td><td>10 mA</td></tr> <tr> <td>Sleep</td><td>0 mA</td></tr> </table>	Active	10 mA	Sleep	0 mA
Active	10 mA				
Sleep	0 mA				
Supply Voltage	<table> <tr> <td>Min</td><td>2.6V DC</td></tr> <tr> <td>Max</td><td>3.3V DC</td></tr> </table>	Min	2.6V DC	Max	3.3V DC
Min	2.6V DC				
Max	3.3V DC				
Operating temperature range	+5°C \div +35°C - CAT III				
Antenna	Loop integrated				
Dimensions	60 x 20 x 10 mm				

CT72 - TRANSMITTER

3.5 EUT exercise details

The EUT has been tested pushing the button when discontinuous working is needed and it has been tested in continuous transmission mode forced with an electrical bridge.

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

4.2 Technical judgment

None

4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature: 15–30 °C

Relative humidity: 20–75 %

Air pressure: 86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The EUT has been tested with its dedicated 3 Vdc battery (new).

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report according to CISPR 16 - 4 „Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements“ and is documented in the Nemko Spa Technical Procedure WML1002. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Nemko Spa laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Disturbance	Antenna distance 3m, 10m (30÷200) MHz	5.0 dB	(1)
	Antenna distance 3m (0.2÷6) GHz	5.2 dB	(1)
	Antenna distance 1m, 3m (6÷18) GHz	5.8 dB	(1)
	Antenna distance 1m, 3m (18÷40) GHz	7.2 dB	(1)
Conducted Disturbance	9 kHz ÷ 150 kHz with AMN	3.8 dB	(1)
	150 kHz ÷ 30 MHz with AMN	3.4 dB	(1)
	150 kHz ÷ 30 MHz with AAN	4.6 dB	(1)
	9 kHz ÷ 30 MHz with voltage probe	2.9 dB	(1)
	9 kHz ÷ 30 MHz with current probe	2.9 dB	(1)

NOTES:

(1) The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k = 2$ which has been derived from the assumed normal probability distribution with infinite degrees of freedom and for a coverage probability of 95 %

Section 7 Test equipment

7.1 Test equipment list

Equipment	Manufacturer	Model no.	Asset no.	Cal date	Next cal.
Trilog Broad Band Antenna	Schwarzbeck	VULB 9168	VULB 9168-242	2012/02	2015/02
Bilog antenna 1 ÷ 18 GHz	Schwarzbeck	STLP 9148-123	123	2012/02	2015/02
Broadband preamplifier	Schwarzbeck	BBV 9718	9718-137	2010/07	2013/07
EMI receiver 20 Hz ÷ 8 GHz	R&S	ESU8	100202	2012/02	2013/02
Turning-table	R&S	HCT	835 803/03	NCR	NCR
Antenna mast	R&S	HCM	836 529/05	NCR	NCR
Controller	R&S	HCC	836 620/7	NCR	NCR
Semi-anechoic chamber	Nemko	10m semi-anechoic chamber	530	2010/08	2012/08
Shielded room	Siemens	10m control room	1947	NCR	NCR

Note: NCR - no calibration required

Section 8 Testing data

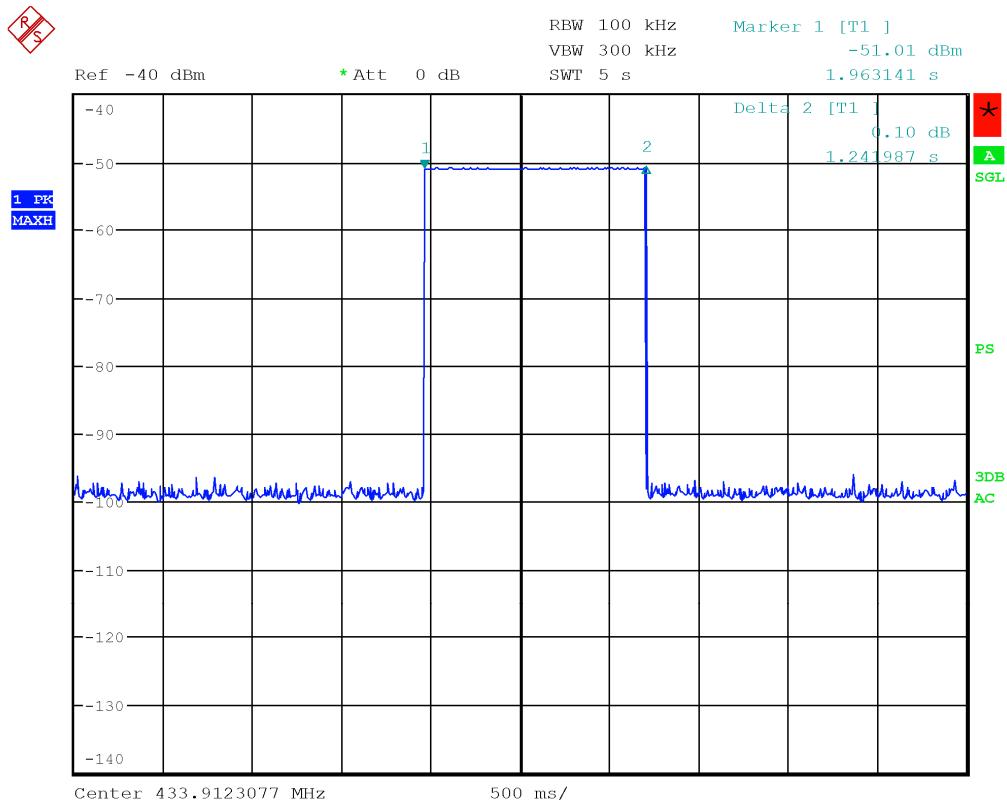
8.1 Clause 15.231(a) Conditions for intentional radiators to comply with periodic operation

8.1.1 Definitions and limits

The provisions of this section are restricted to periodic operation within the band 40.66–40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:

- 1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
- 2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- 3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.
- 4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition
- 5) Transmission of set-up information for security systems may exceed the transmission duration limits in paragraphs (a)(1) and (a)(2) of this section, provided such transmissions are under the control of a professional installer and do not exceed ten seconds after a manually operated switch is released or a transmitter is activated automatically. Such set-up information may include data.

8.1.2 Test summary


Test date	March 5, 2012	Test engineer	P. Barbieri	Verdict	Pass
Temperature	20 °C	Air pressure	1000 mbar	Relative humidity	45 %

8.1.3 Observations/special notes

None

8.1.4 Test data

- 1) The EUT is manually triggered.
See attached plot for the timing of a manually trigger event.
- 2) The EUT is not activated automatically.
- 3) The EUT is not a periodic transmitter.
- 4) The EUT usage is not for radio control purposes during emergencies.
- 5) The EUT does not transmit set-up information

8.2 Clause 15.231(b) Field strength of emissions

8.2.1 Definitions and limits

In addition to the provisions of §15.205 the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Table 8.2-1: Field strength limits

Fundamental frequency (MHz)	Field strength of fundamental (µV/m)	Field strength of fundamental (dBµV/m)	Field strength of spurious emissions (µV/m)	Field strength of spurious emissions (dBµV/m)
40.66–40.70	2,250	67	225	47
70–130	1,250	61.9	125	41.9
130–174	1,250 to 3,750*	61.9 to 71.5*	125 to 375*	41.9 to 51.5*
174–260	3,750	71.5	375	51.5
260–470	3,750 to 12,500*	71.5 to 81.9*	375 to 1,250*	51.5 to 61.9*
Above 470	12,500	81.9	1,250	61.9

* Linear interpolations

- 1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.
- 2) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in §15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.
- 3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

8.2.2 Test summary

Test date	March 2, 2012	Test engineer	P. Barbieri	Verdict	Pass
Temperature	20 °C	Air pressure	1000 mbar	Relative humidity	45 %

8.2.3 Observations/special notes

Table 8.2-2: §15.209 – Radiated emission limits

Frequency (MHz)	Field strength (µV/m)	Measurement distance (dBµV/m)	Measurement distance (m)
0.009–0.490	2400/F	67.6–20log(F)	300
0.490–1.705	24000/F	87.6–20log(F)	30
1.705–30.0	30	29.5	30
30–88	100	40.0	3
88–216	150	43.5	3
216–960	200	46.0	3
above 960	500	54.0	3

– F = fundamental frequency in kHz
– In the emission table above, the tighter limit applies at the band edges.
– For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

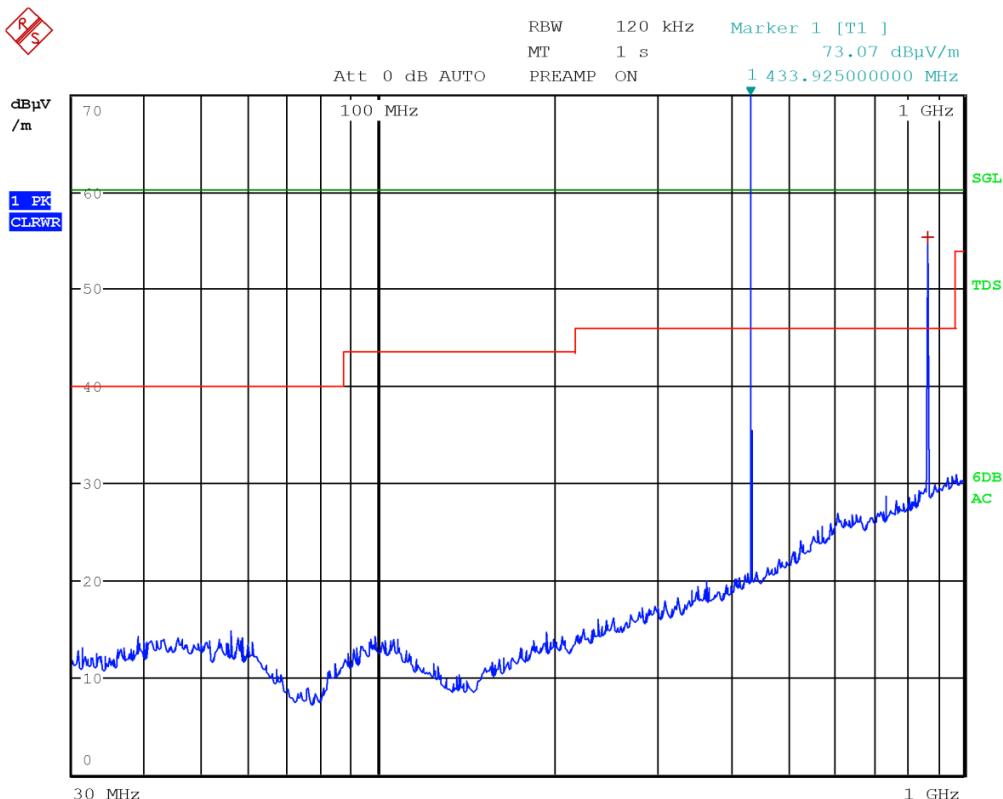
8.2.3 Observations/special notes, continued

Table 8.2-3: §15.205 – Restricted bands of operation

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	Above 38.6
13.36–13.41			

- The spectrum was searched from 30 MHz to the 10th harmonic.
- All measurements were performed at a distance of 3 m.
- All measurements were performed:
 - within 30–1000 MHz range: using a quasi-peak detector with 120 kHz/300 kHz RBW/VBW,
 - above 1 GHz: using peak detector with 1 MHz/3 MHz RBW/VBW for peak results
 - and using average detector with 1 MHz/3 MHz RBW/VBW for average results.

8.2.4 Test data

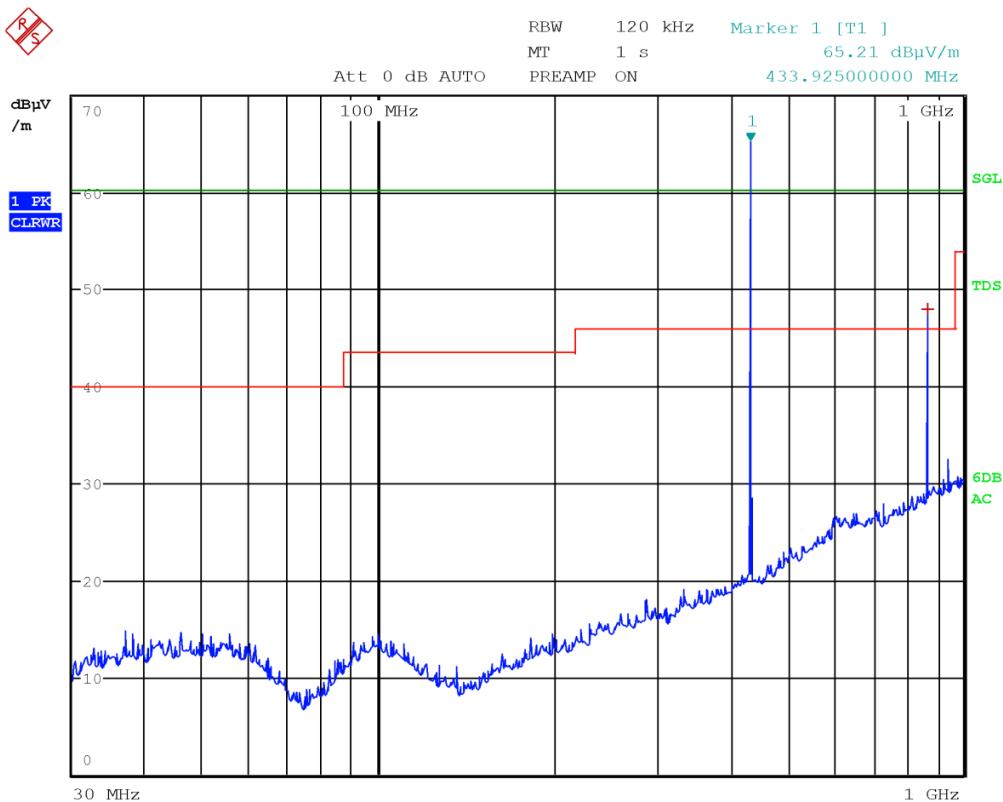

Duty cycle/average factor calculations

§15.35(c) When the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed; the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

$$\text{Duty cycle / average factor} = 20 \times \log_{10} \left(\frac{T_{x_{100ms}}}{100ms} \right)$$

8.2.5 Test data, continued

Plot: Antenna in horizontal polarization


The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators) for determination of compliance. Limits have been adjusted to reflect 3 m requirements.

A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Table: Field strength measurement results

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
433.9250	73.1	80.8	-7.7	PK
867.8250	55.4	60.8	-5.4	PK

8.2.4 Test data, continued

Plot: Antenna in vertical polarization

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators) for determination of compliance. Limits have been adjusted to reflect 3 m requirements.

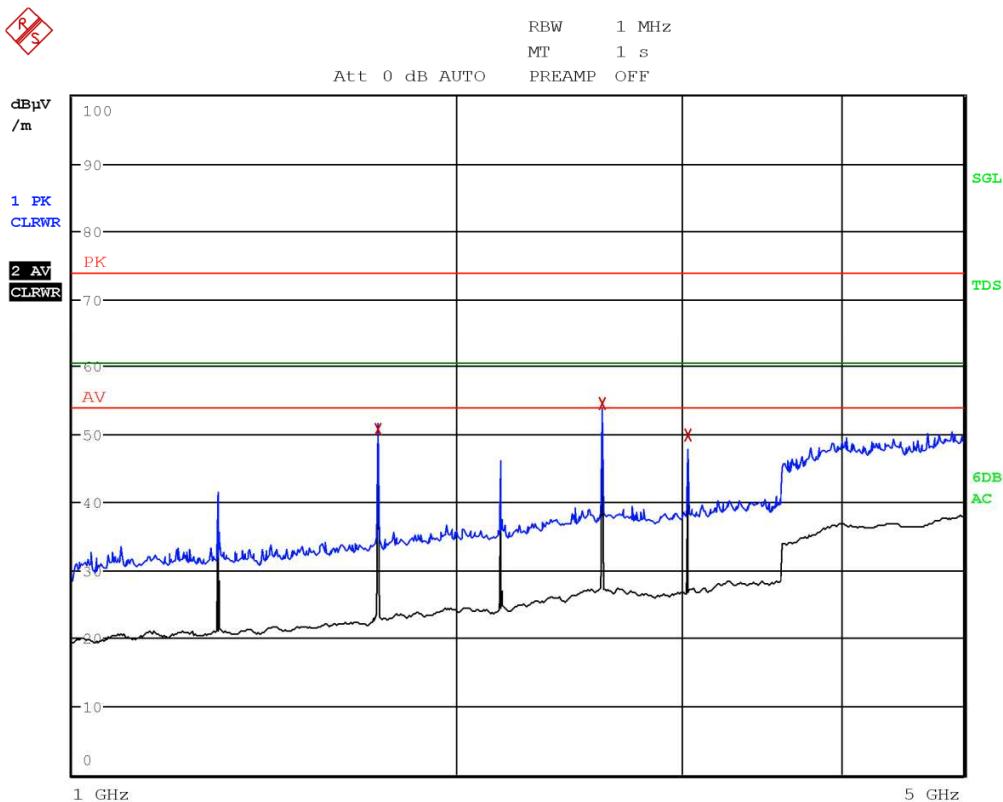

A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Table: Field strength measurement results

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
433.9250	65.2	80.8	-15.6	PK
867.8250	48.0	60.8	-12.8	PK

8.2.4 Test data, continued

Plot: Antenna in horizontal polarization

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators) for determination of compliance. Limits have been adjusted to reflect 3 m requirements.

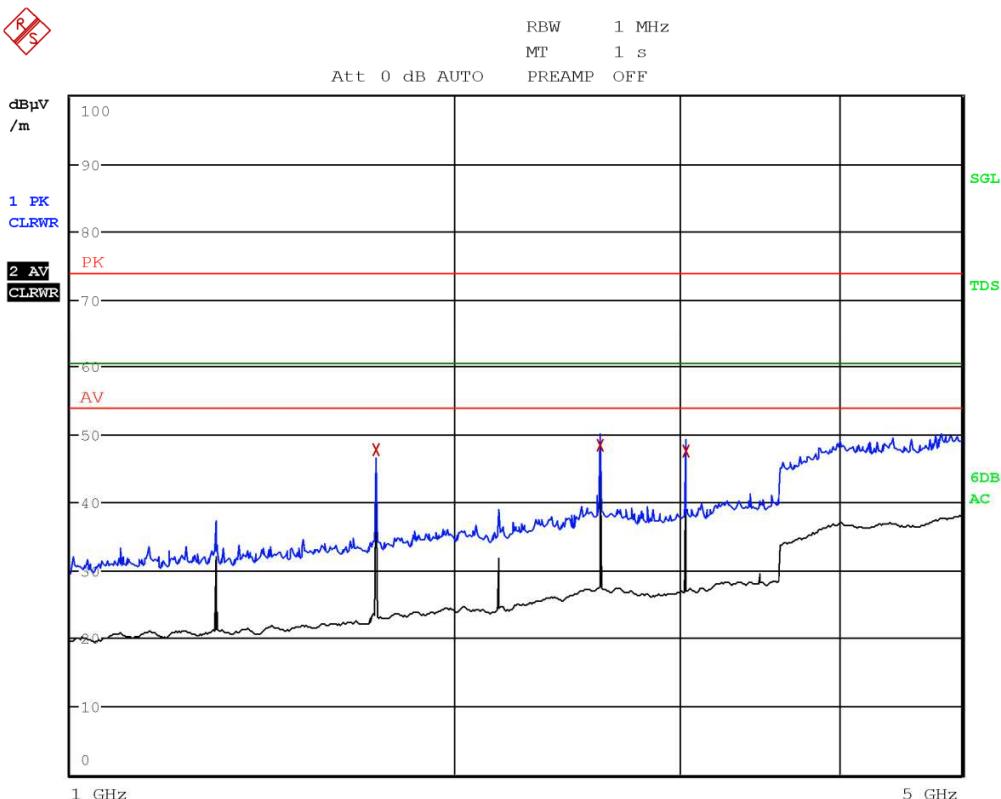

A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Table: Field strength measurement results

Frequency (MHz)	Level (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Detector
1735.5000	50.8	60.8	-10.0	PK
2603.5000	54.4	60.8	-6.4	PK
3037.5000	50.0	60.8	-10.8	PK

Average calculation not required since the PK value is under the limits

8.2.4 Test data, continued

Plot: Antenna in vertical polarization

The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators) for determination of compliance. Limits have been adjusted to reflect 3 m requirements.

A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Table: Field strength measurement results

Frequency (MHz)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1735.5000	47.9	60.8	-12.9	PK
2603.5000	48.5	60.8	-15.3	PK
3037.5000	47.6	60.8	-13.2	PK

Average calculation not required since the PK value is under the limits

8.3 Clause 15.231(c) Emission bandwidth

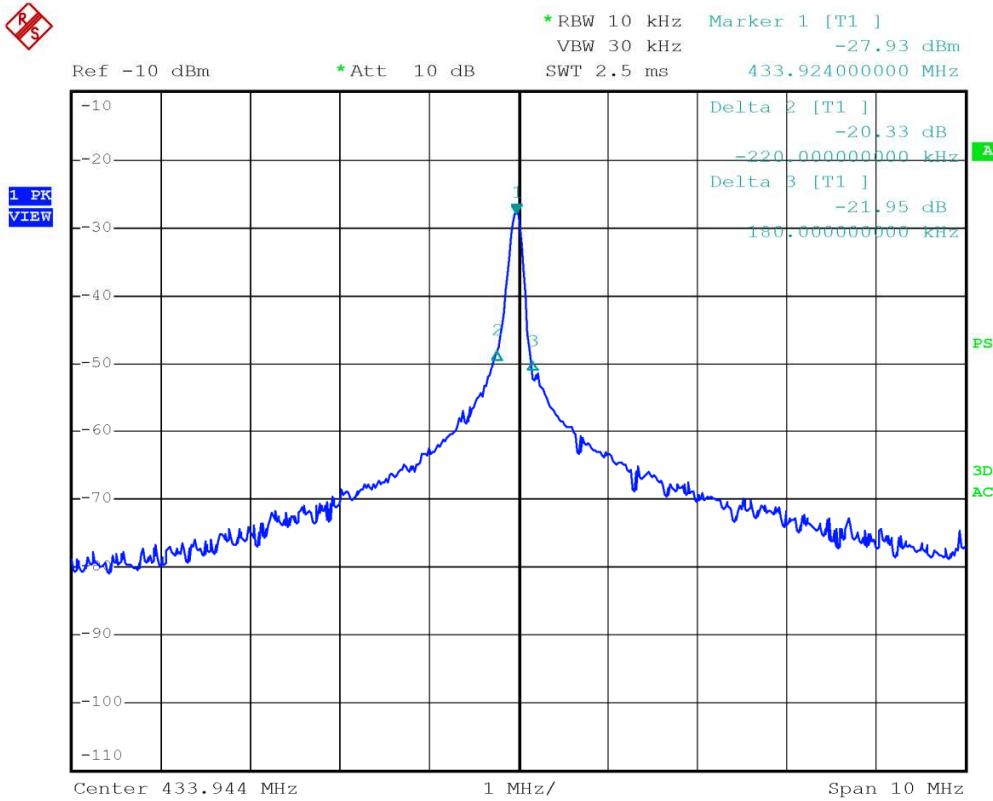
8.3.1 Definitions and limits

The bandwidth of the emission shall be no wider than 0.25 % of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5 % of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

8.3.2 Test summary

Test date	March 5, 2012	Test engineer	P. Barbieri	Verdict	Pass
Temperature	20 °C	Air pressure	1000 mbar	Relative humidity	45 %

8.3.3 Observations/special notes



The test was performed using peak detector of the spectrum analyzer with RBW no narrower than 1 % of the emission bandwidth.

8.3.4 Test data

Limit: 0.25 % of 433.925 MHz is 1084.8125 kHz

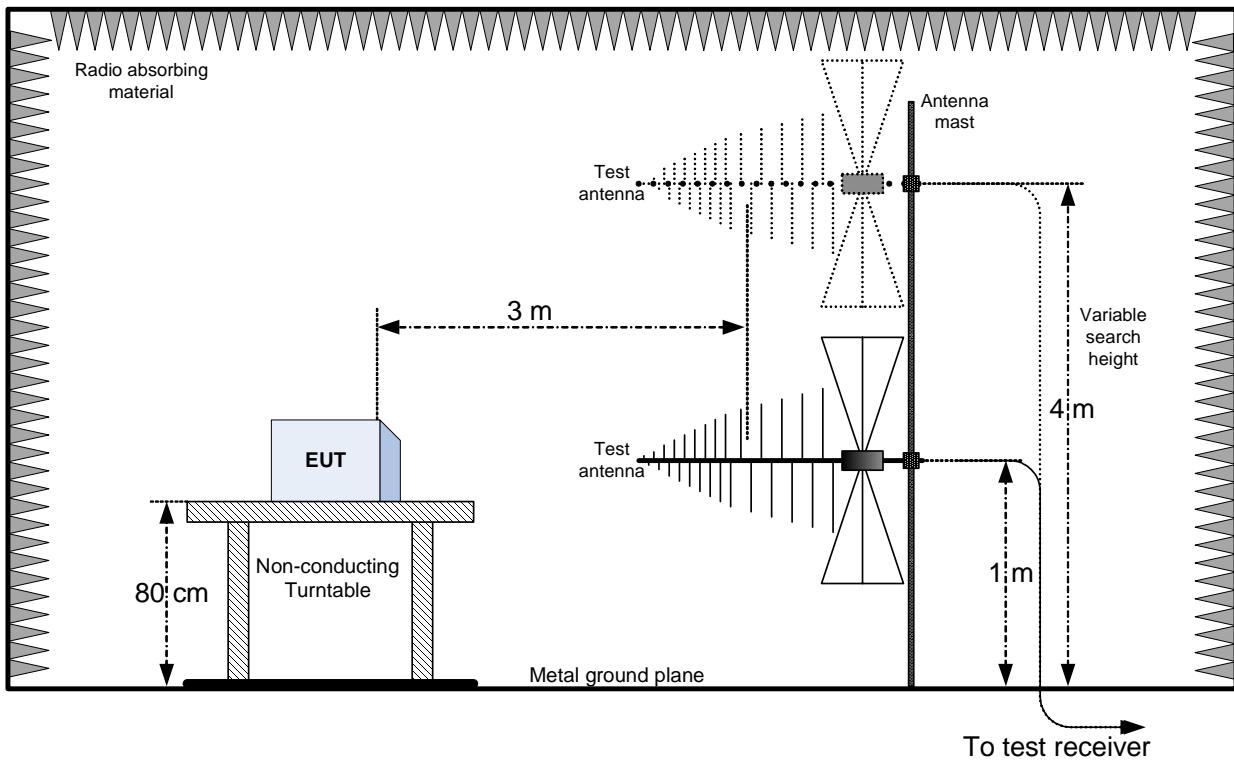
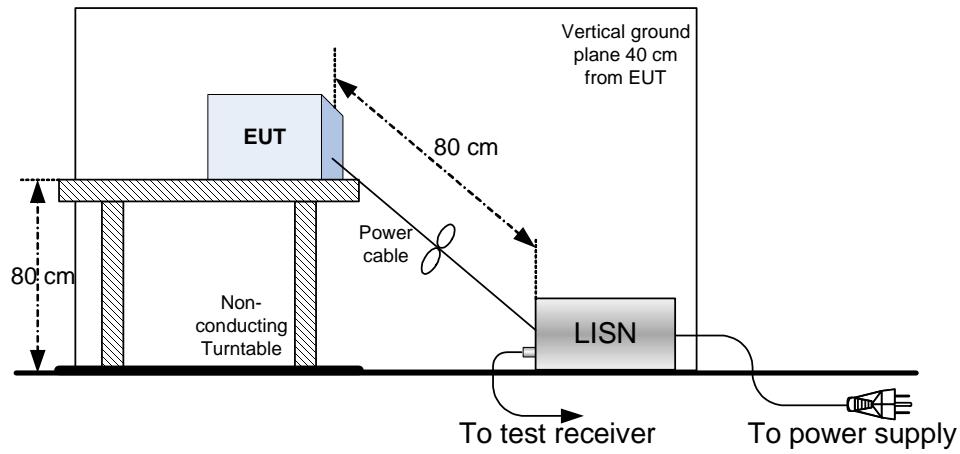

Plot: 20 dB bandwidth

Table: 20 dB bandwidth


20 dB bandwidth (kHz)	Limit (kHz)	Margin (kHz)
400	1084.8125	-684.8125

Section 9 Block diagrams of test set-ups

9.1 Radiated emissions set-up

9.2 Conducted emissions set-up

Section 10 EUT photos

10.1 External photos

10.1.1 EUT side view

10.1.2 EUT top view

10.1.3 EUT internal view

10.1.4 EUT bottom view

