

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Shure Incorporated 5800 W. Touhy Avenue Niles, IL 60714 Dates of Test: Test Report Number: October 7-8, 2011 SAR.20111002

Model(s): ULXD1 G51, H51, K51, L51, P51, R51 Engineering Units Same as Production

Serial No.: Various (See Data Sheets)
Equipment Type: Wireless Microphone

Classification: Portable Transmitter Next to Body

TX Frequency Range: 470 – 534 MHz, 534 – 598 MHz, 606 – 670 MHz,

632 – 696 MHz, 710 – 782 MHz, 800 – 810 MHz

Frequency Tolerance: ± 2.5 ppm

Maximum RF Output: 502 MHz – 14.69 dB, 566 MHz – 13.58 dB, 638 MHz – 14.54 dB, 664 MHz – 14.52 dB,

746 MHz - 14.24 dB, 805 MHz - 14.39 dB Conducted

Signal Modulation: 8PSK Complex Modulation (156.25 kbps)

Antenna Type (Length): Delta Electronics Manuf. Corp.; Model See Table in Sec. 6

Application Type: Self Declaration
Directive: 1999/519/EC EMF

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003 and IEC 62209 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Jay M. Moulton Vice President

Table of Contents

1. Introduction	3
SAR Definition [4]	3
2. SAR Measurement Setup	4
Robotic System	4
System Hardware	4
System Description	4
E-Field Probe ALS-E-020	5
3. Robot Specifications	7
4. Probe and Dipole Calibration	8
5. Phantom & Simulating Tissue Specifications	S
SAM Phantom	9
Head & Body Simulating Mixture Characterization	g
Device Holder	
6. Body Worn Configurations	10
7. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]	11
Uncontrolled Environment	
Controlled Environment	
8. Measurement Uncertainty	
9. System Validation	
Tissue Verification	13
Test System Verification	13
10. SAR Test Data Summary	
Procedures Used To Establish Test Signal	15
Device Test Condition	
SAR Data Summary – 470-810 MHz Body	
11. Test Equipment List	
12. Conclusion	
13. References	
Appendix A – System Validation Plots and Data	21
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	120

1. Introduction

This measurement report shows compliance of the Shure Incorporated Model ULXD1 G51, H51, K51, L51, P51, R51 with the EU Directive 1999/519/EC EMF for mobile and portable devices. The EU has adopted the guidelines for evaluating the environmental effects of radio frequency radiation to protect the public and workers from the potential hazards of RF emissions due to EU regulated portable devices. [1]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], and ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], were employed.

SAR Definition [4]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

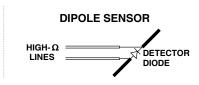
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:


$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{a^2 + x'^2 + y'^2}} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

E-Field Probe ALS-E-020

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is \pm 0.05 mm and the precision of the APREL bottom detection device is \pm 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location 1.44 mm above the phantom surface resulting in the probe center location to be at 2.0 mm above the phantom surface. Therefore, the probe sensor will be at 2.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies above 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of 32x32x28 mm³. For devices ≥ 3 GHz and ≤ 4.5 GHz, the cube scan of 9x9x9 yields a volume of 32x32x24 mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of 24x24x22 mm³.

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4[™] Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: ALS-E-020 Serial Number: RFE-217

Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. See photos in Appendix C.

Head & Body Simulating Mixture Characterization

The head and body mixtures consist of a glycol based chemical and saline solution. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following tables. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

Ingredients		Simulating Tissue				
		470-666 MHz Body	667-835 MHz Body			
Mixing Percentage						
Water		51.16	52.40			
Sugar		46.78	45.00			
Salt		1.49	1.40			
HEC		0.52	1.00			
Bactericide		0.05	0.10			
DGBE		0.00	0.00			
Dielectric Constant	Target	Various	Various			
Conductivity (S/m)	Target	Various	Various			

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

6. Body Worn Configurations

Body-worn operating configurations are tested in a normal use configuration. Body dielectric parameters are used.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing. All test position spacings are documented.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

Frequency	Cap Color	Part Number
470-534 MHz	Yellow	95A12544
534-598 MHz	Gray	95B12544
606-670 MHz	Black	95C12544
710-810 MHz	Blue	95E12544

7. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	2.00	10.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1-g)	c _i ¹ (10-g)	Standard Uncertainty (1-g) %	Standard Uncertai nty (10- g) %	Vi
Marana and Gardan								
Measurement System								
Probe Calibration	3.5	normal	1	1	1	3.5	3.5	∞
Axial Isotropy	3.7	rectangular	√3	0.7	0.7	1.5	1.5	∞
Hemispherical Isotropy	10.9	rectangular	√3	0.7	0.7	4.4	4.4	∞
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6	∞
Linearity	4.7	rectangular	√3	1	1	2.7	2.7	∞
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6	∞
Readout Electronics	1.0	normal	1	1	1	1.0	1.0	∞
Response Time	0.8	rectangular	√3	1	1	0.5	0.5	∞
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0	∞
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7	∞
Probe Positioner Mech. Restriction	0.4	rectangular	√3	1	1	0.2	0.2	∞
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7	∞
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1	∞
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0	7
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0	2
Drift of Output Power	5.0	rectangular	√3	1	1	2.4	2.4	∞
Phantom and Setup								
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0	∞
Liquid Conductivity(target)	5.0	rectangular	√3	0.7	0.5	2.0	1.4	∞
Liquid Conductivity (meas.)	0.5	normal	1	0.7	0.5	0.4	0.3	5
Liquid Permittivity(target)	5.0	rectangular	√3	0.6	0.5	1.7	1.4	∞
Liquid Permittivity (meas.)	1.0	normal	1	0.6	0.5	0.6	0.5	5
Combined Uncertainty		RSS		İ		9.6	9.4	>500
Combined Uncertainty (coverage factor=2)		Normal(k=2)				19.1	18.8	>500

9. System Validation

Tissue Verification

Table 9.1 Measured Tissue Parameters

		450 MHz Body		500 MHz Body		568 MHz Body		
Date(s)		Oct. 8, 2011		Oct. 8, 2011		Oct. 8, 2011		
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Dielectric Constant: ε		56.70	56.59	56.51	56.23	56.24	55.84	
Conductivity: σ		0.94	0.96	0.94	0.98	0.95	0.96	
		636 N	/IHz Body	656 M	Hz Body	666 MHz Body		
Date(s)		Oct.	7, 2011	Oct.	Oct. 7, 2011		Oct. 7, 2011	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Dielectric Constant: ε		55.98	55.83	55.90	55.75	55.86	55.70	
Conductivity: σ		0.95	0.96	0.96	0.97	0.96	0.98	
		750 N	/IHz Body	805 MHz Body		835 MHz Body		
Date(s)		Oct.	7, 2011	Oct.	7, 2011	Oct.	7, 2011	
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Dielectric Constant: ε		55.53	55.18	55.32	55.16	55.20	55.01	
Conductivity: σ		0.96	0.95	0.97	0.94	0.97	0.99	
Annondix A for data printout								

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the ±10% of the specifications at 2450 MHz by using the system kit. Power is extrapolated to 1 watt. (Graphic Plots Attached)

Table 9.2 System Dipole Validation Target & Measured

Date	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Deviation (%)
08-Oct-2011	450 MHz	3.41	3.22	- 5.57
07-Oct-2011	650 MHz	2.04	1.95	- 4.41
07-Oct-2011	750 MHz	5.64	5.74	+ 1.77
07-Oct-2011	835 MHz	6.30	6.23	- 1.11

See Appendix A for data plots.

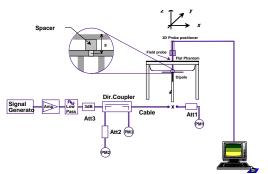
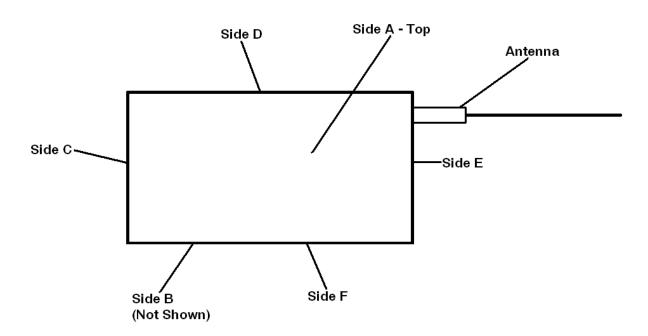


Figure 9.1 Dipole Validation Test Setup

SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

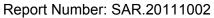
Procedures Used To Establish Test Signal


The device was either placed into simulated transmit mode using the manufacturer's test codes or the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

The conducted output power measurements were performed after the completion of all SAR measurements to insure the integrity of the unit. The power drift of each test is measured at the start of the test and again at the end of the test. The drift percentage is calculated by the formula ((end/start)-1)*100 and rounded to three decimal places. The drift percentage is calculated into the resultant SAR value on the data sheet for each test.

The device was tested on the back, front and left side with the belt clip and the mic in place set up to the phantom.


Test Positions

RF Exposure Lab

		502 MHz		
Freq	Channel	Data Rate	Antenna	Power
470	L	N/A	Main	14.69
502	M	N/A	Main	14.53
534	Н	N/A	Main	13.58
		566 MHz		
Freq	Channel	Data Rate	Antenna	Power
534	L	N/A	Main	13.58
566	М	N/A	Main	13.52
598	Н	N/A	Main	13.57
		638 MHz		
Freq	Channel	Data Rate	Antenna	Power
606	L	N/A	Main	14.54
638	M	N/A	Main	13.31
670	Н	N/A	Main	14.43
		664 MHz		
Freq	Channel	Data Rate	Antenna	Power
632	L	N/A	Main	14.52
664	M	N/A	Main	14.42
696	Н	N/A	Main	13.77
		746 MHz		
Freq	Channel	Data Rate	Antenna	Power
710	L	N/A	Main	14.24
746	M	N/A	Main	14.11
782	Н	N/A	Main	14.23
		805 MHz		
Freq	Channel	Data Rate	Antenna	Power
800	L	N/A	Main	14.36
805	М	N/A	Main	14.39
810	Н	N/A	Main	14.35

SAR Data Summary – 470-810 MHz Body

MEASUREMENT RESULTS							
Unit	EUT	Transmit	Frequ	uency	Modulation	End Power	SAR
Offic	Position	Band	MHz	Ch.	Woodilation	(dBm)	(W/kg)
	Side B		502	Mid	8PSK	14.53	0.115
G51	Side A	502	502	Mid	8PSK	14.53	0.101
	Side D		502	Mid	8PSK	14.53	0.115
	Side B		566	Mid	8PSK	13.52	0.087
H51	Side A	566	566	Mid	8PSK	13.52	0.112
	Side D		566	Mid	8PSK	13.52	0.110
	Side B		638	Mid	8PSK	13.31	0.079
K51	Side A	638	638	Mid	8PSK	13.31	0.099
	Side D		638	Mid	8PSK	13.31	0.064
	Side B		664	Mid	8PSK	14.42	0.096
L51	Side A	664	664	Mid	8PSK	14.42	0.113
	Side D		664	Mid	8PSK	14.42	0.125
	Side B		746	Mid	8PSK	14.11	0.121
P51	Side A	746	746	Mid	8PSK	14.11	0.130
	Side D		746	Mid	8PSK	14.11	0.137
	Side B		805	Mid	8PSK	14.39	0.110
R51	Side A	805	805	Mid	8PSK	14.39	0.119
	Side D		805	Mid	8PSK	14.39	0.089

Muscle
2.0 W/kg (mW/g)
averaged over 10 gram

1.	Battery is fully charged for	all tests.		
	Power Measured		□ERP	☐EIRP
_	G.17.75			
2.	SAR Measurement		N	
	Phantom Configuration	Left Head	Uniphantom	Right Head
	SAR Configuration	Head	\boxtimes Body	
3.	Test Signal Call Mode	☐ Test Code	Base Station Sim	ulator
٥.	Test Signar Can Wode	∑Test Code		uiatoi
4.	Test Configuration	With Belt Clip	Without Belt Clip	N/A
\		1		_

Jay M. Moulton Vice President

Note: When the mid channel is 3 dB or more below the limit the remaining channels are not required to be tested.

11. Test Equipment List

Table 11.1 Equipment Specifications

Type	Calibration Due Date	Calibration Done Date	Serial Number
ThermoCRS Robot	N/A	N/A	RAF0338198
ThermoCRS Controller	N/A	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	09/07/2012	09/07/2011	RFE-217
Aprel E-Field Probe ALS-E030	07/15/2012	07/15/2011	E030-001
Aprel Dummy Probe	N/A	N/A	023
Aprel Left Phantom	N/A	N/A	RFE-267
Aprel Right Phantom	N/A	N/A	RFE-268
Aprel UniPhantom	N/A	N/A	RFE-273
Aprel Validation Dipole ALS-D-450-S-2 Head	01/12/2012	01/12/2010	RFE-362
Aprel Validation Dipole ALS-D-450-S-2 Body	01/19/2012	01/19/2011	RFE-362
Aprel Validation Dipole ALS-D-750-S-2 Head	01/14/2012	01/14/2010	177-00501
Aprel Validation Dipole ALS-D-750-S-2 Body	11/15/2011	11/15/2010	177-00501
Aprel Validation Dipole ALS-D-835-S-2 Head	01/14/2012	01/14/2010	180-00561
Aprel Validation Dipole ALS-D-835-S-2 Read	11/16/2011	11/16/2010	180-00561
Aprel Validation Dipole ALS-D-900-S-2 Head	01/12/2012	01/12/2010	RFE-275
Aprel Validation Dipole ALS-D-900-S-2 Body	11/19/2011	11/19/2010	RFE-275
Aprel Validation Dipole ALS-D-1900-S-2 Head	01/15/2012	01/15/2010	210-00713
Aprel Validation Dipole ALS-D-1900-S-2 Head Aprel Validation Dipole ALS-D-1900-S-2 Body	11/16/2011	11/16/2010	210-00713
Aprel Validation Dipole ALS-D-1900-3-2 Body Aprel Validation Dipole ALS-D-2450-S-2 Head	01/12/2012	01/12/2010	RFE-278
Aprel Validation Dipole ALS-D-2450-S-2 Head Aprel Validation Dipole ALS-D-2450-S-2 Body	11/18/2011	11/18/2010	RFE-278
Aprel Validation Dipole RFE-D-2600-S-2 Body	01/18/2012	01/18/2010	RFE-121
Aprel Validation Dipole RFE-D-2000-3-2 Body Aprel Validation Dipole RFE-D-BB-S-2 Head	01/12/2012	01/12/2010	235-00801
Aprel Validation Dipole RFE-D-BB-S-2 Body	02/09/2012	02/09/2011	235-00801
Agilent (HP) 437B Power Meter	03/30/2012	03/30/2011	3125U08837
	03/30/2012	03/30/2011	3318A05384
Agilent (HP) 8481B Power Sensor			
Agilent N1911A Power Meter	03/30/2012	03/30/2011	GB45100254
Agilent N1922A Power Sensor	03/30/2012	03/30/2011	MY45240464
Advantest R3261A Spectrum Analyzer	03/30/2012	03/30/2011	31720068
Agilent (HP) 8350B Signal Generator	03/31/2012	03/31/2011	2749A10226
Agilent (HP) 83525A RF Plug-In	03/31/2012	03/31/2011	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/30/2012	03/30/2011	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/31/2012	03/31/2011	2904A00595
Agilent (HP) 8960 Base Station Sim.	03/25/2012	03/25/2011	MY48360364
Anritsu MT8820C	03/23/2012	03/23/2011	6200837710
Aprel Dielectric Probe Assembly	N/A	N/A	0011
Head Equivalent Matter (450 MHz)	N/A	N/A	N/A
Head Equivalent Matter (835/900 MHz)	N/A	N/A	N/A
Head Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Head Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (750 MHz)	N/A	N/A	N/A
Body Equivalent Matter (835/900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (1900 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2450 MHz)	N/A	N/A	N/A
Body Equivalent Matter (2600 MHz)	N/A	N/A	N/A
Body Equivalent Matter (5200 MHz)	N/A	N/A	N/A
Body Equivalent Matter (5800 MHz)	N/A	N/A	N/A

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the EU. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

13. References

- [1] European Union, Directive 1999/519/EC, The limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz), July 1999
- [2] ANSI/IEEE C95.1 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.

Appendix A – System Validation Plots and Data

Test Result for UIM Dielectric Parameter Fri 07/Oct/2011 06:52:25 Freq Frequency (GHz)

Freq	FCC eB	FCC sB	Test e	Test s
0.8050	55.32	0.97	55.16	0.94
0.8150	55.28	0.97	55.10	0.95
0.8250	55.24	0.97	55.06	0.97
0.8350	55.20	0.97	55.01	0.99
0.8450	55.17	0.98	54.96	1.01
0.8550	55.14	0.99	54.92	1.03
0.8650	55.11	1.01	54.87	1.05

SAR Test Report

By Operator : Jay

Measurement Date : 08-Oct-2011

Starting Time : 08-Oct-2011 08:54:53 AM End Time : 08-Oct-2011 09:12:17 AM Scanning Time : 1044 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 450

Type : Dipole

Model : ALS-D-450-S-2

Frequency : 450.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 270 mm
Width : 3.6 mm
Depth : 166.7 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 0.498 W/kg Power Drift-Finish: 0.483 W/kg Power Drift (%) : -3.010

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 450
Frequency : 450.00 MHz
Last Calib. Date : 08-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.59 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

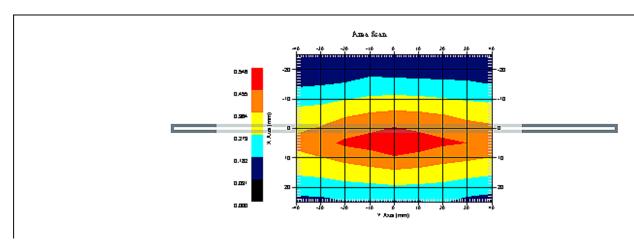
Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

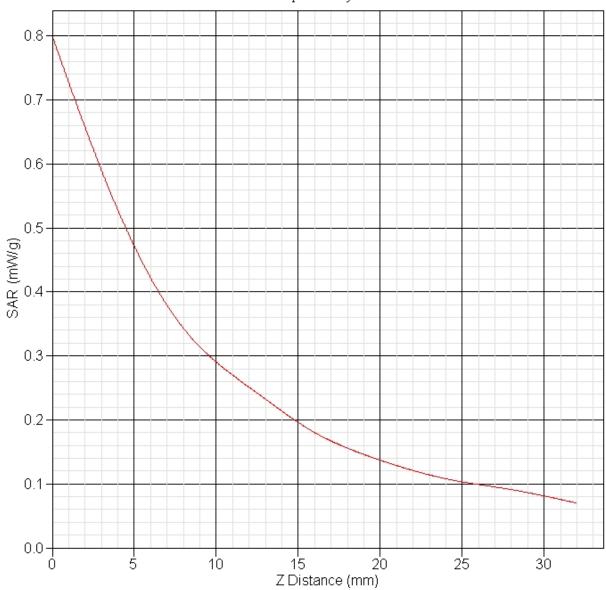

Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Oct-2011
Set-up Time : 11:01:10 AM

Area Scan : 6x9x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch
Separation : 15 mm
Channel : Mid



1 gram SAR value : 0.479 W/kg 10 gram SAR value : 0.322 W/kg Area Scan Peak SAR : 0.537 W/kg Zoom Scan Peak SAR : 0.796 W/kg

SAR-Z Axis

at Hotspot x:5.25 y:-0.17

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 01:00:41 PM End Time : 07-Oct-2011 01:15:49 PM Scanning Time : 908 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 750

Type : Dipole

Model : ALS-D-750-S-2

Frequency : 750.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 180.2 mm
Width : 3.6 mm
Depth : 97.0 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 0.337 W/kg Power Drift-Finish: 0.329 W/kg Power Drift (%) : -2.374

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 656
Frequency : 656.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.75 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

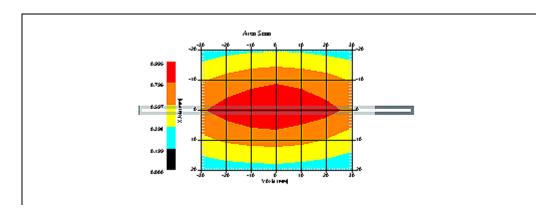
Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 650.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

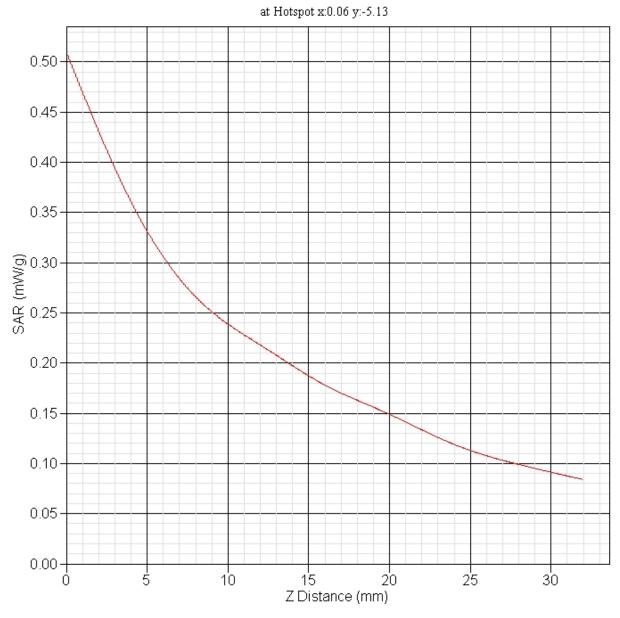
Compression Point: 95.00 mV : 1.56 mm Offset


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 9:21:48 AM

Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Touch
Separation : 15 mm
Channel : Mid

1 gram SAR value : 0.222 W/kg 10 gram SAR value : 0.195 W/kg Area Scan Peak SAR : 0.343 W/kg Zoom Scan Peak SAR : 0.512 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 10:21:11 AM End Time : 07-Oct-2011 10:36:12 AM Scanning Time : 901 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 750

Type : Dipole

Model : ALS-D-750-S-2

Frequency : 750.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 180.2 mm
Width : 3.6 mm
Depth : 97.0 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 1.068 W/kg Power Drift-Finish: 1.045 W/kg Power Drift (%) : -2.152

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 750
Frequency : 750.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.95 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

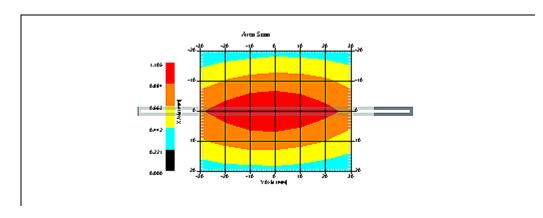
Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 750.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset


Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 8:36:21 AM

Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 15 mm Channel : Mid



1 gram SAR value : 0.889 W/kg 10 gram SAR value : 0.574 W/kg Area Scan Peak SAR : 1.112 W/kg Zoom Scan Peak SAR : 1.568 W/kg

SAR-Z Axis

at Hotspot x:0.20 y:-0.14

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 06:54:19 AM End Time : 07-Oct-2011 07:09:26 AM Scanning Time : 907 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 835

Type : Dipole

Model : ALS-D-835-S-2

Frequency : 835.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 161 mm
Width : 3.6 mm
Depth : 89.8 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 1.038 W/kg Power Drift-Finish: 1.045 W/kg Power Drift (%) : 0.605

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.01 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

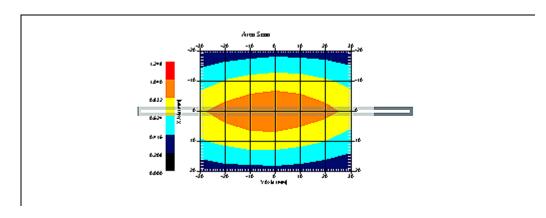
Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

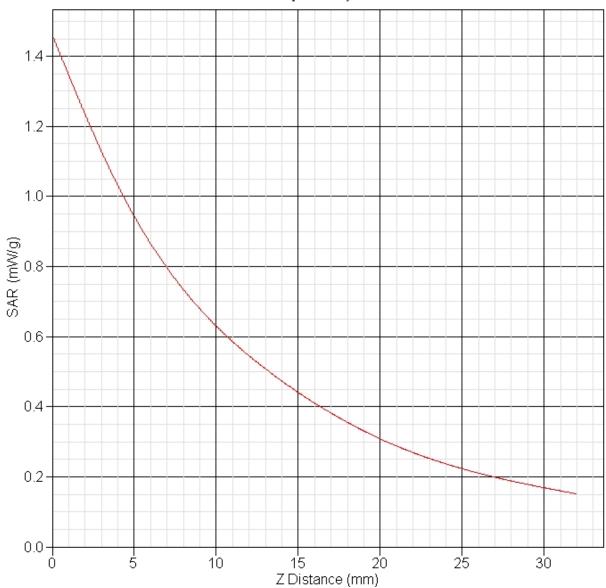


Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 9:21:48 AM
Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 15 mm Channel : Low



1 gram SAR value : 0.951 W/kg 10 gram SAR value : 0.623 W/kg Area Scan Peak SAR: 1.042 W/kg Zoom Scan Peak SAR : 1.461 W/kg

SAR-Z Axis

at Hotspot x:0.21 y:-0.14

Appendix B – SAR Test Data Plots

Note: In all data sheets in Appendix B, the frequency noted in the 'Product Data' section is the frequency band which the device was transmitting. This frequency does not refer to the actual frequency and channel of the test. The channel is listed in the 'Other Data' section of the data sheet as Low, Mid or High. The actual test frequency is listed in Section 12 in each of the data summary sheets.

SAR Test Report

By Operator : Jay

Measurement Date : 08-Oct-2011

Starting Time : 08-Oct-2011 09:19:37 AM End Time : 08-Oct-2011 09:38:23 AM Scanning Time : 1126 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 G51

Frequency : 502.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side B Power Drift-Start : 0.116 W/kg Power Drift-Finish: 0.115 W/kg Power Drift (%) : -0.730

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 500
Frequency : 500.00 MHz
Last Calib. Date : 08-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 56.23 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

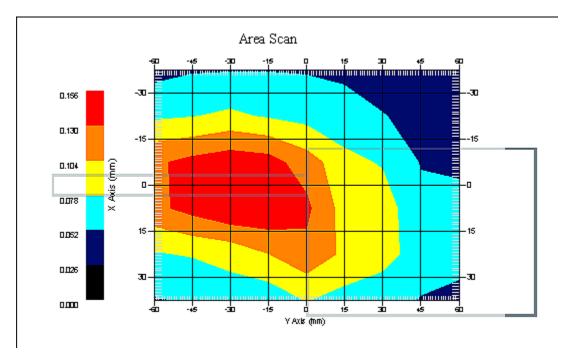
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Oct-2011
Set-up Time : 7:26:57 AM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.163 W/kg 10 gram SAR value : 0.115 W/kg Area Scan Peak SAR : 0.155 W/kg Zoom Scan Peak SAR : 0.210 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 08-Oct-2011

Starting Time : 08-Oct-2011 09:42:05 AM End Time : 08-Oct-2011 10:01:19 AM Scanning Time : 1154 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 G51

Frequency : 502.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side A Power Drift-Start : 0.106 W/kg Power Drift-Finish: 0.102 W/kg Power Drift (%) : -3.771

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 500
Frequency : 500.00 MHz
Last Calib. Date : 08-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 56.23 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

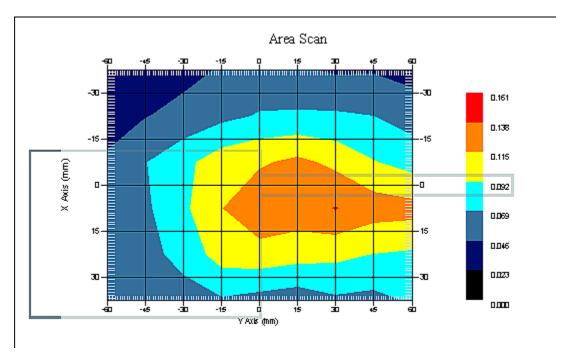
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Oct-2011
Set-up Time : 7:26:57 AM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.123 W/kg
10 gram SAR value : 0.101 W/kg
Area Scan Peak SAR : 0.139 W/kg
Zoom Scan Peak SAR : 0.160 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 08-Oct-2011

Starting Time : 08-Oct-2011 10:07:04 AM End Time : 08-Oct-2011 10:25:39 AM Scanning Time : 1115 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 G51

Frequency : 502.00 MHz Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 22 mm
Depth : 66 mm
Antenna Type : Stub
Orientation : Side D Power Drift-Start : 0.140 W/kg Power Drift-Finish: 0.143 W/kg Power Drift (%) : 1.656

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 500
Frequency : 500.00 MHz
Last Calib. Date : 08-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 56.23 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

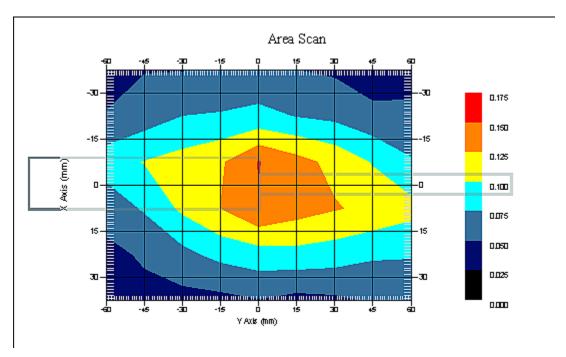
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Oct-2011
Set-up Time : 2:46:54 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.162 W/kg 10 gram SAR value : 0.115 W/kg Area Scan Peak SAR : 0.151 W/kg Zoom Scan Peak SAR : 0.230 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 08-Oct-2011

Starting Time : 08-Oct-2011 11:12:26 AM End Time : 08-Oct-2011 11:31:12 AM Scanning Time : 1126 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 H51

Frequency : 566.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side B Power Drift-Start : 0.085 W/kg Power Drift-Finish: 0.086 W/kg Power Drift (%) : 1.177

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 568
Frequency : 568.00 MHz
Last Calib. Date : 08-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.84 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

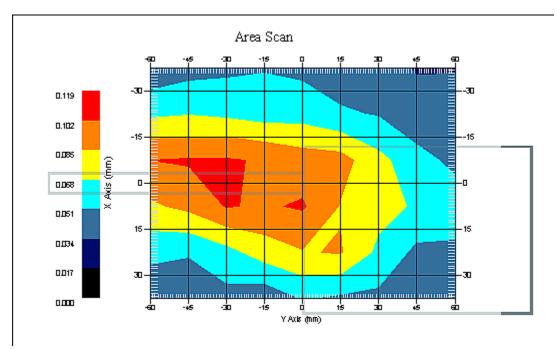
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Oct-2011
Set-up Time : 1:22:41 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.115 W/kg 10 gram SAR value : 0.087 W/kg Area Scan Peak SAR : 0.104 W/kg Zoom Scan Peak SAR : 0.150 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 08-Oct-2011

Starting Time : 08-Oct-2011 11:38:05 AM End Time : 08-Oct-2011 11:56:48 AM Scanning Time : 1123 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 H51

Frequency : 566.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side A Power Drift-Start : 0.120 W/kg Power Drift-Finish: 0.122 W/kg Power Drift (%) : 1.551

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 568
Frequency : 568.00 MHz
Last Calib. Date : 08-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.84 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

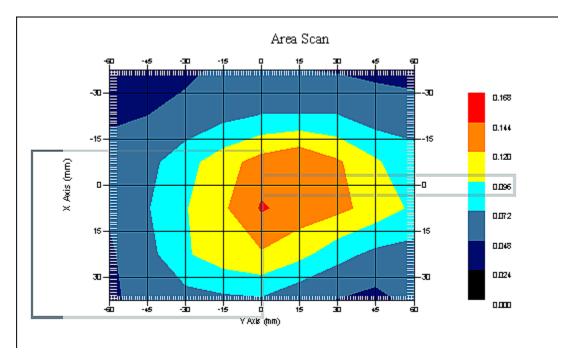
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Oct-2011
Set-up Time : 1:22:41 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.144 W/kg 10 gram SAR value : 0.112 W/kg Area Scan Peak SAR : 0.147 W/kg Zoom Scan Peak SAR : 0.170 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 08-Oct-2011

Starting Time : 08-Oct-2011 12:05:23 PM End Time : 08-Oct-2011 12:24:04 PM Scanning Time : 1121 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 H51

Frequency : 566.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 22 mm
Depth : 66 mm
Antenna Type : Stub
Orientation : Side D Power Drift-Start : 0.138 W/kg Power Drift-Finish: 0.144 W/kg Power Drift (%) : 4.721

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 568
Frequency : 568.00 MHz
Last Calib. Date : 08-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.84 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

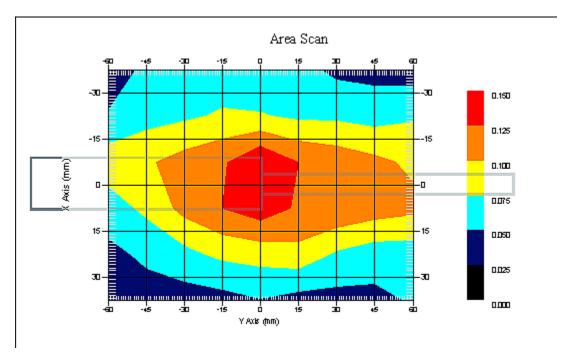
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 08-Oct-2011
Set-up Time : 1:22:41 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.160 W/kg 10 gram SAR value : 0.110 W/kg Area Scan Peak SAR : 0.149 W/kg Zoom Scan Peak SAR : 0.230 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 01:20:42 PM End Time : 07-Oct-2011 01:39:21 PM Scanning Time : 1119 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 K51

Frequency : 638.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side B Power Drift-Start : 0.074 W/kg Power Drift-Finish: 0.072 W/kg Power Drift (%) : -2.109

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 636
Frequency : 636.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.83 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 650.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 12:13:44 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.102 W/kg 10 gram SAR value : 0.079 W/kg Area Scan Peak SAR : 0.105 W/kg Zoom Scan Peak SAR : 0.130 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 01:45:11 PM End Time : 07-Oct-2011 02:03:52 PM Scanning Time : 1121 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 K51

Frequency : 638.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side A Power Drift-Start : 0.077 W/kg Power Drift-Finish: 0.078 W/kg Power Drift (%) : 1.299

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 636
Frequency : 636.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.83 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

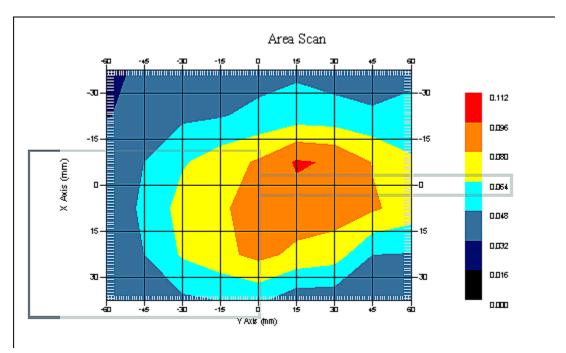
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 650.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 12:13:44 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.110 W/kg 10 gram SAR value : 0.099 W/kg Area Scan Peak SAR : 0.098 W/kg Zoom Scan Peak SAR : 0.130 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 02:08:53 PM End Time : 07-Oct-2011 02:27:25 PM Scanning Time : 1112 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 K51

Frequency : 638.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 22 mm
Depth : 66 mm
Antenna Type : Stub
Orientation : Side D Power Drift-Start : 0.068 W/kg Power Drift-Finish: 0.070 W/kg Power Drift (%) : 2.941

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 636
Frequency : 636.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.83 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. m

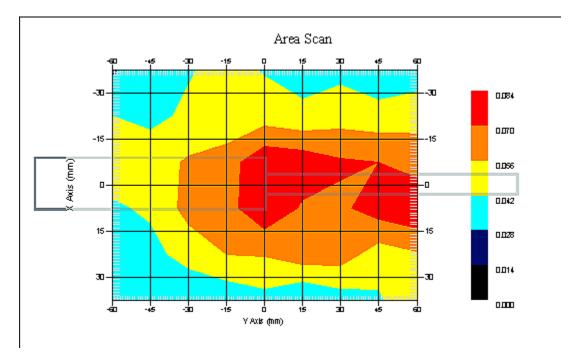
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 650.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 12:13:44 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.082 W/kg 10 gram SAR value : 0.064 W/kg Area Scan Peak SAR : 0.083 W/kg Zoom Scan Peak SAR : 0.120 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 03:18:46 PM End Time : 07-Oct-2011 03:37:28 PM Scanning Time : 1122 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 L51

Frequency : 664.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side B Power Drift-Start : 0.091 W/kg Power Drift-Finish: 0.093 W/kg Power Drift (%) : 2.534

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 666
Frequency : 666.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.70 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

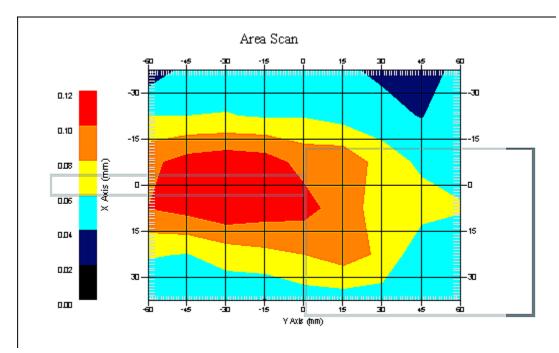
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 650.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 2:00:06 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.127 W/kg 10 gram SAR value : 0.096 W/kg Area Scan Peak SAR : 0.118 W/kg Zoom Scan Peak SAR : 0.180 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 03:42:05 PM End Time : 07-Oct-2011 04:00:39 PM Scanning Time : 1114 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 L51

Frequency : 664.00 MHz Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side A Power Drift-Start : 0.129 W/kg Power Drift-Finish: 0.135 W/kg

Power Drift (%) : 4.577

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 666
Frequency : 666.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.70 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

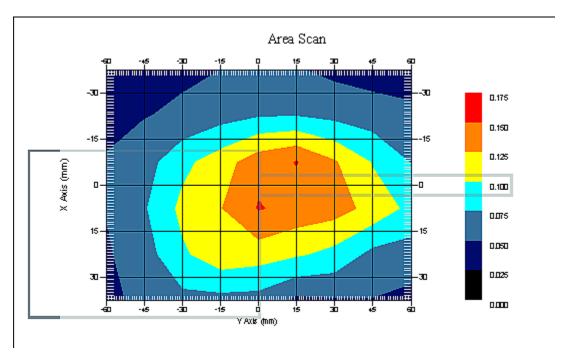
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 650.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 2:00:06 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.154 W/kg 10 gram SAR value : 0.113 W/kg Area Scan Peak SAR : 0.152 W/kg Zoom Scan Peak SAR : 0.200 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 04:06:28 PM End Time : 07-Oct-2011 04:25:02 PM Scanning Time : 1114 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 L51

Frequency : 664.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 22 mm
Depth : 66 mm
Antenna Type : Stub
Orientation : Side D Power Drift-Start : 0.163 W/kg Power Drift-Finish: 0.163 W/kg Power Drift (%) : -0.001

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 666
Frequency : 666.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.70 F/m

Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m

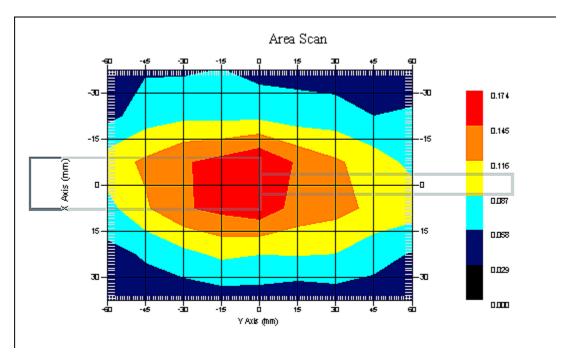
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 650.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 2:00:06 PM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.191 W/kg 10 gram SAR value : 0.125 W/kg Area Scan Peak SAR : 0.174 W/kg Zoom Scan Peak SAR : 0.300 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 10:43:30 AM End Time : 07-Oct-2011 11:02:12 AM Scanning Time : 1122 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 P51

Frequency : 746.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side B Power Drift-Start : 0.129 W/kg Power Drift-Finish: 0.127 W/kg Power Drift (%) : -1.654

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 750
Frequency : 750.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.95 S/m

Density : 1000.00 kg/cu. m

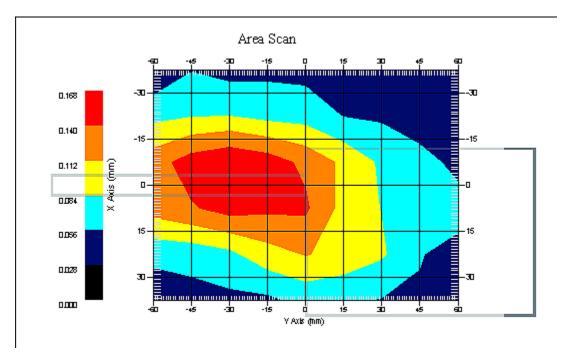
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 750.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 9:21:31 AM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.171 W/kg 10 gram SAR value : 0.121 W/kg Area Scan Peak SAR : 0.167 W/kg Zoom Scan Peak SAR : 0.230 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 11:07:44 AM End Time : 07-Oct-2011 11:26:27 AM Scanning Time : 1123 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 P51

Frequency : 746.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side A Power Drift-Start : 0.152 W/kg Power Drift-Finish: 0.156 W/kg Power Drift (%) : 2.923

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 750
Frequency : 750.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.95 S/m

Density : 1000.00 kg/cu. m

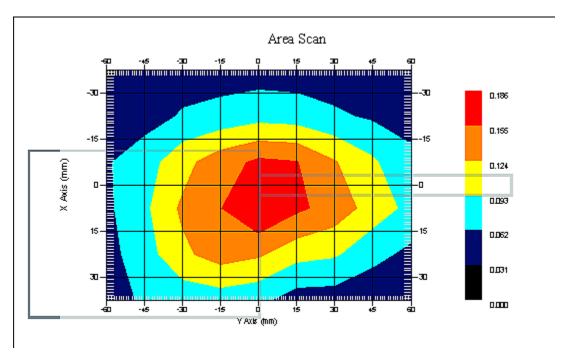
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 750.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 9:21:31 AM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.182 W/kg 10 gram SAR value : 0.130 W/kg Area Scan Peak SAR : 0.186 W/kg Zoom Scan Peak SAR : 0.270 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 11:31:39 AM End Time : 07-Oct-2011 11:50:15 AM Scanning Time : 1116 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 P51

Frequency : 746.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 22 mm
Depth : 66 mm
Antenna Type : Stub
Orientation : Side D Power Drift-Start : 0.221 W/kg Power Drift-Finish: 0.226 W/kg Power Drift (%) : 2.081

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 750
Frequency : 750.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 41.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.95 S/m

Density : 1000.00 kg/cu. m

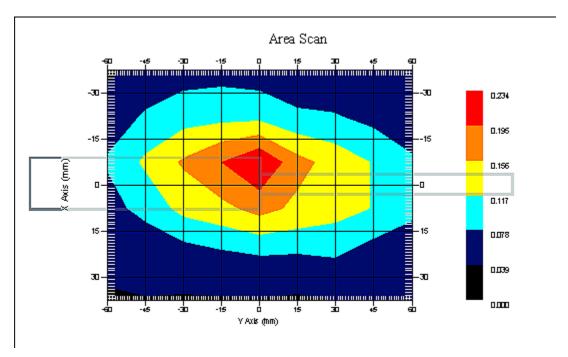
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 750.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.3

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 9:21:31 AM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Side D
Separation : 0 mm
Channel : Mid



1 gram SAR value : 0.215 W/kg 10 gram SAR value : 0.137 W/kg Area Scan Peak SAR : 0.234 W/kg Zoom Scan Peak SAR : 0.330 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 08:11:29 AM End Time : 07-Oct-2011 08:30:08 AM Scanning Time : 1119 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 R51

Frequency : 805.00 MHz Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)

Length : 88 mm

Width : 66 mm

Depth : 22 mm

Antenna Type : Stub

Orientation : Rotated Right 90°

Power Drift-Start: 0.140 W/kg Power Drift-Finish: 0.145 W/kg

Power Drift (%) : 3.563

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 805
Frequency : 805.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.16 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

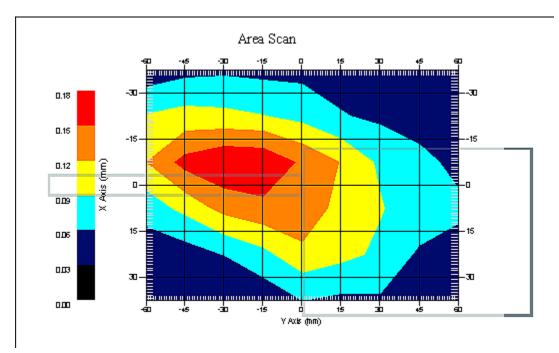
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 7:09:12 AM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side B
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.155 W/kg 10 gram SAR value : 0.110 W/kg Area Scan Peak SAR : 0.179 W/kg Zoom Scan Peak SAR : 0.230 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 08:34:22 AM

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 R51

Frequency : 805.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 66 mm
Depth : 22 mm
Antenna Type : Stub
Orientation : Side A Power Drift-Start : 0.143 W/kg Power Drift-Finish: 0.140 W/kg Power Drift (%) : -1.555

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 805
Frequency : 805.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.16 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

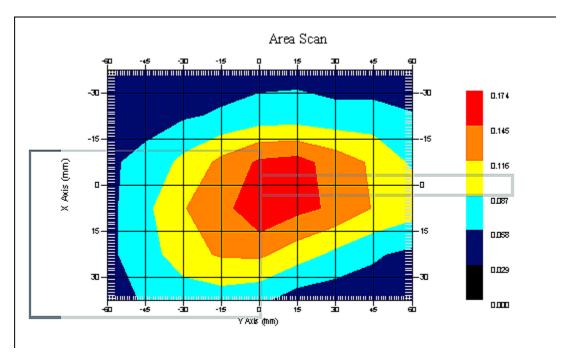
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 7:09:12 AM

Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side A
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.165 W/kg 10 gram SAR value : 0.119 W/kg Area Scan Peak SAR : 0.171 W/kg Zoom Scan Peak SAR : 0.230 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 07-Oct-2011

Starting Time : 07-Oct-2011 08:56:38 AM End Time : 07-Oct-2011 09:15:22 AM Scanning Time : 1124 secs

Product Data

Product Data

Device Name : Shure

Serial No. : Eng 1

Mode : 8PSK Complex Modulation (156.25 kbps)

Model : ULXD1 R51

Frequency : 805.00 MHz

Max. Transmit Pwr : 0.02 W Drift Time : 0 min(s)
Length : 88 mm
Width : 22 mm
Depth : 66 mm
Antenna Type : Stub
Orientation : Side D Power Drift-Start : 0.120 W/kg Power Drift-Finish: 0.126 W/kg Power Drift (%) : 4.852

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 805
Frequency : 805.00 MHz
Last Calib. Date : 07-Oct-2011 Temperature : 20.00 °C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.16 F/m

Sigma : 0.94 S/m

Density : 1000.00 kg/cu. m

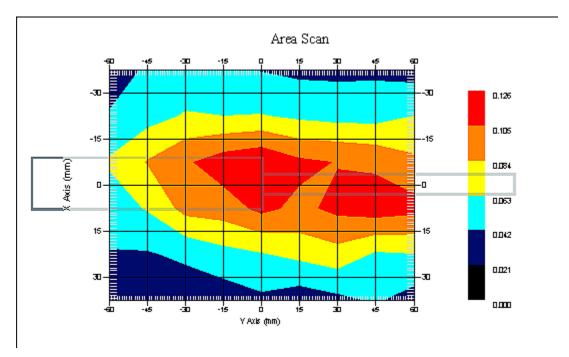
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

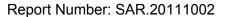
Last Calib. Date: 07-Sep-2011 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.4

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 07-Oct-2011
Set-up Time : 7:09:12 AM


Area Scan : 6x9x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Side D
Separation : 0 mm
Channel : Mid

1 gram SAR value : 0.130 W/kg 10 gram SAR value : 0.089 W/kg Area Scan Peak SAR : 0.125 W/kg Zoom Scan Peak SAR : 0.190 W/kg

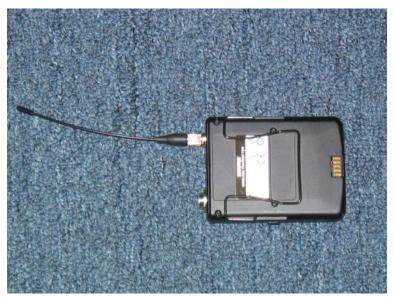
Appendix C – SAR Test Setup Photos

System Body Configuration

Body Tissue Depth

Back Test Position 0 mm Gap

Front Test Position 0 mm Gap



Left Test Position 0 mm Gap

Front of Device

Back of Device

Battery

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: PC1333-1350

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe Record of Calibration

Head and Body

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 217

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole

Project No: RFEL-PC-5620

Calibrated: 7th September 2011 Released on: 7th September 2011

Approved By: Stuart Nicol

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

303 Terry Fox Drive, Suite 102 Kanata, Ontario CANADA K2K 3J1 Division of APREL TEL: (613) 435-8300 FAX: (613) 435-8306 Division of APREL Inc.

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

Calibration Method

Probes are calibrated using the following methods.

<1000MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

>1000MHz

Waveguide* method to determine sensitivity in air and tissue

*Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

References

- IEEE Standard 1528 (2003) including Amendment 1
 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption
 Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
 Techniques
- o EN 62209-1 (2006)
 - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- IEC 62209-2 Ed. 1.0 (2010-03)
 Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz)
- o TP-D01-032-E020-V2 E-Field probe calibration procedure
- o D22-012-Tissue dielectric tissue calibration procedure
- D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes,
 Excluding Antennas, from 9kHz to 40GHz

NCL Calibration Laboratories

Division of APREL Inc.

Conditions

Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 1.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 1.5 \,^{\circ}\text{C}$

Relative Humidity: < 60%

Primary Measurement Standards

Instrument	Serial Number	Cal date
Power meter Anritsu MA2408A	90025437	Nov.4, 2010
Power Sensor Anritsu MA2481D	103555	Nov 4, 2010
Attenuator HP 8495A (70dB)	1944A10711	Sept. 14, 2010
Network Analyzer Anritsu MT8801C	MB11855	Feb. 8, 2011

Secondary Measurement Standards

Signal Generator Agilent E4438C -506 MY55182336 June 7, 2011

Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

NCL Calibration Laboratories

Division of APREL Inc.

Probe Summary

Probe Type: E-Field Probe E020

Serial Number: 217

Frequency: 750MHz

Sensor Offset: 1.56

Sensor Length: 2.5

Tip Enclosure: Composite*

Tip Diameter: < 2.9 mm

Tip Length: 55 mm

Total Length: 289 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Calibration for Tissue (Head H, Body B)

Frequency	Tissue Type	Measured Epsilon	Measured Sigma	Calibration Uncertainty	Tolerance Uncertainty for 5%*	Conversion Factor
450 H	<mark>Head</mark>	<mark>45.31</mark>	<mark>0.91</mark>	<mark>4.1</mark>	<mark>3.6</mark>	<mark>5.8</mark>
450 B	<mark>Body</mark>	<mark>56.77</mark>	<mark>0.99</mark>	<mark>4.1</mark>	<mark>3.6</mark>	<mark>6.0</mark>
650 B	<mark>Body</mark>	57.42	<mark>0.91</mark>	<mark>3.96</mark>	<mark>3.5</mark>	<mark>6.2</mark>
750 H	Head	X	X	X	X	X
750 B	<mark>Body</mark>	<mark>55.54</mark>	<mark>0.94</mark>	<mark>3.94</mark>	<mark>3.4</mark>	<mark>6.3</mark>
835 H	<mark>Head</mark>	<mark>42.5</mark>	<mark>0.93</mark>	<mark>3.5</mark>	<mark>3.4</mark>	<mark>6.4</mark>
835 B	<mark>Body</mark>	<mark>56.37</mark>	<mark>0.954</mark>	<mark>3.5</mark>	3.4	<mark>6.4</mark>
900 H	<mark>Head</mark>	<mark>41.89</mark>	<mark>1.0</mark>	<mark>3.5</mark>	<mark>3.4</mark>	<mark>6.1</mark>
900 B	<mark>Body</mark>	53.68	<mark>1.05</mark>	<mark>3.5</mark>	<mark>3.4</mark>	<mark>6.1</mark>
1450 H	Head	X	X	X	X	Χ
1450 B	Body	X	X	X	X	X
1500 H	Head	X	X	X	X	X
1500 B	Body	X	X	X	X	Χ
1640 H	Head	<mark>39.0</mark>	<mark>1.25</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5.2</mark>
1640 B	<mark>Body</mark>	52.03	<mark>1.39</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5.0</mark>
1735 H	Head	X	X	X	X	X
1735 B	<mark>Body</mark>	<mark>51.68</mark>	<mark>1.5</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5.2</mark>
1800 H	<mark>Head</mark>	<mark>38.38</mark>	<mark>1.39</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>4.9</mark>
1800 B	<mark>Body</mark>	<mark>51.54</mark>	<mark>1.56</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>5.1</mark>
1900 H	<mark>Head</mark>	<mark>38.4</mark>	<mark>1.43</mark>	3.5	<mark>2.7</mark>	<mark>4.9</mark>
1900 B	<mark>Body</mark>	<mark>52.08</mark>	<mark>1.59</mark>	<mark>3.5</mark>	<mark>2.7</mark>	<mark>4.8</mark>
2000 H	Head	X	X	X	X	X
2000 B	Body	X	X	X	X	X
2100 H	Head	X	X	X	X	X
2100 B	Body	X	X	X	X	X
2300 H	Head	X	X	X	X	X
2300 B	Body	X	X	X	Х	X
2450 H	<mark>Head</mark>	<mark>38.2</mark>	<mark>1.82</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>3.91</mark>
2450B	<mark>Body</mark>	<mark>51.74</mark>	<mark>1.96</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>3.94</mark>
2600 H	Head	X	X	X	X	Χ
2600 B	<mark>Body</mark>	<mark>51.18</mark>	<mark>2.16</mark>	<mark>3.5</mark>	<mark>3.5</mark>	<mark>4.0</mark>
3000 H	Head	X	X	X	X	X
3000 B	Body	X	X	X	X	X
3600 H	Head	X	X	X	X	X
3600 B	Body	X	X	X	X	X
5200 H	Head	X	X	X	Х	X
5200 B	Body	Х	X	X	Х	Х
5600 H	Head	Х	Х	X	Х	Х
5600 B	Body	Х	Х	X	Х	Х
5800 H	Head	Х	Х	X	Х	Х
5800 B	Body	X	Х	Х	Х	Х

Page 5 of 10

NCL Calibration Laboratories

Division of APREL Inc.

Boundary Effect:

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

Spatial Resolution:

The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe.

The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

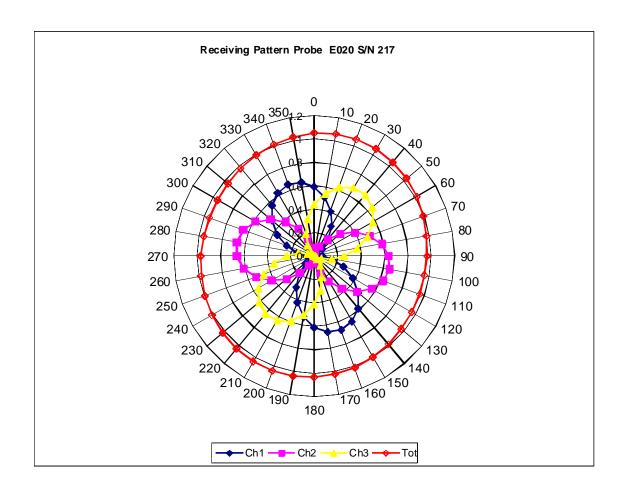
DAQ-PAQ Contribution

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

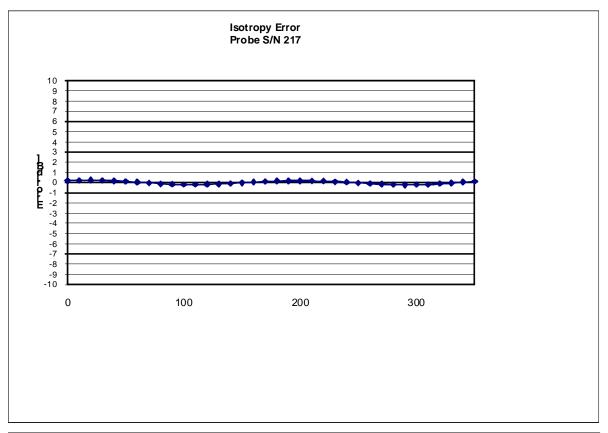
For a distance of 0.58mm the worst case evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.

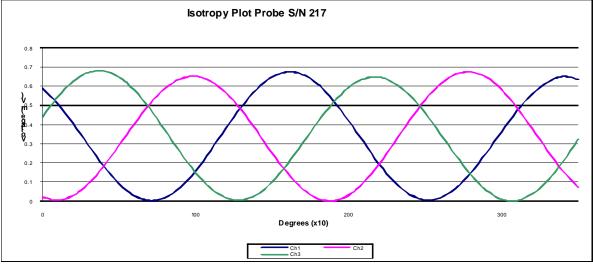
NOTES:


*The maximum deviation from the centre frequency when comparing the lower to upper range is listed.

The probe was received in good condition.

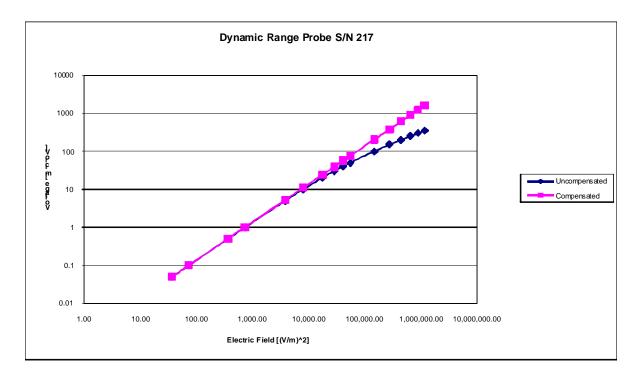
Probe was calibrated on new DAC-PAQ.


Division of APREL Inc.


Receiving Pattern Air

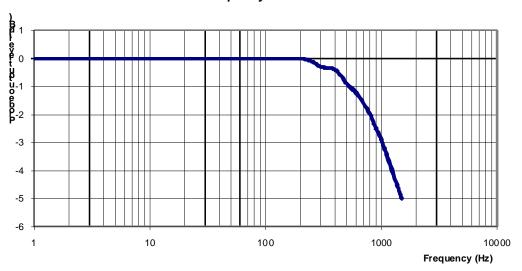
Division of APREL Inc.

Isotropy Error



Isotropicity Tissue:

0.12 dB


Dynamic Range

Division of APREL Inc.

Video Bandwidth

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2011.

Appendix E – Dipole Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1183 Project Number: RFEB-5554

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-450-S-2
Frequency: 450 MHz
Serial No: RFE-362

Customer: RFEL Body Calibration

Calibrated: 19th January 2011 Released on: 19th January 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole RFE-362 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

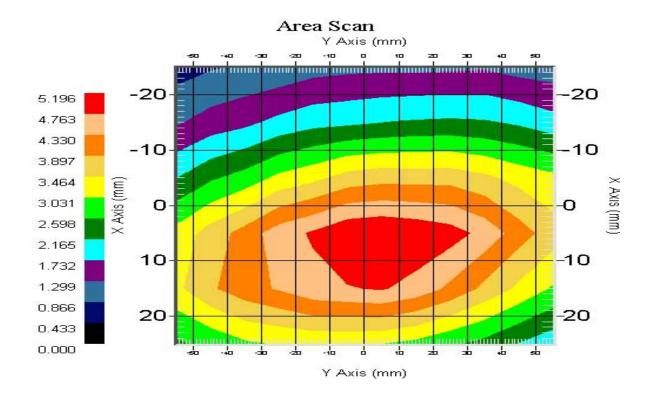
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 270.0 mm **Height:** 166.7 mm

Electrical Specification

SWR: 1.024 U Return Loss: -38.354 dB Impedance: 49.416 Ω

System Validation Results Body

Frequency	1 Gram	10 Gram	Peak
450 MHz	5.05	3.41	7.5

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole RFE-362. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole RFE-362 was a re-calibration.

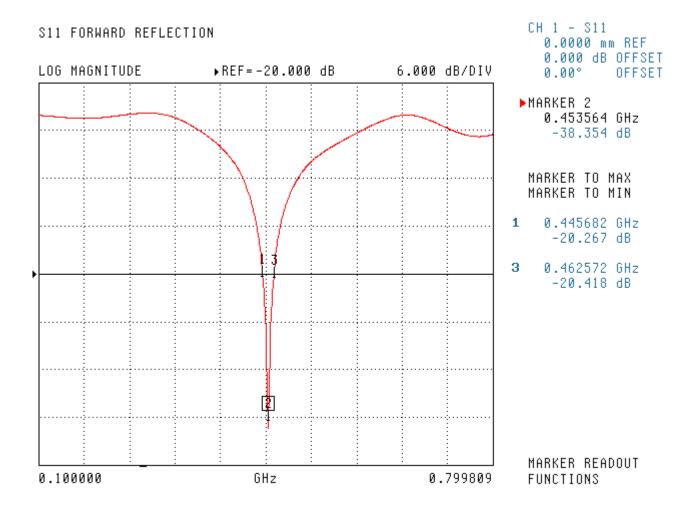
Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

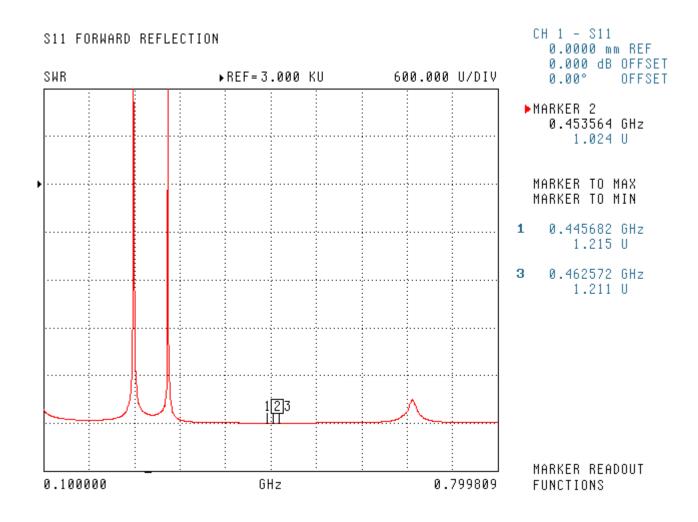
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
280.0 mm	166.7 mm	280.0 mm	166.0 mm

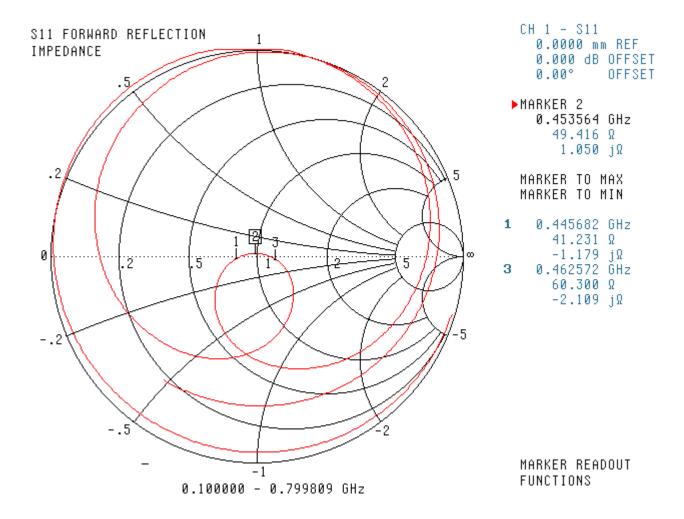
Tissue Validation


Body Tissue 450MHz	Measured
Dielectric constant, ε _r	56.7
Conductivity, σ [S/m]	0.94

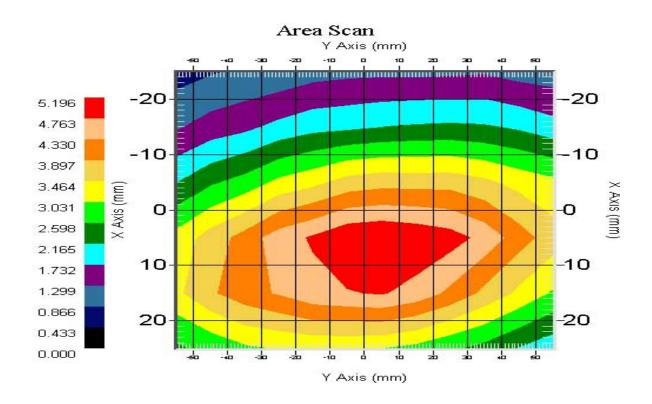
Electrical Calibration


Test	Result
S11 R/L	-38.354 dB
SWR	1.024 U
Impedance	49.416 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
450 MHz	5.05	3.41	7.5

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1178
Project Number: RFEL-DC-750B-5548

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-750-S-2
Frequency: 750 MHz Body
Serial No: 177-00501

Customer: RFEL Body Calibration

Calibrated: 15th November 2010 Released on: 16th November 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 177-00501 was a new calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

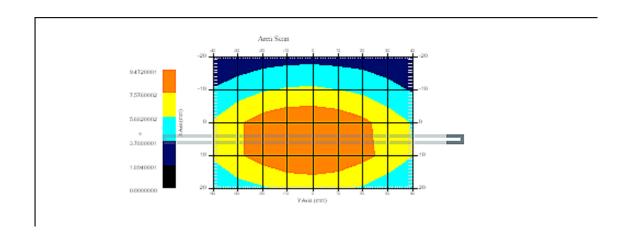
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 180.2 mm **Height:** 97.0 mm

Electrical Specification

SWR: 1.098U Return Loss: -27.875 dB Impedance: 52.754Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
750 MHz	8.7	5.64	12.9

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 177-00501. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 2225.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure

SSI-TP-016 Tissue Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole 177-00501 was a new calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration uncertainty

The calibration uncertainty for the dipole is made up of various parameters presented below.

Mechanical1%Positioning Error1.22%Electrical1.7%Tissue2.2%Dipole Validation2.2%

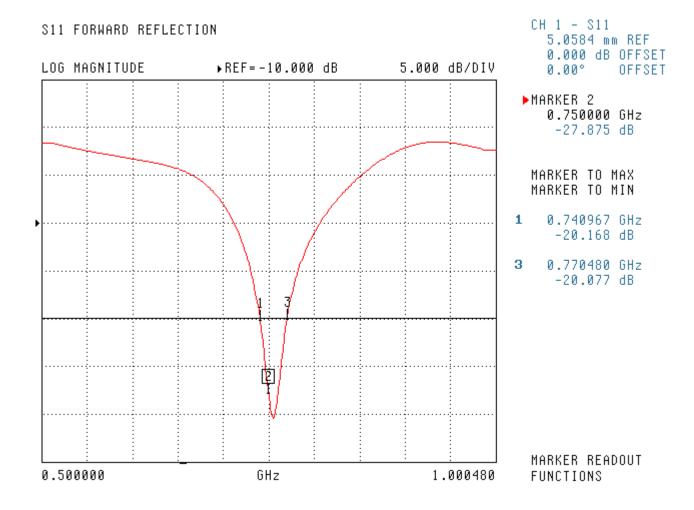
TOTAL 8.32% (16.64% K=2)

Dipole Calibration Results

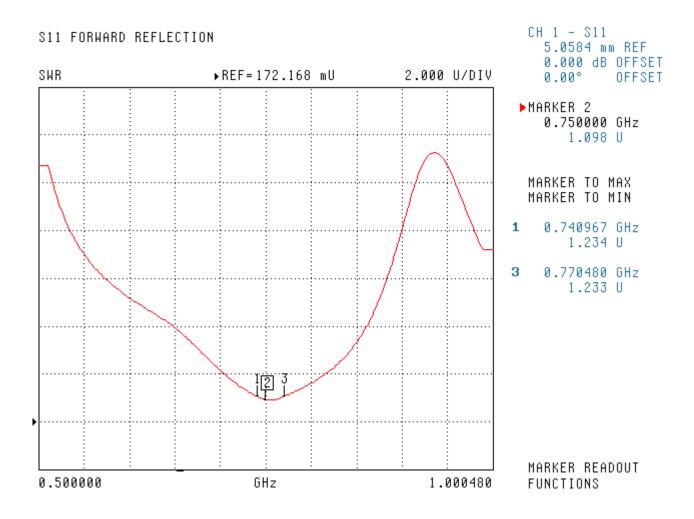
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
180.0 mm	97.8 mm	180.2 mm	97.0 mm

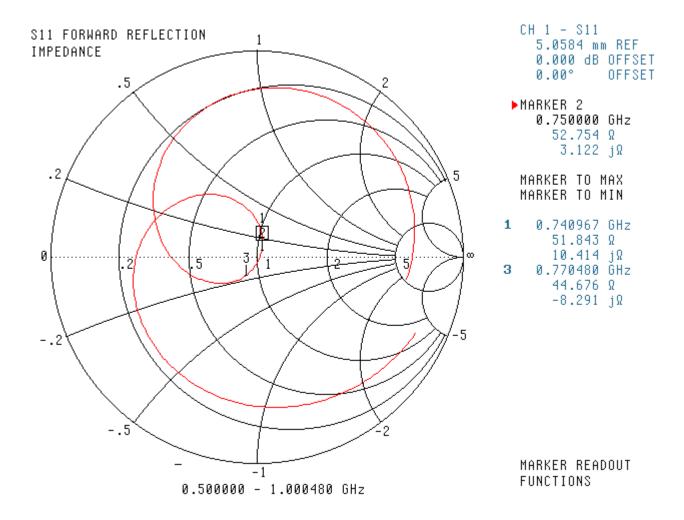
Tissue Validation


Body Tissue 750MHz	Measured
Dielectric constant, ε _r	57.07
Conductivity, σ [S/m]	1.02

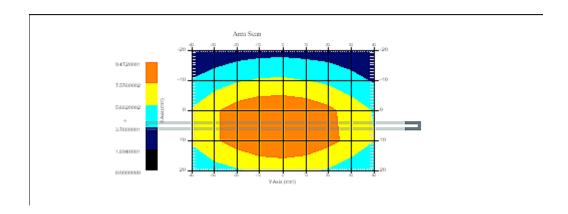
Electrical Calibration


Test	Result
S11 RL	-27.875dB
SWR	1.098U
Impedance	52.754 Ω

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
750 MHz	8.7	5.64	12.9

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1179
Project Number: RFEL-DC-835B-5549

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories Part number: ALS-D-835-S-2 Frequency: 835 MHz

Serial No: 180-00561

Customer: RFEL Body Calibration

Calibrated: 16th November 2010 Released on: 16th November 2010

This Calibration Certificate is Incomplete Unless Accomplanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 180-00561 was a new calibration.

Ambient Temperature of the Laboratory: 22
Temperature of the Tissue: 22

22 °C +/- 0.5°C

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

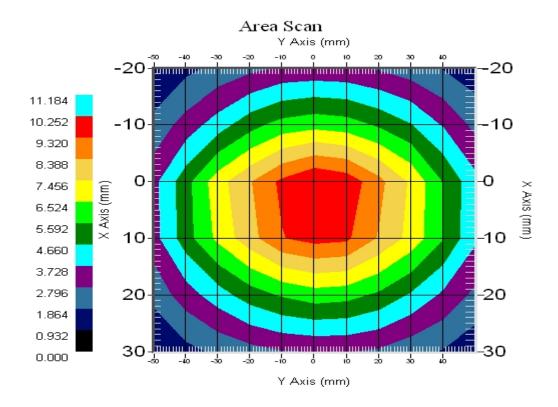
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 161.0 mm **Height:** 89.8 mm

Electrical Specification

SWR: 1.143U **Return Loss:** -24.058 dB **Impedance:** 55.519 Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
835 MHz	9.81	6.3	14.87

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00561. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 2225.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole 180-00561 was a new calibration.

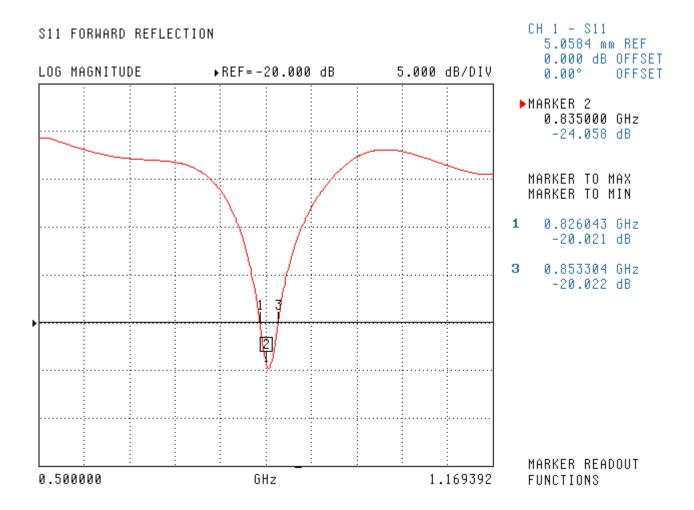
Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

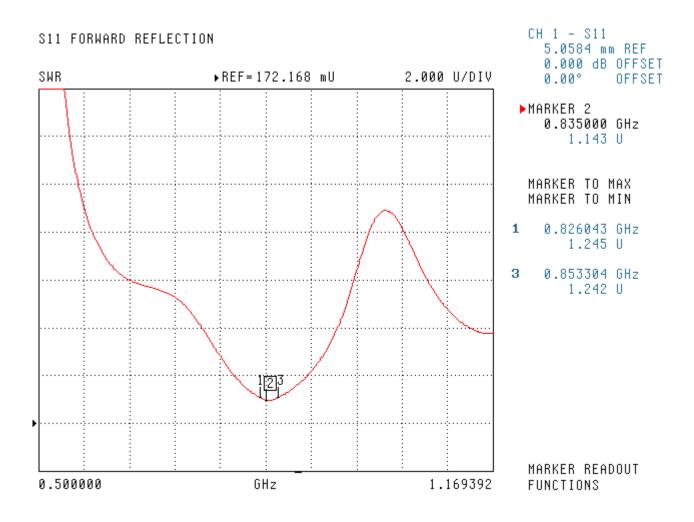
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
161.0 mm	89.8 mm	162.1 mm	89.8 mm

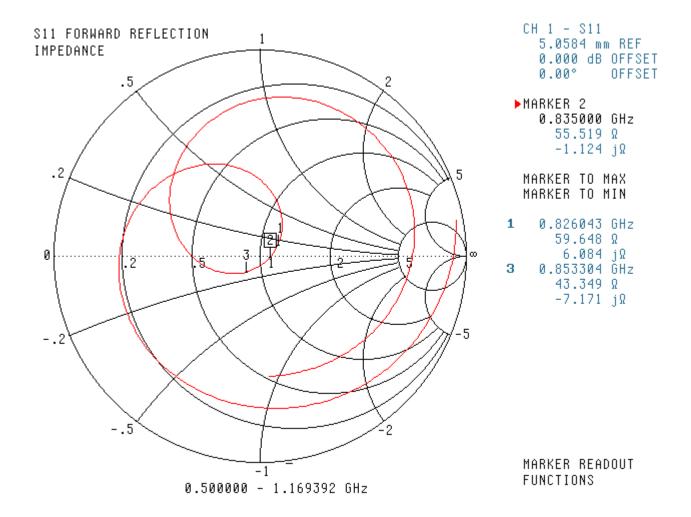
Tissue Validation


Body Tissue 835MHz	Measured
Dielectric constant, ε _r	57.19
Conductivity, σ [S/m]	0.97

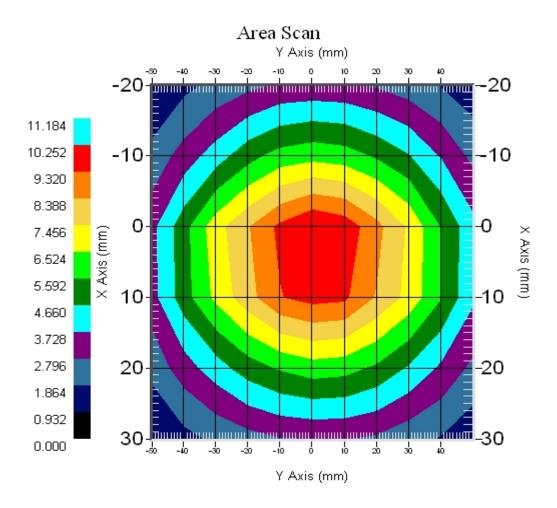
Electrical Calibration


Test	Result	
S11 RL	-24.058dB	
SWR	1.143U	
Impedance	55.519 Ω	

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Body Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
835 MHz	9.81	6.3	14.87

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2010.

Report Number: SAR.20111002

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161