

Report Number:

FCC Rules and Regulations / Intentional Radiators

Low Power Auxiliary Stations

Part 74, Subpart H, Sections 74.801 - 74.882

Part 74.861 (e) TV Broadcasting

THE FOLLOWING **MEETS** THE ABOVE TEST SPECIFICATION

Formal Name: Micro Bodypack Transmitter

Kind of Equipment: Wireless Microphone Transmitter

578 MHz to 607.875 and 614.125 MHz to 638 MHz Frequency Range:

Test Configuration: Stand Alone (Tested at 3 vdc)

Model Number(s): UR1M/R J5, UR1M/RLEMO3 J5, UR1M- J5, UR1MLEMO3- J5

UR1M/R J5 Model(s) Tested:

Serial Number(s): N/A

Emission Designator: 91KF3E

Date of Tests: October 1, 2, 3, & 9, 2008

Test Conducted For: Shure Incorporated

5800 W. Touhy Ave.

Niles, Illinois 60714-4608

"This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report.

© Copyright 1983-2008 D.L.S. Electronic Systems, Inc

COPYRIGHT NOTICE

This report or any portion their of, may not be reproduced or modified in any form without the expressed written consent of D.L.S. Electronic Systems, Inc.

Shure Incorporated UR1M/R J5 14841

SIGNATURE PAGE

Report By:

amon C Row

William MStry

Arnom C. Rowe Test Engineer EMC-001375-NE

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Brian J. Mathon

Shure Incorporated UR1M/R J5 14841

TABLE OF CONTENTS

i.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents	3
iv.	NVLAP Certificate of Accreditation	5
1.0	Summary of Test Report	6
2.0	Introduction	6
3.0	Object	6
4.0	Test Set-Up	7
5.0	Test Equipment	7
6.0	Ambient Measurements	8
7.0	AC Power Line Conducted Emission Measurements	8
8.0	Description of Test Sample	9
9.0	Additional Description of Test Sample	10
10.0	Photo Information and Test Set-Up	10
11.0	Radiated Photos Taken During Testing	11
12.0	AC Power Line Conducted Photos Taken During Testing	17
13.0	Results of Tests	17
14.0	Conclusion	17
TAE	BLE 1 – EQUIPMENT LIST	18
TAF	BLE 2 – EOUIPMENT LIST	19

Shure Incorporated UR1M/R J5 14841

TABLE OF CONTENTS

Append	dix A – Electric Field Radiated Emissions Test	20
1.0	Test Set-Up	21
2.0	DC Voltages and Current into final Amplifying Stage.	21
3.0	RF Power Output	21
3.0	Data taken of the RF Power Output	22
3.0	RF Output Power Photos Taken During Testing	29
4.0	Modulation Characteristics	30
4.0	Graph(s) taken of the Modulation Characteristics	31
5.0	Occupied Bandwidth	35
5.0	Data and Graph(s) taken of the 99% Occupied Bandwidth	36
6.0	Data and Graph(s) taken of the Emission Mask	40
7.0	Spurious Emissions at Antenna Terminals	50
7.0	Conducted Emission Data and Charts made at the Antenna Terminals	51
8.0	Data and Graph(s) taken of the Band Edge Compliance	58
9.0	Field Strength of Fundamental and Spurious Emission Measurements	63
9.0	Radiated Data and Charts taken for Fundamental Emissions using the Substitution Method	64
9.0	Radiated Data and Graph(s) Taken During Testing for Spurious Emissions	68
10.0	Frequency Stability (Temperature)	72
11.0	Frequency Stability (Voltage Variation)	72
10.0 &	11.0 Data Taken for Frequency Stability Temperature & Voltage Variation	73
12.0	Band Edge Photos Taken During Testing.	75
13.0	Frequency Stability Photos Taken During Testing	76

Shure Incorporated UR1M/R J5 14841

1250 Peterson Dr., Wheeling, IL 60090

National Institute of Standards and Technology United States Department of Commerce

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 100276-0

D.L.S. Electronic Systems, Inc.

Wheeling, IL

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, isted on the Scope of Accreditation, for: ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005). This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025.2005.

2008-10-01 through 2009-09-30

For the National In:

NVLAP-01C (REV. 2006-09-13)

Shure Incorporated UR1M/R J5 14841

1.0 SUMMARY OF TEST REPORT

It was found that the Micro Bodypack Transmitter, Model Number(s) UR1M/R J5 **meets** the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (e), for low power auxiliary stations. The <u>AC Power Line conducted</u> emissions test was not required because the Micro Bodypack Transmitter is powered from a D.C. power source. It does not have a line cord to plug into the A.C. power line.

2.0 INTRODUCTION

On October 1, 2, 3, & 9, 2008, a series of radio frequency interference measurements was performed on Micro Bodypack Transmitter, Model Number(s) UR1M/R J5, Serial Number: N/A. The tests were performed according to the procedures of the FCC as stated in Part 2 - Frequency Allocations and Radio Treaty Matters: General Rules and Regulations, Subpart J, Equipment Authorization Procedures of the Code of Federal Regulations 47. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO Guide 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI. All immunity tests were performed by personnel of D.L.S. Electronic Systems, Inc. at the following location(s):

Main Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, Illinois 60090

O.A.T.S. Test Facility:

D.L.S. Electronic Systems, Inc.166 S. Carter StreetGenoa City, Wisconsin 53128

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (e), for low power auxiliary stations.

Report Number: 14841

4.0 TEST SET-UP

All tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the FCC and TIA-603C regulations. The conducted tests if required were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the American National Standards Institute, ANSI C63.4-2003.

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable, which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to TIA Standard, TIA-603-C:2004, Section 2.2.12.

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the ESI 26/ESI 40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the ESI 26/ESI 40 fixed tuned receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/ESI 40 Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the ESI 26/ESI 40 Fixed Tuned Receiver.

The bandwidths shown below are specified by ANSI C63.4-2003.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

Report Number:

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables or are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emission that has the highest amplitude relative to the limit.

7.0 AC POWER LINE CONDUCTED EMISSION MEASUREMENTS – Part 15.207

The Micro Bodypack Transmitter is powered from a D.C. power source and will not at any time be directly plugged into the public utility lines, therefore the conducted emissions test was not performed.

Report Number: 14841

8.0 DESCRIPTION OF TEST SAMPLE:

8.1 Description:

The UHF-R Wireless Microphone System uses the latest wireless technology, delivers outstanding audio clarity, and is rugged and reliable. It operates over the frequency range of 518 to 865 MHz (in different frequency bands). The products are identical, with the exception of the frequency components needed for each range. The User Interface includes directional buttons, and an LCD that displays battery status, group/channel, and transmitter/receiver frequency synchronization. It is easy to set up and operate with advanced features for professional installations requiring multiple wireless microphone systems.

8.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 49 mm x Width: 60mm x Height: 17 mm

8.3 LINE FILTER USED:

NA

8.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

NA

Clock Frequencies:

0.025, 0.064, 1.2, 4, 38.4 MHz

8.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

1. Printed Circuit Board

PN: 190-112281

Company: Shure Incorporated Model Tested: UR1M/R J5 Report Number: 14841

9.0 ADDITIONAL DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

1: There were no additional descriptions noted at the time of test.

NOTE:

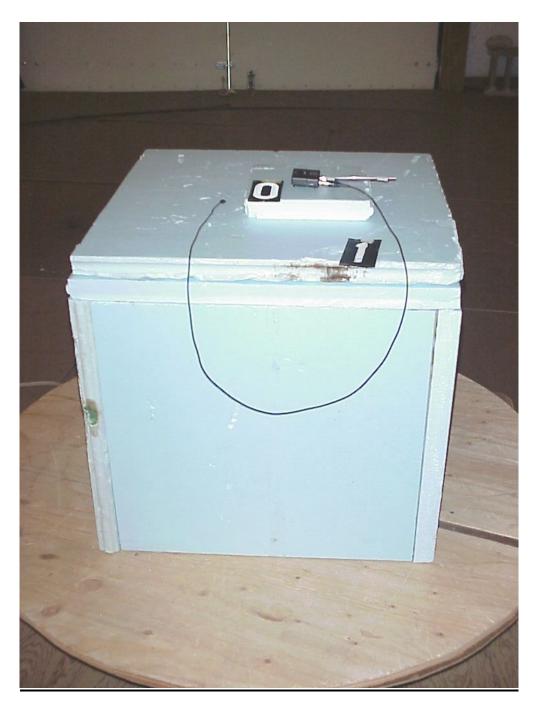
Each device had a matching antenna for its frequency range and was connected for all radiated emission testing. The microphone cable also was connected during radiated emission testing. Each device was tunable within its RF band of operation. When appropriate, modulation was supplied to the device.

10.0 PHOTO INFORMATION AND TEST SET-UP

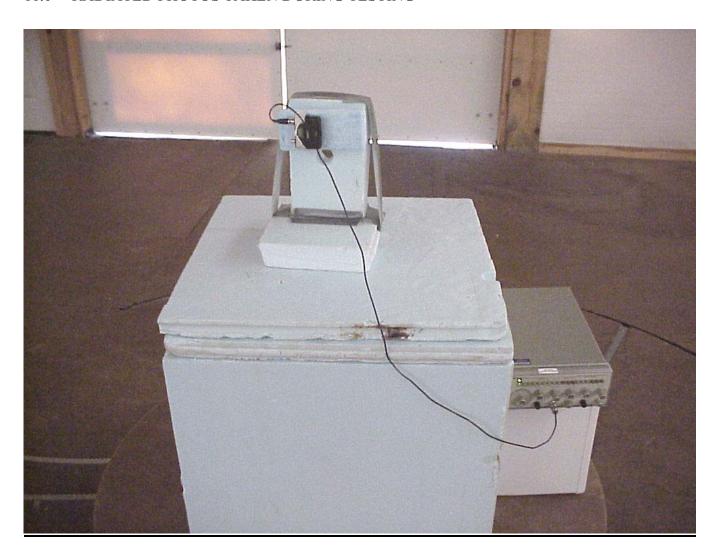
Item 0 Micro Bodypack Transmitter Model Number: UR1M/R J5, Serial Number: N/A

Report Number: 14841

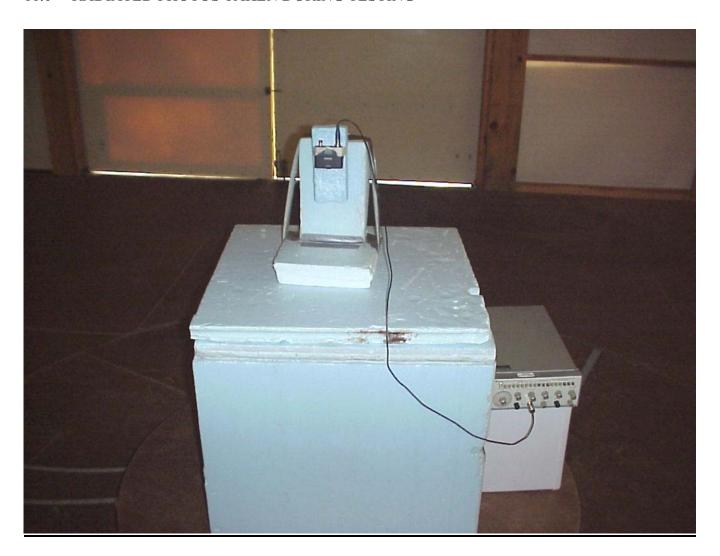
RADIATED FUNDAMENTAL – X ORIENTATION


Report Number: 14841

RADIATED FUNDAMENTAL - Y ORIENTATION


Company: Shure Incorporated Model Tested: UR1M/R J5 Report Number: 14841

RADIATED FUNDAMENTAL – Z ORIENTATION


Report Number: 14841

RADIATED SPURIOUS – X ORIENTATION

Report Number: 14841

RADIATED SPURIOUS – Y ORIENTATION

Report Number: 14841

RADIATED SPURIOUS – Z ORIENTATION

Report Number: 14841

12.0 AC POWER LINE CONDUCTED PHOTOS TAKEN DURING TESTING

The Micro Bodypack Transmitter is powered from a D.C. power source and will not at any time be directly plugged into the public utility lines, therefore the conducted emissions test was not performed.

13.0 **RESULTS OF TESTS**

The radio interference emission charts can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report.

14.0 **CONCLUSION**

It was found that the Micro Bodypack Transmitter Model Number(s) UR1M/R J5 meets the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (e), for low power auxiliary stations. The AC Power Line conducted emissions test was not required because the Micro Bodypack Transmitter is powered from a D.C. power source. It does not have a line cord to plug into the A.C. power line.

Company: Shure Incorporated Model Tested: UR1M/R J5 Report Number: 14841

TABLE 1 – EQUIPMENT LIST

Test Equipment	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Due Dates
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	7/09
Preamplifier	Rohde & Schwarz	TS-PR10	032001/005	9 kHz – 1 GHz	3/09
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	5/10
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	5/10
Preamp	Miteq	AMF-6D- 010100-50	213976	1GHz-10GHz	5/09
Horn Antenna	EMCO	3115	5731	1-18GHz	6/09
Filter –High Pass	Q-Microwave	100460	002	1.1 GHz	5/09

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Company: Shure Incorporated Model Tested: UR1M/R J5 Report Number: 14841

TABLE 2 – EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
Receiver Rhode &		ESI 26	837491/010	20 Hz – 26 GHz	12/08
	Schwarz				
Attenuator 20	Aeroflex	75A-20-12	1071	DC – 40 GHz	7/09
dB Fixed	Weinschel				
Power Meter	Anritsu	ML2487A	6K00002069	100 kHz – 65 GHz	10/09
Power Sensor	Anritsu	MA2490A	031563	50 MHz – 8 GHz	10/09
RF Cable	Insulated Wire	KPS-1501-	01182007	30 MHz – 40 GHz	5/09
	Inc.	1182-KPS			
RF Cable	Manhattan /	M4218	E96824-I	30 MHz – 1 GHz	3/09
	CDT				
Dipole	Com-Power	AD-100	40140	400 MHz – 1 GHz	7/09
Antenna					
Spectrum	Hewlett-	8591A	3009A00700	9 kHz – 1.8 GHz	9/09
Analyzer	Packard				
Function	Hewlett-	3312A	1432A12543	1 Hz – 500 MHz	6/10
Generator	Packard				
Oscilloscope	Yukogawa	DL1720	R047912	1 Hz – 500 MHz	10/09
Signal	Marconi	2022A	119026	10 kHz – 1 GHz	7/09
Generator					
Modulation	Hewlett-	8901B	2920A02096	150 kHz – 1.3 GHz	7/09
Analyzer	Packard				

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Report Number: 14841

APPENDIX A

TEST PROCEDURE

SUBPART H

LOW POWER AUXILIARY STATIONS OPERATING IN THE BANDS ALLOCATED FOR TV BROADCASTING

Report Number: 14841

APPENDIX A

1.0 TEST SET-UP

All radiated emission tests were performed at D.L.S. Electronic Systems, Inc. The radiated tests were made with the test item placed on a non-conductive turntable located in the Test Room with the receive antenna placed three or one meter(s) from the device under test

2.0 DC VOLTAGES AND CURRENTS APPLIED INTO FINAL AMPLIFYING STAGE – PART 2.1033(c-8)

3.3V, 30 mA Imax) (@ 10mW) 5V, 60 mA (Imax) (@ 50mW)

3.0 RF-POWER OUTPUT – PART 2.1046 and EIA /TIA-603-C:2004, SECTION 2.2.17

As stated in PART 74.861 (e)(1)(ii), the RF output power should not exceed .25 watt(s). The RF output power was measured with the transmitter unmodulated. The RF output power was measured using the substitution method because there is no antenna port for a direct connection. The RF output power was measured using the following test method:

Actual Measurements Taken:

16.86 dBm Measured output of the transmitter

16.86 dBm equals 0.0485 watt(s)

LIMIT:

Manufacturer's rated output power = 10 mW or 50 mW (radiated)

MARGIN:

.25 - 0.0485 = 0 watt(s)

Report Number: 14841

APPENDIX A

DATA TAKEN OF THE RF POWER OUTPUT MEASUREMENT

EIA /TIA-603-C:2004, SECTION 2.2.17

FCC Part 74.861 (e)(1) & PART 2.1046

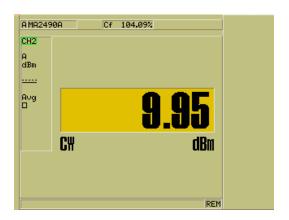
1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-01-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 578 MHz

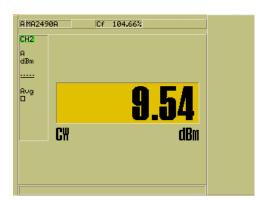
Power set to 10 mW

Peak Output Power = 9.95 dBm = 9.9 mW

Report Number: 14841

APPENDIX A

Test Date: 10-01-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 607 MHz

Power set to 10 mW

Peak Output Power = 9.54 dBm = 9.0 mW

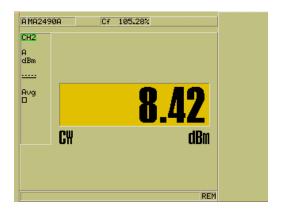
1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-01-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 638 MHz

Power set to 10 mW

Peak Output Power = $8.42 \text{ dBm} = \frac{7.0 \text{ mW}}{1000 \text{ m}}$

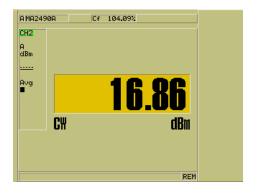
1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-01-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 578 MHz

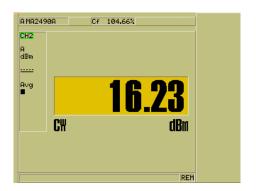
Power set to 50 mW

Peak Output Power = 16.86 dBm = 48.5 mW

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-01-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 607 MHz

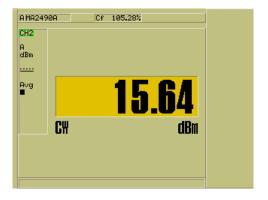
Power set to 50 mW

Peak Output Power = $16.23 \text{ dBm} = \frac{42.0 \text{ mW}}{2}$

Report Number: 14841

APPENDIX A

Test Date: 10-01-2008 Company: Shure, Inc. EUT: UR1M/R J5

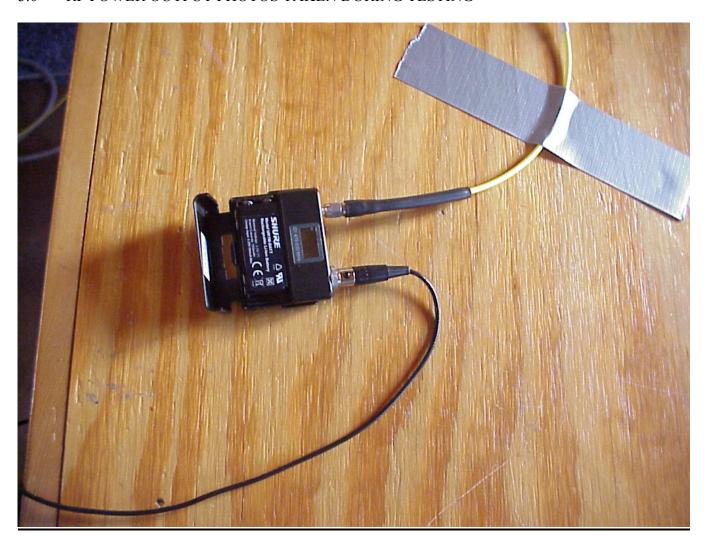

Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 638 MHz

Power set to 50 mW

Peak Output Power = 15.64 dBm = 36.6 mW



Company: Shure Incorporated Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

3.0 RF POWER OUTPUT PHOTOS TAKEN DURING TESTING

Company: Shure Incorporated Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

4.0 MODULATION CHARACTERISTICS – PART 2.1047 and EIA /TIA-603-C:2004, SECTION 2.2.3

a. Voice modulated communication equipment.

A curve showing the frequency response of the audio modulating circuit over a range of 50 Hz to 15 kHz -3.0 - 0 dB Hz is submitted with this report.

b. Equipment which employs modulation limiting

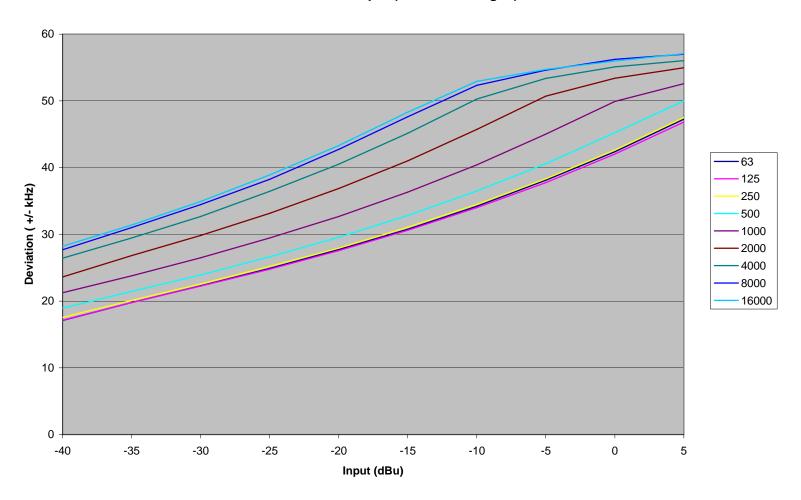
A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

Model Tested: UR1M Report Number: 14841

APPENDIX A

GRAPH(S) TAKEN SHOWING THE FREQUENCY RESPONSE OF THE AUDIO MODULATING CIRCUIT

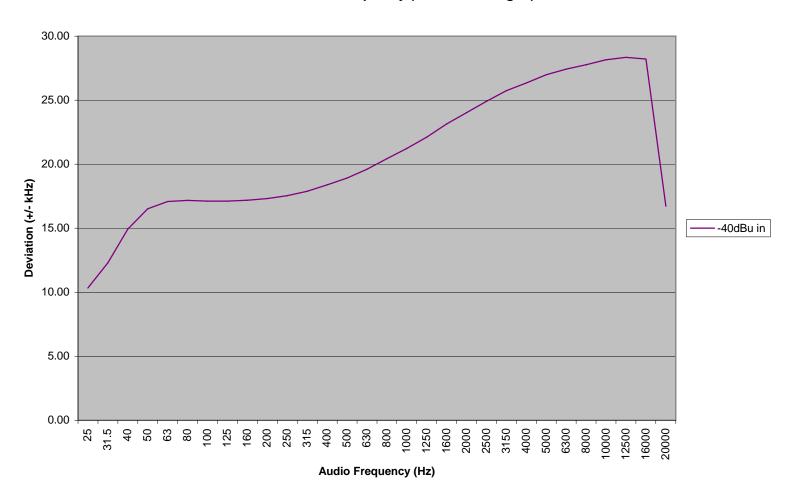
EIA /TIA-603-C:2004, SECTION 2.2.3


PART 2.1047

Report Number: 14841

APPENDIX A

Deviation vs. Input (13 units averaged)


Page -32 of 76-

Report Number: 14841

APPENDIX A

Deviation vs. Frequency (13 units averaged)

Page -33 of 76-

Company: Model Tested: Shure Incorporated UR1M/R J5

Report Number: 14841

APPENDIX A

J5 (7748)	63	125	250	500	1000	2000	4000	8000	16000
-40	17.20	17.30	17.70	19.10	21.30	24.10	26.60	27.60	28.20
-35	19.90	19.90	20.20	21.60	23.90	26.90	29.60	31.00	31.40
-30	22.50	22.40	22.70	24.10	26.60	29.90	32.80	34.50	34.90
-25	25.10	24.90	25.30	26.80	29.60	33.30	36.60	38.40	38.90
-20	28.00	27.70	28.10	29.70	32.90	37.00	40.70	42.80	43.30
-15	31.00	30.80	31.20	33.00	36.50	41.20	45.40	47.70	48.20
-10	34.60	34.20	34.60	36.70	40.70	45.90	50.50	52.40	52.60
-5	38.50	38.00	38.50	40.80	45.20	50.90	53.50	54.70	54.70
0	42.80	42.30	42.90	45.50	50.20	53.60	55.20	56.10	56.00
5	47.80	47.20	47.80	50.30	52.80	55.20	56.30	56.70	57.10

J5 (7755)	63	125	250	500	1000	2000	4000	8000	16000
-40	17.10	17.10	17.60	19.00	21.30	24.10	26.60	27.30	28.20
-35	19.80	19.80	20.10	21.40	23.80	26.80	29.60	31.10	31.30
-30	22.30	22.20	22.60	23.90	26.50	29.90	32.80	34.50	34.90
-25	25.00	24.80	25.20	26.60	29.50	33.20	36.50	38.40	38.90
-20	27.80	27.60	27.90	29.60	32.70	36.90	40.60	42.80	43.30
-15	30.80	30.60	31.10	32.80	36.40	41.10	45.20	47.70	48.20
-10	34.30	34.00	34.50	36.50	40.40	45.80	50.20	52.30	52.60
-5	38.10	37.70	38.30	40.60	45.00	50.80	53.60	54.60	54.60
0	42.50	42.00	42.60	45.20	50.00	53.40	55.20	56.00	56.00
5	47.20	46.80	47.40	50.00	52.70	55.10	56.10	57.20	57.00

Report Number: 14841

APPENDIX A

5.0 OCCUPIED BANDWIDTH - PART 2.1049

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99.0% of the total mean power and measured under the following conditions:

For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated 43+10 log¹⁰ (mean output power, in watts) dB below the mean output power of the transmitting unit (device under test).

For low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum ± 75 kHz deviation is permitted when frequency modulation is used. The operating bandwidth shall not exceed 200 kHz.

Carson's Rule:

Section 2.202 (g) Sound Broadcasting

Bn = 2M+2DK, K=1 Bn = Bandwidth

M = 16 kHz, M = Maximum Modulating Frequency

D = 50 kHz. D = Peak Deviation

Bn = 2(16) + 2(50)(1) = 132 kHz

Report Number: 14841

APPENDIX A

DATA AND GRAPH(S) TAKEN OF THE

99% OCCUPIED BANDWIDTH

Part 74.861 (e)(5) & PART 2.1049

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5

Test: Occupied Bandwidth; 99% bandwidth

Rule part: FCC Part 74; FCC Part 2.1049

Operator: Craig B

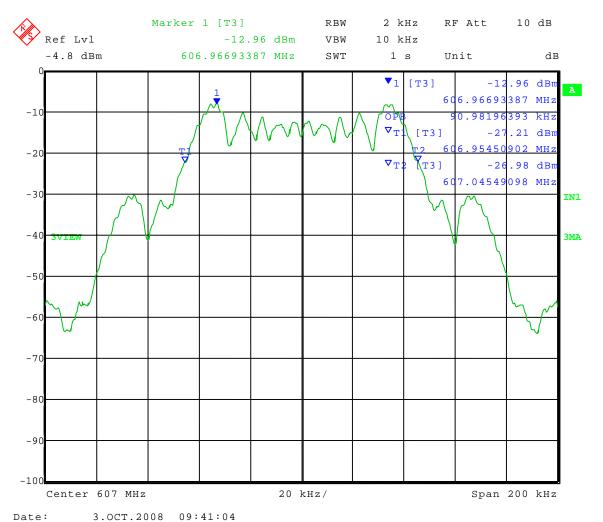
Frequency: 578 MHz

99% power bandwidth = 91.0 kHz

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Occupied Bandwidth; 99% bandwidth

Rule part: FCC Part 74; FCC Part 2.1049

Operator: Craig B

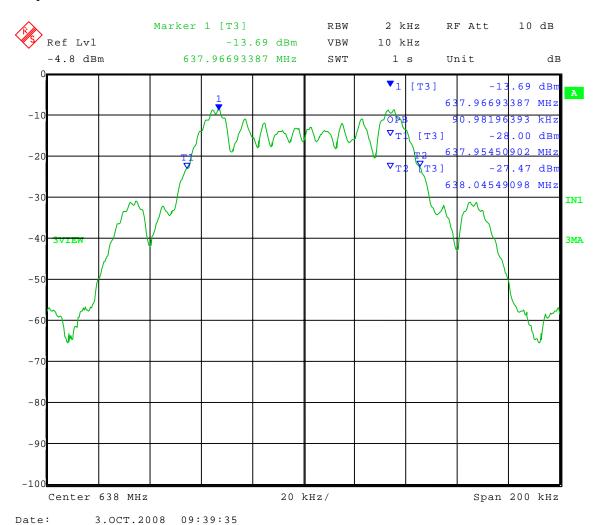
Frequency: 607 MHz

99% power bandwidth = 91.0 kHz

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Occupied Bandwidth; 99% bandwidth

Rule part: FCC Part 74; FCC Part 2.1049

Operator: Craig B

Frequency: 638 MHz

99% power bandwidth = 91.0 kHz

Report Number: 14841

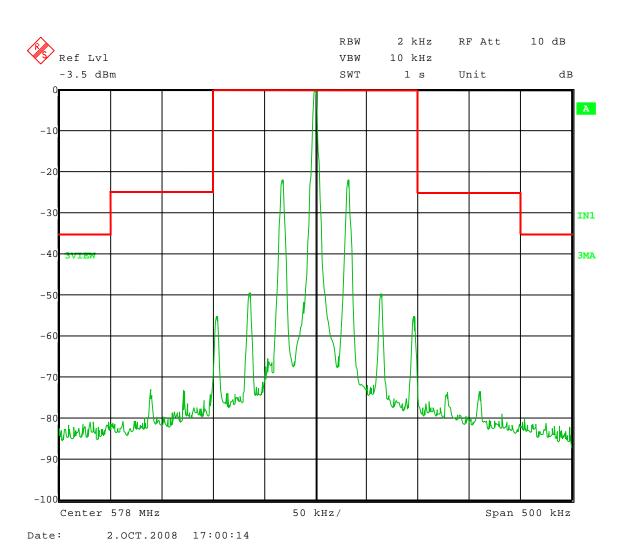
APPENDIX A

DATA AND GRAPH(S) TAKEN OF THE

EMISSION MASK

Part 74.861(d)(3) (e)(6) & PART 2.1049

Company: Shure Incorporated


Model Tested: UR1M/R J5 Report Number: 14841

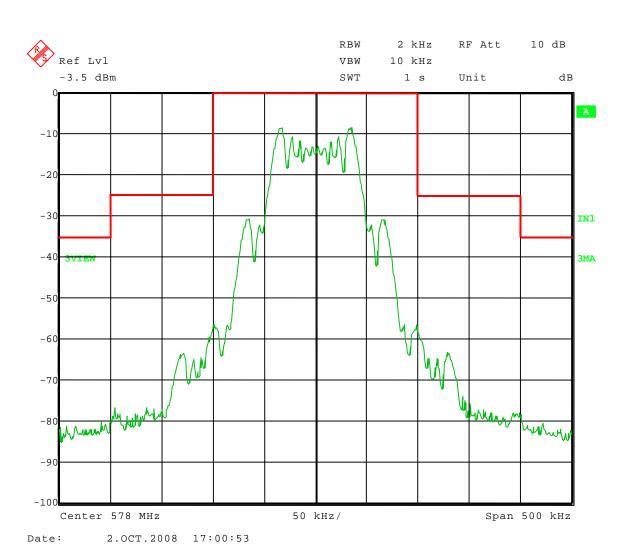
APPENDIX A

Test Date: 10-02-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 578 MHz Reference, Unmodulated

Company: Shure Incorporated


Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

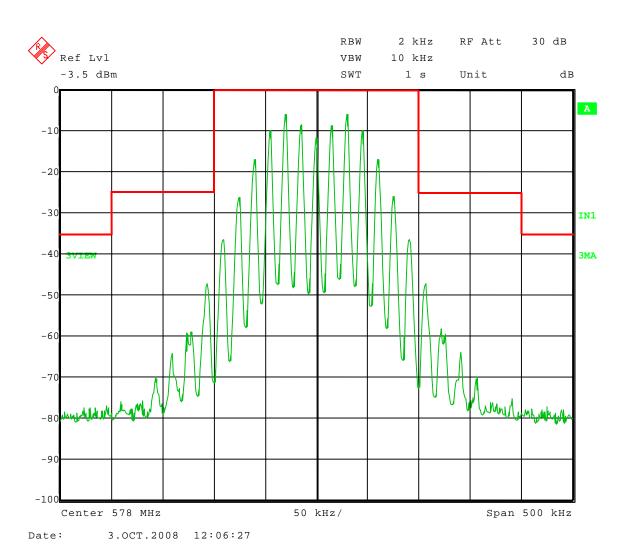
Test Date: 10-02-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 578 MHz 2500 Hz 16 dB > 50% modulated

Company: Shure Incorporated

Model Tested: UR1M/R J5 Report Number: 14841


APPENDIX A

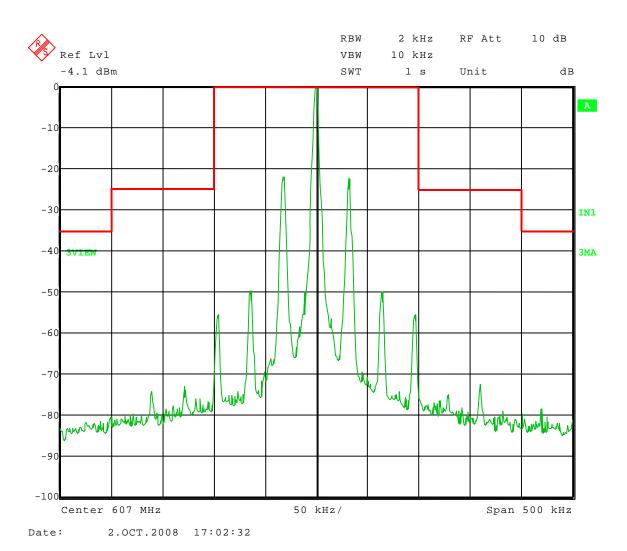
Test Date: 10-03-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 578 MHz

15 kHz modulation

Company: Shure Incorporated


Model Tested: UR1M/R J5 Report Number: 14841

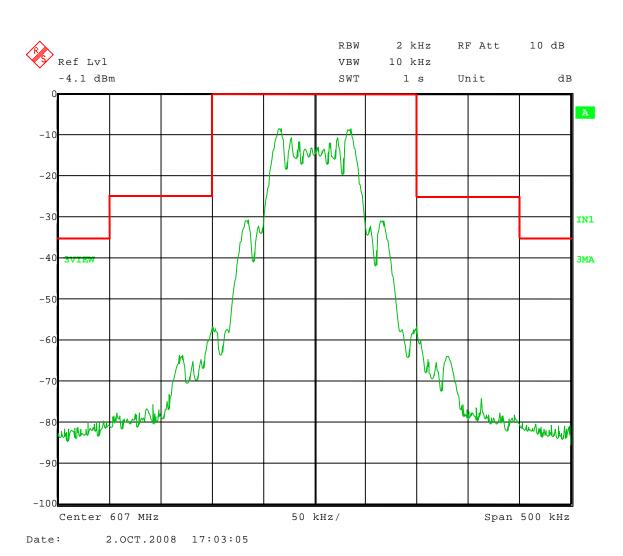
APPENDIX A

Test Date: 10-02-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 607 MHz Reference, Unmodulated

Company: Shure Incorporated


Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

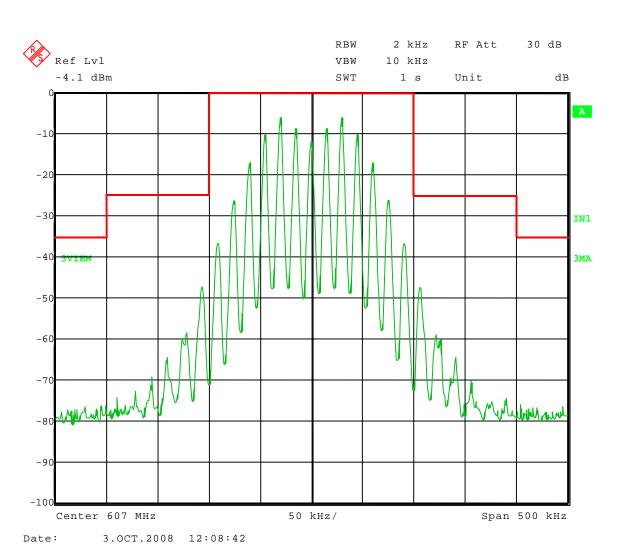
Test Date: 10-02-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 607 MHz 2500 Hz 16 dB > 50% modulated

Company: Shure Incorporated

Model Tested: UR1M/R J5 Report Number: 14841


APPENDIX A

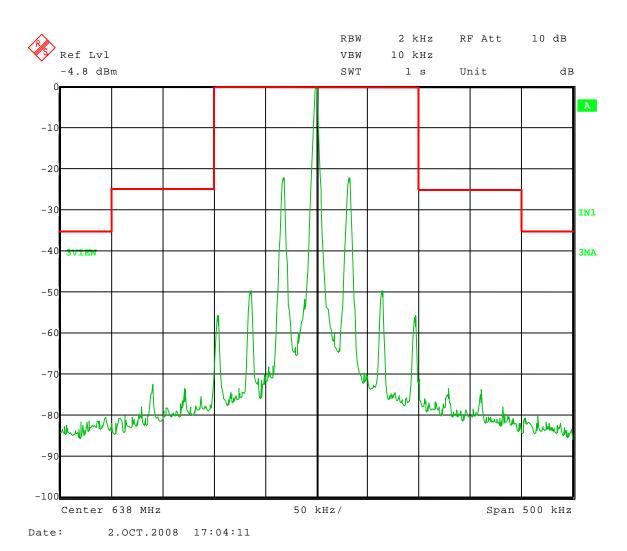
Test Date: 10-03-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 607 MHz

15 kHz modulation

Company: Shure Incorporated


Model Tested: UR1M/R J5 Report Number: 14841

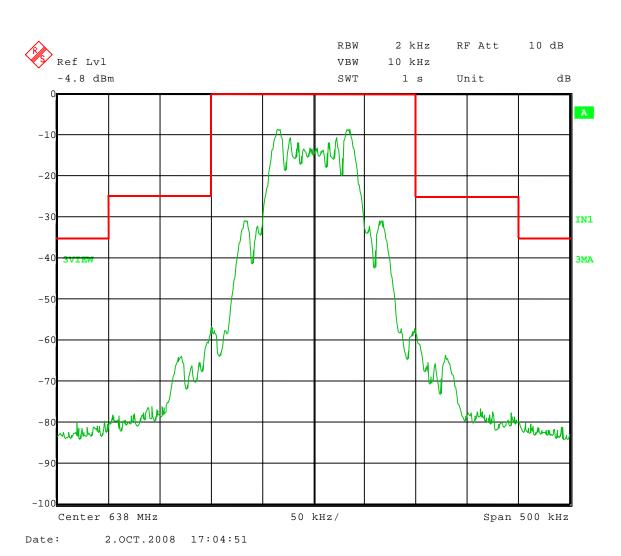
APPENDIX A

Test Date: 10-02-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 638 MHz Reference, Unmodulated

Company: Shure Incorporated


Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

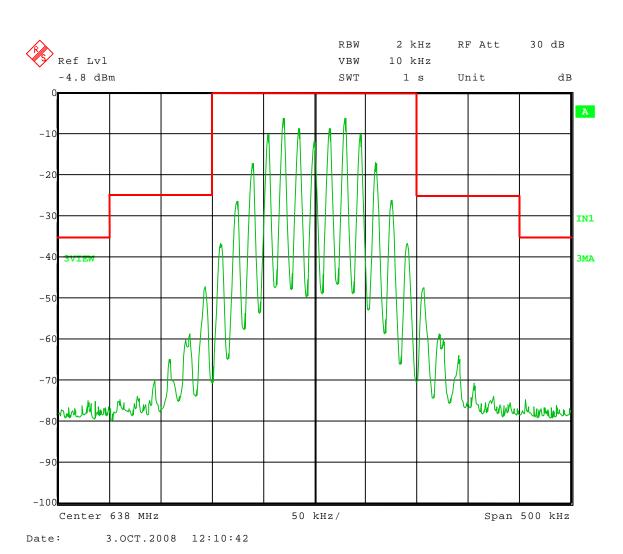
Test Date: 10-02-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 638 MHz 2500 Hz 16 dB > 50% modulated

Company: Shure Incorporated

Model Tested: UR1M/R J5 Report Number: 14841

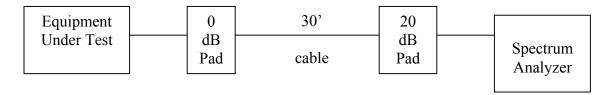

APPENDIX A

Test Date: 10-03-2008
Company: Shure, Inc.
EUT: UR1M/R J5
Test: Emission Mask
Rule Part: FCC Pt. 74.861(e)

Operator: Craig B

Nominal Frequency: 638 MHz

15 kHz modulation



Report Number: 14841

APPENDIX A

7.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 2.1051 and EIA /TIA-603-C:2004, SECTION 2.2.13

Spurious conducted emissions were measured at the antenna terminals using an artificial load. Plots were made showing the amplitude of each harmonic emission with the equipment operated as specified in 2.989. Measurements were made up to the 10th harmonic of the fundamental. The following setup was used showing placement of the attenuators:

The allowed emissions for transmitters operating in the 578 MHz - 608 MHz and 614 MHz - 638 MHz bands for Micro Bodypack Transmitter equipment are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

NOTE:

The Micro Bodypack Transmitter uses the **Whip Antenna.** See the following pages for the data and graphs of the actual measurements made:

Report Number: 14841

APPENDIX A

CONDUCTED EMISSION <u>DATA</u> & <u>CHARTS</u> TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS MADE AT THE ANTENNA TERMINALS

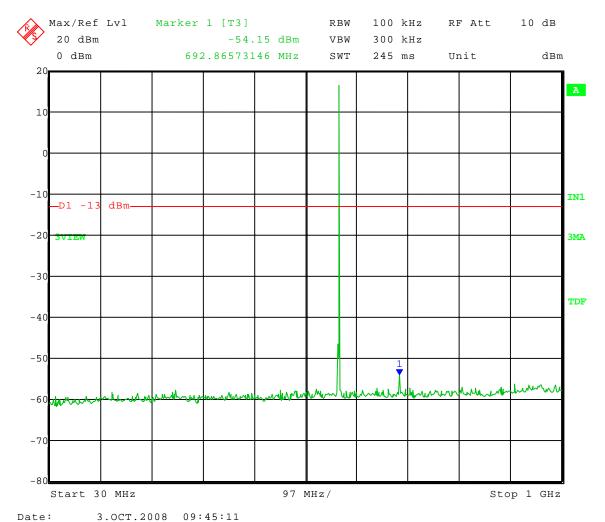
EIA /TIA-603-C:2004, SECTION 2.2.13

PART 2.1051

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Spurious Emissions - Conducted Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

Channel: 578 MHz Comment:

Power set to 50 mW

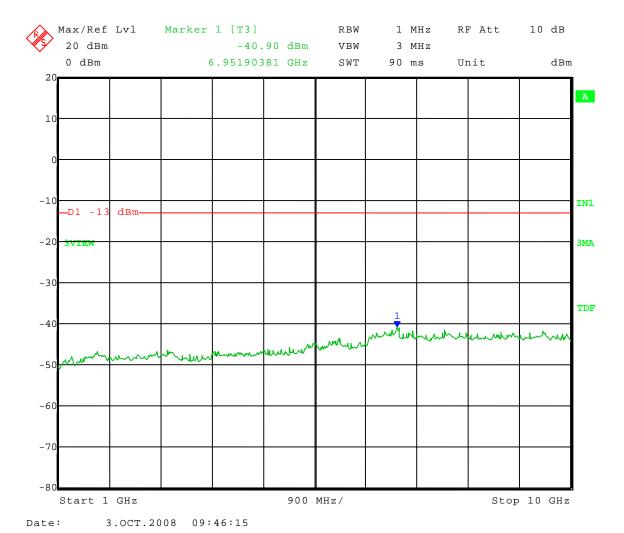
Frequency Range: 30 to 1000 MHz

Company: Shure Incorporated

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Spurious Emissions - Conducted Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

Comment: Channel: 578 MHz

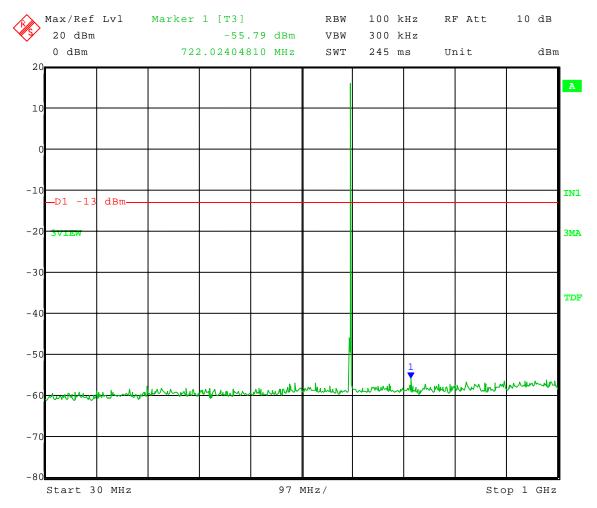
Power set to 50 mW

Frequency Range: 1 to 10 GHz

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Spurious Emissions - Conducted Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

Comment: Channel: 607 MHz

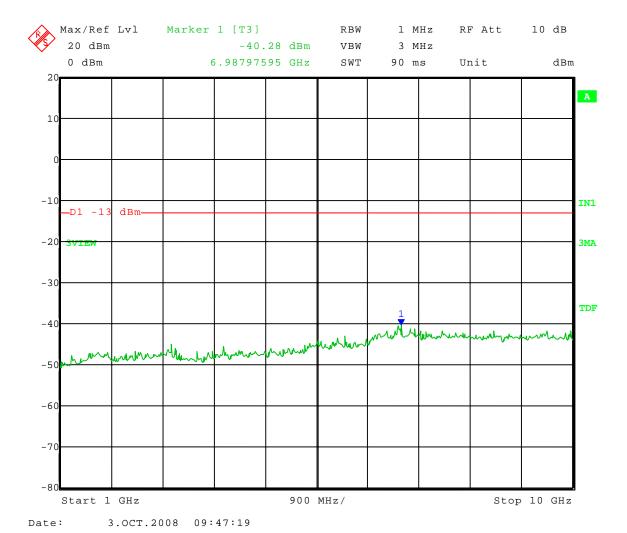
Power set to 50 mW

Frequency Range: 30 to 1000 MHz

Model Tested: UR1M/R J5 Report Number: 14841

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5

Test: Spurious Emissions - Conducted Rule part: FCC Part 74; FCC Part 2.1051

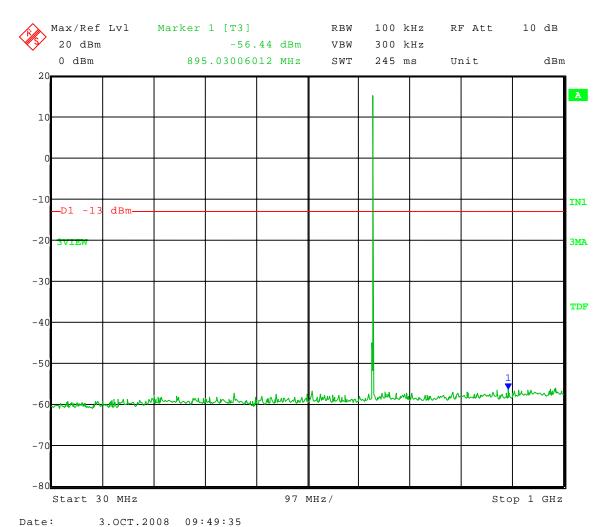
Operator: Craig B

Comment: Channel: 607 MHz
Power set to 50 mW

Frequency Range: 1 to 10 GHz

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A


Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5

Test: Spurious Emissions - Conducted Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

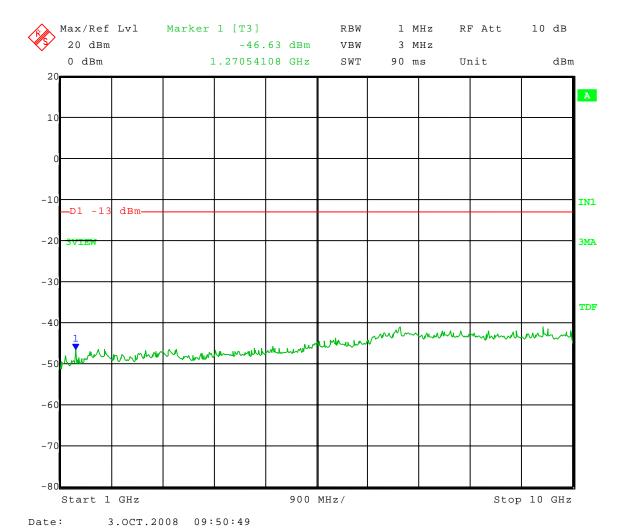
Comment: Channel: 638 MHz
Power set to 50 mW

Frequency Range: 30 to 1000 MHz

Model Tested: UR1M/R J5 Report Number: 14841

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5

Test: Spurious Emissions - Conducted Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

Comment: Channel: 638 MHz Power set to 50 mW

Frequency Range: 1 to 10 GHz

Report Number: 14841

APPENDIX A

DATA AND GRAPH(S) TAKEN OF THE

BAND EDGE COMPLIANCE

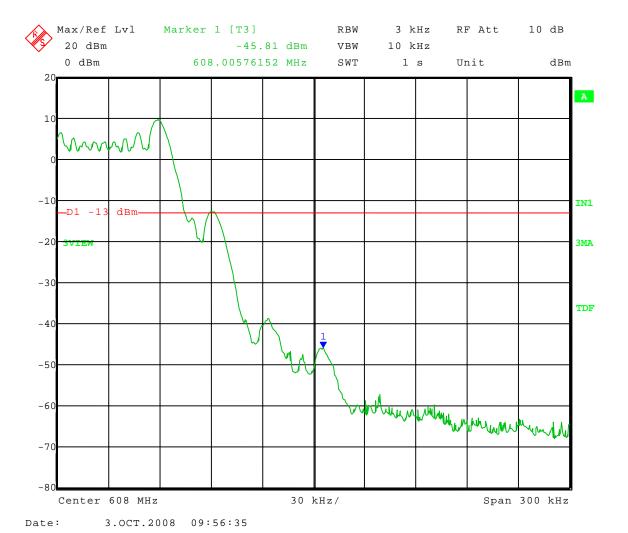
Part 74.861(d)(3) (e)(6) & PART 2.1051

Model Tested: UR1M/R J5 Report Number: 14841

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Band-Edge Compliance - Conducted

Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

Comment: Channel; 607.875 MHz

Band-Edge Frequency = 608 MHz Band-Edge limit = -13 dBm

Model Tested: UR1M/R J5 Report Number: 14841

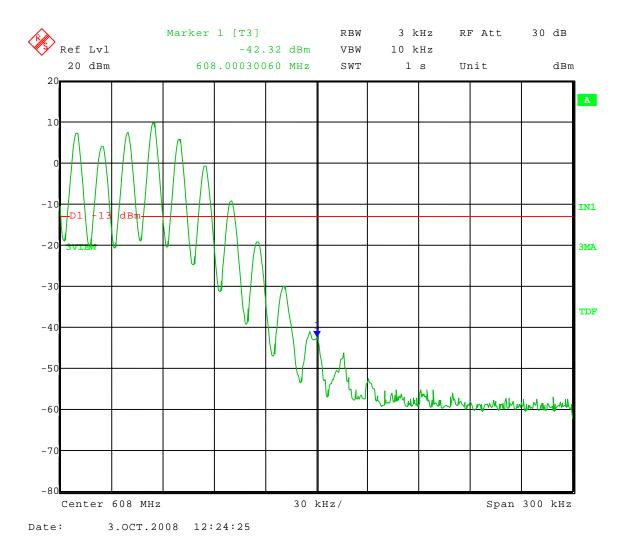
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5

Test: Band-Edge Compliance - Conducted

Rule part: FCC Part 74; FCC Part 2.1051


Operator: Craig B

Comment: Channel; 607.875 MHz

15 kHz modulation

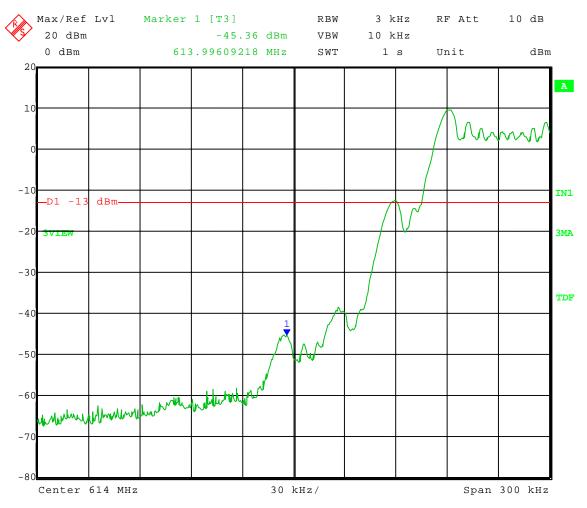
Band-Edge Frequency = 608 MHz

Band-Edge limit = -13 dBm

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5


Test: Band-Edge Compliance - Conducted

Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

Comment: Channel; 614.125 MHz

Band-Edge Frequency = 614 MHz Band-Edge limit = -13 dBm

Date: 3.OCT.2008 09:58:31

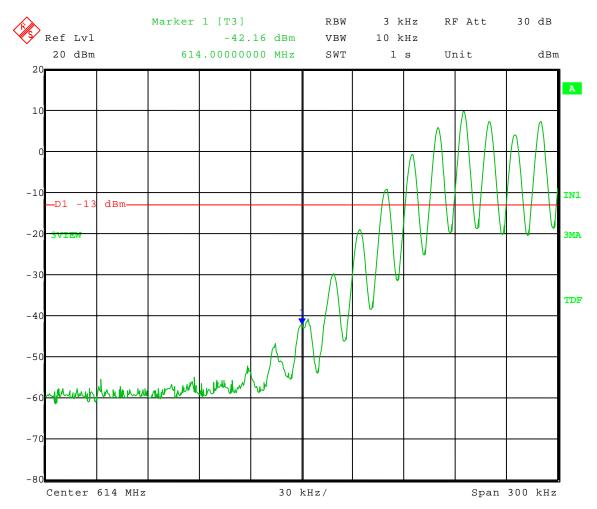
Model Tested: UR1M/R J5 Report Number: 14841

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 10-03-2008 Company: Shure, Inc. EUT: UR1M/R J5

Test: Band-Edge Compliance - Conducted


Rule part: FCC Part 74; FCC Part 2.1051

Operator: Craig B

Comment: Channel; 614.125 MHz

15 kHz modulation

Band-Edge Frequency = 614 MHz Band-Edge limit = -13 dBm

Date: 3.OCT.2008 12:26:21

Report Number: 14841

APPENDIX A

9.0 FIELD STRENGTH OF FUNDAMENTAL ANDSPURIOUS EMISSION MEASUREMENTS – PART 2.1053 EIA /TIA-603-C:2004, SECTION 2.2.12

Radiated measurements were performed scanning the frequency range from 200 MHz to at least the 10th harmonic of the fundamental frequency.

For the Micro Bodypack Transmitter, the highest fundamental frequency is 638 MHz so the scans were made up to 10000 MHz, to cover the tenth harmonic.

All signals in the frequency range of 30 MHz to 200 MHz were measured with a Biconical Antenna and from 200 MHz to 1000 MHz a Log Periodic Antenna was used as the pickup devices. From 1000 MHz to 10000 MHz, a Double Ridge Horn Antenna was used. The cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Tests were made in both the horizontal and vertical planes of polarization.

The allowed emissions for transmitters operating in the 578 MHz - 608 MHz and 614 MHz - 638 MHz bands for Micro Bodypack Transmitter are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states that the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

Report Number: 14841

APPENDIX A

RADIATED EMISSION <u>DATA</u> & <u>CHARTS</u> TAKEN FOR <u>FUNDAMENTAL</u> EMISSIONS USING THE SUBSTITUTION METHOD

EIA /TIA-603-C:2004, SECTION 2.2.12

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig B

Date of test: 10-01-2008 Temperature: 73 deg. F Humidity: 42% R.H.

Output Power - ERP - Substitution Method

Model: UR1	Model: UR1M/R J5 Power set to 50 mW = 17 dBm									
Channel: Low; 578 MHz										
Frequency and Polarization (MHz)	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and subst. antenna (dB)	Gain of subst. antenna (dBi)	Strength of emission [ERP] (dBm)	Limit (dBm)	Margin (dB)	Strength of emission [ERP] (mW)		
578.000 vertical	116.17	18.2	5.21	2.15	12.99	24	11.01	19.91		
578.000 horizontal	117.95	22.9	5.21	2.15	17.69	24	6.31	58.75		

EIRP = Signal generator output - cable loss + antenna gain

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig B

Date of test: 10-01-2008 Temperature: 73 deg. F Humidity: 42% R.H.

Output Power - ERP - Substitution Method

Model: UR1	Model: UR1M/R J5 Power set to 50 mW = 17 dBm									
Channel: Mid; 607.000 MHz										
Frequency and Polarization (MHz)	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and subst. antenna (dB)	Gain of subst. antenna (dBi)	Strength of emission [ERP] (dBm)	Limit (dBm)	Margin (dB)	Strength of emission [ERP] (mW)		
607.000 vertical	119.91	23.3	5.33	2.15	17.97	24	6.03	62.66		
607.000 horizontal	119.72	23.1	5.33	2.15	17.77	24	6.23	59.84		

EIRP = Signal generator output - cable loss + antenna gain

 $ERP_{(ref.\ to\ 1/2\lambda\ dipole)} = Signal\ generator\ output\ -\ cable\ loss\ +\ antenna\ gain\ -\ 2.15$

Model Tested: UR1M/R J5 Report Number: 14841

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc.
Operator: Craig B

Date of test: 10-01-2008 Temperature: 73 deg. F Humidity: 42% R.H.

Output Power - ERP - Substitution Method

Model: UR1	Model: UR1M/R J5 Power set to 50 mW = 17 dBm									
Channel: High; 638.000 MHz										
Frequency and Polarization (MHz)	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and subst. antenna (dB)	Gain of subst. antenna (dBi)	Strength of emission [ERP] (dBm)	Limit (dBm)	Margin (dB)	Strength of emission [ERP] (mW)		
638.000 vertical	120.88	24.98	5.53	2.15	19.45	24	4.03	88.1		
638.000 horizontal	119.71	21.3	5.53	2.15	15.77	24	8.23	37.76		

EIRP = Signal generator output - cable loss + antenna gain

 $ERP_{(ref.\ to\ 1/2\lambda\ dipole)} = Signal\ generator\ output\ -\ cable\ loss\ +\ antenna\ gain\ -\ 2.15$

Report Number: 14841

APPENDIX A

RADIATED EMISSION <u>DATA</u> AND <u>GRAPH(S)</u> TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS
USING THE SUBSTITUTION METHOD

EIA /TIA-603-C:2004, SECTION 2.2.12

PART 2.1053

Report Number: 14841

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Adam A

Date of test: 10-02-2008 Temperature: 68 deg. F. Humidity: 43% R.H.

DLS OATS: 3

Radiated Spurious Emissions (e.r.p. substitution method) FCC Part 74; FCC Part 2.1053											
Model: UR1M/R J	Model: UR1M/R J5 Transmit Frequency: 578.000 MHz Power set to 50 mW										
Frequency	Field Strength	Factor to	Power	Limit	Margin	Receive	EUT	Receive			
	Level	Convert to	ERP			Antenna	Antenna	Antenna			
GHz	dBuV/m	dBm	dBm	dBm	dB	Polarization	Orientation	Height (m)			
4.624	50.7	100.0	-49.3	-13	36.3	Horizontal	90	1.2			
4.624	51.7	101.0	-49.4	-13	36.4	Vertical	0	1.4			

Report Number: 14841

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Adam A

Date of test: 10-02-2008 Temperature: 68 deg. F. Humidity: 43% R.H.

DLS OATS: 3

Radiated Spurious Emissions (e.r.p. substitution method) FCC Part 74; FCC Part 2.1053											
Model: UR1M/R J	Model: UR1M/R J5 Transmit Frequency: 607.000 MHz Power set to 50 mW										
Frequency	Field Strength	Factor to	Power	Limit	Margin	Receive	EUT	Receive			
	Level	Convert to	ERP			Antenna	Antenna	Antenna			
GHz	dBuV/m	dBm	dBm	dBm	dB	Polarization	Orientation	Height (m)			
4.856	49.6	100.2	-50.6	-13	37.6	Horizontal	90	1.1			
4.856	51.0	100.1	-49.1	-13	36.1	Vertical	0	1.4			

Report Number: 14841

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Adam A

Date of test: 10-02-2008 Temperature: 68 deg. F. Humidity: 43% R.H.

DLS OATS: 3

F	Radiated Spurious Emissions (e.r.p. substitution method) FCC Part 74; FCC Part 2.1053											
Model: UR1M/R J5 Transmit Frequency: 638.000 MHz Power set to 50 mW												
Frequency	Field Strength	Factor to	Power	Limit	Margin	Receive	EUT	Receive				
	Level	Convert to	ERP			Antenna	Antenna	Antenna				
GHz	dBuV/m	dBm	dBm	dBm	dB	Polarization	Orientation	Height (m)				
2.552	43.4	101.3	-57.9	-13	44.9	Horizontal	90	1.6				
4.466	48.1	99.5	-51.4	-13	38.4	Horizontal	90	1.6				
2.552	44.2	99.5	-55.3	-13	42.3	Vertical	0	1.1				
4.466	48.3	100.0	-51.7	-13	38.7	Vertical	0	1.1				

Report Number: 14841

APPENDIX A

10.0 FREQUENCY STABILITY (TEMPERATURE)—PART 2.1055(a1)

The frequency stability was measured from -30° to +50° centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the Wireless Boundary Microphone oscillator circuitry to stabilize.

See the following page for the data taken during testing.

11.0 FREQUENCY STABILITY (VOLTAGE VARIATION)– PART 2.1055(d2)

The frequency stability of Micro Bodypack Transmitter was measured by reducing the primary supply voltage to the battery end point specified by the manufacturer.

See the following page for the data taken during testing.

Report Number: 14841

APPENDIX A

<u>DATA</u> TAKEN FOR FREQUENCY STABILITY WHEN VARYING THE TEMPERATURE

AND

PRIMARY SUPPLY VOLTAGE VARIATION

PART 2.1055a(1) & PART 2.1055d(d2)

Company: Shure Incorporated Model Tested: UR1M/R J5

Report Number: 14841

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Adam A

Date of test: 10-09-2008

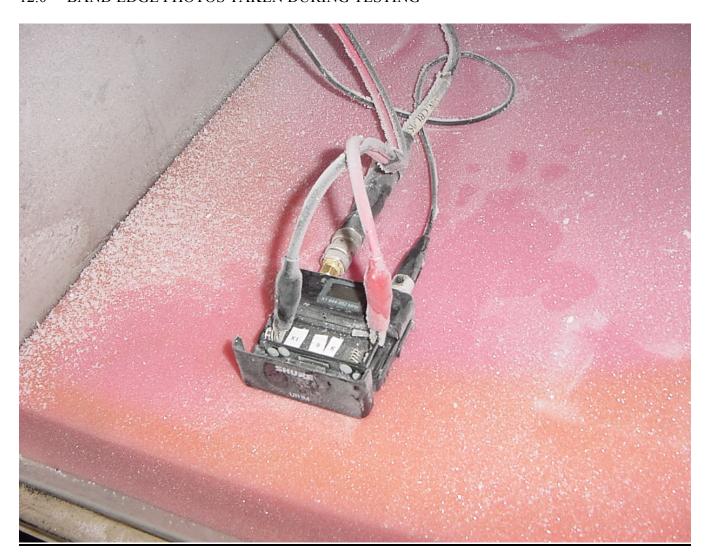
Limit = 28.9 kHz (0.005% of 578 MHz)

Frequency Stability FCC Part 74; FCC Part 2.1055

Model	Nominal		Measured Frequency										
Model	Frequency (MHz)	+50 deg. C	Error (kHz)	+40 deg. C	Error (kHz)	+30 deg. C	Error (kHz)	+20 deg. C	Error (kHz)	+10 deg. C	Error (kHz)		
UR1M/R J5	578.000	578.000050	0.050	577.999750	-0.250	577.999700	-0.300	577.999800	-0.200	577.999600	-0.400		
UR1M/R J5	607.000	607.000100	0.100	606.999800	-0.200	606.999650	-0.350	606.999800	-0.200	606.999600	-0.400		
UR1M/R J5	638.000	638.000150	0.150	637.999800	-0.200	637.999650	-0.350	637.999800	-0.200	637.999600	-0.400		

Frequency Stability FCC Part 74; FCC Part 2.1055

Model	Nominal		Measured Frequency								
Wiodei	Frequency (MHz)	0 deg. C	Error (kHz)	-10 deg. C	Error (kHz)	-20 deg. C	Error (kHz)	-30 deg. C	Error (kHz)	1.9 Volts	Error (kHz)
UR1M/R J5	578.000	577.999350	-0.650	577.999150	-0.850	577.999150	-0.850	577.999400	-0.600	577.999800	-0.200
UR1M/R J5	607.000	606.999300	-0.700	606.999150	-0.850	606.999050	-0.950	606.999400	-0.600	606.999750	-0.250
UR1M/R J5	638.000	637.999250	-0.750	637.999050	-0.950	637.999050	-0.950	637.999300	-0.700	637.999750	-0.250

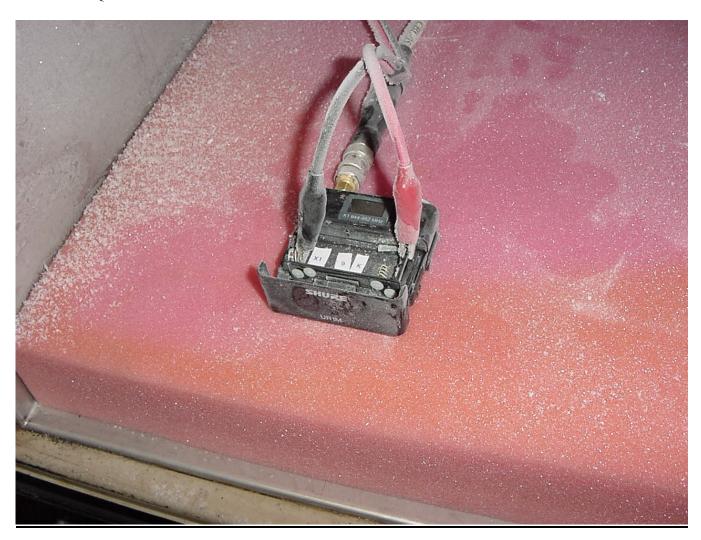


Company: Model Tested: Shure Incorporated UR1M/R G1

Report Number: 14838

APPENDIX A

BAND EDGE PHOTOS TAKEN DURING TESTING 12.0


TEMPERATURE CHAMBER – BAND EDGE

Company: Model Tested: Report Number: Shure Incorporated UR1M/R G1 14838

APPENDIX A

13.0 FREQUENCY STABILITY PHOTOS TAKEN DURING TESTING

TEMPERATURE CHAMBER – FREQUENCY STABILITY