CERTIFICATION TEST REPORT

Manufacturer: ActiGraph

49 East Chase Street

Pensacola, Florida 32502 USA

Applicant: Same as Above

Product Name: CentrePoint Insight Watch

Product Description: Ambulatory activity monitor

Operating

Voltage/Frequency: Battery-Operated (3.4VDC nominal)

Model: CPW01

FCC ID: DFW-04

Testing Commenced: June 5, 2018

Testing Ended: June 22, 2018

Summary of Test Results: In Compliance

The EUT complies with the EMC requirements when manufactured identically as the unit tested in this report, including any required modifications and/or manufacturer's statement. Any changes to the design or build of this unit subsequent to this

testing may deem it non-compliant.

Standards:

❖ FCC Part 15 Subpart C, Section 15.249

- ❖ FCC Part 15 Subpart C, Section 15.215(c) Additional provisions to the general radiated emission limitations
- FCC15.207 Conducted Limits

❖ FCC Part 15 Subpart A, Section 15.31(e) – Measurement Standards

060818

Report Number: F2LQ10680E-11E Page 1 of 36 Issue Date: June 22, 2018

Model: CPW01

Evaluation Conducted by:

Julius Chiller, EMC/Wireless Engineer

Christephen Helmieb

JEBORH

Christopher Helmick, Senior EMC Engineer

Report Reviewed by:

Ken Littell, Director of EMC & Wireless Operations

F2 Labs 26501 Ridge Road Damascus, MD 20872 Ph 301.253.4500 F2 Labs 16740 Peters Road Middlefield, OH 44062 Ph 440.632.5541 F2 Labs 8583 Zionsville Road Indianapolis, IN 46268 Ph 317.610.0611

This test report may be reproduced in full; partial reproduction only may be made with the written consent of F2 Labs. The results in this report apply only to the equipment tested.

Report Number: F2LQ10680E-11E Page 2 of 36 Issue Date: June 22, 2018

TABLE OF CONTENTS

Se	ction	Title	Page
			·
1		ADMINISTRATIVE INFORMATION	4
2		SUMMARY OF TEST RESULTS/MODIFICATIONS	7
3		TABLES OF MEASURED RESULTS	8
4		ENGINEERING STATEMENT	9
5		EUT INFORMATION AND DATA	10
6		LIST OF MEASUREMENT INSTRUMENTATION	11
7		OCCUPIED BANDWIDTH	12
8		FIELD STRENGTH OF EMISSIONS	16
9		CONDUCTED EMISSIONS	30
10		PHOTOGRAPHS	33

Model: CPW01

1 ADMINISTRATIVE INFORMATION

1.1 Measurement Location:

F2 Labs in Middlefield, Ohio. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.

1.2 Measurement Procedure:

All measurements were performed according to the 2013 version of ANSI C63.10 and recommended FCC procedure of measurement of DTS operating under Section 15.249. A list of the measurement equipment can be found in Section 6.

Report Number: F2LQ10680E-11E Page 4 of 36 Issue Date: June 22, 2018

Model: CPW01

1.3 Uncertainty Budget:

The uncertainty in EMC measurements arises from several factors which affect the results, some associated with environmental conditions in the measurement room, the test equipment being used, and the measurement techniques adopted.

The measurement uncertainty budgets detailed below are calculated from the test and calibration data and are expressed with a 95% confidence factor using a coverage factor of k=2. The Uncertainty for a laboratory are referred to as *U*lab. For Radiated and Conducted Emissions, the Expanded Uncertainty is compared to the *U*cispr values to determine if a specific margin is required to deem compliance.

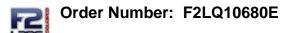
Ulab

Measurement Range	Combined Uncertainly	Expanded Uncertainty
Radiated Emissions <1 GHz @ 3m	2.54	5.07dB
Radiated Emissions <1 GHz @ 10m	2.55	5.09dB
Radiated Emissions 1 GHz to 2.7 GHz	1.81	3.62dB
Radiated Emissions 2.7 GHz to 18 GHz	1.55	3.10dB
AC Power Line Conducted Emissions, 150kHz to 30 MHz	1.38	2.76dB
AC Power Line Conducted Emissions, 9kHz to 150kHz	1.66	3.32dB

*U*cispr

= ·	
Measurement Range	Expanded Uncertainty
Radiated Emissions <1 GHz @ 3m	5.2dB
Radiated Emissions <1 GHz @ 10m	5.2dB
Radiated Emissions 1 GHz to 2.7 GHz	Under Consideration
Radiated Emissions 2.7 GHz to 18 GHz	Under Consideration
AC Power Line Conducted Emissions, 150kHz to 30 MHz	3.6dB
AC Power Line Conducted Emissions, 9kHz to 150kHz	4.0dB

If *U*lab is less than or equal to *U*cispr, then:


- compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If *U*lab is greater than *U*cispr in table 1, then:

- ullet compliance is deemed to occur if no measured disturbance, increased by (Ulab Ucispr), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance, increased by (*U*lab *U*cispr), exceeds the disturbance limit.

Note: Only measurements listed in the tables above that relate to tests included in this Test Report are applicable.

Report Number: F2LQ10680E-11E Page 5 of 36 Issue Date: June 22, 2018

1.4 Document History:

Document Number	Description	Issue Date	Approved By
F2P10680E-11E	First Issue	June 22, 2018	K. Littell

Report Number: F2LQ10680E-11E Page 6 of 36 Issue Date: June 22, 2018

2 **SUMMARY OF TEST RESULTS**

Test Name	Standard(s)	Results
-20dB Occupied Bandwidth	CFR 47 Part 15.215(c)	Complies
Field Strength of Emissions	CFR 47 Part 15.249(a)(d)	Complies
Conducted Emissions	CFR 47 Part 15.207(a)	Complies
Variation of the Input Power	CFR 47 Part 15.31(e)	Complies*

^{*}Requirements of 15.31 were met by using new batteries.

Modifications Made	to the Equipment
None	


Page 7 of 36 Report Number: F2LQ10680E-11E Issue Date: June 22, 2018

3 **TABLES OF MEASURED RESULTS**

Test	Low Channel 2402 MHz	Mid Channel 2440 MHz	High Channel 2480 MHz
Average Field Strength of Fundamental	78.2 dBµV/m	78.8dBµV/m	79.4 dBµV/m
Average Limit for Fundamental	93.97 dBµV/m	93.97 dBµV/m	93.97 dBµV/m
Peak Field Strength of Fundamental	80.6 dBµV/m	81.7 dBµV/m	82.0 dBµV/m
Peak Limit for Fundamental	113.97dBuV/m	113.97dBuV/m	113.97dBuV/m
-20dB Occupied Bandwidth (MHz)	1.223	1.599	1.223

The -20dB bandwidth of the emission shall be contained within the frequency band designated in the rule section under which the equipment is operated.

Report Number: F2LQ10680E-11E Page 8 of 36 Issue Date: June 22, 2018

Model: CPW01

4 ENGINEERING STATEMENT

This report has been prepared on behalf of ActiGraph to provide documentation for the testing described herein. This equipment has been tested and found to comply with part 15.249 of the FCC Rules using ANSI C63.10 2013 standard. The test results found in this test report relate only to the items tested.

Report Number: F2LQ10680E-11E Page 9 of 36 Issue Date: June 22, 2018

Order Number: F2LQ10680E

Applicant: ActiGraph Model: CPW01

5 EUT INFORMATION AND DATA

5.1 Equipment Under Test:

Product: CentrePoint Insight Watch

Model: CPW01

Serial No.: CPW1A20180003

FCC ID: DFW-04

5.2 Trade Name:

ActiGraph

5.3 Power Supply:

Battery-Operated (3.4VDC nominal)

5.4 Applicable Rules:

CFR 47, Part 15.249

5.5 Equipment Category:

Radio Transmitter-DTS

5.6 Antenna:

Internal, 0dBi gain

5.7 Accessories:

CPW01 Battery Charger

5.8 Test Item Condition:


The equipment to be tested was received in good condition.

5.9 Testing Algorithm:

EUT was set up in a normal operating mode. EUT was placed on an 80cm and 1.5m high table on the turntable of a semi-anechoic chamber, 3m from the measuring antenna. Radiated emissions were measured of the fundamental (2402-2480 MHz) and out-of-band spectrums. Measurements were made on three different channels (low, mid and high).

060818

Report Number: F2LQ10680E-11E Page 10 of 36 Issue Date: June 22, 2018

6 LIST OF MEASUREMENT INSTRUMENTATION

Equipment Type	Asset Number	Manufacturer	Manufacturer Model		Calibration Due Date
Shielded Chamber	CL166-E	Albatross Projects	B83117-DF435- T261	US140023	Jan. 9, 2019
Receiver	CL151	Rohde & Schwarz	ESU40	100319	Nov. 17, 2018
Horn Antenna	CL098	Emco	3115	9809-5580	Dec. 28, 2018
Pre-Amplifier	CL153	Keysight Tech.	83006A	MY39500791	Sept. 20, 2018
Pre-Amplifier	0197	Hewlett Packard	8447D	1726A01006	Nov. 17, 2018
Active 18" Loop Antenna	CL163	A.H. Systems, Inc.	EHA-52B	100	June 4, 2019
Antenna, JB3 Combination	CL175	Sunol Sciences	JB3	A030315	Oct.11, 2019
Horn Antenna (18 GHz-26.5 GHz)	CL114	A.H. Systems, Inc.	SAS-572	237	Nov. 17, 2018
Temp/Hum. Recorder	CL232	Extech	445814	01	Mar. 22, 2019
Transient Limiter	0202	Hewlett Packard	11947A	3107A00729	June 27, 2018
Spectrum Analyzer	CL147	Agilent	E7402A	MY45101241	Nov. 16, 2018
LISN	CL181	Com-Power	LI-125A	191226	June 24, 2018
LISN	CL182	Com-Power	LI-125A	191225	June 24, 2018
Software: EMC 32, Version 8.53.0 Software Verified: Jur				e Verified: June 5-6	, 2018

Report Number: F2LQ10680E-11E Page 11 of 36 Issue Date: June 22, 2018

Model: CPW01

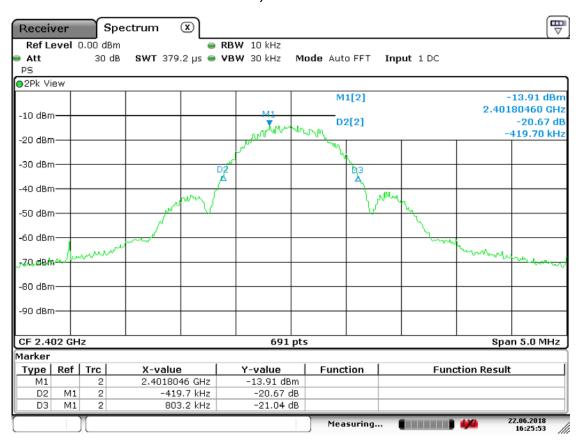
7 FCC PART 15.215(c), OCCUPIED BANDWIDTH

7.1 Requirements:

§15.215 Additional provisions to the general radiated emission limitations.

- (a) The regulations in §§15.217 through 15.257 provide alternatives to the general radiated emission limits for intentional radiators operating in specified frequency bands. Unless otherwise stated, there are no restrictions as to the types of operation permitted under these sections.
- (b) In most cases, unwanted emissions outside of the frequency bands shown in these alternative provisions must be attenuated to the emission limits shown in §15.209. In no case shall the level of the unwanted emissions from an intentional radiator operating under these additional provisions exceed the field strength of the fundamental emission. (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. In the case of intentional radiators operating under the provisions of subpart E, the emission bandwidth may span across multiple contiguous frequency bands identified in that subpart. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

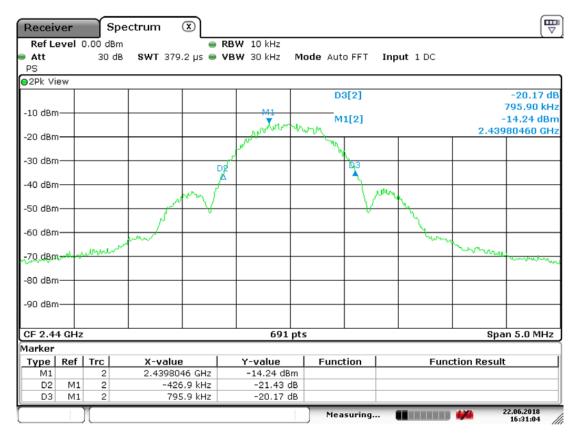
Bandwidth measurements were made at the low (2404 MHz), mid (2440 MHz) and high (2480 MHz) frequencies. The bandwidth was measured using the analyzer's marker function.


060818

Report Number: F2LQ10680E-11E Page 12 of 36 Issue Date: June 22, 2018

7.2 Occupied Bandwidth Test Data

Test Date(s):	June 22, 2018	Test Engineer(s):	J. Chiller
		Air Temperature:	23.2°C
Standards:	CFR 47 Part 15.215(c)	Relative Humidity:	41%


-20dB, Low Channel

Date: 22.JUN.2018 16:25:53

Report Number: F2LQ10680E-11E Page 13 of 36 Issue Date: June 22, 2018

-20dB, Mid Channel



Date: 22.JUN.2018 16:31:04

Report Number: F2LQ10680E-11E Page 14 of 36 Issue Date: June 22, 2018

-20dB, High Channel

Date: 22.JUN.2018 16:34:07

Report Number: F2LQ10680E-11E Page 15 of 36 Issue Date: June 22, 2018

Model: CPW01

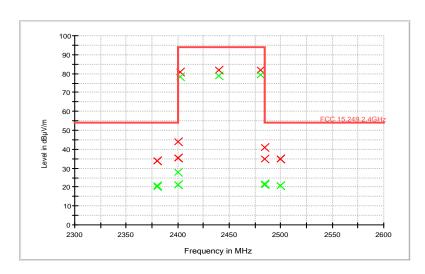
8 FCC PART 15.249(a)(d) – FIELD STRENGTH OF EMISSIONS FROM INTENTIONAL **RADIATORS**

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

NOTE: During the pre-scan evaluation, the EUT was rotated in all three orthogonal positions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions.


Report Number: F2LQ10680E-11E Page 16 of 36 Issue Date: June 22, 2018

8.1 Test Data - Field Strength of Emissions from Intentional Radiators

Test Date(s):	June 5, 2018	Test Engineer(s):	J. Chiller
Ctondordo	CED 47 Dort 15 240(a)	Air Temperature:	21.8°C
Standards:	CFR 47 Part 15.249(a)	Relative Humidity:	47%

2.3 GHz to 2.6 GHz

Frequency (MHz)	Polarity	Antenna Height (cm)	Azimuth (deg)	Corr. (dB)	MaxPeak (dBµV/m)	MaxPeak (dBµV/m) Limit	MaxPeak Margin	Average (dBµV/m)	Average (dBµV/m) Limit	Average Margin
2380.000000	Н	150.0	175.0	-4.40	34	74	-40.0	20.5	54	-33.5
2380.000000	V	150.0	9.0	-4.40	33.7	74	-40.3	20.5	54	-33.5
2400.000000	V	150.0	345.0	-4.70	35.3	114	-78.7	21.3	94	-72.7
2400.000000	V	150.0	11.0	-4.70	35.6	114	-78.4	21.4	94	-72.6
2400.000000	Н	150.0	238.0	-4.70	44.2	114	-69.8	27.7	94	-66.3
2402.000000	Н	150.0	223.0	-4.70	80.6	114	-33.4	78.2	94	-15.8
2440.000000	Н	150.0	240.0	-4.30	81.7	114	-32.3	78.8	94	-15.2
2480.000000	Н	150.0	162.0	-4.30	82	114	-32.0	79.4	94	-14.6
2484.000000	V	150.0	0.0	-4.20	35.1	74	-38.9	21	54	-33.0
2484.000000	Н	150.0	159.0	-4.20	41.1	74	-32.9	21.9	54	-32.1
2500.000000	Н	150.0	148.0	-4.40	34.9	74	-39.1	20.7	54	-33.3

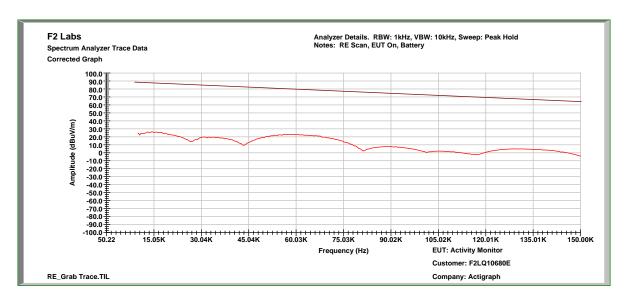
Report Number: F2LQ10680E-11E Page 17 of 36 Issue Date: June 22, 2018

Model: CPW01

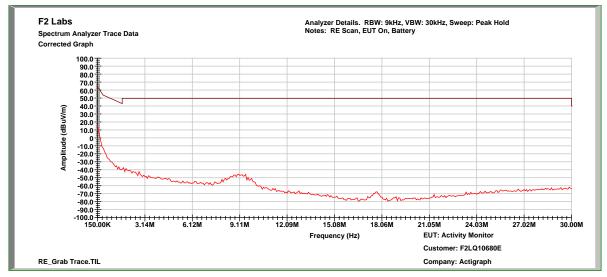
8.2 Test Data – Spurious Emissions

Notes: Plots are peak, max hold pre-scan data included only to determine what frequencies to investigate and measure. During the pre-scan evaluation, the EUT was rotated in all three orthogonal positions to find the maximum emissions. The orthogonal position that showed the highest emissions was used. At some frequencies, no emissions from the EUT were measurable over the ambient noise floor. The readings did not change with EUT on and EUT off.

Where emissions from the EUT were visible within 20dB of the limit, at least 6 of the highest frequencies were measured per ANSI 63.4 in a 3-meter anechoic chamber. Frequencies below 1GHz were measured using a quasi-peak detector. The antenna was raised between 1 and 4 meters and the EUT turntable was rotated 360 degrees to maximize the emissions. Some of the frequencies did not change with the EUT on or off. At those frequencies, the test distance was shortened to 1 meter and still no emissions from the EUT were visible or over the ambient or limit. Frequencies were scanned from 9kHz to 26 GHz and the highest emissions are listed below.


Note: Spurious emissions in these EUTs were tested for all three channels. The results below are from the one that was deemed worst case. Worst case was deemed to be 2480 MHz (High Channel) due to highest output level.

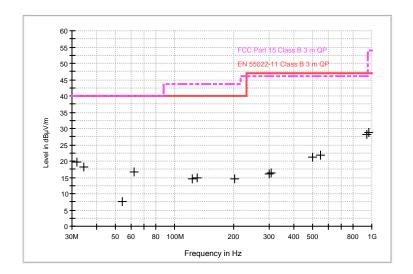
The EUT was placed in its charging cradle to charge the batteries and did not turn on. It only showed a charging symbol on the display. No change in any of the emissions scans were observed during testing of the EUT while in the charging cradle.


Report Number: F2LQ10680E-11E Page 18 of 36 Issue Date: June 22, 2018

Test Date(s):	June 5, 2018	Test Engineer(s):	J. Chiller
Standards:	CFR 47 Part 15.249(d) / Part	Air Temperature:	21.9°C
	15.209	Bolotivo Uumidituu	470/
Results:	Complies	Relative Humidity:	47%

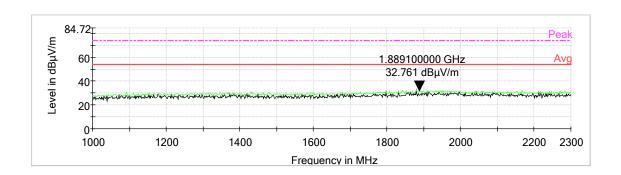
CPW01: 0.009 MHz to 0.15 MHz, High Channel (worst case)

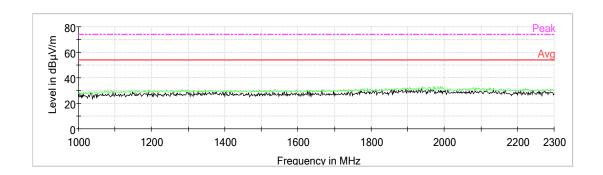
CPW01: 0.15 MHz to 30.0 MHz, High Channel (worst case)



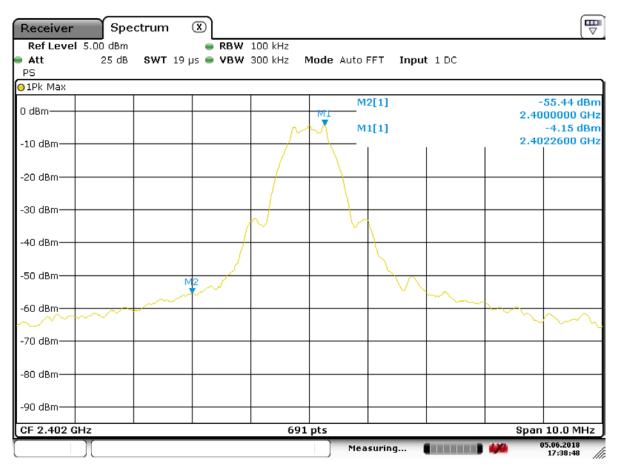
ر06081

Report Number: F2LQ10680E-11E Page 19 of 36 Issue Date: June 22, 2018

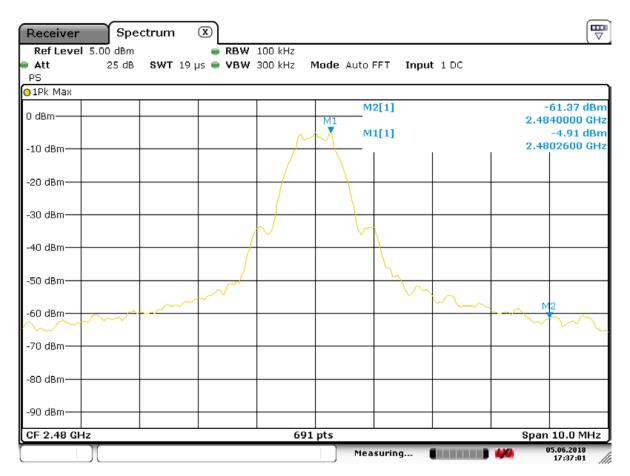

CPW01: 30.0 MHz to 1000 MHz, High Channel (worst case)


Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Correction Factors (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
31.940000	V	100.00	0.00	15.9	3.7	19.60	40.0	-20.4
34.460000	Н	100.00	0.00	16.1	1.9	18.00	40.0	-22.0
53.860000	V	100.00	0.00	15.9	-8.2	7.70	40.0	-32.3
62.010000	H	100.00	0.00	24.8	-8.0	16.80	40.0	-23.2
122.540000	H	100.00	0.00	15.7	-1.0	14.70	40.0	-25.3
130.490000	V	100.00	0.00	15.7	-0.9	14.80	40.0	-25.2
201.500000	V	100.00	0.00	15.9	-1.3	14.60	40.0	-25.4
302.570000	H	100.00	0.00	16.0	0.1	16.10	47.0	-30.9
309.360000	V	100.00	0.00	16.0	0.3	16.30	47.0	-30.7
500.000000	H	100.00	0.00	16.4	4.8	21.20	47.0	-25.8
547.010000	V	100.00	0.00	16.3	5.6	21.90	47.0	-25.1
945.000000	Н	100.00	0.00	15.8	12.4	28.20	47.0	-18.8
968.960000	V	100.00	0.00	16.2	12.6	28.80	47.0	-18.2

Report Number: F2LQ10680E-11E Page 20 of 36 Issue Date: June 22, 2018

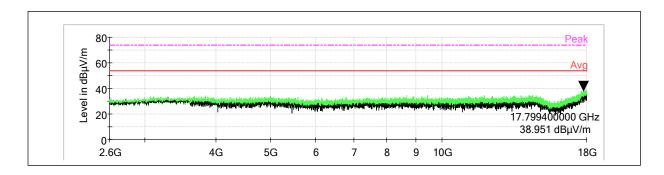

CPW01: 1 GHz to 2.3 GHz, Vertical, High Channel (worst case)

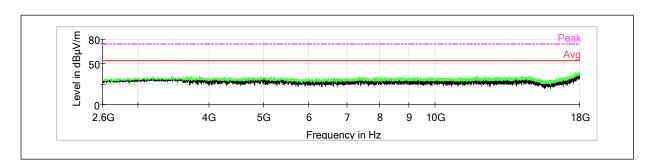
CPW01: 1 GHz to 2.3 GHz, Horizontal, High Channel (worst case)


CPW01: Low Band Edge

Date: 5.JUN.2018 17:38:48

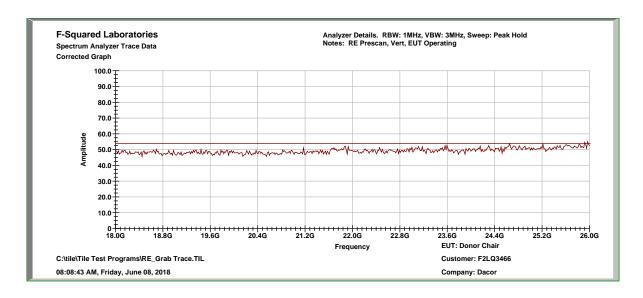
Report Number: F2LQ10680E-11E Page 22 of 36 Issue Date: June 22, 2018


CPW01: High Band Edge

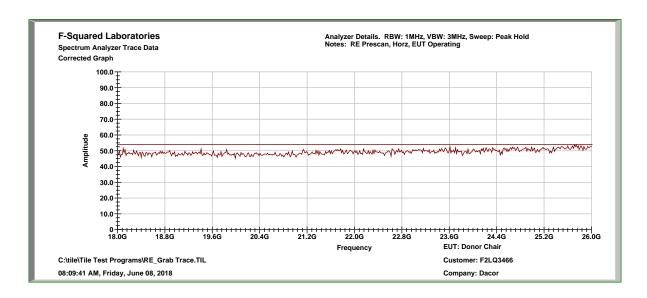

Date: 5.JUN.2018 17:37:01

Report Number: F2LQ10680E-11E Page 23 of 36 Issue Date: June 22, 2018

CPW01: 2.6 GHz to 18 GHz, Vertical, High Channel (worst case)

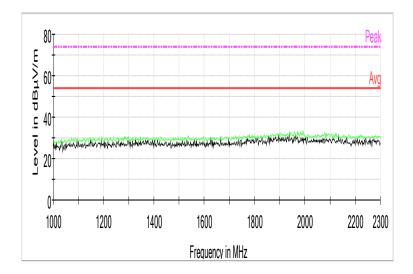


CPW01: 2.6 GHz to 18 GHz, Horizontal, High Channel (worst case)

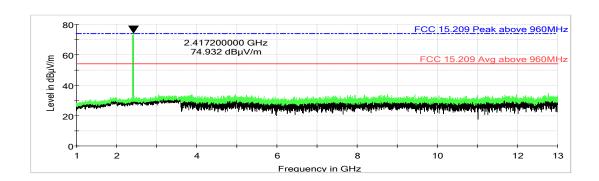


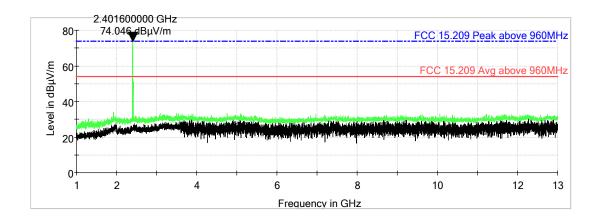
Report Number: F2LQ10680E-11E Page 24 of 36 Issue Date: June 22, 2018

CPW01: 18 GHz to 26 GHz, Vertical, High Channel (worst case)


18 GHz to 26 GHz, Horizontal, High Channel (worst case)

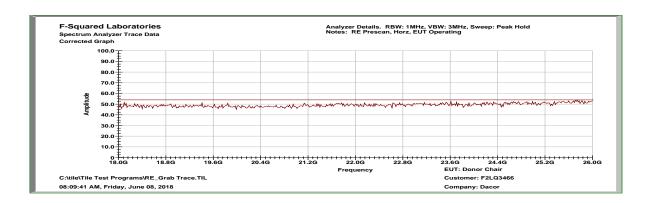
Report Number: F2LQ10680E-11E Page 25 of 36 Issue Date: June 22, 2018


In Charger: 30.0 MHz to 1000 MHz

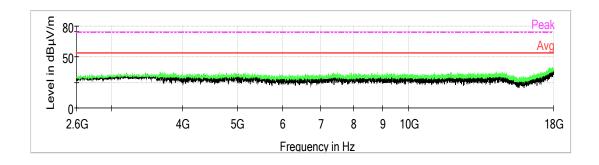

Frequency (MHz)	Antenna Polarization	Antenna Height (cm)	Azimuth (degrees)	Reading (dBµV)	Correction Factors (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
31.940000	V	100.00	0.00	15.9	3.7	19.60	40.0	-20.4
34.460000	Ι	100.00	0.00	16.1	1.9	18.00	40.0	-22.0
53.860000	>	100.00	0.00	15.9	-8.2	7.70	40.0	-32.3
62.010000	Ι	100.00	0.00	24.8	-8.0	16.80	40.0	-23.2
122.540000	Ι	100.00	0.00	15.7	-1.0	14.70	40.0	-25.3
130.490000	>	100.00	0.00	15.7	-0.9	14.80	40.0	-25.2
201.500000	>	100.00	0.00	15.9	-1.3	14.60	40.0	-25.4
302.570000	Ι	100.00	0.00	16.0	0.1	16.10	47.0	-30.9
309.360000	>	100.00	0.00	16.0	0.3	16.30	47.0	-30.7
500.000000	Н	100.00	0.00	16.4	4.8	21.20	47.0	-25.8
547.010000	>	100.00	0.00	16.3	5.6	21.90	47.0	-25.1
945.000000	Н	100.00	0.00	15.8	12.4	28.20	47.0	-18.8
968.960000	V	100.00	0.00	16.2	12.6	28.80	47.0	-18.2

Report Number: F2LQ10680E-11E Page 26 of 36 Issue Date: June 22, 2018

In Charger: 1 GHz to 13 GHz, Vertical

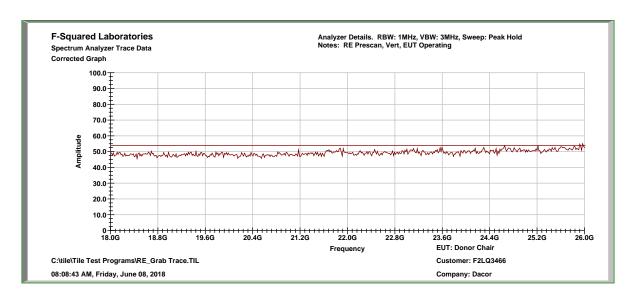


In Charger: 1 GHz to 13 GHz, Horizontal

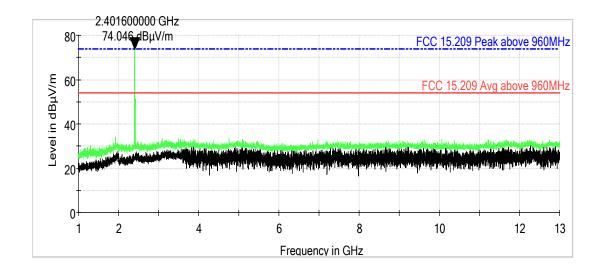


Report Number: F2LQ10680E-11E Page 27 of 36 Issue Date: June 22, 2018

In Charger: 2.6 GHz to 18 GHz, Vertical



In Charger: 2.6 GHz to 18 GHz



Report Number: F2LQ10680E-11E Page 28 of 36 Issue Date: June 22, 2018

In Charger: 18 GHz to 26 GHz, Vertical

In Charger: 18 GHz to 26 GHz, Horizontal

Report Number: F2LQ10680E-11E Page 29 of 36 Issue Date: June 22, 2018

Model: CPW01

9 CONDUCTED EMISSIONS

9.1 Requirements

In accordance with FCC CFR 47 Part 15.207(a), "Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

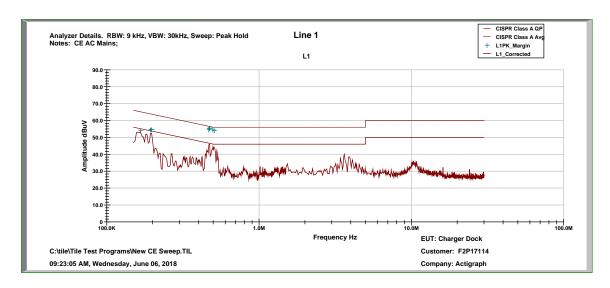
	Conducted Limit (dBµV)				
Frequency of Emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

9.2 Procedure

The EUT was placed on a 1.0 x 1.5 meter non-conductive table, 0.8 meter above a horizontal ground plane and 0.4 meter from a vertical ground plane. Power was provided to the EUT through a LISN bonded to a 3 x 2 meter ground plane. The LISN and peripherals were supplied power through a filtered AC power source. The output of the LISN was connected to the input of the receiver via a transient limiter, and emissions in the range 150 kHz to 30 MHz were measured. The measurements were recorded using the quasi-peak and average detectors as directed by the standard, and the resolution bandwidth during testing was 9 kHz. The raw measurements were corrected to allow for attenuation from the LISN, transient limiter and cables.

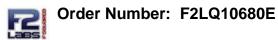
Report Number: F2LQ10680E-11E Page 30 of 36 Issue Date: June 22, 2018

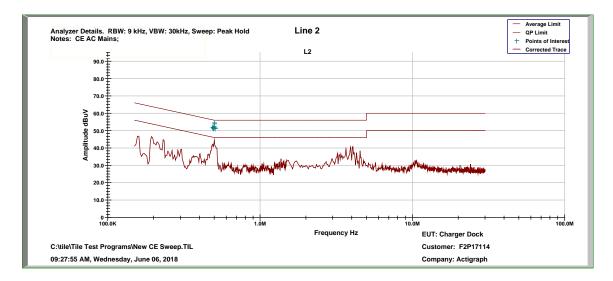


9.3 Conducted Emissions Test Data

Test Date(s):	June 6, 2018	Test Engineer:	C. Helmick
Rule:	15.207	Air Temperature:	19.4° C
Test Results:	Complies	Relative Humidity:	50%

Note: The data below represents worst case results of all three channels.


Conducted Test - Line 1: 30 MHz to 1000 MHz


	Top Discrete Measurements										
No.	Conductor	Frequency (MHz)	Detector	Level (dBµV)	Adjustment (dB)	Results (dBµV)	Limit (dBµV)	Margin (dB)			
1	Line 1	0.166875	Quasi-Peak	35.737	11.325	47.062	65.115	-18.053			
	Line	0.166875	Average	20.939	11.325	32.264	55.115	-22.851			
2	Line 1	0.193875	Quasi-Peak	30.675	11.088	41.763	63.870	-22.107			
	Line	0.193875	Average	15.975	11.088	27.063	53.870	-26.807			
3	Line 1	0.195	Quasi-Peak	30.977	11.080	42.057	63.821	-21.764			
3	Line	0.195	Average	17.130	11.080	28.210	53.821	-25.611			
4	Line 1	0.19725	Quasi-Peak	30.181	11.064	41.245	63.727	-22.482			
~	Line 1	0.19725	Average	18.069	11.064	29.133	63.727	-34.594			
5	Line 1	0.46725	Quasi-Peak	26.048	10.428	36.476	56.563	-20.09			
3	Line i	0.46725	Average	17.645	10.428	28.073	46.563	-18.490			
6	Line 1	0.47	Quasi-Peak	26.189	10.425	36.614	56.514	-19.900			
0	Line i	0.47	Average	17.605	10.425	28.030	46.514	-18.484			
7	Line 1	0.470625	Quasi-Peak	26.343	10.425	36.768	56.503	-19.735			
l ′	Line i	0.470625	Average	20.806	10.425	31.231	46.503	-15.272			
8	Line 1	0.474	Quasi-Peak	25.527	10.422	35.949	56.444	-20.495			
°	Line i	0.474	Average	19.845	10.422	30.267	46.444	-16.177			
9	Line 1	0.497625	Quasi-Peak	31.840	10.405	42.245	56.0	-13.795			
9	Line 1	0.497625	Average	23.743	10.405	34.148	46.0	-11.892			
10	Line 1	0.50775	Quasi-Peak	32.422	10.402	42.824	56.0	-13.176			
10	Line 1	0.50775	Average	24.928	10.402	35.330	46.0	-10.670			

060818

Report Number: F2LQ10680E-11E Page 31 of 36 Issue Date: June 22, 2018

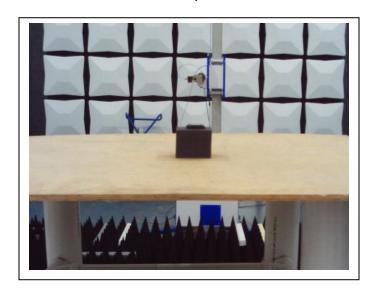
Conducted Test - Line 2: 30 MHz to 1000 MHz

	Top Discrete Measurements										
No.	Conductor	Frequency	Detector	Level	Adjustment	Results	Limit	Margin			
		(MHz)	Oversi Basta	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)			
1	Line 2	0.4875	Quasi-Peak	28.420	10.411	38.831	56.211	-17.380			
		0.4875	Average	22.627	10.411	33.038	46.211	-13.173			
2	Line 2	0.49	Quasi-Peak	29.032	10.409	39.441	56.168	-16.727			
2	Line 2	0.49	Average	23.154	10.409	33.563	46.168	-12.605			
3	Line 2	0.490875	Quasi-Peak	28.901	10.409	39.310	56.153	-16.843			
)	Line 2	0.490875	Average	22.910	10.409	33.319	46.153	-12.834			
4	Line 2	0.492873	Quasi-Peak	29.548	10.407	39.955	56.120	-16.165			
7	Line 2	0.492873	Average	23.514	10.407	33.921	46.120	-12.199			
5	Line 2	0.495	Quasi-Peak	29.474	10.406	39.880	56.084	-16.20			
5	Line 2	0.495	Average	23.595	10.406	34.001	46.084	-12.083			
6	Line 2	0.497625	Quasi-Peak	29.752	10.405	40.157	56.0	-15.883			
0	Line 2	0.497625	Average	24.622	10.405	35.027	46.0	-11.013			
7	Line 2	0.5	Quasi-Peak	30.117	10.404	40.521	56.0	-15.479			
,	Line 2	0.5	Average	24.821	10.404	35.225	46.0	-10.775			
8	Line 2	0.501	Quasi-Peak	30.272	10.404	40.676	56.0	-15.324			
8	Line 2	0.501	Average	25.133	10.404	35.537	46.0	-10.463			
9	Line 2	0.504375	Quasi-Peak	30.484	10.403	40.887	56.0	-15.113			
9	Line 2	0.504375	Average	25.384	10.403	35.787	46.0	-10.213			
10	Line 2	0.50775	Quasi-Peak	30.499	10.402	40.901	56.0	-15.099			
.0	Line 2	0.50775	Average	25.078	10.402	35.480	46.0	-10.520			

Report Number: F2LQ10680E-11E Page 32 of 36 Issue Date: June 22, 2018

10 **PHOTOGRAPHS**

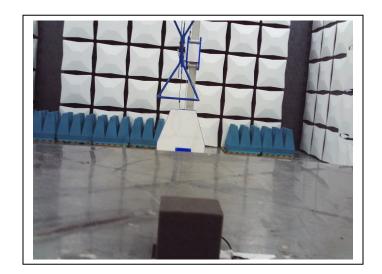
Radiated Emissions, 30 MHz to 1000 MHz



Radiated Emissions, 1 GHz to 18 GHz

Report Number: F2LQ10680E-11E Page 33 of 36 Issue Date: June 22, 2018

Radiated Emissions, 18 GHz to 26 GHz



Report Number: F2LQ10680E-11E Page 34 of 36 Issue Date: June 22, 2018

Radiated Emissions, In Charger

Applicant: ActiGraph Model: CPW01

Page 35 of 36 Report Number: F2LQ10680E-11E Issue Date: June 22, 2018

Conducted Emissions

Page 36 of 36 Report Number: F2LQ10680E-11E Issue Date: June 22, 2018