

CERTIFICATION TEST REPORT

FOR THE

WIRELESS LAN PC CARD, WL-305

FCC PART 15 SUBPART C SECTIONS 15.247/15.207/15.209/15.109

COMPLIANCE

DATE OF ISSUE: NOVEMBER 10, 2000

PREPARED FOR:

3COM Corporation 5400 Bayfront Plaza Bldg 300 Dock E. Santa Clara, CA 95052

P.O. No: 2300028832 W.O. No: 75448

Report No: FC00-105

DOCUMENTATION CONTROL:

Space thelp

Tracy Phillips Documentation Control Supervisor CKC Laboratories, Inc.

PREPARED BY:

Tracy Phillips CKC Laboratories, Inc. 5473A Clouds Rest Mariposa, CA 95338

Date of test: October 13-18 and November 9, 2000

APPROVED BY:

Dennis Ward

Dennis Ward Director of Laboratories CKC Laboratories, Inc.

This report contains a total of 62 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	4
Summary Of Results	5
Equipment Under Test (EUT) Description	5
Measurement Uncertainty	5
Peripheral Devices	5
Report Of Measurements	6
Table 1: Six Highest Peak Output Power Emission Levels	6
Table 2: Six Highest Spurious Emission Levels 30-1000 MHz	7
Table 3: Four Highest Spurious Emission Levels 1-26.5 GHz	8
Table 4: Six Highest Band Edge Delta Levels	9
Table 5: Six Highest Conducted Emission Levels	10
Table 6: Six Highest Radiated Emission Levels Receiver Portion	11
Table A : List Of Test Equipment	12
EUT Setup	13
Radiated Emissions	13
Conducted Emissions	13
Testing	14
Radiated Emissions	14
Conducted Emissions	14
Test Instrumentation And Analyzer Settings	15
Table B: Analyzer Bandwidth Settings Per Frequency Range	15
Spectrum Analyzer Detector Functions	15
Peak	15
Quasi-Peak	16
Average	16
Test Methods	16
Transmitter Characteristics	17
15.247(a)(2) Bandwidth – Direct Sequence	17
List of Test Equipment Used for Bandwidth Test	17
FCC Part 15.247(a)(2) Bandwidth Plot – Direct Sequence	18
FCC Part 15.247(a)(2) Bandwidth Plot – Direct Sequence	19
FCC Part 15.247(a)(2) Bandwidth Plot – Direct Sequence	20
FCC Part 15.247(a)(2) Bandwidth Plot – Direct Sequence	21
FCC Part 15.247(a)(2) Bandwidth Plot – Direct Sequence	22
FCC Part 15.247(a)(2) Bandwidth Plot – Direct Sequence	23
FCC Part 15.247(a)(2) Bandwidth Plot – Direct Sequence	24
15.247(b)(1) Peak Output Power	25
List of Test Equipment Used for Peak Output Power Test	25
15.247(d) Peak Power Spectral Density	26
List of Test Equipment Used for Peak Power Spectral Density Test	26

Peak Power Spectral Density	27
Peak Power Spectral Density	
Peak Power Spectral Density	29
Sample Calculations	
Appendix A: Information About The Equipment Under Test	
I/O Ports	
Crystal Oscillators	
Printed Circuit Boards	
Required EUT Changes To Comply	
Photograph Showing Radiated Emissions	
Photograph Showing Radiated Emissions	35
Photograph Showing Radiated Emissions 18-26.5 Ghz	
Photograph Showing Conducted Emissions	37
Photograph Showing Conducted Emissions	
Photograph Showing Bandedge Plot Setup	
Appendix B : Radiated and Conducted Data Sheets	40
Band Edge Measurement	61
Band Edge Measurement	62

CKC Laboratories, Inc. has Certificates of Accreditation from the following agencies: DATech (Germany); A2LA (USA); FCC (USA); VCCI (Japan); BSMI (Taiwan); HOKLAS (Hong Kong). **CKC Laboratories, Inc. has Letters of Acceptance through an MRA for the following agencies**: ACA/NATA (Australia); SABS (South Africa); SWEDAC (Sweden); TUV Rheinland-Germany; TUV Rheinland-Korea; TUV Rheinland-Russia; Radio Communications Agency (RA); NEMKO (Norway).

ADMINISTRATIVE INFORMATION

DATE OF TEST:	October 13-18 and November 9, 2000
PURPOSE OF TEST:	To demonstrate the compliance of the Wireless LAN PC Card, WL-305, with the requirements for FCC Part 15 Subpart C Section 15.247/15.207/15.209/15.109 devices.
MANUFACTURER:	3COM Corporation 5400 Bayfront Plaza Bldg 300 Dock E. Santa Clara, CA 95052
REPRESENTATIVE:	T.G. Hien
TEST LOCATION:	CKC Laboratories, Inc. 1653 Los Viboras Road, Hollister, CA 95023 5473A Clouds Rest, Mariposa, CA 95338
TEST PERSONNEL:	Chuck Kendall, Art Rice & Randy Clark
TEST METHOD:	ANSI C63.4 1992 & FCC97-114
FREQUENCY RANGE TESTED:	450 kHz – 26.5 GHz
EQUIPMENT UNDER TEST:	Wireless LAN PC CardManuf:3COM CorporationModel:WL-305Serial:38FCC ID:DF6-WL305 (Pending)

SUMMARY OF RESULTS

The 3COM Corporation Wireless LAN PC Card, WL-305, was tested in accordance with ANSI C63.4 1992 for compliance with FCC Part 15 Subpart C Section 15.247.

As received, the above equipment was found to be fully compliant with the limits of FCC Part 15 Subpart C Sections 15.247, 15.207, 15.209 & 15.109. The results in this report apply only to the items tested, as identified herein.

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

WL-305 Wireless LAN PC Card.

The following model has been tested by CKC Laboratories: 3CRWE62092A (Engineering code name: Alpha 3). The following additional models are identical electrically to the one which was tested, or any differences between them do not affect their EMC characteristics, and therefore they comply to the level of testing equivalent to the tested models. Model name: WL-305. Equipment name: 3Com Wireless LAN PC card.

Spread Spectrum Method:	Direct Sequence
Tx/Rx Frequency Range:	2400-2483.5 MHz
Number Of Channels:	11

MEASUREMENT UNCERTAINTY

Associated with data in this report is a ± 4 dB measurement uncertainty.

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ}$ C and $+35^{\circ}$ C. The relative humidity was between 20% and 75%.

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Host PC		AC Adap	oter for PC
Manuf:	Dell	Manuf:	Dell
Model:	PPI	Model:	PA-4
Serial:	H3L3T	Serial:	none
FCC ID:	DoC	FCC ID:	none

REPORT OF MEASUREMENTS

The following tables report the six highest worst case levels recorded during the tests performed on the Wireless LAN PC Card, WL-305. All readings taken are peak readings unless otherwise noted by a "Q" or "A". The data sheets from which these tables were compiled are contained in Appendix B.

Table 1: Six Highest Peak Output Power Emission Levels										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES	
2411.740	100.5	28.8	-34.5	12.8		107.6	137.0	-29.4	Н	
2412.800	104.3	28.8	-34.5	12.8		111.4	137.0	-25.6	V	
2438.200	101.6	28.9	-34.5	13.2		109.2	137.0	-27.8	V	
2438.220	100.0	28.9	-34.5	13.2		107.6	137.0	-29.4	Н	
2462.100	100.5	29.0	-34.5	13.6		108.6	137.0	-28.4	V	
2463.320	97.7	29.0	-34.5	13.6		105.8	137.0	-31.2	Н	

Test Method: Spec Limit: Test Distance: Tested By: ANSI C63.4 1992 FCC Part 15 Subpart C Section 15.247(b)(1) 3 Meters Randy Clark H = Horizontal Polarization

V = Vertical Polarization

Q = Quasi Peak Reading

A = Average Reading

COMMENTS: The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated in the notes below. Channels 1, 6 & 11 tested.

Table 2: Six Highest Spurious Emission Levels 30-1000 MHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES
195.515	44.2	17.4	-24.7	2.5		39.4	43.5	-4.1	VQ
228.060	43.7	17.0	-24.7	2.7		38.7	46.0	-7.3	VQ
333.376	42.6	19.6	-24.9	3.5		40.8	46.0	-5.2	VQ
366.946	44.8	17.9	-25.2	3.7		41.2	46.0	-4.8	V
390.909	44.6	16.8	-25.4	3.9		39.9	46.0	-6.1	VQ
456.095	44.4	17.0	-25.6	4.2		40.0	46.0	-6.0	VQ

Test Method:ANSI C63.4 1992Spec Limit:FCC Part 15 Subpart C Section 15.247/15.209Test Distance:3 MetersTested By:Chuck Kendall

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

A = Average Reading

COMMENTS: The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. Used 120kHz resolution BW & 120 kHz video BW.

Measured spurious emissions with the transmitter set to Channels 1, 6 and 11.

Table 3: Four Highest Spurious Emission Levels 1-26.5 GHz									
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	ORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES
4824.153	35.9	33.2	-35.5	12.7	-10.0	36.3	54.0	-17.7	VA
4824.347	38.0	33.2	-35.5	12.7	0.0	48.4	54.0	-5.6	VA
4874.547	35.8	33.1	-35.6	12.8	-10.0	36.1	54.0	-17.9	VA
4924.177	33.2	33.1	-35.6	12.8	-10.0	33.5	54.0	-20.5	VA

Test Method: Spec Limit: Test Distance: Tested By:

ANSI C63.4 1992 FCC Part 15 Subpart C Section 15.247/15.209 1 & 3 Meters Randy Clark

H = Horizontal Polarization

V = Vertical Polarization

Q = Quasi Peak Reading

A = Average Reading

COMMENTS: The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below.

Tested Channels 1, 6 & 11.

Table 4: Six Highest Band Edge Delta Levels										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIC Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES	
2398.510	42.2	29.3	-38.4	11.9		45.0	54.0	-9.0	Н	
2400.010	39.1	29.3	-38.4	11.9		41.9	137.0	-95.1	Н	
2411.510	78.8	29.3	-38.3	11.9		81.7	137.0	-55.3	Н	
2461.480	75.9	29.6	-37.9	12.1		79.7	137.0	-57.3	Н	
2483.490	25.7	29.7	-37.7	12.2		29.9	137.0	-107.1	Н	
2485.470	27.1	29.7	-37.7	12.2		31.3	54.0	-22.7	Н	

Test Method:ISpec Limit:ITest Distance:ITested By:I

ANSI C63.4 1992 FCC Part 15 Subpart C Section 15.247(a)(2) 3 Meters Art Rice H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading

A = Average Reading

COMMENTS: The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated. Measuring delta from transmit fundamental level to band edge. Used 30 kHz resolution BW & 30 kHz video BW.

Tested Channels 1, 6 & 11.

Table 5: Six Highest Conducted Emission Levels											
FREQUENCY MHz	METER READING dBµV	COR Lisn dB	dB	ON FACT dB	CORS dB	CORRECTED READING dBµV	SPEC LIMIT dBµV	MARGIN dB	NOTES		
0.460040	37.5	0.7				38.2	48.0	-9.8	W		
0.530317	38.2	0.7				38.9	48.0	-9.1	W		
1.061581	37.7	0.7				38.4	48.0	-9.6	W		
6.966460	35.3	3.5				38.8	48.0	-9.2	В		
7.185047	34.8	3.4				38.2	48.0	-9.8	В		
7.328495	34.8	3.3				38.1	48.0	-9.9	В		

Test Method:ANSI C63.4 1992Spec Limit:FCC Part 15 Subpart C Section 15.247/15.207Tested By:Randy Clark

Г

Q = Quasi Peak Reading A = Average Reading B = Black Lead W = White Lead

COMMENTS: The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. TX: Channel 1.

Table 6: Six Highest Radiated Emission Levels Receiver Portion										
FREQUENCY MHz	METER READING dBµV	COR Ant dB	RECTIO Amp dB	ON FACT Cable dB	TORS Dist dB	CORRECTED READING dBµV/m	SPEC LIMIT dBµV/m	MARGIN DB	NOTES	
122.955	34.8	0.0				34.8	43.5	-8.7	VQ	
333.897	40.1	0.0				40.1	46.0	-5.9	VQ	
366.515	38.6	0.0				38.6	46.0	-7.4	VQ	
400.543	33.6	0.0				33.6	46.0	-12.4	V	
466.370	36.1	0.0				36.1	46.0	-9.9	V	
586.395	37.3	0.0				37.3	46.0	-8.7	V	

Test Method:ANSI C63.4 1992Spec Limit:FCC Part 15 Subpart C Section 15.247/15.109Test Distance:0-10 cmTested By:Randy Clark

Γ

H = Horizontal Polarization V = Vertical Polarization Q = Quasi Peak Reading A = Average Reading

COMMENTS: The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is set to receive on channel 1.

TABLE A LIST OF TEST EQUIPMENT

Band Edge:

Function	S/N	Calibration Date	Cal Due Date
Preamp, HP83017A	3123A00283	05/09/2000	05/09/2001
Horn Ant, ARA DRG-118A	1064	02/08/2000	02/08/2001
Cable, 25 ft Andrews FSJ1P-	hol-hf-025-06	09/29/2000	09/29/2001
50A-4A			
Cable,100 ft Andrews FSJ1P-	hol-hf-100-09	09/29/2000	09/29/2001
50A-4A			
HP 85660B SA	2937A06153	09/25/2000	09/25/2001
HP 85662A Display	2848A18219	09/25/2000	09/25/2001

Spurious Emissions:

Function	S/N	Calibration Date	Cal Due Date	
Spectrum Analyzer (Display)	2403A08241	09/07/2000	09/07/2001	
Spectrum Analyzer (RF Section)	2209A01404	09/07/2000	09/07/2001	
QP Adapter	2811A01267	09/07/2000	09/07/2001	
PreAmp	1937A02604	04/03/2000	04/03/2001	
Bicon Antenna	156	05/20/2000	05/20/2001	
Log Antenna	154	04/20/2000	04/20/2001	
Horn Antenna	4085	02/14/2000	02/14/2001	

Peak Power Output:

Function	S/N	Calibration Date	Cal Due Date
Spectrum Analyzer (Display)	2403A08241	09/07/2000	09/07/2001
Spectrum Analyzer (RF Section)	2209A01404	09/07/2000	09/07/2001
QP Adapter	2811A01267	09/07/2000	09/07/2001
PreAmp	1937A02604	04/03/2000	04/03/2001
Bicon Antenna	156	05/20/2000	05/20/2001
Log Antenna	154	04/20/2000	04/20/2001

Conducted:

Function	S/N	Calibration Date	Cal Due Date
Spectrum Analyzer (Display)	2403A08241	09/07/2000	09/07/2001
Spectrum Analyzer (RF Section)	2209A01404	09/07/2000	09/07/2001
QP Adapter	2811A01267	09/07/2000	09/07/2001
LISNs	814493, 474	06/05/2000	06/05/2001

EUT SETUP: Radiated and Conducted Emissions

The equipment under test (EUT) and the peripheral(s) listed were set up in a manner that represented their normal use. Any special conditions required for the EUT to operate normally are identified in the comments that accompany Table 1 for peak output power emission levels, Table 2 for spurious emissions below 1000 MHz, Table 3 for spurious emissions above 1000 MHz, Table 4 for band edge emission levels, Table 5 for conducted emissions and Table 6 for radiated emission levels for the receiver portion.

During radiated emissions testing, the EUT was mounted on a nonconductive, rotating table 80 cm above the conductive grid. The nonconductive table dimensions were 1 meter by 1.5 meters. This configuration is typical for radiated emissions testing of table top devices.

During conducted emissions testing, the EUT was located 80 centimeters above the conducting ground plane on the same nonconducting table as was used for radiated testing. The metal plane was grounded to the earth through the green wire safety ground. Power to the EUT was provided via 3 meters of shielded power cable from a filter grounded to the metal plane to a LISN. The LISN was also grounded to the plane and attached to the LISN was a 4 ganged grounded outlet whose source was also shielded and 60 cm in length. All other objects were kept a minimum of 1 meter away from the EUT during the conducted test.

TESTING: Radiated Emissions

During the preliminary radiated scan, the Host PC was powered up and operating in its defined FCC test mode. The frequency range of 30 MHz - 88 MHz was then scanned with the biconical antenna located about 1.5 meter above the ground plane in the vertical configuration. During this scan, the turntable was rotated and all peaks which were at or near the limit were recorded. The frequency range of 100 - 300 MHz was scanned with the biconical antenna in the same manner, and the peaks recorded. Lastly, a scan of the FM band from 88 - 110 MHz was made, using a reduced resolution bandwidth and a reduced frequency span. The biconical antenna was changed to the horizontal polarity and the above steps were repeated. After changing to the log periodic antenna in the horizontal configuration, the frequency range of 300 - 1000 MHz was scanned. The log periodic antenna was changed to the vertical polarity and the frequency range of 300 - 1000 MHz was again scanned. The horn antenna was used for frequencies above 1000 MHz. For frequencies between 22-26.5 GHz, a frequency doubler was used. Care was taken to ensure that no frequencies were missed within the FM and TV bands. An analysis was performed to determine if the signals that were at or near the limit were caused by an ambient transmission. If unable to determine by analysis, the equipment was powered down to make the final determination if the EUT was the source of the emission.

For the final radiated scan, a thorough scan of all frequencies was manually made using a small frequency span, rotating the turntable as needed. Comparison with the previously recorded measurements was then made.

Using the peak readings from both scans as a guide, the test engineer then maximized the readings with respect to the table rotation, antenna height and configuration of the peripherals. Photographs showing the final worst case configuration of the EUT are contained in Appendix A.

Conducted Emissions

For conducted emissions testing, a 30 to 50 second sweep time was used for automated measurements in the frequency bands of 450 kHz to 1.705 MHz, 1.705 MHz to 3 MHz, and 3 MHz to 30 MHz. All readings within 20 dB of the limit were recorded. At frequencies where the recorded emissions were close to the limit, further investigation was performed manually at a slower sweep rate.

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed in Table A were used to collect both the radiated and conducted emissions data for the Wireless LAN PC Card, WL-305. For radiated measurements below 300 MHz, the biconical antenna was used. For frequencies from 300 to 1000 MHz, the log periodic antenna was used. The horn antenna and frequency doubler were used for frequencies above 1000 MHz. Antennas were located at a distances of 0-10 cm, 1 & 3 meters from the edge of the EUT. Conducted emissions tests required the use of the FCC type LISN's.

The HP spectrum analyzer was used for all measurements. Table B shows the analyzer bandwidth settings that were used in designated frequency bands. For conducted emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used. A 10 dB external attenuator was also used during conducted tests, with internal offset correction in the analyzer. During radiated testing, the measurements were made with 0 dB of attenuation, a reference level of 97 dB μ V, and a vertical scale of 10 dB per division.

TABLE B: ANALYZER BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	26.5 GHz	1 MHz			

SPECTRUM ANALYZER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in Tables 1 - 6 indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the six highest readings, this is indicated as a "Q" or an "A" in the appropriate table. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data for the Wireless LAN PC Card, WL-305.

<u>Peak</u>

In this mode, the Spectrum Analyzer or test engineer recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the analyzer called "peak hold," the analyzer had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the analyzer made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the HP Quasi-Peak Adapter for the HP Spectrum Analyzer. The detailed procedure for making quasi peak measurements contained in the HP Quasi-Peak Adapter manual were followed.

<u>Average</u>

For certain frequencies, average measurements may be made using the spectrum analyzer. To make these measurements, the test engineer reduces the video bandwidth on the analyzer until the modulation of the signal is filtered out. At this point the analyzer is set into the linear mode and the scan time is reduced.

TEST METHODS

The radiated and conducted emissions data of the Wireless LAN PC Card, WL-305, was taken with the HP Spectrum Analyzer. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the "Sample Calculations". The corrected data was then compared to the FCC Part 15 Subpart C, Sections 15.247, 15.207, 15.209 & 15.109 emissions limits to determine compliance.

Preliminary and final measurements were taken in order to better ensure that all emissions from the EUT were found and maximized.

TRANSMITTER CHARACTERISTICS

15.247(a)(2) Bandwidth Measurements (Direct Sequence)

The fundamental frequency was kept within the permitted band 2400-2483.5 MHz. The minimum 6dB bandwidth shall be at least 500 kHz. Refer to the bandwidth plots following this page.

Function	Manufacturer	Model	Cal Date	Cal Due Date
QP Adapter	HP	85650A	7/7/2000	7/7/2001
SA Display Section	HP	8566B	7/7/2000	7/7/2001
SA RF Section	HP	8566B	7/7/2000	7/7/2001
Horn Antenna	EMCO	3115	10/20/2000	10/20/2001
Preamp	HP	8449B	10/13/2000	10/13/2001

List of Test Equipment Used for Bandwidth Test:

15.247(b)(1) Peak Output Power

Frequency of Transmitter: 2400-2483.5 MHz

The RF conducted test was measured using a direct connection between the antenna port of the transmitter and the spectrum analyzer, through suitable attenuation. The resolution bandwidth was adjusted to greater than the 6 dB bandwidth of the emissions.

Frequency MHz	Measurement in Volts	Measurement in W
2412.80	0.239883	0.027360
2438.20	0.371535	0.065633
2462.10	0.288403	0.039548
2438.22	0.239883	0.027360
2411.74	0.269153	0.034445
2463.32	0.194984	0.018077

15.247(b)(1) The maximum peak output power of frequency hopping systems operating in the 2400-2483.5 or 5725-5850 band and for all direct sequences, shall not exceed 1 watt.

List of Test Equipment Used for Peak Output Power Test:

Function	Manufacturer	Model	Cal Date	Cal Due Date
QP Adapter	HP	85650A	7/7/2000	7/7/2001
SA Display Section	HP	8566B	7/7/2000	7/7/2001
SA RF Section	HP	8566B	7/7/2000	7/7/2001
Horn Antenna	EMCO	3115	2/14/2000	2/14/2001
Preamp	HP	8449B	10/13/2000	10/13/2001

Calculations:

FCC 15.247(b) EIRP Calculation						Test Dist	3
						dBi	-2
				EIRP=(Ed)^2/30G		Numeric Gain	0.63096
Ch / Pol	Corr Reading (dBuV)	e in uVolts	e in Volts	EIRP (W)	Limit (W)		
1 Hor	107.6	239883.29	0.239883	0.027360	1.00		
1 Vert	111.4	371535.23	0.371535	0.065633	1.00		
6 Vert	109.2	288403.15	0.288403	0.039548	1.00		
6 Hor	107.6	239883.29	0.239883	0.027360	1.00		
11 Vert	108.6	269153.48	0.269153	0.034445	1.00		
11 Hor	105.8	194984.46	0.194984	0.018077	1.00		

15.247(d) Peak Power Spectral Density

The peak power spectral density conducted from the EUT to the antenna was not greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Frequency (MHz)	Channel	Power Density (dBm)
2411.880	1	-14.1
2437.630	6	-14.4
2462.050	11	-14.8

List of Test Equipment Used for Peak Power Spectral Density Test:

Function	Manufacturer	Model	Cal Date	Cal Due Date
QP Adapter	HP	85650A	7/7/2000	7/7/2001
SA Display Section	HP	8566B	7/7/2000	7/7/2001
SA RF Section	HP	8566B	7/7/2000	7/7/2001
Horn Antenna	EMCO	3115	10/20/2000	10/20/2001
Preamp	HP	8449B	10/13/2000	10/13/2001

Peak Power Spectral Density

Peak Power Spectral Density - Channel 1

Peak Power Spectral Density

Peak Power Spectral Density - Channel 6

Peak Power Spectral Density

Peak Power Spectral Density - Channel 11

SAMPLE CALCULATIONS

The basic spectrum analyzer reading was converted using correction factors as shown in the six highest emissions readings in Tables 1 - 6. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula:

Meter reading (dBµV) + Antenna Factor (dB) + Cable Loss (dB) - Distance Correction (dB) - Pre-amplifier Gain (dB)

= Corrected Reading($dB\mu V/m$)

This reading was then compared to the applicable specification limit to determine compliance.

A typical data sheet will display the following in column format:

#	Freq	Rdng	Cable	Pream	GHz C	Bicon	Horn	Log	Dist	Corr	Spec	Margin	Polar
	MHz	dBuV								dBuV/m			

Amp_2 hol-h Log 1 Barn

#	Reading number, order of frequencies listed by margin.
Freq MHz	Frequency in MHz of the obtained reading.
Rdng dBuV	Reading obtained on the spectrum analyzer in dBµV.
Pream & Amp_2	Preamplifier factor or gain in dB.
Barn, hol-h & GHz C	Cable loss in dB of the coaxial cable on the OATS.
Bicon	Biconical antenna factor in dB.
Log & Log 1	Log periodic antenna factor in dB.
Horn	Horn antenna factor in dB.
Dist	Distance factor in dB. It is used when testing at a different test distance
	than otherwise stated in the spec.
Corr dBµV/m	Corrected reading which is now in $dB\mu V/m$ (field strength).
Spec	Specification limit (dB) stated in the appropriate standard.
Margin	Closeness to the specified limit in dB; + is over and - is under the limit.
Polar	Polarity of the antenna with respect to earth.

APPENDIX A

INFORMATION ABOUT THE EQUIPMENT UNDER TEST

Page 32 of 62 Report No: FC00-105

INFORMATION ABOUT THE EQUIPMENT UNDER TEST								
Test Software/Firmware:	Not provided at this time.							
CRT was displaying:								
Power Supply Manufacturer:								
Power Supply Part Number:								
AC Line Filter Manufacturer:								
AC Line Filter Part Number:								

Ι	/O PORTS	CRYSTA	AL OSCILLATORS
Туре	#	Туре	Freq. In MHz

PRINTED CIRCUIT BOARDS										
Function	Model & Rev	Clocks, MHz	Layers	Location						
Not provided at the	is time.									

REQUIRED EUT CHANGES TO COMPLY: None

Page 33 of 62 Report No: FC00-105

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Front View

PHOTOGRAPH SHOWING RADIATED EMISSIONS

Radiated Emissions - Back View

PHOTOGRAPH SHOWING RADIATED EMISSIONS 18-26.5 GHz

Radiated Emissions - Front View

PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

Conducted Emissions - Front View

PHOTOGRAPH SHOWING CONDUCTED EMISSIONS

Conducted Emissions - Side View

PHOTOGRAPH SHOWING BANDEDGE PLOT SETUP

Bandedge Plot Setup - Front View

APPENDIX B

RADIATED AND CONDUCTED DATA SHEETS

Page 40 of 62 Report No: FC00-105

Customer: Specification:	3COM Corporation 15.247(b)(1)		
Work Order #:	75448	Date:	10/17/2000
Test Type:	Peak Power Output Emissions	Time:	16:20:48
Equipment:	Wireless LAN card	Sequence#:	13
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			
Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated in the notes below.

Measu	rement Data:	R	Reading listed by margin.			Test Distance: 3 Meters					
			Pream	Horn	GHz C	GHz C					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	2412.800M	104.3	-34.5	+28.8	+7.6	+5.2	+0.0	111.4	137.0	-25.6	Vert
									Channel 1		
2	2438.200M	101.6	-34.5	+28.9	+7.8	+5.4	+0.0	109.2	137.0	-27.8	Vert
									Channel 6		
3	2462.100M	100.5	-34.5	+29.0	+8.0	+5.6	+0.0	108.6	137.0	-28.4	Vert
									Channel 11	l	
4	2438.220M	100.0	-34.5	+28.9	+7.8	+5.4	+0.0	107.6	137.0	-29.4	Horiz
									Channel 6		
5	2411.740M	100.5	-34.5	+28.8	+7.6	+5.2	+0.0	107.6	137.0	-29.4	Horiz
									Channel 1		
6	2463.320M	97.7	-34.5	+29.0	+8.0	+5.6	+0.0	105.8	137.0	-31.2	Horiz
									Channel 11		

Customer: Specification:	3COM Corporation FCC 15.247 / 15.209		
Work Order #:	75448	Date:	10/17/2000
Test Type:	Maximized Emissions	Time:	12:21:46
Equipment:	Wireless LAN card	Sequence#:	11
Manufacturer:	3COM Corporation	Tested By:	Chuck Kendall
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Wireless LAN card*	3COM Corporation	3CRWE62092A	38	
Support Devices:				

Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. Measuring spurious emissions with the transmitter set to Channel 11. Used 120kHz resolution BW & 120 kHz video BW.

Measu	rement Data:	ata: Reading listed by margin.			Test Distance: 3 Meters						
			Pream	Bicon	Log 1	Barn					
#	Freq	Rdng	Cable				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	195.514M	43.3	-24.7	+17.4	+0.0	+1.2	+0.0	38.5	43.5	-5.0	Vert
	QP		+1.3								
^	195.487M	45.0	-24.7	+17.4	+0.0	+1.2	+0.0	40.2	43.5	-3.3	Vert
			+1.3								
3	456.051M	44.3	-25.6	+0.0	+17.0	+2.0	+0.0	39.9	46.0	-6.1	Vert
			+2.2								
4	333.373M	40.4	-24.9	+0.0	+19.6	+1.6	+0.0	38.6	46.0	-7.4	Vert
	QP		+1.9								
^	333.416M	42.9	-24.9	+0.0	+19.6	+1.6	+0.0	41.1	46.0	-4.9	Vert
			+1.9								
6	586.377M	40.1	-26.0	+0.0	+19.2	+2.3	+0.0	38.2	46.0	-7.8	Vert
	QP		+2.6								
^	586.361M	43.0	-26.0	+0.0	+19.2	+2.3	+0.0	41.1	46.0	-4.9	Vert
			+2.6								
8	390.906M	42.8	-25.4	+0.0	+16.8	+1.8	+0.0	38.1	46.0	-7.9	Vert
	QP		+2.1								
^	390.904M	47.3	-25.4	+0.0	+16.8	+1.8	+0.0	42.6	46.0	-3.4	Vert
			+2.1								
10	228.064M	42.0	-24.7	+17.0	+0.0	+1.3	+0.0	37.0	46.0	-9.0	Vert
	QP		+1.4								
^	228.059M	51.2	-24.7	+17.0	+0.0	+1.3	+0.0	46.2	46.0	+0.2	Vert
			+1.4								

12	367.093M	40.5	-25.2 +2.0	+0.0	+17.9	+1.7	+0.0	36.9	46.0	-9.1	Vert
13	423.486M	41.5	-25.5	+0.0	+16.7	+1.9	+0.0	36.7	46.0	-9.3	Vert
14	700.066M	33.2	-26.2 +2.9	+0.0	+20.6	+2.7	+0.0	33.2	46.0	-12.8	Vert
15	758.396M	31.8	-26.1 +3.1	+0.0	+21.3	+2.9	+0.0	33.0	46.0	-13.0	Vert
16	709.202M	31.9	-26.2 +2.9	+0.0	+20.7	+2.7	+0.0	32.0	46.0	-14.0	Vert
17	681.902M	30.8	-26.2 +2.8	+0.0	+20.4	+2.7	+0.0	30.5	46.0	-15.5	Vert
18	521.254M QP	31.5	-25.9 +2.3	+0.0	+18.0	+2.2	+0.0	28.1	46.0	-17.9	Vert
^	521.262M	45.0	-25.9 +2.3	+0.0	+18.0	+2.2	+0.0	41.6	46.0	-4.4	Vert

Customer: Specification:	3COM Corporation FCC 15.247 / 15.209		
Work Order #:	75448	Date:	10/17/2000
Test Type:	Maximized Emissions	Time:	11:44:31
Equipment:	Wireless LAN card	Sequence#:	1
Manufacturer:	3COM Corporation	Tested By:	Chuck Kendall
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Wireless LAN card*	3COM Corporation	3CRWE62092A	38	
Support Devices:				
			~ ~ ~	

Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. Measuring spurious emissions with the transmitter set to Channel 6. level. Used 120kHz resolution BW & 120 kHz video BW.

Measurement Data: Reading listed by			sted by m	argin.	Test Distance: 3 Meters						
			Pream	Bicon	Log 1	Barn					
#	Freq	Rdng	Cable		-		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	333.376M	42.6	-24.9	+0.0	+19.6	+1.6	+0.0	40.8	46.0	-5.2	Vert
	QP		+1.9								
^	333.384M	44.5	-24.9	+0.0	+19.6	+1.6	+0.0	42.7	46.0	-3.3	Vert
			+1.9						Within 15.	205	
									restricted b	and.	
3	195.515M	43.1	-24.7	+17.4	+0.0	+1.2	+0.0	38.3	43.5	-5.2	Vert
	QP		+1.3								
^	195.515M	46.2	-24.7	+17.4	+0.0	+1.2	+0.0	41.4	43.5	-2.1	Vert
			+1.3								
5	228.060M	43.7	-24.7	+17.0	+0.0	+1.3	+0.0	38.7	46.0	-7.3	Vert
	QP		+1.4								
^	228.047M	52.6	-24.7	+17.0	+0.0	+1.3	+0.0	47.6	46.0	+1.6	Vert
			+1.4								
7	456.047M	42.4	-25.6	+0.0	+17.0	+2.0	+0.0	38.0	46.0	-8.0	Vert
			+2.2								
8	423.481M	42.1	-25.5	+0.0	+16.7	+1.9	+0.0	37.3	46.0	-8.7	Vert
			+2.1								
9	390.900M	41.8	-25.4	+0.0	+16.8	+1.8	+0.0	37.1	46.0	-8.9	Vert
	QP		+2.1								
^	390.922M	45.7	-25.4	+0.0	+16.8	+1.8	+0.0	41.0	46.0	-5.0	Vert
			+2.1								
11	586.389M	38.0	-26.0	+0.0	+19.2	+2.3	+0.0	36.1	46.0	-9.9	Vert
			+2.6								

12	521.258M	38.9	-25.9	+0.0	+18.0	+2.2	+0.0	35.5	46.0	-10.5	Vert
			+2.3								
13	367.104M	37.9	-25.2	+0.0	+17.9	+1.7	+0.0	34.3	46.0	-11.7	Vert
	QP		+2.0								
^	367.116M	43.6	-25.2	+0.0	+17.9	+1.7	+0.0	40.0	46.0	-6.0	Vert
			+2.0								
15	681.836M	34.0	-26.2	+0.0	+20.4	+2.7	+0.0	33.7	46.0	-12.3	Vert
			+2.8								
16	758.364M	32.2	-26.1	+0.0	+21.3	+2.9	+0.0	33.4	46.0	-12.6	Vert
			+3.1								
17	700.053M	33.3	-26.2	+0.0	+20.6	+2.7	+0.0	33.3	46.0	-12.7	Vert
			+2.9								
18	709.107M	32.3	-26.2	+0.0	+20.7	+2.7	+0.0	32.4	46.0	-13.6	Vert
			+2.9								

Customer: Specification:	3COM Corporation FCC 15.247 / 15.209		
Work Order #:	75448	Date:	10/17/2000
Test Type:	Maximized Emissions	Time:	14:11:35
Equipment:	Wireless LAN card	Sequence#:	12
Manufacturer:	3COM Corporation	Tested By:	Chuck Kendall
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			
Function	Manufacturer	Model #	S/N

Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. Measuring spurious emissions with the transmitter set to transmit on Channel 1. Used 120kHz resolution BW & 120 kHz video BW.

Measu	Measurement Data: Reading listed by margin.			sted by m	argin.	Test Distance: 3 Meters					
			Pream	Bicon	Log 1	Barn					
#	Freq	Rdng	Cable				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	195.515M	44.2	-24.7	+17.4	+0.0	+1.2	+0.0	39.4	43.5	-4.1	Vert
	QP		+1.3								
^	195.464M	45.7	-24.7	+17.4	+0.0	+1.2	+0.0	40.9	43.5	-2.6	Vert
			+1.3								
3	366.946M	44.8	-25.2	+0.0	+17.9	+1.7	+0.0	41.2	46.0	-4.8	Vert
			+2.0								
4	456.095M	44.4	-25.6	+0.0	+17.0	+2.0	+0.0	40.0	46.0	-6.0	Vert
	QP		+2.2								
^	456.037M	45.4	-25.6	+0.0	+17.0	+2.0	+0.0	41.0	46.0	-5.0	Vert
			+2.2								
6	390.909M	44.6	-25.4	+0.0	+16.8	+1.8	+0.0	39.9	46.0	-6.1	Vert
	QP		+2.1								
^	390.922M	49.3	-25.4	+0.0	+16.8	+1.8	+0.0	44.6	46.0	-1.4	Vert
			+2.1								
8	333.372M	41.6	-24.9	+0.0	+19.6	+1.6	+0.0	39.8	46.0	-6.2	Vert
	QP		+1.9								
^	333.370M	43.4	-24.9	+0.0	+19.6	+1.6	+0.0	41.6	46.0	-4.4	Vert
			+1.9								
10	586.381M	39.9	-26.0	+0.0	+19.2	+2.3	+0.0	38.0	46.0	-8.0	Vert
	QP		+2.6								
^	586.375M	42.9	-26.0	+0.0	+19.2	+2.3	+0.0	41.0	46.0	-5.0	Vert
			+2.6								

-											
12	521.226M	40.9	-25.9	+0.0	+18.0	+2.2	+0.0	37.5	46.0	-8.5	Vert
			+2.3								
13	423.471M	41.8	-25.5	+0.0	+16.7	+1.9	+0.0	37.0	46.0	-9.0	Vert
			+2.1								
14	228.059M	41.9	-24.7	+17.0	+0.0	+1.3	+0.0	36.9	46.0	-9.1	Vert
	QP		+1.4								
^	228.067M	50.8	-24.7	+17.0	+0.0	+1.3	+0.0	45.8	46.0	-0.2	Vert
			+1.4								
16	367.107M	39.1	-25.2	+0.0	+17.9	+1.7	+0.0	35.5	46.0	-10.5	Vert
	QP		+2.0								
17	700.051M	33.7	-26.2	+0.0	+20.6	+2.7	+0.0	33.7	46.0	-12.3	Vert
			+2.9								
18	681.938M	32.9	-26.2	+0.0	+20.4	+2.7	+0.0	32.6	46.0	-13.4	Vert
			+2.8								
19	758.432M	30.6	-26.1	+0.0	+21.3	+2.9	+0.0	31.8	46.0	-14.2	Vert
			+3.1								
20	709.109M	31.1	-26.2	+0.0	+20.7	+2.7	+0.0	31.2	46.0	-14.8	Vert
			+2.9								

Customer: Specification:	3COM Corporation FCC 15.247 / 15.209		
Work Order #:	75448	Date:	10/17/2000
Test Type:	Maximized Emissions >1GHz	Time:	16:53:17
Equipment:	Wireless LAN card	Sequence#:	15
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

I I			
Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			
Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. TX: Channel 6

Measurement Data: Reading listed by margin. Test Distance: 1 Meter				e: 1 Meter							
			Pream	Horn	GHz C	GHz C					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	dBµV/m	dB	Ant
1	4874.547M	35.8	-35.6	+33.1	+8.1	+4.7	-10.0	36.1	54.0	-17.9	Vert
	Ave								@ 1 meter		
^	4874.500M	49.7	-35.6	+33.1	+8.1	+4.7	-10.0	50.0	54.0	-4.0	Vert
									@ 1 meter		

Customer: Specification:	3COM Corporation FCC 15.247 / 15.209		
Work Order #:	75448	Date:	10/17/2000
Test Type:	Maximized Emissions >1GHz	Time:	16:39:18
Equipment:	Wireless LAN card	Sequence#:	14
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A	•	
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38

Support Devices:

Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. TX: Channel 1

Meas	urement Data:	<i>t Data:</i> Reading listed by margin.					Те	est Distanc	e: 1 & 3 M	eters	
			Pream	Horn	GHz C	GHz C					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 4824.180M	48.4	-35.5	+33.2	+8.0	+4.7	+0.0	58.8	54.0	+4.8	Vert
									@ 3 meters	s	
	2 4824.347M	38.0	-35.5	+33.2	+8.0	+4.7	+0.0	48.4	54.0	-5.6	Vert
	Ave								@ 3 meters	s	
	3 4824.153M	35.9	-35.5	+33.2	+8.0	+4.7	-10.0	36.3	54.0	-17.7	Vert
	Ave								@ 1 meter		
,	^ 4824.153M	49.2	-35.5	+33.2	+8.0	+4.7	-10.0	49.6	54.0	-4.4	Vert
									@ 1 meter		

Customer: Specification:	3COM Corporation FCC 15.247 / 15.209		
Work Order #:	75448	Date:	10/17/2000
Test Type:	Maximized Emissions >1GHz	Time:	16:56:21
Equipment:	Wireless LAN card	Sequence#:	16
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

<u> </u>			
Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			
Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. TX: Channel 11.

Measu	urement Data:	R	leading lis	sted by n	nargin.		Τe	est Distance	e: 1 Meter		
			Pream	Horn	GHz C	GHz C					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	4924.177M	33.2	-35.6	+33.1	+8.2	+4.6	-10.0	33.5	54.0	-20.5	Vert
	Ave								@ 1 meter		
^	4924.080M	46.4	-35.6	+33.1	+8.2	+4.6	-10.0	46.7	54.0	-7.3	Vert
									@ 1 meter		

Test Location: CKC Laboratories, Inc. • 1653 Los Viboras Road ,Site C • Hollister, CA 95023 • (831) 637-1051

Customer:	3COM Corporation		
Specification:	FCC15.247(2.4 GHz) & 15.209		
Work Order #:	75448	Date:	10/13/2000
Test Type:	Band edge delta	Time:	19:36:28
Equipment:	Wireless LAN card	Sequence#:	4
Manufacturer:	3COM Corporation	Tested By:	Art Rice
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

1 1				
Function	Manufacturer	Model #	S/N	
Wireless LAN card*	3COM Corporation	3CRWE62092A	38	
Support Devices:				
Function	Manufacturer	Model #	S/N	
Host PC	Dell	PPI	H3L3T	
AC Adapter for PC	Dell	PA-4	none	

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. Measuring delta from transmit fundamental level to band edge. Used 30 kHz resolution BW & 30 kHz video BW.

rement Data:	Reading listed by margin.				Test Distance: 3 Meters					
		Amp_2	hol-h	hol-h	Horn					
Freq	Rdng					Dist	Corr	Spec	Margin	Polar
MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
2398.510M	42.2	-38.4	+2.9	+9.0	+29.3	+0.0	45.0	54.0	-9.0	Horiz
								Strongest s	signal	
								within 2 M	IHz of	
								lower band	l edge.	
2485.470M	27.1	-37.7	+3.0	+9.2	+29.7	+0.0	31.3	54.0	-22.7	Horiz
								Strongest s	signal	
								within 2 M	IHz of	
								upper banc	l edge.	
2411.510M	78.8	-38.3	+2.9	+9.0	+29.3	+0.0	81.7	137.0	-55.3	Horiz
								Level of tr	ansmitter	
								on channel	11.	
2461.480M	75.9	-37.9	+3.0	+9.1	+29.6	+0.0	79.7	137.0	-57.3	Horiz
								Level of tr	ansmitter	
								on channel	l 11.	
2400.010M	39.1	-38.4	+2.9	+9.0	+29.3	+0.0	41.9	137.0	-95.1	Horiz
								Level at lo	wer band	
								edge.		
2483.490M	25.7	-37.7	+3.0	+9.2	+29.7	+0.0	29.9	137.0	-107.1	Horiz
								Level at up	oper band	
								edge.		
	rement Data: Freq MHz 2398.510M 2485.470M 2485.470M 2461.480M 2400.010M 2483.490M	rement Data: F Freq MHz Rdng dBμV 2398.510M 42.2 2485.470M 27.1 2411.510M 78.8 2461.480M 75.9 2400.010M 39.1 2483.490M 25.7	rement Data: Reading lis Amp_2 Freq Rdng MHz dBµV dB 2398.510M 42.2 -38.4 2485.470M 27.1 -37.7 2411.510M 78.8 -38.3 2461.480M 75.9 -37.9 2400.010M 39.1 -38.4 2483.490M 25.7 -37.7	Reading listed by m Amp_2 hol-h Freq Rdng MHz dBµV dB dB 2398.510M 42.2 -38.4 +2.9 2485.470M 27.1 -37.7 +3.0 2411.510M 78.8 -38.3 +2.9 2461.480M 75.9 -37.9 +3.0 2400.010M 39.1 -38.4 +2.9 2483.490M 25.7 -37.7 +3.0	Reading listed by margin. Amp_2 hol-h hol-h Freq Rdng dB dB dB 2398.510M 42.2 -38.4 +2.9 +9.0 2485.470M 27.1 -37.7 +3.0 +9.2 2411.510M 78.8 -38.3 +2.9 +9.0 2461.480M 75.9 -37.9 +3.0 +9.1 2400.010M 39.1 -38.4 +2.9 +9.0 2483.490M 25.7 -37.7 +3.0 +9.2	Reading listed by margin. Amp_2 hol-h hol-h Horn Freq Rdng dB dB dB dB dB dB 2398.510M 42.2 -38.4 +2.9 +9.0 +29.3 2485.470M 27.1 -37.7 +3.0 +9.2 +29.7 2411.510M 78.8 -38.3 +2.9 +9.0 +29.3 2461.480M 75.9 -37.9 +3.0 +9.1 +29.6 2400.010M 39.1 -38.4 +2.9 +9.0 +29.3 2483.490M 25.7 -37.7 +3.0 +9.1 +29.3	rement Data:Reading listed by margin.TaAmp_2hol-hhol-hHornFreqRdngDistMHzdB μ VdBdBdBdBdBTable2398.510M42.2-38.4+2.9+9.0+29.3+0.02485.470M27.1-37.7+3.0+9.2+29.7+0.02411.510M78.8-38.3+2.9+9.0+29.3+0.02461.480M75.9-37.9+3.0+9.1+29.6+0.02400.010M39.1-38.4+2.9+9.0+29.3+0.02483.490M25.7-37.7+3.0+9.2+29.7+0.0	rement Data:Reading listed by margin.Test DistanceAmp_2hol-hHornFreqRdngDistCorrMHzdBµVdBdBdBdBdBTabledBµV/m2398.510M42.2 -38.4 $+2.9$ $+9.0$ $+29.3$ $+0.0$ 45.0 2485.470M27.1 -37.7 $+3.0$ $+9.2$ $+29.7$ $+0.0$ 31.3 2411.510M78.8 -38.3 $+2.9$ $+9.0$ $+29.3$ $+0.0$ 81.7 2461.480M75.9 -37.9 $+3.0$ $+9.1$ $+29.6$ $+0.0$ 79.7 2400.010M39.1 -38.4 $+2.9$ $+9.0$ $+29.3$ $+0.0$ 41.9 2483.490M25.7 -37.7 $+3.0$ $+9.2$ $+29.7$ $+0.0$ 29.9	Test Distance: 3 Meters Amp_2 hol-h hol-h Horn Freq Rdng Dist Corr Spec MHz dBµV dB dB dB dB Table dBµV/m dBµV/m 2398.510M 42.2 -38.4 +2.9 +9.0 +29.3 +0.0 45.0 54.0 2398.510M 42.2 -38.4 +2.9 +9.0 +29.3 +0.0 45.0 54.0 2485.470M 27.1 -37.7 +3.0 +9.2 +29.7 +0.0 31.3 54.0 2485.470M 27.1 -37.7 +3.0 +9.2 +29.7 +0.0 31.3 54.0 2411.510M 78.8 -38.3 +2.9 +9.0 +29.3 +0.0 81.7 137.0 Level of tr on channel Unper banc Unper banc Unper banc Unper banc 2461.480M 75.9 -37.9 +3.0 +9.1 +29.6 +0.0 79.7 137.0<	Test Distance: 3 Meters Amp_2 hol-h hol-h Horn Freq Rdng Dist Corr Spec Margin MHz dBµV dB dB dB dB Table dBµV/m dBµV/

Test Location:	CKC Laboratories •	5473A Clouds Rest •	Mariposa Ca, 95338	• 209-966-5240
----------------	--------------------	---------------------	--------------------	----------------

Customer:	3COM Corporation		
Work Order #:	75448	Date:	10/19/2000
Test Type:	Conducted Emissions	Time:	11:15:24
Equipment:	Wireless LAN card	Sequence#:	17
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A	•	
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			
Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. TX: Channel 1

Measur	rement Data:	R	eading l	isted by m	argin.	;in. Test Lead: Black					
				493 L	LISN						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	6.966M	35.3		+3.3	+0.2		+0.0	38.8	48.0	-9.2	Black
2	7.185M	34.8		+3.2	+0.2		+0.0	38.2	48.0	-9.8	Black
3	7.328M	34.8		+3.1	+0.2		+0.0	38.1	48.0	-9.9	Black
4	615.654k	37.3		+0.6	+0.1		+0.0	38.0	48.0	-10.0	Black
5	526.971k	37.2		+0.6	+0.1		+0.0	37.9	48.0	-10.1	Black
6	1.062M	37.1		+0.6	+0.1		+0.0	37.8	48.0	-10.2	Black
7	7.103M	34.2		+3.3	+0.2		+0.0	37.7	48.0	-10.3	Black
8	6.775M	34.5		+2.9	+0.2		+0.0	37.6	48.0	-10.4	Black
9	885.051k	36.8		+0.6	+0.1		+0.0	37.5	48.0	-10.5	Black
10	794.694k	36.6		+0.6	+0.1		+0.0	37.3	48.0	-10.7	Black
11	6.488M	34.5		+2.2	+0.2		+0.0	36.9	48.0	-11.1	Black
12	7.609M	33.7		+2.8	+0.2		+0.0	36.7	48.0	-11.3	Black

13	6.666M	33.8	+2.6	+0.2	+0.0	36.6	48.0	-11.4	Black
14	6.297M	34.5	+1.7	+0.2	+0.0	36.4	48.0	-11.6	Black
15	506.891k	35.7	+0.6	+0.1	+0.0	36.4	48.0	-11.6	Black
16	519.441k	35.6	+0.6	+0.1	+0.0	36.3	48.0	-11.7	Black
17	463.386k	35.6	+0.6	+0.1	+0.0	36.3	48.0	-11.7	Black
18	706.011k	35.5	+0.6	+0.1	+0.0	36.2	48.0	-11.8	Black
19	7.807M	33.3	+2.6	+0.2	+0.0	36.1	48.0	-11.9	Black
20	727.763k	35.3	+0.6	+0.1	+0.0	36.0	48.0	-12.0	Black

Test Location:	CKC Laboratories •	5473A Clouds Rest •	Mariposa Ca, 95338	• 209-966-5240
----------------	--------------------	---------------------	--------------------	----------------

Customer:	3COM Corporation FCC 15 207		
Work Order #:	75448	Date:	10/19/2000
Test Type:	Conducted Emissions	Time:	11:20:55
Equipment:	Wireless LAN card	Sequence#:	18
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A	-	
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			
Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated below. TX: Channel 1

Measur	rement Data:	R	eading l	isted by m	argin.	gin. Test Lead: White					
				493 L	LISN						
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	530.317k	38.2		+0.6	+0.1		+0.0	38.9	48.0	-9.1	White
2	1.062M	37.7		+0.6	+0.1		+0.0	38.4	48.0	-9.6	White
3	460.040k	37.5		+0.6	+0.1		+0.0	38.2	48.0	-9.8	White
4	1.324M	37.4		+0.5	+0.1		+0.0	38.0	48.0	-10.0	White
5	793.021k	37.2		+0.6	+0.1		+0.0	37.9	48.0	-10.1	White
6	615.654k	37.0		+0.6	+0.1		+0.0	37.7	48.0	-10.3	White
7	556.253k	37.0		+0.6	+0.1		+0.0	37.7	48.0	-10.3	White
8	883.378k	36.7		+0.6	+0.1		+0.0	37.4	48.0	-10.6	White
9	463.386k	36.5		+0.6	+0.1		+0.0	37.2	48.0	-10.8	White
10	1.769M	36.6		+0.4	+0.1		+0.0	37.1	48.0	-10.9	White
11	2.032M	36.4		+0.4	+0.1		+0.0	36.9	48.0	-11.1	White
12	1.504M	36.3		+0.5	+0.1		+0.0	36.9	48.0	-11.1	White

Ī	13	1.238M	36.3	+0.5	+0.1	+0.0	36.9	48.0	-11.1	White
L										
l	14	1.855M	36.3	+0.4	+0.1	+0.0	36.8	48.0	-11.2	White
ſ	15	498.525k	36.1	+0.6	+0.1	+0.0	36.8	48.0	-11.2	White
ſ	16	511.075k	36.0	+0.6	+0.1	+0.0	36.7	48.0	-11.3	White
ſ	17	545.377k	35.7	+0.6	+0.1	+0.0	36.4	48.0	-11.6	White
ľ	18	2.300M	35.8	+0.4	+0.1	+0.0	36.3	48.0	-11.7	White
ſ	19	1.590M	35.7	+0.5	+0.1	+0.0	36.3	48.0	-11.7	White
I										
ľ	20	1.148M	35.6	+0.6	+0.1	+0.0	36.3	48.0	-11.7	White
I										

Customer: Specification:	3COM Corporation FCC B RADIATED		
Work Order #:	75448	Date:	10/19/2000
Test Type:	Maximized Emissions (Receiver Portion)	Time:	12:47:20
Equipment:	Wireless LAN card	Sequence#:	19
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			

Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is set to receive on channel 1.

Measu	rement Data:	R	eading lis	sted by n	d by margin. Test Distance: 0-10cm						
			Pream	Horn	GHz C	GHz C					
#	Freq	Rdng					Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	367.130M	44.1	+0.0	+0.0	+0.0	+0.0	+0.0	44.1	46.0	-1.9	Vert
2	334.093M	40.5	+0.0	+0.0	+0.0	+0.0	+0.0	40.5	46.0	-5.5	Vert
3	333.897M QP	40.1	+0.0	+0.0	+0.0	+0.0	+0.0	40.1	46.0	-5.9	Vert
^	333.892M	42.8	+0.0	+0.0	+0.0	+0.0	+0.0	42.8	46.0	-3.2	Vert
5	366.515M QP	38.6	+0.0	+0.0	+0.0	+0.0	+0.0	38.6	46.0	-7.4	Vert
6	586.395M	37.3	+0.0	+0.0	+0.0	+0.0	+0.0	37.3	46.0	-8.7	Vert
7	122.955M QP	34.8	+0.0	+0.0	+0.0	+0.0	+0.0	34.8	43.5	-8.7	Vert
^	122.925M	42.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	43.5	-1.0	Vert
9	466.370M	36.1	+0.0	+0.0	+0.0	+0.0	+0.0	36.1	46.0	-9.9	Vert
10	400.543M	33.6	+0.0	+0.0	+0.0	+0.0	+0.0	33.6	46.0	-12.4	Vert

Customer: Specification:	3COM Corporation 15.247(b)(1)		
Work Order #:	75448	Date:	11/09/2000
Test Type:	Peak Power Spectral Density	Time:	17:07:29
Equipment:	Wireless LAN card	Sequence#:	34
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N	
Wireless LAN card*	3COM Corporation	3CRWE62092A	38	
Support Devices:				
Function	Manufacturer	Model #	S/N	
Host PC	Dell	PPI	H3L3T	
AC Adapter for PC	Dell	PA-4	none	

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated in the notes below.

Measu	rement Data:	Reading listed by margin. Test Distance: 3 Meters									
			Pream		GHz C	GHz C					
#	Freq	Rdng	Horn				Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	2437.630M	84.9	-34.5		+7.8	+5.4	+0.0	92.9	127.0	-34.1	Horiz
			+29.3			PSD Channel 6.					
2	2411.880M	85.1	-34.5		+7.6	+5.2	+0.0	92.6	127.0	-34.4	Horiz
			+29.2						PSD Chan	nel 1.	
3	2462.050M	83.6	-34.5		+8.0	+5.6	+0.0	92.2	127.0	-34.8	Horiz
			+29.5						PSD Chan	nel 11.	

Customer: Specification:	3COM Corporation 15.247(b)(1)		
Work Order #:	75448	Date:	11/09/2000
Test Type:	6dB Bandwidth	Time:	17:38:08
Equipment:	Wireless LAN card	Sequence#:	35
Manufacturer:	3COM Corporation	Tested By:	Randal Clark
Model:	3CRWE62092A		
S/N:	38		

Equipment Under Test (* = EUT):

	,		
Function	Manufacturer	Model #	S/N
Wireless LAN card*	3COM Corporation	3CRWE62092A	38
Support Devices:			
Function	Manufacturer	Model #	S/N
Host PC	Dell	PPI	H3L3T
AC Adapter for PC	Dell	PA-4	none

Test Conditions / Notes:

The EUT is a wireless LAN card for PCMCIA port of a computer. It operates in the 2400-2483.5 MHz band using DSSS. The EUT is installed in the Host PC. It is continuously transmitting on the channel indicated in the notes below.

Mea	ısu	rement Data:	Reading listed by margin.				Test Distance: 3 Meters					
				Pream		GHz C	GHz C					
#		Freq	Rdng	Horn				Dist	Corr	Spec	Margin	Polar
		MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
	1	2463.670M	96.8	-34.5		+8.0	+5.6	+0.0	105.4	127.0	-21.6	Horiz
				+29.5						6dB BW C	Channel	
										11.		
	2	2411.470M	97.3	-34.5		+7.6	+5.2	+0.0	104.8	127.0	-22.2	Horiz
				+29.2						6dB BW.	Channel	
										1.		
	3	2438.570M	96.5	-34.5		+7.8	+5.4	+0.0	104.5	127.0	-22.5	Horiz
				+29.3						6dB BW C	Channel 6.	

BAND EDGE MEASUREMENT

Band Edge - Channel 1

BAND EDGE MEASUREMENT

Band Edge - Channel 11