Engineering Test Report No. SEL-043/ULXD2 J50A FCC15C

SHURE

ELECTROMAGNETIC COMPATIBILITY LABORATORY TEST REPORT

TEST REPORT TITLE: Electromagnetic Compatibility Tests of the Shure ULXD2 Digital Wireless Transmitter in the J50A Band (572MHz to 608MHz and 614MHz to 616MHz)

TEST ITEM DESCRIPTION:

The Shure ULXD2 is a digital wireless microphone transmitter.

For: Shure Incorporated 5800 West Touhy Avenue Niles, IL 60714

Project ID Number: SEL-043/ULXD2 J50A FCC15C

Date Tested: February 26 thru March 8, 2019

Test Personnel: Jamal Qureshi, Juan Castrejon, and Craig Kozokar

Test Specification:

IC RSS-GEN – General Requirements and Information for the Certification of Radio Apparatus IC RSS-210 - License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment FCC Part 15C, Section 15.236(g) FCC Part 15C, Section 15.236(d)(1) FCC Part 15C, Section 15.236(f)(1) FCC Part 15C, Section 15.236(f)(2) FCC Part 15C, Section 15.236(f)(3)

TEST REPORT BY: Cray Higher

Global Compliance Engineer

3-15-2019

Engineer Project Managing, G.C. 3-15-2019 Position

Date

TABLE OF CONTENTS

<u>P</u> A	RAGRA	PH DESCRIPTION OF CONTENTS	PAGE NO.				
0.	Report Rev	<i>v</i> ision History	4				
1.	Introductio	on	5				
	1.1.	Scope of Tests	5				
	1.2.	Purpose	5				
	1.3.	Deviation, Additions and Exclusions	5				
	1.4.	EMC Laboratory Identification	5				
	1.5.	Summary of Tests Performed	6				
2.	Applicable	Documents	6				
3.	EUT Setup	and Operation	7				
	3.1	General Description	7				
	3.2	Test Samples	7				
	3.3	Operational Mode	7				
4	Test Instru	mentation	7				
5	Procedure		7				
6	Other Test	Conditions	7				
	6.1	Test Personnel	7				
	6.2	Disposition of the EUT	7				
7	Results of	Tests	7				
8	Conclusion	IS	7				
9	Certification8						
10	Equipment	t List	9				
11	1 Appendix A						
12	2 Appendix B						
13	Appendix (C	45				
14	Appendix I	D	52				

Note: This report shall not be reproduced, except in full, without the written approval of the Shure Incorporated Electromagnetic Laboratory (SEL). Total Page Count is 55.

LIST OF APPENDICIES

APPENDIX	TEST DESCRIPTION
А	Necessary Bandwidth, Frequency Offset, Maximum Bandwidth
В	Spurious Emissions
C	Maximum Rated Power
D	Frequency Tolerance

REPORT REVISION HISTORY

Revision	Date	Description
0	March 15, 2019	Initial release

1. INTRODUCTION

1.1. Scope of Tests

This report presents the results of testing per FCC Part 15C, Section 15.236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3), FCC OET Basic Certification Requirements for Wireless Microphones, RSS-Gen, and RSS-210. The following data was taken following the measurement method as described in the document section(s) listed on page 1 of this document. Provided is the data for the test sample. Also included is a summary of the measurements made and a description of the measurement setup. The test samples meet the requirements of the above standards. The equipment under test (EUT) contained a transmitter that was designed to transmit in the UHF TV frequency bands shown in Table 1.

Model	Band	Frequency (MHz)	Output Power (mW)
ULXD2	J50A	572 to 608	1, 10, 20
ULXD2	J50A	614 to 616	1, 10

Table 1. EUT Frequencies and Power Levels

1.2. Purpose

This series of testing was performed to determine if the test item would meet the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3), the FCC OET Basic Certification Requirements for Wireless Microphones, RSS-Gen, and RSS-210.

1.3 Deviations, Additions and Exclusions

None

1.4 EMC Laboratory Identification

The electromagnetic compatibility tests were performed at the Shure Electromagnetic Laboratory, Shure Incorporated, 5800 West Touhy Ave, Niles, Illinois 60714-4608. This laboratory is registered with Industry Canada as Site # 616A-1. The Shure Electromagnetic Laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP).

The NVLAP Lab Code is: 200946-0.

1.5 Summary of Tests Performed

The following electromagnetic compatibility tests (Table 2) were performed on the test item in accordance with ETSI specifications.

			, or tests performed		
FCC Part 15C	Description	EUT	Tested Frequency in MHz	Appendix	Test Results
Test Spec		Firmware			
15.236(g)	Necessary Bandwidth	2.3.30.0	572.000, 589.925, 607.875,	А	Pass
12.220(g)	Necessary Banuwiuth		614.125, 615.875	A	
15.236(f)(1)	Frequency Offset	2.3.30.0	607.875, 614.125, 615.875	A	Pass
1F 226(f)(2)	Maximum Dandwidth	2.3.30.0	572.000, 589.925, 607.875,	A	Pass
15.236(f)(2)	Maximum Bandwidth		614.125, 615.875		
15.236(g)	36(g) Spurious Emissions	2.3.30.0	572.000, 589.925, 607.875,	В	Pass
12.220(g)	Spurious Emissions		614.125, 615.875	D	
15.236(d)(1)	36(d)(1) Maximum Rated Power		572.000, 589.925, 607.875,	C	Deee
15.250(u)(1)	Maximum Rated Power		614.125, 615.875	C	Pass
15 226(f)(2)	Froquency Toloranco	2.3.30.0	572.000, 589.925, 607.875,	D	Pass
15.236(f)(3)	Frequency Tolerance		614.125, 615.875		PdSS

Table 2. Summary of tests performed

2 APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

FCC Part 15C, Section 15.236(g)

FCC Part 15C, Section 15.236(d)(1)

FCC Part 15C, Section 15.236(f)(1)

FCC Part 15C, Section 15.236(f)(2)

FCC Part 15C, Section 15.236(f)(3)

EN 300 422-1 V1.4.2 (2011-08), "Electromagnetic compatibility and Radio spectrum Matters (ERMM); Wireless Microphones in the 25 MHz to 3 GHz frequency range; Part 1: technical characteristics and methods of measurement"

ANSI C63.4 (2014), "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

"Federal Communications Commission Office of Engineering and Technology, Laboratory Division BASIC CERTIFICATION REQUIREMENTS FOR WIRELESS MICROPOHONES" Dated December 13, 2017

RSS-Gen Issue 5, "General Requirements for Compliance of Radio Apparatus"

RSS-210 Issue 9, "Licence-Exempt Radio Apparatus: Category I Equipment"

3 EUT SET-UP AND OPERATION

3.1. General Description

The test sample used was Shure ULXD2 digital wireless microphone transmitter. The EUT was arranged and tested per individual Appendices.

3.2 Test Sample

The following product sample was tested:

Table 3: Shure ULXD2 Digital Wireless Transmitter Sample

Band	Serial Numbers
J50A	J5x PPR GC SAMPLE finalClips

3.3 Operational Mode

The transmit frequency and output power modes shown in the individual appendixes.

4. Test Instrumentation

A list of the test equipment used can be found in Table 10-1. All equipment used was within calibration during and throughout the duration of the tests. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

5. Procedure

The specific test procedures are presented in the individual appendices.

6. Other Test Conditions:

6.1. Test Personnel

All EMC tests were performed by qualified personnel from the Shure EMC Laboratory.

6.2. Disposition of the EUT

The EUTs and all associated equipment were returned to Shure Incorporated upon completion of the tests.

7. Results of Tests:

The results are presented in Appendices. It was found that the EUT meets the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3), the FCC OET Basic Certification Requirements for Wireless Microphones, RSS-Gen, and RSS-210

8. Conclusions:

It was determined that the Shure ULXD2 Digital Wireless Microphone Transmitter did fully comply with the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3) and the FCC OET Basic Certification Requirements for Wireless Microphones.

9. **Certification**:

Shure EMC Laboratory certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the EUTs at the test date. Any electrical or mechanical modification made to the EUTs subsequent to the specified test date will serve to invalidate the data and void this certification.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

10. Equipment List

		Т	able 10-1 Tes	t Equipment			
L# or ID	Description	Manufacturer	Model #	Serial #	Frequency Range	Cal Date	Due Date
L23-011-01	3 meter RF Chamber	ETS Lindgren	FACT-3	AJ640	25MHz - 18GHz	8/8/2016	8/8/2019
L23-011-02	Electric Powered Turntable	ETS Lindgren	2088	N/A	N/A	N/A	N/A
L23-011-08	Controller	EMCO	2090	29799	N/A	N/A	N/A
L23-011-09	Antenna Positioner	ETS Lindgren	2071-2	35500	N/A	N/A	N/A
L23-011-15	BiConiLog Antenna	ETS Lindgren	3142C	34790	25MHz-1GHz	6/22/2017	6/22/2019
L23-011-54	EMI Test Receiver	Rohde & Schwarz	ESR26	100220	9kHz-26GHz	11/28/2017	11/28/2019
L23-011-31	EMI/EMS Test Software	Rohde & Schwarz	EMC32	V 9.21.00	N/A	N/A	N/A
L23-011-53	Horn antenna with pre- amplifier	ETS Lindgren	3117-PA	200363	1GHz to 18 GHz	10/16/2017	4/27/2019
L23-011-41	Horn Antenna	ETS Lindgren	3117	123511	1GHz to 18 GHz	5/7/2017	5/7/2019
L23-011-56	High Pass Filter	K&L	11SH10- 940/X10000- 0/0	2	940MHz – 10GHz	10/18/2017	3/31/2019
L23-022-02	Spectrum Analyzer	Rohde & Schwarz	FSW26	103788	9kHz-26GHz	4-24-2018	4-24-2020
L23-022-01	Spectrum Analyzer	Rohde & Schwarz	FSU26	201043	9kHz-26GHz	8/23/2017	8/23/2019
L23-034-02	Temperature Hygrometer	Extech	445703	48254-65	N/A	5/2/2018	5/2/2019
L23-034-04	Temperature Hygrometer	Extech	445703	48254-13	N/A	5/2/2018	5/2/2019
L23-040-03	20dB Attenuator	MCL	BW- N20W5+	N/A	20MHz to 18GHz	5/31/2018	5/31/2020
L23-045-36	RF Power Sensor	ETS-Lindgren	7002-006	151071	10MHz to 6GHz	1-31-2018	1-31-2020
L23-024-01	Frequency Counter	Agilent	53220A	MY50006485	DC to 6GHz	11-27-2018	11-27-2020
L23-034-08	Thermometer	Extech	TM100	13018733	N/A	4-25-2018	04-25-2020
L19-006-01	Temperature Chamber	ESPEC	SU-240	910004211	N/A	4-5-2018	4-5-2019
L23-023-01	RF Signal Generator	Rohde & Schwarz	SMF100A	101553	20Hz to 26.5GHz	8/23/2017	8/23/2019

NECESSARY BANDWIDTH FREQUENCY OFFSET OPERATING BANDWIDTH

PURPOSE

This test was performed to determine if the EUT meets the necessary bandwidth requirements of EN 300 422-1, section 8.3.2., and RSS-210 Annex G, with the EUT operating at 572.000MHz, 589.875MHz, 607.875, 614.125, and 615.875MHz.

This testing results show the EUT meets FCC 15C 15.236(f)(1), a frequency offset of the lower band limits by 25kHz or an integral multiple thereof. The frequency offset is 125 kHz.

The testing results show the EUT meets FCC 15C 15.236(f)(2) and RSS-210, operating bandwidth does not exceed 200kHz.

REQUIREMENTS

As stated in EN 300 422-1, section 8.3.2, the emission mask given in section 8.3.2.2 shall not be exceeded.

TEST SETUP AND INSTRUMENTATION

A photograph of the test setup is shown in Figure A-1. The test instrumentation can be determined from Table 10-1.

MEASUREMENT UNCERTAINTY

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. Values of Expanded Measurement Uncertainty (95% Confidence):

Measurement Type	U _{LAB}
Necessary Bandwidth	±0.130 %

 U_{lab} = Determined for Shure EMC Laboratory

Since U_{LAB} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

EUT OPERATION

Appendix A

The EUT was powered up and the transmit frequency and power output of the EUT were selected. The EUT was checked for proper operation after it was setup for the test. Testing was conducted with the EUT set to transmit at 572.000MHz, 589.925MHz, 607.875, at an output power level of 1mW and 20mW, except 614.125 and 615.875 which will have the power level of 1mW and 10mW. The transmitter was modulated per EN300422-1 V1.4.2 (2011-08), clause 7.1.2.

TEST PROCEDURE

The test procedure followed is shown in EN300422-1 V1.4.2 (2011-08), section 8.3.2.

RESULTS

The necessary bandwidth data is presented on pages 12 and 26. Data is shown on the figures for each transmitter. The figure shows the maximum relative level within the emission mask with modulation. As shown by the test data, the necessary bandwidth of the EUT meets the requirements of EN 300 422-1, section 8.3.3. The RSS-Gen maximum ISED Canada 99% bandwidth measurement was 163 kHz.

The temperature during the testing was 74 degrees F, with relative humidity of 17%.

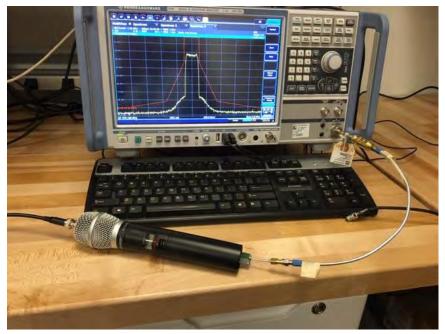
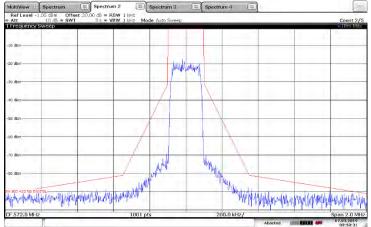


Figure A-1 - Test Setup for Necessary Bandwidth

Test Information


EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:
Date Tested:

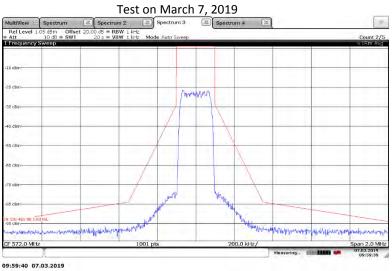
ULXD2 J50A
J5x PPR GC SAMPLE finalClips
EN 300 422 Digital Necessary Bandwidth
Low Band, Low Frequency, 572.000MHz, 1mW
Craig Kozokar
8.3.2.1: Step 1; Carrier Power
Tested on March 7, 2019

Att	2 dB = SW1	et 20.00 dB = R 3 s = V	BW 1 MHz						Count 5/5
1 Zero Span									E Fin Avg
10 dem			1					M	1[1] -1.13 dBr 1.00600
0 dAm	-		_		. H				
-10 d8m	_	-				_			
-20 x8m		-	_			_	_		
-30 x2m									
40 dBm									
-50 d8m-									
-50 dBm		-				_			
70 dBm-		-	-					-	
80 dêm	_					_			
CF 572.0 MHz	k			1001	pts	_	_		300.0 ms
	1						Measuring		07.03.2019 09:57:32

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth Low Band, Low Frequency, 572.000MHz, 1mW Craig Kozokar 8.3.2.1: Step 2;Maximum Relative Level Test on March 7, 2019

09:58:31 07.03.2019



Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth Low Band, Low Frequency, 572.000MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

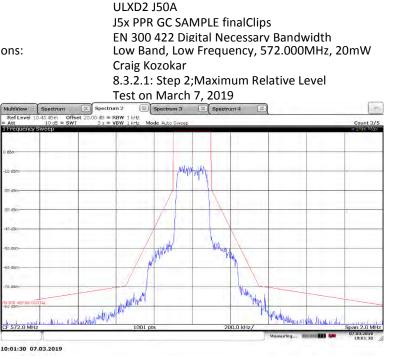
Date Tested:

Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:
Date Tested:
MultiView

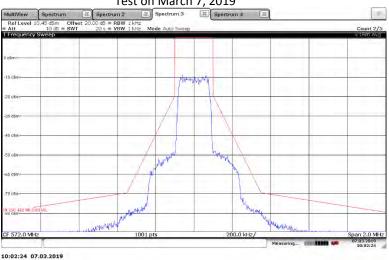
ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth Low Band, Low Frequency, 572.000MHz, 20mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019

Ref Level 14:00 dBm Att 4 dB =	SWI 350	VBW 1 MHz				(Count 3/5
Zero Span			1					dism Avg
o dân	·····				1		07	1[1] 10.81 dBn 1.80600
dēm				-				
Q dBm			-				-	
Q dBm	-	-						
0 dem								
ð døm			-			-		-
0 dBm								-
D dpm	_	-	_					-
0 dBm-		-		-		-		
a dum							-	
F 572.0 MHz			10	01 pts		-		300.0 ms/


10:00:53 07.03.2019

Spectrum

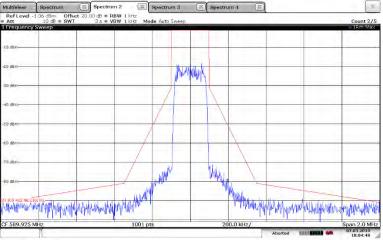
Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth Low Band, Low Frequency, 572.000MHz, 20mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on March 7, 2019

Date Tested:



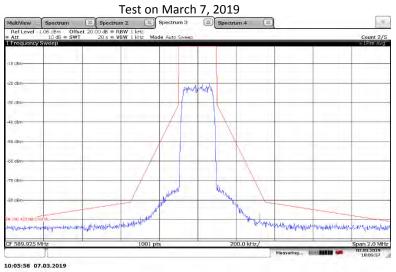
Test Information EUT Name: Serial Number: Test Description:	ı		٦ ا		GC SAI		finalCli lecessa	ps ry Bandv	width	
Operating Conditi Operator Name: Comment: Date Tested:	ons:	Low Band, Middle Frequency, 589.925MHz, 1mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019								, 1mW
	MultiView Ref Level 14		Spectrum		Spectrum 3	E Spe	ctrum (E)		4
	Att 1 Zero Span	4 dB = SWT	3 s = VBV		_				_	Count 4/5
	10 d8m	-	_	_	-		_	-	witte	1 -0.27 dBm 1,80600 s
	-						in .			
	D dBm						1			
	-10 dBm									_
	-20 (Bai+									
	-30 dBm									
	-40 dBm-									
										· · · · · ·
	-50 dBm									
	-60 dBm									-
	-70 dBm-									
	-80 dBm					-	_	-		
	CF 589.925 N	MH2			100	1 pts				300.0 ms/
		10-						Heasuring	1 44	07.03.2019 10:03:55

10:03:55 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth Low Band, Middle Frequency, 589.925MHz, 1mW Craig Kozokar 8.3.2.1: Step 2;Maximum Relative Level Test on March 7, 2019

10:04:48 07.03.2019



Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth Low Band, Middle Frequency, 589.925MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

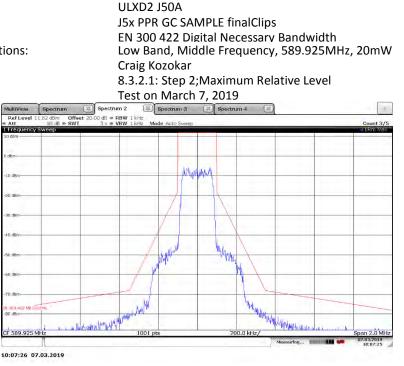
Date Tested:

Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:
Date Tested:

ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth Low Band, Middle Frequency, 589.925MHz, 20mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019

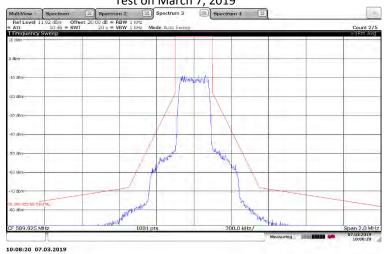
10:06:4


10:06:44 07.03.2019

F 589 92

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:



Test Information

Date Tested:

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment:

ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth Low Band, Middle Frequency, 589.925MHz, 20mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on March 7, 2019

Test Information

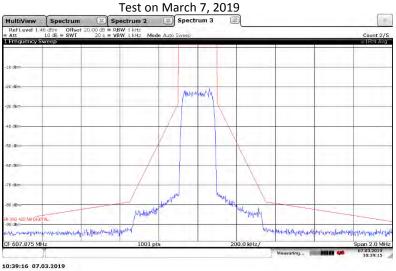
EUT Name: Serial Number: Test Description: **Operating Conditions Operator Name:** Comment: Date Tested:

			J5x EN	300 4	GC SA 22 Di	MPLE gital N	eces	sarv			1
ons:	: Low Band, High Frequency, 607.875MHz, 1n Craig Kozokar									LWAN	
				•		; Carri	er Po	wer			
			Tes	sted o	n Ma	rch 7, 2	2019				
MultiView	Spectrum	E Spec	brum 2	E Sp	ectrum 3	Sper	ctrum 4				
RefLevel 14 Att	0C dBm Offse 4 dB = SWT	80,00,00 d8 3 s	RBW 11 VBW 11	viltiz viltiz							Count 3/5
Zero Span o dam-			1.1-1-			1				N	18:0 Avg [1] -1.25 dBm 1.80600 s
dBm					_		112				
n dem-		-		-	_		-	_		-	
10 dem-	-				_						
	1	_									
0 dBm	1				2.11			2.1		1	
6 dBro-					_		1				
0 dBm	-	-	_				-	_			
o dem	-				_		-			_	
0 dem-						-					
u dem-									<u></u>		
F 607.875 N		-				1					000.0
F 007.875 N	112				100	01 pts		M	easuring		300.0 ms/ 07.03.2019 10:09:54

10:09:54 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:	ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth Low Band, High Frequency, 607.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 2;Maximum Relative Level Test on March 7, 2019							
MultiView	Spectrum Spectrum 2	Spectrum 3	=					
RefLevel -1.	46 dBm Offset 20.00 d6 = RBW 1 kHz 10 dB = SWT 3 s = VBW 1 kHz M	ode Auto Sweep	Count 5/5					
1 Frequency S			I Rm Max					
-10 d8m-								
-20 d8in		Artusthandry harts						
-30 dem-			· · · · · · · · · · · · · · · · · · ·					
-40 d8m								
-58 dBm-								
-60 dBm								
-70 dBm	a more many the south with	W Wishberry						
-eb dem	and an all and the the the		in white water when the					
EN SOD 422 HB DIGT	TAL Y W DIVIDING WITH UN		choise continuoude and					
Was san water to	helyroldy,		Weterroughanterstanterstati					
-100 d6m-	- MC-1							
CF 607.875 MF	iz 1001 p	ts 100.0 kHz/	Span 1.0 MHz Measuring					
10:38:08 07.0	03.2019		10:38:07 /					

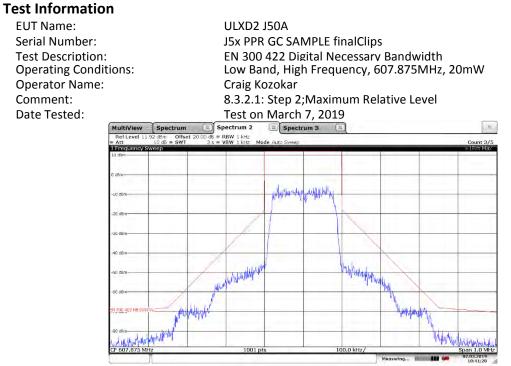

Page 18 of 55

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth Low Band, High Frequency, 607.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

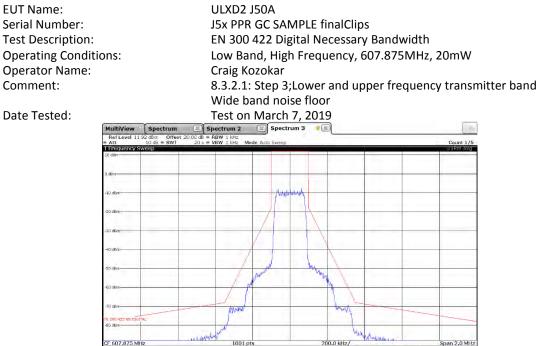
Date Tested:

Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth Low Band, High Frequency, 607.875MHz, 20mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019 Trum Spectrum 2 Spectrum 3 Commands Offset 200 db 1889 1992 Commands Spectrum 2 Spectrum 3 Commands Commands Commands

30 0AD		-		-			1,90600 s
a dêm					_		
-IQ dBm							
-29 dBm	-					-	
(10 dBm	 						
-40 tiêm-		-					
Sñ dBm-	 						
-60 dBm		-		-			
-79 dom	 						
-ep dem							
CF 607.875 MHz	-	100.	l pts				300.0 ms/
				_	Measuring	101 100	07.03.2019 10:40:31

10:40:32 07.03.2019


Spectrum

10:41:21 07.03.2019

Test Information

10:42:07 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

ULXD2 J50A
J5x PPR GC SAMPLE finalClips
EN 300 422 Digital Necessary Bandwidth
High Band, Low Frequency, 614.125MHz, 1mW
Craig Kozokar
8.3.2.1: Step 1; Carrier Power
Tested on March 7, 2019
Spectrum 2 Spectrum 3 🔳
00 dB = RBW 1 MHz 3 s = VBW 1 MHz Count 4/5

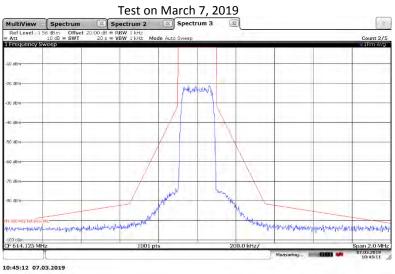
MultiView :	Spectrum	💷 Spectrum 2	Spectrum 3	3	
Ref Level 14.0 Att	0 dBm Offset 4 dB = SWT	20.00 dB • RBW 1 MH2 3 s • VBW 1 MH2			Count 4/3
Zero Span					1 IEm Ava
10 dBm-					M1[1] 1.59 dB 1.80600
10 000					T.SDBD0
U dem					
-10 dBm-					
-20 gBm					
-20 µ80/					
-36 dām					
-40 riem-			-		
	5				
For The					
-50 uBm-					
-old distri-					
-78 dBm-					
-					
-80 dBm-					
			1001		
CF 614,125 MI	12		1001 pts		300.0 ms

10:43:18 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Condit Operator Name: Comment: Date Tested:	ions:		J E (8	JLXD2 J 5x PPR EN 300 / High Bar Craig Ko 3.3.2.1: Fest on	GC SAI 422 Dia nd, Lov zokar Step 2;	zital Ne v Frequ ;Maxim	icessarv iency, 6 num Rel	/ Bandv 514.125	MHz, 1	mW
	MultiView	Spectrum		ectrum 2	Spectr		3			-
	Ref Level -1.5	56 dBm Offse	t 20.00 dB = R	BW 1kHz BW 1kHz Mod	Auto Sweep		=1			Count 3/5
	1 Frequency Sv				e nato oncep					1Rm Max
	:10 dēm									
	-20 dilm				-	anny manager	1			
	-30 dBm			/						
	-50 dBm			1						
	-60 d8m						_			
	-70 d8m		/	. J. r. Mal			grawter :	Ì	_	
	-80 dBm EN 300 423 MB DIGT	_	اللور	on from the sole	-		hy mandude	What	1	
	with a state of the state of th	part delegation of	enter the start					. we allough	where we	eryle darkhand with
	-100 dB/n CF 614.125 MH	iz		1001 pts		1	00.0 kHz/	Alexandra		Span 1.0 MHz 07.03.2019
		iz		1001 pts		11	00.0 kHz/	Measuring		Span 1.0 MHz 07.03.2019 10:44:11

10:44:12 07.03.2019



Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth High Band, Low Frequency, 614.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

Date Tested:

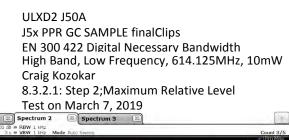
Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:
Date Tested:

ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth High Band, Low Frequency, 614.125MHz, 10mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019

	1	 1	1.1.1		
	<u>.</u>				
_			1.35		

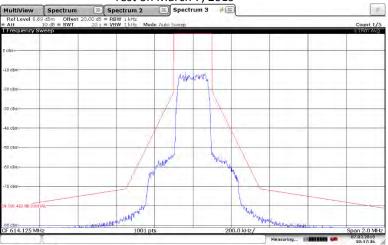
10:46:01 07.03.2019


Spectrum


Off

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:


10:46:44 07.03.2019

10:47:37 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth High Band, Low Frequency, 614.125MHz, 10mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on March 7, 2019

Date Tested:

Test Information

EUT Name: Serial Number: Test Description: **Operating Condition Operator Name:** Comment: Date Tested:

tions:		High Ba Craig K 8.3.2.1	J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth High Band, High Frequency, 615.875MHz, 1mV Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019					
lultiView	Spectrum	Spectrum 2	Spectrum 3					
Ref Level 14.0 Att Zero Span	C dBm Offset 2 4 dB ≠ SWT	0.00 d8 ■ RBW 1 MHz 3 s ■ VBW 1 MHz			Count 3/5			
dam-		-			MI[1] -1,59 dB			
					1.50000			
dBm				ML.				
n dem-								
ç dem-								
l0 dBm-								
					- 1 1 1 1 1 1 1 1 1 1 1			
ŭ dBro-								
0 dgm-								
U dum-								
0 dBm								
0 dBm-								
615.875 MH	z		1001 pts		300.0 ms			

Test Information

EUT Name: Serial Number: Test Description: Operating Condit Operator Name: Comment: Date Tested:		ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth High Band, High Frequency, 615.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 2;Maximum Relative Level Test on March 7, 2019					mW	
	MultiView		ectrum 2		22			\$
	Ref Level -1 Att	10 dB SWT 3 s V	BW 1 kHz BW 1 kHz Mod	le Auto Sweep				Count 3/5
	1 Frequency S	weep						1Rm Max.
	-10 dBm							
								14-1 11
	-20 dBm			Manytalteration.				
	-30 dBm			housed	-			
			- /					
	-+0 dBm		1					
	-50 dBm-		/					
		1						
	-60 dBm-					1		
	-70 dBm							
		a mphalational the second and the	I Locher White		Wedly wall in	HAT APULANALING		
	EN 300 422 NB DIGH	AL CONTRACTOR	Million .		- provery	Whited		
	lep dam	and all the all all all all all all and and				and the states	1 Mary Mary Mary	a second second
	onavalk Aaha.so	what days					. Alleraethol	UN MARCHANN
	CF 615.875 MH	iz	1001 pt	s 1	100.0 kHz/		_	Span 1.0 MHz
		l				Measuring		07.03.2019 10:49:47
	10:49:48 07.0	3.2019						



Test Information

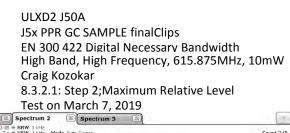
EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

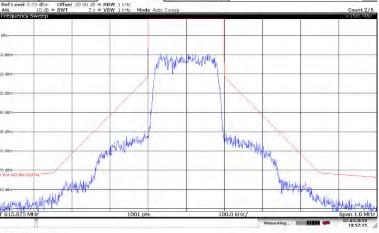
ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessarv Bandwidth High Band, High Frequency, 615.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

Test Information

EUT Name:		
Serial Number:		
Test Description:		
Operating Conditi	ons:	
Operator Name:		
Comment:		
Date Tested:		
	MultiView	Spectrum

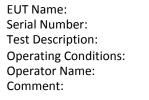
ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth High Band, High Frequency, 615.875MHz, 10mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019


Ref Level 14.00 dBm Offset Att 4 dB = SWT Zero Span				= 1Rm Avg
iū dām		AL.		141[1] 0.40 dBr
a dunit	 	1	*	1.80600
@m				
0 dBm	 			
D dBm				
		1 1 min 1		
i0 d8m-				
ito dBm	1 1 1 1 1			
-o dam				
iu dBm				
eo dam				
1. T	 			
o dam-				
(G tiBm-	 			
10 million	 			
F 615,875 MHz	1001 pts			300.0 ms 07.03.2019


10:51:41 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:



10:52:15 07.03.2019

Spectru

Test Information

Date Tested:

ULXD2 J50A J5x PPR GC SAMPLE finalClips EN 300 422 Digital Necessary Bandwidth High Band, High Frequency, 615.875MHz, 10mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

10:53:34 07.03.2019

Spurious Emissions

Purpose:

This test performed to determine if the EUT meets the radiated RF emission requirements of the FCC Part 15C section 236(g) and FCC OET Basic Certification Requirements for Wireless Microphones over the frequency range from 30MHz to 7GHz. A Quasi-Peak and Average detectors were used for the measurements. Both FCC Part 15C and IC RSS-Gen require measurements to the 10th harmonic of the carrier.

Requirements:

As stated in FCC 15C section 236(g), the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G, Compliance for spurious emission requirements shall be demonstrated using the applicable measurement procedures of ETSI EN 300 422-1. Compliance with the emission limits shall be demonstrated using a QP detector below 1GHz and a RMS Average detector above 1GHz. Emissions shall be investigated up to the 10th harmonic of the fundamental.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Measurement Type	U _{lab}	U _{ETSI}
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.24 dB	6.00 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 13 GHz)	4.56 dB	6.00 dB

Values of Expanded Measurement Uncertainty (95% Confidence)

U_{lab =} Determined for Shure EMC Laboratory

U_{ETSI =} From ETSI EN 300 422-1 Table 10

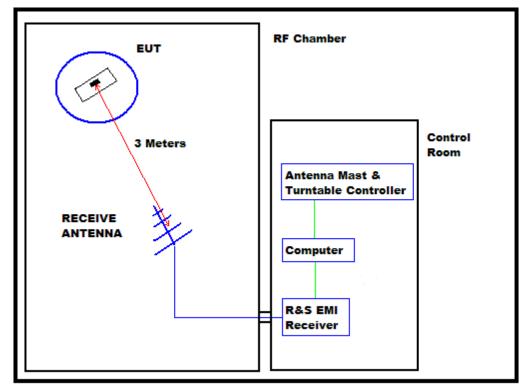
Since U_{lab} is less than or equal to U_{ETSI} :

Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

Test Setup and Instrumentation:

A Shure model KSM8 microphone head was connected to the EUT. Photographs of the test setup are shown in Figure B 1 and Figure B 2. The test instrumentation can be determined from Table 10-1.

EUT Operation:


The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. The EUT was checked for proper operation after it was setup on the test table. For radiated spurious emissions the testing was performed with the EUT set to the Low Band, 572.000, 589.925, 607.875, with RF power output of 1mW and 20mW, and the High Band, 614.125 and 615.875, with RF power output of 1mW and 10mW.

Specific Test Procedures:

All tests were performed in a 28ft. x 20ft. x 18.5ft. 3m semi-anechoic test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2003 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All power lines and signal lines entering the enclosure pass through filters on the enclosure wall. The power line filters prevent extraneous signals from entering the enclosure on these leads.

BLOCK DIAGRAM OF SHIELDED ENCLOSURE

Preliminary radiated measurements were performed to determine the frequencies where the significant emissions might be found. With the EUT at one set position and the measurement antenna at a set height (i.e. without maximizing), the radiated emissions were measured using a peak detector and automatically plotted. The BiConiLog measuring antenna was positioned at a 3 meter distance from the EUT for below 1GHz testing, and a double ridged waveguide antenna above 1GHz testing.

All significant broadband and narrowband signals found in the preliminary sweeps were then measured using a peak detector at a test distance of 3 meters. The measurements were made with a BiConiLog antenna over the frequency range of 30 MHz to 1 GHz, and a double ridged waveguide antenna over the frequency range of 1 GHz to 10 GHz.

To ensure that maximum emission levels were measured, the following steps were taken:

- i. The EUT was rotated so that all of its sides were exposed to the receiving antenna.
- ii. Since the measuring antennas are linearly polarized, both horizontal and vertical field components were measured.
- iii. The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, another antenna was set in place of the EUT and connected to a calibrated signal generator. (A tuned dipole was used for all measurements below 1GHz and a double ridged waveguide antenna was used for all measurements above 1GHz.) The output of the signal generator was adjusted to match the received level at the EMI receiver. The signal level was recorded. The reading was corrected to compensate for cable loss and antenna gain.

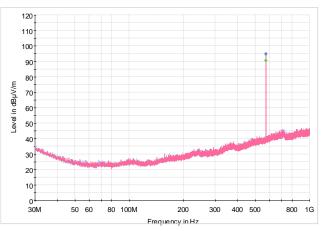
Results:

The plots of the peak preliminary radiated voltage levels in the graphs on page 30 thru page 39. The ERP measurements are shown on pages 40 thru page 44. All emissions measured from the EUT were within the ETSI EN 300 422-1 specification limits.

The temperature during the testing in the RF Chamber was 73 degrees F, with relative humidity of 17%.

Figure B 1: ULXD2 Transmitter Test Setup

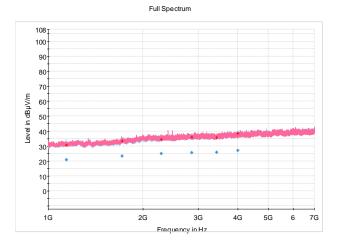
Figure B 2: ULXD2 Transmitter Test Setup


Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Low Frequency 572.000MHz 1mW Jamal Qureshi

SHURE Radiated RF Emissions Test Report

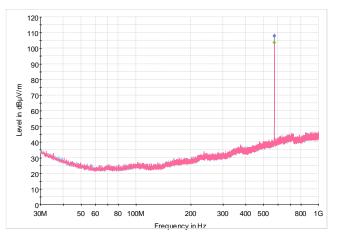
Tested on February 27, 2019


Full Spectrum

SHURE Radiated RF Emissions Test Report

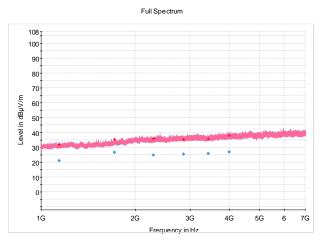
Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Low frequency 572.000MHz 1mW Jamal Qureshi Tested on February 26, 2019


SHURE Radiated RF Emissions Test Report

Common Information

Test Description:
EUT:
Serial Number:
Operating Frequency:
RF Power Level
Tester Name:
Date Tested


FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Low Frequency 572.000MHz 20mW Jamal Qureshi Tested on February 27, 2019

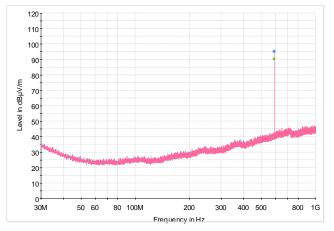
Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Low Frequency 572.000MHz 20mW Jamal Qureshi Tested on February 26, 2019

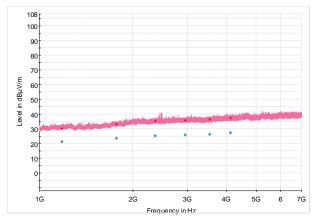
Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested



Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested


SHURE Radiated RF Emissions Test Report

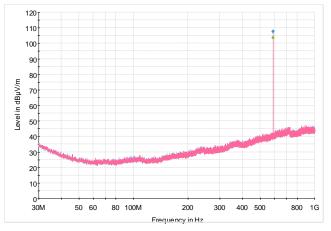
FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Middle Frequency 589.925MHz 1mW Jamal Qureshi Tested on February 28, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Middle Frequency 589.925MHz 1mW Jamal Qureshi Tested on February 26, 2019 Full Spectrum

Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

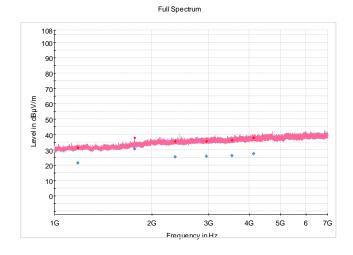


Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Middle Frequency 589.925MHz 20mW Jamal Qureshi Tested on February 28, 2019 Full Spectrum

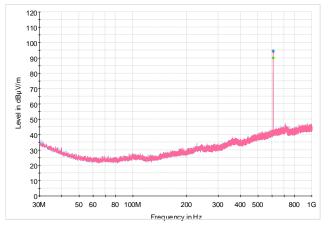


SHURE Radiated RF Emissions Test Report

Common Information

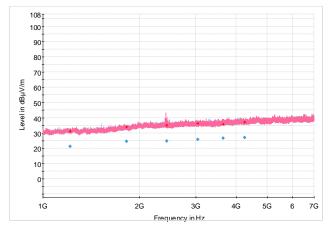
Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, Middle Frequency 589.925MHz 20mW Jamal Qureshi Tested on February 26, 2019



Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

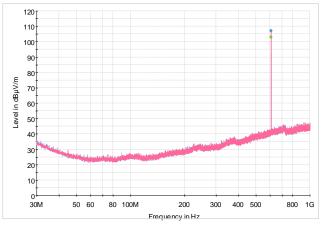

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, High Frequency 607.875MHz 1mW Jamal Qureshi Tested on February 28, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, High Frequency 607.875MHz 1mW Jamal Qureshi Tested on February 26, 2019 Full Spectrum

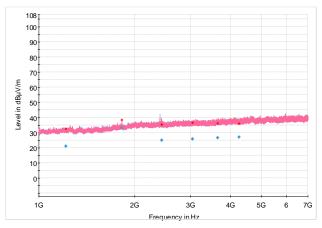
Common Information


Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested **SHURE Radiated RF Emissions Test Report**

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, High Frequency 607.875MHz 20mW Jamal Qureshi Tested on February 28, 2019 Full Spectrum

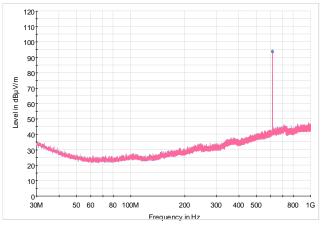


SHURE Radiated RF Emissions Test Report

Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips Low Band, High Frequency 607.875MHz 20mW Jamal Qureshi Tested on February 26, 2019

Full Spectrum

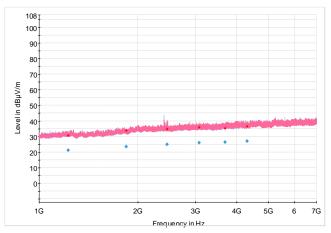


Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, Low Frequency 614.125MHz 1mW Jamal Qureshi Tested on February 28, 2019 Full Spectrum

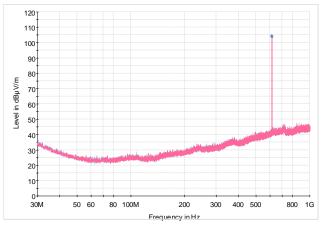


SHURE Radiated RF Emissions Test Report

Common Information

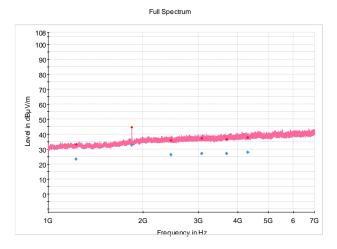
Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, Low Frequency 614.125MHz 1mW Jamal Qureshi Tested on February 26, 2019

Full Spectrum



Common Information

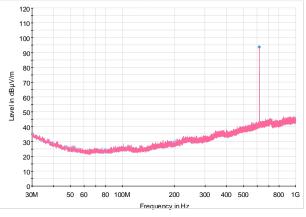
Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested **SHURE Radiated RF Emissions Test Report**


FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, Low Frequency 614.125MHz 10mW Jamal Qureshi Tested on March 7, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

Common Information

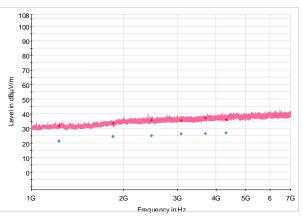
Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, Low Frequency 614.125MHz 10mW Jamal Qureshi Tested on March 7, 2019



Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

SHURE Radiated RF Emissions Test Report


FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, High Frequency 615.875MHz 1mW Jamal Qureshi Tested on February 28, 2019 Full Spectrum

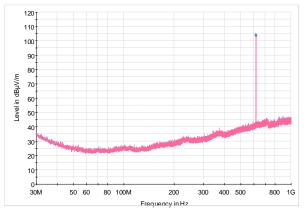
SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, High Frequency 615.875MHz 1mW Jamal Qureshi Tested on February 26, 2019

Full Spectrum

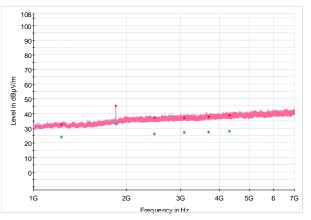
Test Description: EUT:

Common Information


Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested **SHURE Radiated RF Emissions Test Report**


FCC 15C Radiated Emissions 30MHz - 1GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, High Frequency 615.875MHz 10mW Jamal Qureshi Tested on March 7, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD2 J50A J5x PPR GC SAMPLE finalClips High Band, High Frequency 615.875MHz 10mW Jamal Qureshi Tested on March 7, 2019

Full Spectrum

Common Information Test Description:

EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

Date:	March 4, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Low Frequency 572.000 MHz at 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
572.000	QP	V	94.57	-1.33	0.00	2.75		
1144.000	Average	V	21.49	-90.0	3.43	3.57	-90.14	-30
1716.000	Average	V	24.02	-90.0	5.55	4.20	-88.65	-30
2288.000	Average	V	25.61	-90.0	5.61	4.72	-89.11	-30
2860.000	Average	V	26.43	-90.0	6.89	5.07	-88.18	-30
3432.000	Average	V	26.59	-90.0	8.15	5.47	-87.32	-30
4004.000	Average	V	27.81	-90.0	8.86	6.29	-87.43	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	March 4, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Low Frequency 572.000MHz at 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
572.000	QP	V	107.66	11.7	0.00	2.75		
1144.000	Average	V	21.48	-90.0	3.43	3.57	-90.14	-30
1716.000	Average	V	26.55	-72.0	5.55	4.20	-70.61	-30
2288.000	Average	V	25.61	-90.0	5.61	4.72	-89.11	-30
2860.000	Average	V	26.43	-90.0	6.89	5.07	-88.18	-30
3432.000	Average	V	26.59	-90.0	8.15	5.47	-87.32	-30
4004.000	Average	V	27.81	-90.0	8.86	6.29	-87.43	-30

Date:	March 4, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Middle Frequency 589.925MHz at 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
589.925	QP	V	95.01	-1.30	0.00	2.76		
1179.850	Average	V	22.19	-90.0	3.56	3.66	-90.10	-30
1769.775	Average	V	23.64	-90.0	5.26	4.24	-88.98	-30
2359.700	Average	V	26.08	-88.8	5.70	4.75	-87.89	-30
2949.625	Average	V	26.66	-90.0	6.97	5.20	-88.23	-30
3539.550	Average	V	27.00	-90.0	8.23	5.56	-87.33	-30
4129.475	Average	V	28.21	-90.0	9.19	6.16	-86.97	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	March 4, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Middle Frequency 589.925MHz at 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
589.925	QP	V	107.64	11.35	0.00	2.76		
1179.850	Average	V	22.18	-90.0	3.56	3.66	-90.10	-30
1769.775	Average	V	30.56	-65.4	5.26	4.24	-64.39	-30
2359.700	Average	V	26.07	-90.0	5.70	4.75	-89.05	-30
2949.625	Average	V	26.66	-90.0	6.97	5.20	-88.23	-30
3539.550	Average	V	27.00	-90.0	8.23	5.56	-87.33	-30
4129.475	Average	V	28.20	-90.0	9.19	6.16	-86.97	-30

March 4, 2019 ULXD2
J50A
J5x PPR GC SAMPLE finalClips
EN 300 422-1, Spurious Radiated Emissions
Test Distance is 3 meters
EUT set to Low Band, High Frequency 607.875MHz at 1mW
Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
607.875	QP	V	94.48	-1.8	0.00	2.78		
1215.750	Average	V	21.61	-90.0	3.60	3.68	-90.08	-30
1823.625	Average	V	24.52	-84.4	5.03	4.25	-83.66	-30
2431.500	Average	V	25.85	-90.0	5.81	4.81	-89.00	-30
3039.375	Average	V	26.57	-90.0	7.07	5.25	-88.18	-30
3647.250	Average	V	27.56	-90.0	4.95	6.09	-91.14	-30
4255.125	Average	V	27.92	-90.0	9.45	6.44	-86.99	-30

Date:	March 4
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, High Frequency 607.875MHz at 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
607.875	QP	V	107.22	10.7	0.00	2.78		
1215.750	Average	V	21.61	-90.0	3.60	3.68	-90.08	-30
1823.625	Average	V	33.13	-62.8	5.03	4.25	-62.00	-30
2431.500	Average	V	25.86	-90.0	5.81	4.81	-89.00	-30
3039.375	Average	V	26.57	-90.0	7.07	5.25	-88.18	-30
3647.250	Average	V	26.65	-90.0	4.95	6.09	-91.14	-30
4255.125	Average	V	27.92	-90.0	9.45	6.44	-86.99	-30

Date:	March 4, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, Low Frequency 614.125MHz at 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
614.125	QP	V	93.83	-3.06	0.00	2.80		
1228.250	Average	V	21.81	-90.0	3.56	3.66	-90.10	-30
1842.375	Average	V	24.00	-90.0	5.11	4.33	-89.22	-30
2456.500	Average	V	25.86	-90.0	5.89	4.84	-88.95	-30
3070.625	Average	V	26.99	-90.0	7.11	5.31	-88.20	-30
3684.750	Average	V	27.13	-90.0	8.33	6.06	-87.73	-30
4298.875	Average	V	27.81	-90.0	9.48	6.45	-86.97	-30

Date:	March 7, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, Low Frequency 614.125MHz at 10mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
614.125	QP	V	104.12	7.04	0.00	2.80		
1228.250	Average	V	23.29	-71.5	3.56	3.66	-71.64	-30
1842.375	Average	V	32.74	-56.2	5.11	4.33	-55.44	-30
2456.500	Average	V	26.20	-69.7	5.89	4.84	-68.67	-30
3070.625	Average	V	26.99	-69.1	7.11	5.31	-67.30	-30
3684.750	Average	V	27.13	-68.2	8.33	6.06	-65.93	-30
4298.875	Average	V	27.85	-69.7	9.48	6.45	-66.63	-30

Date:	March 4, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, High Frequency 615.875MHz at 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
615.875	QP	V	93.62	-3.42	0.00	2.84		
1231.750	Average	V	22.33	-90.0	3.54	3.66	-90.12	-30
1847.625	Average	V	24.33	-62.4	5.13	4.29	-61.59	-30
2463.500	Average	V	25.91	-90.0	5.90	4.85	-88.95	-30
3079.375	Average	V	27.12	-90.0	7.13	5.24	-88.11	-30
3695.250	Average	V	27.31	-90.0	8.33	5.90	-87.57	-30
4311.125	Average	V	27.92	-90.0	9.48	6.65	-87.17	-30

Date:	March 7, 2019
EUT:	ULXD2
Band:	J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, High Frequency 615.875MHz at 10mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
615.875	QP	V	103.98	6.50	0.00	2.84		
1231.750	Average	V	23.90	-70.7	3.54	3.66	-70.78	-30
1847.625	Average	V	32.92	-56.7	5.13	4.29	-55.85	-30
2463.500	Average	V	26.01	-70.6	5.90	4.85	-69.58	-30
3079.375	Average	V	26.94	-69.8	7.13	5.24	-67.86	-30
3695.250	Average	V	27.15	-68.2	8.33	5.90	-65.75	-30
4311.125	Average	V	27.80	-67.8	9.48	6.65	-65.00	-30

Maximum Radiated Power

Purpose:

This test performed to determine if the EUT meets the Maximum Radiated Power requirements of the FCC Part15C, Section 15.236, the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G.

Requirements:

As stated in FCC 15C Section 15.236 (6)(2). the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence)

Measurement Type	U _{lab}
Radiated measurements (30 MHz – 1000 MHz)	4.24 dB

 $U_{\text{lab}\,\text{=}}$ Determined for Shure EMC Laboratory

Since U_{lab} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

Test Setup and Instrumentation:

Photographs of the test setup are shown in Figure 1. The test instrumentation can be determined from Table 10-1.

EUT Operation:

The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. For rated output power, the testing was performed with the EUT set to the Low Band, 572.000, 589.925, 607.875, with RF power output of 1mW and 20mW, and the High Band, 614.125 and 615.875, with RF power output of 1mW and 10mW.

Specific Test Procedures:

The Maximum Rated Power test was performed during the Spurious Emission testing, Appendix B. The carrier frequency power level was documented in Appendix B.

Results:

The EIRP for all frequencies measured meets the FCC15C 15.236 requirements, the FCC OET Basic Certification Requirements for Wireless Microphones requirements, and RSS-210 Annex G.

The results are shown on page 47 thru page 51.

Test Information

1mW

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
94.57	-1.33	2.15	2.46	-1.64	0.69	50.00	49.31

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD2 J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Test Description:	Maximum Rated Output
Operating Conditions:	Low Band, Low Frequency, 572.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 27, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
107.66	+11.72	2.15	2.46	11.41	13.84	50.00	36.16

Test Information

ULXD2 J50A
J5x PPR GC SAMPLE finalClips
Maximum Rated Output
Low Band, Middle Frequency, 589.925MHz, 1mW
Jamal Qureshi
FCC Part15C, Section 15.236
Tested on February 28, 2019

Measured in RF Chamber in dBu		Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
95.01	-1.30	2.15	2.46	-1.61	0.69	50.00	49.31

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD2 J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Test Description:	Maximum Rated Output
Operating Conditions:	Low Band, Middle Frequency, 598.925MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 28, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
107.64	+11.35	2.15	2.46	11.04	12.71	50.00	37.29

Test Information

EUT Name:	ULXD2 J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Test Description:	Maximum Rated Output
Operating Conditions:	Low Band, High Frequency, 607.875MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 28, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
94.48	-1.78	2.15	2.46	-2.09	0.62	50.00	49.38

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD2 J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Test Description:	Maximum Rated Output
Operating Conditions:	Low Band, High Frequency, 607.875MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 28, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
107.22	+10.68	2.15	2.46	10.37	10.89	50.00	39.11

Test Information

EUT Name:	ULXD2 J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Test Description:	Maximum Rated Output
Operating Conditions:	High Band, Low Frequency, 614.125MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on February 28, 2019

Measure Chamber	-	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
93.	33	-3.06	2.15	2.46	-3.37	0.46	250.00	249.54

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD2 J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Test Description:	Maximum Rated Output
Operating Conditions:	High Band, Low Frequency, 614.125MHz, 10mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 7, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
104.12	+7.04	2.15	2.46	6.73	4.71	250.00	245.29

Test Information

ULXD2 J50A
J5x PPR GC SAMPLE finalClips
Maximum Rated Output
High Band, High Frequency, 615.875MHz, 1mW
Jamal Qureshi
RSS-210
Tested on February 28, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
93.62	-3.42	2.15	2.46	-3.73	0.42	250.00	249.58

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD2 J50A
Serial Number:	J5x PPR GC SAMPLE finalClips
Test Description:	Maximum Rated Output
Operating Conditions:	High Band, High Frequency, 615.875MHz, 10mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 7, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
103.98	+6.5	2.15	2.46	6.19	4.16	250.00	245.84

FREQUENCY TOLERANCE

PURPOSE:

This test was performed to determine if the EUT meets the frequency stability requirements of the FCC Part 15C, Section 15.236(f)(3) and the RSS-210 Annex G Table G1, specifications over the EUT operating frequency range of the Low Band of 572MHz to 608MHz, and the High Band of 614MHz to 616MHz.

REQUIREMENTS:

As stated in paragraph 15.236(f)(3) and, for low power auxiliary stations operating in the bands allocated for TV broadcasting, the frequency tolerance of the transmitter shall be 0.005 percent. RSS-210 Annex G Table G1 require \pm 50ppm.

MEASUREMENT UNCERTAINTY:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence	:e):
--	------

Measurement Type	U _{lab}
Frequency Error (Stability)	.0000000583 ppm

Ulab = Determined for Shure EMC Laboratory

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

TEST SETUP AND INSTRUMENTATION:

The EUT firmware was temporarily changed to transmit a CW signal just for this test. The EUT was heated and cooled in an ESPEC temperature chamber over a temperature range of -30C to +50C. The temperature around the EUT was measured and monitored by a J-Type thermocouple connected to an Extech thermometer. The EUTs frequency was measured with a frequency counter set to measure signal count at 0.1Hz resolution. The EUT was measured at Low Band low, middle, high frequencies, and High Band Low and high frequencies. Photographs of the test setup are shown as Figure D-1. The test instrumentation can be determined from Table 10-1.

EUT OPERATION:

The antenna port of the EUT was connected to the 50 Ohm input of a frequency counter. The EUT was operated at 10mW.

TEST PROCEDURES:

- a. The temperature chamber was set to 20C with the EUT inside and powered on.
- b. The EUT was allowed to soak for at least 15 minutes after the temperature chamber reached the set temperature.
- c. The measured frequency of the transmitter was measured on the frequency counter.
- d. Steps a. through c. were repeated at -30C through +50C in ten degree increments for representative low, mid and high frequencies within the EUTs operational band.

RESULTS:

The frequency stability measurements are presented on pages 54 and 55. As shown by the test data, the test frequency deviation was within the 0.005 percent limit set out in the FCC Part 15C Section 15.236(f)(3) and the within the \pm 50ppm RSS-210 specifications.

The temperature in the test room during the test was 75 degrees F, with relative humidity of 18%.

Figure D-1 - Test Setup for Frequency Stability

		ne: umber: cription: ng Condition r Name: nt:	ns:	ULXD2 J50A J5x PPR GC SAMPLE finalClips FCC Part 15C Section 15.236(f)(3), RSS-210 Frequency Tolerance Low Band: Low, Middle, and High frequency at 10mW, -30C to +50C Juan Castrejon Agilent Frequency Counter and ESPEC Temp Chamber March 8, 2019						
Temp °C	Nominal Frequency (MHz)	Measured Frequency (MHz)	Deviation (%)	FCC Frequency Stability Limit in %	Deviation in Hz	Deviation in PPM	RSS Limit in ppm	FCC Pass/Fail	RSS Pass/Fail	
-30	572.000	572.000038	0.000007	0.005	38.34	0.067028	<u>+</u> 50	PASS	PASS	
-20	572.000	572.000148	0.000026	0.005	147.67	0.258164	<u>+</u> 50	PASS	PASS	
-10	572.000	572.000244	0.000043	0.005	244.47	0.427395	<u>+</u> 50	PASS	PASS	
0	572.000	572.000315	0.000055	0.005	315.11	0.550892	<u>+</u> 50	PASS	PASS	
10	572.000	572.000332	0.000058	0.005	331.88	0.580210	<u>+</u> 50	PASS	PASS	
20	572.000	572.000377	0.000066	0.005	376.71	0.658584	<u>+</u> 50	PASS	PASS	
30	572.000	572.000361	0.000063	0.005	361.24	0.631538	<u>+</u> 50	PASS	PASS	
40	572.000	572.000389	0.000068	0.005	388.60	0.679371	<u>+</u> 50	PASS	PASS	
50	572.000	572.000407	0.000071	0.005	407.3	0.712063	<u>+</u> 50	PASS	PASS	
-30	589.925	589.925048	0.000008	0.005	47.60	0.080688	<u>+</u> 50	PASS	PASS	
-20	589.925	589.925152	0.000026	0.005	151.51	0.256829	<u>+</u> 50	PASS	PASS	
-10	589.925	589.925253	0.000043	0.005	252.51	0.428037	<u>+</u> 50	PASS	PASS	
0	589.925	589.925325	0.000055	0.005	324.70	0.550409	<u>+</u> 50	PASS	PASS	
10	589.925	589.925342	0.000058	0.005	341.81	0.579413	<u>+</u> 50	PASS	PASS	
20	589.925	589.925388	0.000066	0.005	388.07	0.657829	<u>+</u> 50	PASS	PASS	
30	589.925	589.925371	0.000063	0.005	371.33	0.629453	<u>+</u> 50	PASS	PASS	
40	589.925	589.925400	0.000068	0.005	400.31	0.678578	<u>+</u> 50	PASS	PASS	
50	589.925	589.925418	0.000071	0.005	417.54	0.707785	<u>+</u> 50	PASS	PASS	
-30	607.875	607.875057	0.000009	0.005	57.38	0.094394	<u>+</u> 50	PASS	PASS	
-20	607.875	607.875156	0.000026	0.005	156.11	0.256813	<u>+</u> 50	PASS	PASS	
-10	607.875	607.875863	0.000142	0.005	863.44	1.420424	<u>+</u> 50	PASS	PASS	
0	607.875	607.875336	0.000055	0.005	336.12	0.552943	<u>+</u> 50	PASS	PASS	
10	607.875	607.875354	0.000058	0.005	353.66	0.581797	<u>+</u> 50	PASS	PASS	
20	607.875	607.875401	0.000066	0.005	401.03	0.659724	<u>+</u> 50	PASS	PASS	
30	607.875	607.875383	0.000063	0.005	382.88	0.629724	<u>+</u> 50	PASS	PASS	
40	607.875	607.875414	0.000068	0.005	413.73	0.680617	<u>+</u> 50	PASS	PASS	
50	607.875	607.875429	0.000071	0.005	429.14	0.705968	<u>+</u> 50	PASS	PASS	

		umber: scription: ng Condition r Name: nt:	ns:	<u>High Band</u> : L Juan Castr	C SAMPLE f Section 15.2 ow and High ejon equency Co	inalClips 236(f)(3), RSS-2 frequency at 2 punter and E	10mW, -:	30C to +50C	
Temp °C	Nominal Frequency (MHz)	Measured Frequency (MHz)	Deviation (%)	FCC Frequency Stability Limit in %	Deviation in Hz	Deviation in PPM	RSS Limit in ppm	FCC Pass/Fail	RSS Pass/Fail
-30	614.125	614.125064	0.000010	0.005	63.95	0.104132	<u>+</u> 50	PASS	PASS
-20	614.125	614.125157	0.000026	0.005	157.22	0.256007	<u>+</u> 50	PASS	PASS
-10	614.125	614.125268	0.000044	0.005	268.46	0.437142	<u>+</u> 50	PASS	PASS
0	614.125	614.125340	0.000055	0.005	339.77	0.553259	<u>+</u> 50	PASS	PASS
10	614.125	614.125358	0.000058	0.005	357.55	0.582210	<u>+</u> 50	PASS	PASS
20	614.125	614.125405	0.000066	0.005	405.23	0.659849	<u>+</u> 50	PASS	PASS
30	614.125	614.125386	0.000063	0.005	386.40	0.629188	<u>+</u> 50	PASS	PASS
40	614.125	614.125418	0.000068	0.005	418.37	0.681246	<u>+</u> 50	PASS	PASS
50	614.125	614.125432	0.000070	0.005	431.55	0.702707	<u>+</u> 50	PASS	PASS
-30	615.875	615.875069	0.000011	0.005	69.47	0.112799	<u>+</u> 50	PASS	PASS
-20	615.875	615.875157	0.000025	0.005	156.70	0.254435	<u>+</u> 50	PASS	PASS
-10	615.875	615.875271	0.000044	0.005	271.44	0.440739	<u>+</u> 50	PASS	PASS
0	615.875	615.875340	0.000055	0.005	340.33	0.552596	<u>+</u> 50	PASS	PASS
10	615.875	615.875359	0.000058	0.005	359.02	0.582943	<u>+</u> 50	PASS	PASS
20	615.875	615.875406	0.000066	0.005	406.21	0.659566	<u>+</u> 50	PASS	PASS
30	615.875	615.875387	0.000063	0.005	387.07	0.628488	<u>+</u> 50	PASS	PASS
40	615.875	615.875420	0.000068	0.005	419.60	0.681307	<u>+</u> 50	PASS	PASS
50	615.875	615.875431	0.000070	0.005	431.36	0.700402	<u>+</u> 50	PASS	PASS