

Appendix C. Maximum Permissible Exposure

FCC ID: DDX-NHDD4 Page No. : 1 of 3

Report No.: FR622302

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E 2, H 2 or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E 2, H 2 or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

 $\mathbf{P} = \text{Peak RF output power (W)}$

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

FCC ID: DDX-NHDD4 Page No. : 2 of 3

Report No.: FR622302

1.3. Calculated Result and Limit

Antenna Type : Dipole

Max Conducted Power for IEEE 802.b: 16.72dBm

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
1.8	1.5136	16.7200	46.9894	0.014156	1	Complies

Antenna Type : Dipole

Max Conducted Power for IEEE 802.g: 15.40dBm

Antenna Ga (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm ²)	Test Result
1.8	1.5136	15.4000	34.6737	0.010446	1	Complies

FCC ID: DDX-NHDD4 Page No. : 3 of 3