Engineering Test Report No. SEL-043/ULXD2 H50 FCC15C

SHURE

ELECTROMAGNETIC COMPATIBILITY LABORATORY **TEST REPORT**

TEST REPORT TITLE: Electromagnetic Compatibility Tests of the Shure ULXD2 Digital Wireless Transmitter in the H50 Band (534MHz to 598MHz)

TEST ITEM DESCRIPTION:

The Shure ULXD2 is a digital wireless microphone transmitter.

- For: Shure Incorporated 5800 West Touhy Avenue Niles, IL 60714
- Project ID Number: SEL-043/ULXD2 H50 FCC15C
- Date Tested: February 12 thru March 1, 2019

Test Personnel: Jamal Qureshi, Juan Castrejon, and Craig Kozokar

Test Specification:

IC RSS-GEN - General Requirements and Information for the Certification of Radio Apparatus IC RSS-210 - License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment FCC Part 15C, Section 15.236(g) FCC Part 15C, Section 15.236(d)(1) FCC Part 15C, Section 15.236(f)(2) FCC Part 15C, Section 15.236(f)(3)

TEST REPORT BY: Cray Routen

Global Compliance Engineer

3-14-2019

Engineer Project Managing, G.C. 3-14-2019 Position

APPROVED BY:

TABLE OF CONTENTS

0. Report Revision History 1. Introduction	.5
1 Introduction	
	5
1.1. Scope of Tests	
1.2. Purpose	.5
1.3. Deviation, Additions and Exclusions	.5
1.4. EMC Laboratory Identification	.5
1.5. Summary of Tests Performed	.6
2. Applicable Documents	6
3. EUT Setup and Operation	7
3.1 General Description	7
3.2 Test Samples	7
3.3 Operational Mode	7
4 Test Instrumentation	7
5 Procedure	7
6 Other Test Conditions	7
6.1 Test Personnel	7
6.2 Disposition of the EUT	7
7 Results of Tests	7
8 Conclusions	.8
9 Certification	.8
10 Equipment List	.9
11 Appendix A	.0
12 Appendix B	21
13 Appendix C	33
14 Appendix D	41
15 Appendix E	44

Note: This report shall not be reproduced, except in full, without the written approval of the Shure Incorporated Electromagnetic Laboratory (SEL). Total Page Count is 51.

LIST OF APPENDICIES

APPENDIX	TEST DESCRIPTION
А	Necessary Bandwidth, Frequency Offset, Maximum Bandwidth
В	Radiated Spurious Emissions
C	Maximum Rated Power
D	Frequency Tolerance
E	Conducted Spurious Emissions at the Antenna Port

REPORT REVISION HISTORY

Revision	Date	Description
0	March 6, 2019	Initial release
1	March 6, 2019	Revised ISED Canada 99% Bandwidth measurement
		statement.
2	March 14, 2019	Revised EN300422 standard used.

1. INTRODUCTION

1.1. Scope of Tests

This report presents the results of testing per FCC Part 15C, Section 15.236(g), Section 15.236(d)(1), Section 15.236(f)(2), Section 15.236(f)(3), FCC OET Basic Certification Requirements for Wireless Microphones, FCC Part 2.1051, RSS-Gen, and RSS-210. The following data was taken following the measurement method as described in the document section(s) listed on page 1 of this document. Provided is the data for the test sample. Also included is a summary of the measurements made and a description of the measurement setup. The test samples meet the requirements of the above standards. The equipment under test (EUT) contained a transmitter that was designed to transmit in the UHF TV frequency bands shown in Table 1.

Model	Band	Frequency (MHz)	Output Power (mW)
ULXD1	H50	534 to 598	1, 10, 20

Table 1. EUT Frequencies and Power Levels

1.2. Purpose

This series of testing was performed to determine if the test item would meet the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(2), Section 15.236(f)(3), the FCC OET Basic Certification Requirements for Wireless Microphones, FCC Part 2.1051 RSS-Gen, and RSS-210.

1.3 Deviations, Additions and Exclusions

None

1.4 EMC Laboratory Identification

The electromagnetic compatibility tests were performed at the Shure Electromagnetic Laboratory, Shure Incorporated, 5800 West Touhy Ave, Niles, Illinois 60714-4608. This laboratory is registered with Industry Canada as Site # 616A-1. The Shure Electromagnetic Laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP).

The NVLAP Lab Code is: 200946-0.

1.5 Summary of Tests Performed

The following electromagnetic compatibility tests (Table 2) were performed on the test item in accordance with ETSI specifications.

			y or costs periornica		
FCC Part 15C	Description	EUT	Tested Frequency in MHz	Appendix	Test Results
Test Spec		Firmware			
15.236(g)	Necessary Bandwidth	2.3.30.0	470.125, 502.050, 534.000	А	Pass
15.236(f)(2)	Maximum Bandwidth	2.3.30.0	470.125, 502.050, 534.000	А	Pass
15.236(g)	Radiated Spurious Emissions	2.3.30.0	470.125, 502.050, 534.000	В	Pass
15.236(d)(1)	Maximum Rated Power	2.3.30.0	470.125, 502.050, 534.000	С	Pass
15.236(f)(3)	Frequency Tolerance	2.3.30.0	470.125, 502.050, 534.000	D	Pass
2.1015	Conducted Spurious Emissions	2.3.30.0	470.125, 502.050, 534.000	E	Pass

Table 2. Summary of tests performed

2 APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

FCC Part 15C, Section 15.236(g)

FCC Part 15C, Section 15.236(d)(1)

FCC Part 15C, Section 15.236(f)(2)

FCC Part 15C, Section 15.236(f)(3)

FCC Title 47, Chapter I, Subchapter A, Part 2 – Frequency Allocations and Radio Treaty Matters, General Rules and Regulations, Subpart J – Equipment Authorization Procedures

EN 300 422-1 V1.4.2 (2011-08), "Electromagnetic compatibility and Radio spectrum Matters (ERMM); Wireless Microphones in the 25 MHz to 3 GHz frequency range; Part 1: technical characteristics and methods of measurement"

ANSI C63.4 (2014), "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

"Federal Communications Commission Office of Engineering and Technology, Laboratory Division BASIC CERTIFICATION REQUIREMENTS FOR WIRELESS MICROPOHONES" Dated December 13, 2017

RSS-Gen Issue 5, "General Requirements for Compliance of Radio Apparatus"

RSS-210 Issue 9, "Licence-Exempt Radio Apparatus: Category I Equipment"

3 EUT SET-UP AND OPERATION

3.1. General Description

The test sample used was Shure ULXD1 digital wireless microphone transmitter. The EUT was arranged and tested per individual Appendices.

3.2 Test Sample

The following product sample was tested:

0	
Band	Serial Numbers
H50	H5x WMrev02 GC SAMPLE

3.3 Operational Mode

The transmit frequency and output power modes shown in the individual appendixes.

4. Test Instrumentation

A list of the test equipment used can be found in Table 10-1. All equipment used was within calibration during and throughout the duration of the tests. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

5. Procedure

The specific test procedures are presented in the individual appendices.

6. Other Test Conditions:

6.1. Test Personnel

All EMC tests were performed by qualified personnel from the Shure EMC Laboratory.

6.2. Disposition of the EUT

The EUTs and all associated equipment were returned to Shure Incorporated upon completion of the tests.

7. Results of Tests:

The results are presented in Appendices. It was found that the EUT meets the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(2), Section 15.236(f)(3), the FCC OET Basic Certification Requirements for Wireless Microphones, FCC 2.1051, RSS-Gen, and.RSS-210

8. Conclusions:

It was determined that the Shure ULXD1 Digital Wireless Microphone Transmitter did fully comply with the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(2), Section 15.236(f)(3) and the FCC OET Basic Certification Requirements for Wireless Microphones, FCC 2.1051, RSS-Gen, RSS-210.

9. **Certification**:

Shure EMC Laboratory certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the EUTs at the test date. Any electrical or mechanical modification made to the EUTs subsequent to the specified test date will serve to invalidate the data and void this certification.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

10. Equipment List

		Т	able 10-1 Tes	t Equipment			
L# or ID	Description	Manufacturer	Model #	Serial #	Frequency Range	Cal Date	Due Date
L23-011-01	3 meter RF Chamber	ETS Lindgren	FACT-3	AJ640	25MHz - 18GHz	8/8/2016	8/8/2019
L23-011-02	Electric Powered Turntable	ETS Lindgren	2088	N/A	N/A	N/A	N/A
L23-011-08	Controller	EMCO	2090	29799	N/A	N/A	N/A
L23-011-09	Antenna Positioner	ETS Lindgren	2071-2	35500	N/A	N/A	N/A
L23-011-15	BiConiLog Antenna	ETS Lindgren	3142C	34790	25MHz-1GHz	6/22/2017	6/22/2019
L23-011-54	EMI Test Receiver	Rohde & Schwarz	ESR26	100220	9kHz-26GHz	11/28/2017	11/28/2019
L23-011-31	EMI/EMS Test Software	Rohde & Schwarz	EMC32	V 9.21.00	N/A	N/A	N/A
L23-011-53	Horn antenna with pre- amplifier	ETS Lindgren	3117-PA	200363	1GHz to 18 GHz	10/16/2017	4/27/2019
L23-011-41	Horn Antenna	ETS Lindgren	3117	123511	1GHz to 18 GHz	5/7/2017	5/7/2019
L23-011-56	High Pass Filter	K&L	11SH10- 940/X10000- 0/0	2	940MHz – 10GHz	10/18/2017	3/31/2019
L23-022-02	Spectrum Analyzer	Rohde & Schwarz	FSW26	103788	9kHz-26GHz	4-24-2018	4-24-2020
L23-022-01	Spectrum Analyzer	Rohde & Schwarz	FSU26	201043	9kHz-26GHz	8/23/2017	8/23/2019
L23-034-02	Temperature Hygrometer	Extech	445703	48254-65	N/A	5/2/2018	5/2/2019
L23-034-04	Temperature Hygrometer	Extech	445703	48254-13	N/A	5/2/2018	5/2/2019
L23-040-03	20dB Attenuator	MCL	BW- N20W5+	N/A	20MHz to 18GHz	5/31/2018	5/31/2020
L23-045-36	RF Power Sensor	ETS-Lindgren	7002-006	151071	10MHz to 6GHz	1-31-2018	1-31-2020
L23-024-01	Frequency Counter	Agilent	53220A	MY50006485	DC to 6GHz	11-27-2018	11-27-2020
L23-034-08	Thermometer	Extech	TM100	13018733	N/A	4-25-2018	04-25-2020
L19-006-01	Temperature Chamber	ESPEC	SU-240	910004211	N/A	4-5-2018	4-5-2019
L23-023-01	RF Signal Generator	Rohde & Schwarz	SMF100A	101553	20Hz to 26.5GHz	8/23/2017	8/23/2019

NECESSARY BANDWIDTH FREQUENCY OFFSET OPERATING BANDWIDTH

PURPOSE

This test was performed to determine if the EUT meets the necessary bandwidth requirements of EN 300 422-1, section 8.3.2., and RSS-210 Annex G, with the EUT operating at 534.000MHz, 566.000MHz, and 598.000MHz.

The testing results show the EUT meets FCC 15C 15.236(f)(2) and RSS-210, operating bandwidth does not exceed 200kHz.

REQUIREMENTS

As stated in EN 300 422-1, section 8.3.2, the emission mask given in section 8.3.2.2 shall not be exceeded.

TEST SETUP AND INSTRUMENTATION

A photograph of the test setup is shown in Figure A-1. The test instrumentation can be determined from Table 10-1.

MEASUREMENT UNCERTAINTY

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. Values of Expanded Measurement Uncertainty (95% Confidence):

Measurement Type	U _{LAB}
Necessary Bandwidth	±0.130 %

U_{lab} = Determined for Shure EMC Laboratory

Since U_{LAB} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

EUT OPERATION

The EUT was powered up and the transmit frequency and power output of the EUT were selected. The EUT was checked for proper operation after it was setup for the test. Testing was conducted with the EUT set to transmit at 534.000MHz, 566.000MHz, and 598.000MHz, at an output power level of 1mW and 20mW. The transmitter was modulated per EN300422-1 V1.4.2 (2011-08), clause 7.1.2.

TEST PROCEDURE

The test procedure followed is shown in EN300422-1 V1.4.2 (2011-08), section 8.3.2.

RESULTS

The necessary bandwidth data is presented on pages 12 and 20. Data is shown on the figures for each transmitter. The figure shows the maximum relative level within the emission mask with modulation. As shown by the test data, the necessary bandwidth of the EUT meets the requirements of EN 300 422-1, section 8.3.3. The RSS-Gen maximum ISED Canada 99% bandwidth measurement was 164 kHz.

The temperature during the testing was 74 degrees F, with relative humidity of 17%.

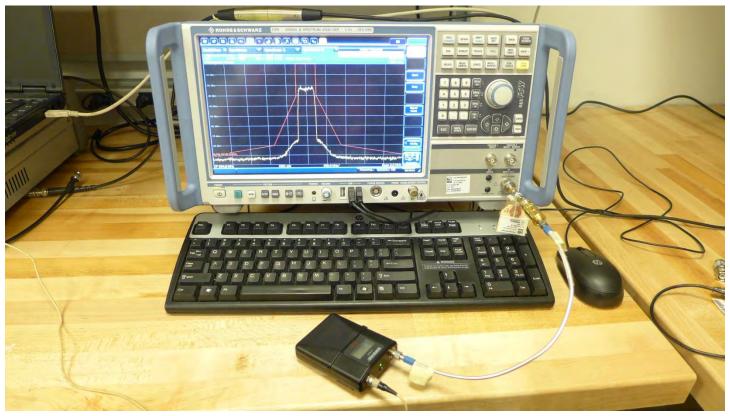


Figure A-1 - Test Setup for Necessary Bandwidth

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

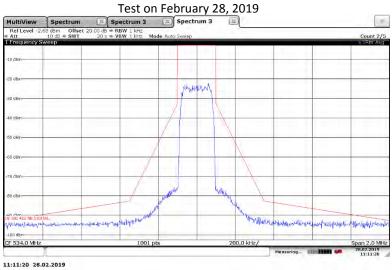
ons:		EN 300 Low Fr Craig K 8.3.3.1	equency, 534 ozokar : Step 1; Car	Necessarv Bandv 4.000MHz, 1mW rier Power	
	Canadanan		on February	28, 2019	
AultiView Ref Level 15.0		Spectrum 2	Spectrum 3	4	
Att Zero Span	9 d8 = SWT	3 s ≠ VBW 1 MHz			Count 4/5
0 d8m				1	MI[1] -2,66 dBm 1,80600
dem					
				1	
0 dBm					
) dBm					
) dBm					
) tiem					
) dBm-					
dam					
d8m					
dBm-		-			
534.0 MHz			1001 pts		300.0 ms/

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Frequency, 534.000MHz, 1mW Craig Kozokar 8.3.3.1: Step 2;Maximum Relative Level Test on February 28, 2019

MultiView	Spectrum	Spectrum 2	Spectru	m 3 🖾			1
Ref Level -2.6	8 dBm Offset 20.00 10 dB = SWT	dB = RBW 1 kHz 3 s = VBW 1 kHz M	ode Auto Sweep				Count 3/5
Frequency St		ST-TOUTRE M					Rm Max
10 dBm							
20 dem-			and have	-lancar		_	
			1. Para Araba	alkali linka j			
30 dBro-			1			-	
40 dBro-		/				_	_
-		-/					
50 dRm					X	-	
60 dBm		1			No		
	1						
70 dBm-				1		1	
80 dBm		- Halfwarth	la r	where	ala.		
N 300 472 NB D1011	AL	WHAT PARTY			What we are		
All philipping	will have a fight with the light	of the stand of the second			warder white the	and plan which being at	a kaliya Manhana
100 dBm						1.00	
F 534.0 MHz		1001 p	ots	100.0 kHz	/ '	_	Span 1.0 MHz 28.92.2019

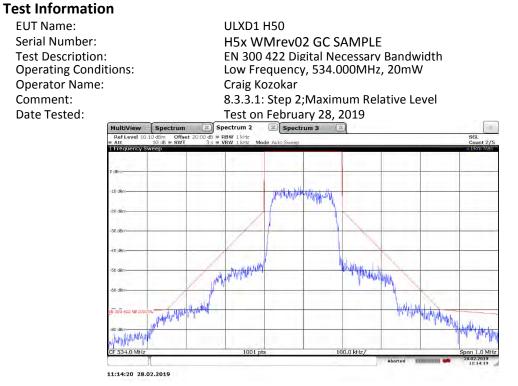
11:09:52 28.02.2019


Appendix A

Test Information

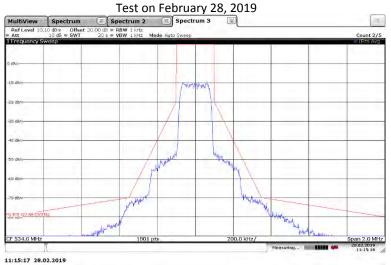
EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Frequency, 534.000MHz, 1mW Juan Castrejon 8.3.3.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor



Test Information

EUT Name: Serial Number: Test Description: Operating Condit Operator Name: Comment: Date Tested:			EN 300 Low Fre Craig K 8.3.3.1	Mrev02 422 Dig equency ozokar : Step 1;		ssary Bandw MHz, 20mV ower	
	MultiView	Spectrum	Spectrum 2	Spectr	um 3 🖭		
	Ref Level 15.0 Att	0 dBm Offset 3	20.00 d8 = RBW 1 MHz 3 s = VBW 1 MHz				Count 5/5
	1 Zero Span						IRm Avg
	-10 dem				DLL		M1[1] 10.10 dBm 1.80600 s
	5						
	0 dBm				· · · · · · · · · · · · · · · · · · ·		
	-10 dem						
	and Martin	10.000		1	1		
	-20 dBm						
	Selo Martin						
	-30 dem						
	100 dem						
	-40 dBm-	1					
	-40 0BM-						
	-50 dBm-						
	-Ju nexti-						
	-60 dBm-	1.					
	-ou den-						
	-70 dBm-	11					
	-70.000						
	-80.d8m-						
	, concome						
	CF 534.0 MHz			1001	pts		300.0 ms/
		l.				Measuring	11:12:43
	11:12:44 28.0	2.2019					



Test Information

Date Tested:

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Frequency, 534.000MHz, 20mW Craig Kozokar 8.3.3.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on February 28, 2010

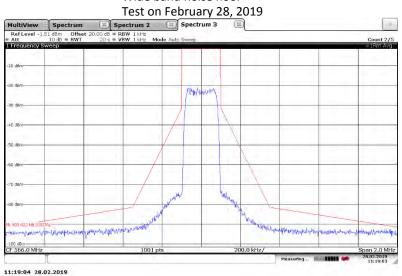
int 5/5 m Max

Appendix A

Test Informatio EUT Name: Serial Number:	n			/Mrev02 GC				
Test Description:			EN 300	422 Digital N	Necessary E	Bandwidth		
Operating Condit Operator Name: Comment: Date Tested:	itions: Middle Frequency, 566.000MHz, 1mW							
	MultiView	Spectrum	Spectrum 2	Spectrum 3	a a a a a a a a a a a a a a a a a a a			
	Ref Level 15.0 Att 1 Zero Span	5 dB ≡ SWT	0.00 dB = RBW 1 MHz 3 s = VBW 1 MHz				Count 5/5	
	10 d8m					M	1[1] -1.52 dBm 1.60600 a	
	×				1	1.1		
	D gBm-				-			
	-10 dBm-							
	-20 dbm+						A	
	-20 050-							
	-30 dBm							
	-40 dem-							
	. (
	-50 cem-							
	-60 d8m							
	-70 dBm-							
		-						
	-80 dsm							
	CF 566.0 MHz			1001 pts	Ме		300.0 ms/	

Test Information

EUT Name: Serial Number: Test Description: Operating Conditi Operator Name: Comment: Date Tested:	ons:		EN 300 Middle Craig k 8.3.3.1	H50 /Mrev0 422 Di Freque ozokar : Step 2 Februa	gital No ency, 5 ;Maxir	ecessar 66.000I num Re	y Band ^y MHz, 1r	mW	
	MultiView	Spectrum	Spectrum 2		rum 3 🎒	23			
	Ref Level -1.	51 dBm Offset 2	0.00 dB = RBW 1 kHz						SGL Count 5/5
	 Att I frequency S 	10 dB = SWT weep	3 s = VBW 1 kHz M	ode Auto Sweep				_	18m Max
						A			1
	-10 dBm			-	-	-			
	1.5			1					
	-20 dBm-			pertyping	4 APRIL POR				
	-30 dBm			11.00	1.1.1				
	-SC CDI								
	-40 dBm-	·	/	1		1	-		
			1						
	-50 dBm-					3			
							1		
	-60 ciBm						1		
	A						1		
	-70 dBm	1	1.54	he l		diana.			
	-80 dBm-		horar and the stand of the stand		11	and the wind of		Hostinularinular	
	EN 300 455 HE DIGT	TAL	and a start of the	· · · · · · · · · · · · · · · · · · ·		100	Maria		
	190 dBth alument fit	all him gent parter	A HAVE A	1	-		"They we	Address of the second second	tion Marthe Little
	SPACEA ALS MORE.	We want to be we a						a mate off the and	www.W.r.str.Md
	-100 d8m	_	1001	nte .	L	100.0 kHz/			Span 1.0 MHz
	ST DODIO MILZ		1001			LOUID MILLY	Moasuring		28.02.2019
	11:17:52 28.0	2 2019							And the second s



Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth Middle Frequency, 566.000MHz, 1mW Craig Kozokar 8.3.3.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

Test Information

EUT Name:			
Serial Number:			
Test Description:	:		
Operating Condi	tions:		
Operator Name:			
Comment:			:
Date Tested:			
	MultiView	Spectrum	Sp
	RefLevel 150 Att	0 dBm Offset 20 5 dB = SWT	0.00 dB = R 3 s = V
	1 Zero Span		
	10 dBm		

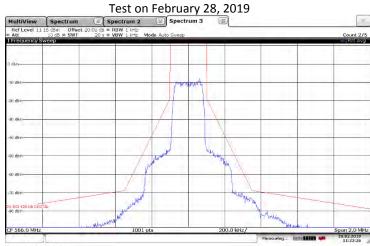
ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Middle Frequency, 566.000MHz, 20mW Craig Kozokar 8.3.3.1: Step 1; Carrier Power Tested on February 28, 2019 Spectrum 2 Spectrum 3 Count 5/5 New 1982

					- 711		. WLL	1.90600 s
10 dBro	1							1,80600 6
D dBm-								
12.21	1					1.1	1	
-10 dBm-		-						
-20 dBm			1					
-30 dBm	-							
-98 µ8m-								
-36 dbm								
-60 dBm-	-	_	-					
-70 dBm								
-10 dBm								
CF 566.0 MHz			1001	pts				300.0 ms/
π					1	Measuring		20.02.2019 11:20:08

11:20:08 28.02.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:



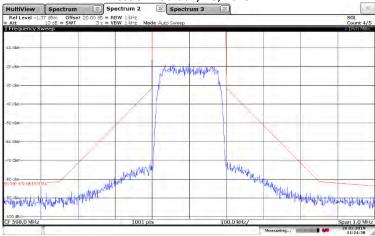
Test Information

Date Tested:

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment:

ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Middle Frequency, 566.000MHz, 20mW Craig Kozokar 8.3.3.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

11:22:26 28.02.2019


Test Information

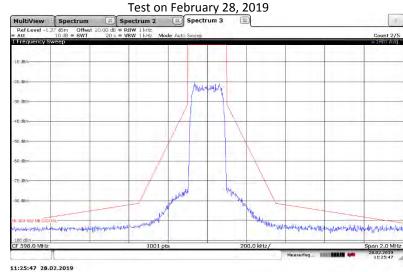
EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

ons:		ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth High Frequency, 598.000MHz, 1mW Craig Kozokar 8.3.3.1: Step 1; Carrier Power Tested on February 28, 2019							
MultiView	Spectrum	Spectrum 2	Spectrum 3						
Ref Level 15.00 Att	3 dBm Offset 2 5 dB = SWT	0.00 dB = RBW 1 MHz 3 5 4 VBW 1 MHz				Count 5/5			
Zero Span 0 dam						M1[1] -1,37 dBn 1,30600 s			
\$Em-				ME					
0 dBm				_					
S. 18									
O dBro-									
0 dBro									
0 dBm									
0 dBm									
ongh (
) dBm									
orsh c	-								
598.0 MHz		1	1001 pts			300.0 ms/			
1:23:40 28.0	2.2019				Measuring, 📲	22 02 2010			

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth High Frequency, 598.000MHz, 1mW Craig Kozokar 8.3.3.1: Step 2;Maximum Relative Level Test on February 28, 2019

11:24:38 28.02.2019

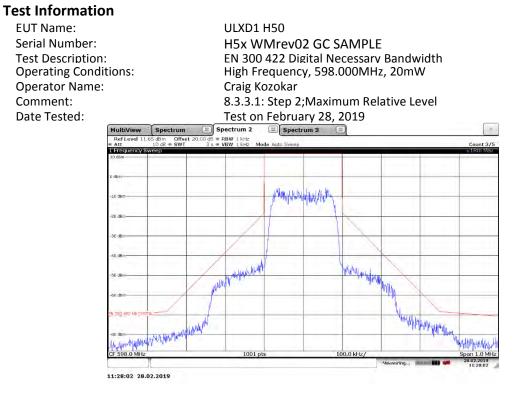


Test Information

Date Tested:

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

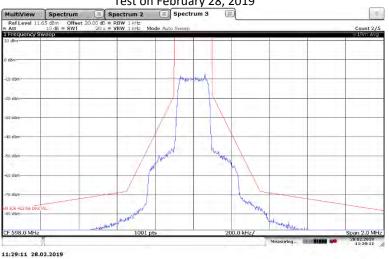
ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth High Frequency, 598.000MHz, 1mW Craig Kozokar 8.3.3.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor



Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth High Frequency, 598.000MHz, 20mW Craig Kozokar B.3.3.1: Step 1; Carrier Power Tested on February 28, 2019



Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD1 H50 H5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth High Frequency, 598.000MHz, 20mW Craig Kozokar 8.3.3.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on February 28, 2019

Date Tested:

Radiated Spurious Emissions

Purpose:

This test performed to determine if the EUT meets the radiated RF emission requirements of the FCC Part 15C section 236(g) and FCC OET Basic Certification Requirements for Wireless Microphones over the frequency range from 30MHz to 6GHz. A Quasi-Peak and Average detectors were used for the measurements. Both FCC Part 15C and IC RSS-Gen require measurements to the 10th harmonic of the carrier.

Requirements:

As stated in FCC 15C section 236(g), the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G, Compliance for spurious emission requirements shall be demonstrated using the applicable measurement procedures of ETSI EN 300 422-1. Compliance with the emission limits shall be demonstrated using a QP detector below 1GHz and a RMS Average detector above 1GHz. Emissions shall be investigated up to the 10th harmonic of the fundamental.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Measurement Type	U _{lab}	U _{ETSI}
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.24 dB	6.00 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 13 GHz)	4.56 dB	6.00 dB

Values of Expanded Measurement Uncertainty (95% Confidence)

U_{lab =} Determined for Shure EMC Laboratory

U_{ETSI =} From ETSI EN 300 422-1 Table 10

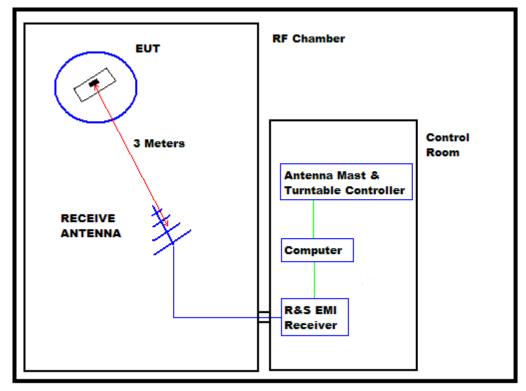
Since U_{lab} is less than or equal to U_{ETSI} :

Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
 Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

Test Setup and Instrumentation:

A Shure TQG Microphone was plugged into the EUT microphone socket. Photographs of the test setup are shown in Figure B 1 and Figure B 2. The test instrumentation can be determined from Table 10-1.

EUT Operation:


The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. The EUT was checked for proper operation after it was setup on the test table. For radiated spurious emissions the testing was performed with the EUT set to the low, middle, and high frequencies with RF power output of 1mW and 20mW.

Specific Test Procedures:

All tests were performed in a 28ft. x 20ft. x 18.5ft. 3m semi-anechoic test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2003 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All power lines and signal lines entering the enclosure pass through filters on the enclosure wall. The power line filters prevent extraneous signals from entering the enclosure on these leads.

BLOCK DIAGRAM OF SHIELDED ENCLOSURE

Preliminary radiated measurements were performed to determine the frequencies where the significant emissions might be found. With the EUT at one set position and the measurement antenna at a set height (i.e. without maximizing), the radiated emissions were measured using a peak detector and automatically plotted. The BiConiLog measuring antenna was positioned at a 3 meter distance from the EUT for below 1GHz testing, and a double ridged waveguide antenna above 1GHz testing.

All significant broadband and narrowband signals found in the preliminary sweeps were then measured using a peak detector at a test distance of 3 meters. The measurements were made with a BiConiLog antenna over the frequency range of 30 MHz to 1 GHz, and a double ridged waveguide antenna over the frequency range of 1 GHz to 7 GHz.

To ensure that maximum emission levels were measured, the following steps were taken:

- i. The EUT was rotated so that all of its sides were exposed to the receiving antenna.
- ii. Since the measuring antennas are linearly polarized, both horizontal and vertical field components were measured.
- iii. The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, another antenna was set in place of the EUT and connected to a calibrated signal generator. (A tuned dipole was used for all measurements below 1GHz and a double ridged waveguide antenna was used for all measurements above 1GHz.) The output of the signal generator was adjusted to match the received level at the EMI receiver. The signal level was recorded. The reading was corrected to compensate for cable loss and antenna gain.

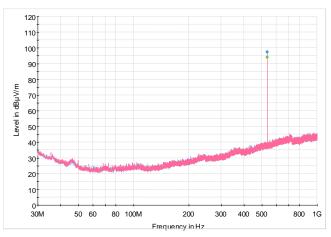
Results:

The plots of the peak preliminary radiated voltage levels in the graphs on page 24 thru page 29. The ERP measurements are shown on pages 30 thru page 32. All emissions measured from the EUT were within the ETSI EN 300 422-1 specification limits.

The temperature during the testing in the RF Chamber was 73 degrees F, with relative humidity of 17%.

Figure B 1: ULXD1 Transmitter Test Setup

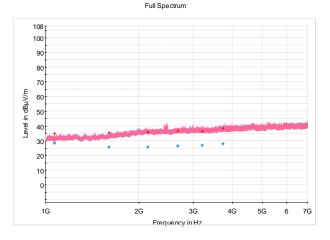
Figure B 2: ULXD1 Transmitter Test Setup


SHURE Radiated RF Emissions Test Report

Common Information

Test Description:
EUT:
Serial Number:
Operating Frequency:
RF Power Level
Tester Name:
Date Tested

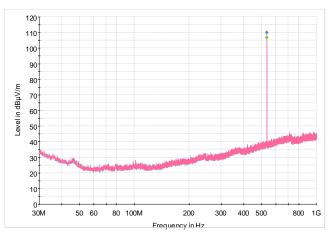
FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Low Frequency 534.000MHz 1mW Jamal Qureshi Tested on February 14, 2019


Full Spectrum

SHURE Radiated RF Emissions Test Report

Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Low frequency 534.000MHz 1mW Jamal Qureshi Tested on February 22, 2019


SHURE Radiated RF Emissions Test Report

Common Information

Test Description:
EUT:
Serial Number:
Operating Frequency:
RF Power Level
Tester Name:
Date Tested


FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Low Frequency 534.000MHz 20mW Jamal Qureshi Tested on February 14, 2019

Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Low Frequency 534.000MHz 20mW Jamal Qureshi Tested on February 22, 2019

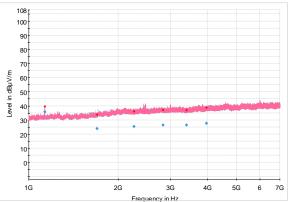
Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

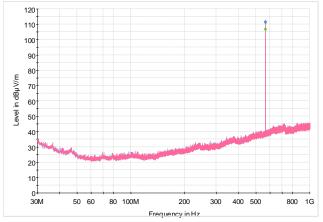
SHURE Radiated RF Emissions Test Report


FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Middle Frequency 566.000MHz 1mW Jamal Qureshi Tested on February 14, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

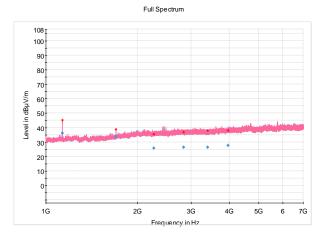
Common Information Test Description:

EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Middle Frequency 566.000MHz 1mW Jamal Qureshi Tested on February 22, 2019 Full Spectrum



SHURE Radiated RF Emissions Test Report

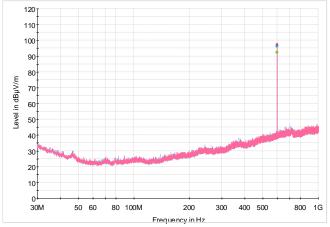
Common Information


Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Middle Frequency 566.000MHz 20mW Jamal Qureshi Tested on February 14, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

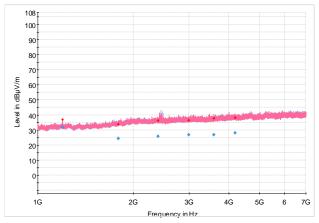
Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 H50 H5x WMrev02 GC SAMPLE Middle Frequency 566.000MHz 20mW Jamal Qureshi Tested on February 22, 2019



SHURE Radiated RF Emissions Test Report

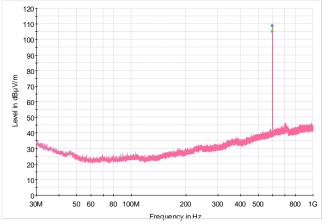
Common Information


Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 H50 H5x WMrev02 GC SAMPLE High Frequency 598.000MHz 1mW Jamal Qureshi Tested on February 14, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

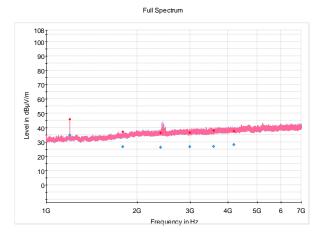
Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 H50 H5x WMrev02 GC SAMPLE High Frequency 598.000MHz 1mW Jamal Qureshi Tested on February 22, 2019 Full Spectrum



SHURE Radiated RF Emissions Test Report

Common Information


Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 H50 H5x WMrev02 GC SAMPLE High Frequency 598.000MHz 20mW Jamal Qureshi Tested on February 14, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 H50 H5x WMrev02 GC SAMPLE High Frequency 598.000MHz 20mW Jamal Qureshi Tested on February 22, 2019

Date:	February 25, 2019
EUT:	ULXD1
Band:	H50
Serial Number:	H5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Frequency 534.000MHz at 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
534.000	QP	V	97.41	1.32	0.00	2.55		
1068.000	Average	V	28.28	-66.08	3.37	3.53	-66.24	-30
1602.000	Average	V	25.55	-68.05	6.16	4.06	-65.95	-30
2136.000	Average	V	25.58	-76.79	5.41	4.58	-75.96	-30
2670.000	Average	V	26.36	-76.95	6.48	4.97	-75.44	-30
3204.000	Average	V	26.90	-76.65	7.47	5.36	-74.52	-30
3738.000	Average	V	27.78	-77.10	8.42	6.05	-74.73	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	February 25, 2019
EUT:	ULXD1
Band:	H50
Serial Number:	H5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Frequency 534.000MHz at 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
534.000	QP	V	110.00	13.9	0.00	2.55		
1068.000	Average	V	25.62	-69.3	3.37	3.53	-69.46	-30
1602.000	Average	V	37.93	-53.6	6.16	4.06	-51.50	-30
2136.000	Average	V	25.56	-76.9	5.41	4.58	-76.07	-30
2670.000	Average	V	26.39	-76.8	6.48	4.97	-75.29	-30
3204.000	Average	V	26.80	-76.7	7.47	5.36	-74.59	-30
3738.000	Average	V	27.79	-77.1	8.42	6.06	-74.74	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	February 25, 2019
EUT:	ULXD1
Band:	H50
Serial Number:	H5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Middle Frequency 566.000MHz at 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
566.000	QP	V	97.77	3.03	0.00	2.68		
1132.000	Average	V	35.85	-57.7	3.45	3.57	-57.82	-30
1698.000	Average	V	23.83	-75.0	5.60	4.18	-73.58	-30
2264.000	Average	V	25.44	-77.4	5.64	4.67	-76.43	-30
2830.000	Average	V	26.38	-77.4	6.88	5.07	-75.59	-30
3396.000	Average	V	26.42	-77.1	8.08	5.44	-74.46	-30
3962.000	Average	V	27.76	-76.3	8.76	6.47	-74.01	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	February 25, 2019
EUT:	ULXD1
Band:	H50
Serial Number:	H5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Middle Frequency 566.000MHz at 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
566.000	QP	V	111.39	16.61	0.00	2.68		
1132.000	Average	V	36.19	-57.3	3.45	3.57	-57.42	-30
1698.000	Average	V	33.80	-59.8	5.60	4.18	-58.38	-30
2264.000	Average	V	25.75	-75.6	5.64	4.67	-74.63	-30
2830.000	Average	V	26.35	-77.6	6.88	5.07	-75.79	-30
3396.000	Average	V	26.38	-77.4	8.08	5.44	-74.76	-30
3962.000	Average	V	27.72	-76.6	8.76	6.47	-74.31	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	February 25, 2019
EUT:	ULXD1
Band:	H50
Serial Number:	H5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Frequency 598.000MHz at 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
598.000	QP	V	96.33	0.34	0.00	2.81		
1196.000	Average	V	31.75	-63.1	3.64	3.63	-63.09	-30
1794.000	Average	V	24.34	-76.9	5.00	4.22	-76.12	-30
2392.000	Average	V	25.87	-76.6	5.75	4.77	-75.62	-30
2990.000	Average	V	26.70	-76.8	7.05	5.14	-74.89	-30
3588.000	Average	V	26.87	-77.9	8.14	5.65	-74.41	-30
4186.000	Average	V	28.05	-76.5	9.34	6.37	-73.53	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	February 25, 2019
EUT:	ULXD1
Band:	H50
Serial Number:	H5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Frequency 598.000MHz at 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
598.000	QP	V	108.88	12.9	0.00	2.81		
1196.000	Average	V	34.73	-60.0	3.64	3.63	-59.99	-30
1794.000	Average	V	26.63	-70.0	5.00	4.22	-69.22	-30
2392.000	Average	V	26.24	-74.6	5.75	4.77	-73.62	-30
2990.000	Average	V	26.70	-76.9	7.05	5.14	-74.99	-30
3588.000	Average	V	26.87	-77.8	8.14	5.65	-75.31	-30
4186.000	Average	V	28.00	-77.0	9.34	6.37	-74.03	-30

Maximum Radiated Power

Purpose:

This test performed to determine if the EUT meets the Maximum Radiated Power requirements of the FCC Part15C, Section 15.236, the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G.

Requirements:

As stated in FCC 15C Section 15.236 (6)(2). the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence)

Measurement Type	U _{lab}
Radiated measurements (30 MHz – 1000 MHz)	4.24 dB

 $U_{\text{lab}\,\text{=}}$ Determined for Shure EMC Laboratory

Since U_{lab} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

Test Setup and Instrumentation:

Photographs of the test setup are shown in Figure B 1. The test instrumentation can be determined from Table 10-1.

EUT Operation:

The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. For rated output power, the testing was performed with the EUT set to the low, middle, and high frequency within the operating frequency range, and at 1mW and 20mW RF output.

Specific Test Procedures:

The Maximum Rated Power test was performed during the Spurious Emission testing, Appendix B. The carrier frequency power level was documented in Appendix B.

The EUT was set to transmit on the low, middle, and high frequencies, and power levels of 1mW and 20mW.

Results:

The EIRP for all frequencies measured meets the FCC15C 15.236 requirements, the FCC OET Basic Certification Requirements for Wireless Microphones requirements, and RSS-210 Annex G.

The results are shown on page 35 thru page 40.

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Low Frequency, 534.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 25, 2019
Operator Name: Comment:	Jamal Qureshi FCC Part15C, Section 15.236

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
97.41	1.32	2.15	2.55	0.92	1.24	50.00	48.76

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Low Frequency, 534.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
110.00	+13.90	2.15	2.55	13.50	22.39	50.00	27.61

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Middle Frequency, 566.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
97.77	3.03	2.15	2.68	2.5	1.78	50.00	48.22

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Middle Frequency, 566.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
111.39	+16.61	2.15	2.68	16.08	40.55	50.00	9.45

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	High Frequency, 598.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
96.33	0.34	2.15	2.81	-0.32	0.93	50.00	49.07

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	High Frequency, 598.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
108.88	+12.90	2.15	2.81	12.24	16.75	50.00	33.25

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Low Frequency, 534.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
97.41	1.32	2.15	2.55	0.92	1.24	250.00	248.76

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Low Frequency, 534.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
110.00	+13.90	2.15	2.55	13.5	22.39	250.00	227.61

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Middle Frequency, 566.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
97.77	3.03	2.15	2.68	2.5	1.78	250.00	248.22

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	Middle Frequency, 566.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
111.39	+16.61	2.15	2.68	16.08	40.55	250.00	209.45

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	High Frequency, 598.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
96.33	0.34	2.15	2.81	-0.32	0.93	250.00	249.07

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 H50
Serial Number:	H5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	High Frequency, 598.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on February 25, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
108.88	+12.90	2.15	2.81	12.24	16.75	250.00	233.25

Appendix D

FREQUENCY TOLERANCE

PURPOSE:

This test was performed to determine if the EUT meets the frequency stability requirements of the FCC Part 15C, Section 15.236(f)(3) and the RSS-210 Annex G Table G1, specifications over the EUT operating frequency range of 470MHz to 534MHz.

REQUIREMENTS:

As stated in paragraph 15.236(f)(3) and, for low power auxiliary stations operating in the bands allocated for TV broadcasting, the frequency tolerance of the transmitter shall be 0.005 percent. RSS-210 Annex G Table G1 require +50ppm.

MEASUREMENT UNCERTAINTY:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. V

alues of Expanded Measurement	Uncertainty (95% Confidence):
-------------------------------	-------------------------------

Measurement Type	U _{lab}
Frequency Error (Stability)	.0000000583 ppm

U_{lab} = Determined for Shure EMC Laboratory

Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;

Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

TEST SETUP AND INSTRUMENTATION:

The EUT firmware was temporarily changed to transmit a CW signal just for this test. The EUT was heated and cooled in an ESPEC temperature chamber over a temperature range of -30C to +50C. The temperature around the EUT was measured and monitored by a J-Type thermocouple connected to an Extech thermometer. The EUTs frequency was measured with a frequency counter set to measure signal count at 0.1Hz resolution. The EUT was measured at low, middle, and high frequencies. Photographs of the test setup are shown as Figure D-1. The test instrumentation can be determined from Table 10-1.

EUT OPERATION:

The antenna port of the EUT was connected to the 50 Ohm input of a frequency counter. The EUT was operated at 10mW. The EUT was set to transmit at a low, mid or high frequency within its operating band of G50 Band (534MHz to 598MHz).

Appendix D

TEST PROCEDURES:

- a. The temperature chamber was set to 20C, ambient temperature, with the EUT inside and powered on.
- b. The EUT was allowed to soak for at least 15 minutes after the temperature chamber reached the set temperature.
- c. The measured frequency of the transmitter was measured on the frequency counter.
- d. Steps a. through c. were repeated at -30C through +50C in ten degree increments for representative low, mid and high frequencies within the EUTs operational band.

RESULTS:

The frequency stability measurements are presented on page 43. As shown by the test data, the test frequency deviation was within the 0.005 percent limit set out in the FCC Part 15C Section 15.236(f)(3) and the RSS-210 specifications.

The temperature in the test room during the test was 75 degrees F, with relative humidity of 18%.

Figures D-1 - Test Setup for Frequency Stability

Appendix D

Test Information EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Test Date				ULXD1 H50 H5x WMrev02 GC SAMPLE FCC Part 15C Section 15.236(f)(3), RSS-210 Frequency Tolerance Low. Middle. and High frequency at 10mW30C to +50C Juan Castrejon Agilent Frequency Counter and ESPEC Temp Chamber March 1, 2019					
_	Nominal	Measured		FCC			RSS		
°C	Frequency (MHz)	Frequency (MHz)	Deviation (%)	Frequency Stability Limit in %	Deviation in Hz	Deviation in PPM	Limit in ppm	FCC Pass/Fail	RSS Pass/Fail
-30	534.000	534.000167	0.000031	0.005	167.3	0.313296	<u>+</u> 50	PASS	PASS
-20	534.000	534.000140	0.000031	0.005	107.3	0.262491	<u>+</u> 50	PASS	PASS
-10	534.000	534.000140	0.000020	0.005	195.2	0.365599	<u>+</u> 50	PASS	PASS
0	534.000	534.000195	0.000037	0.005	195.2	0.373577	<u>+</u> 50	PASS	PASS
10	534.000	534.000231	0.000043	0.005	231.3	0.433071	<u>+</u> 50	PASS	PASS
20	534.000	534.000161	0.000030	0.005	161.0	0.301573	<u>+</u> 50	PASS	PASS
30	534.000	534.000144	0.000027	0.005	144.3	0.270281	<u>+</u> 50	PASS	PASS
40	534.000	534.000097	0.000018	0.005	97.2	0.182079	<u>+</u> 50	PASS	PASS
50	534.000	534.000051	0.000009	0.005	50.6	0.0947	<u>+</u> 50	PASS	PASS
-30	566.000	566.000177	0.000031	0.005	176.5	0.311915	<u>+</u> 50	PASS	PASS
-20	566.000	566.000148	0.000026	0.005	148.0	0.261696	<u>+</u> 50	PASS	PASS
-10	566.000	566.000204	0.000036	0.005	203.7	0.359876	<u>+</u> 50	PASS	PASS
0	566.000	566.000213	0.000038	0.005	212.5	0.375512	<u>+</u> 50	PASS	PASS
10	566.000	566.000247	0.000044	0.005	246.5	0.435512	<u>+</u> 50	PASS	PASS
20	566.000	566.000171	0.000030	0.005	170.7	0.301608	<u>+</u> 50	PASS	PASS
30	566.000	566.000153	0.000027	0.005	153.4	0.270954	<u>+</u> 50	PASS	PASS
40	566.000	566.000103	0.000018	0.005	103.1	0.182067	<u>+</u> 50	PASS	PASS
50	566.000	566.000055	0.000010	0.005	55.2	0.097473	<u>+</u> 50	PASS	PASS
-30	598.000	598.000179	0.000030	0.005	179.2	0.299582	<u>+</u> 50	PASS	PASS
-20	598.000	598.000158	0.000026	0.005	158.4	0.264950	<u>+</u> 50	PASS	PASS
-10	598.000	598.000205	0.000034	0.005	204.8	0.342475	<u>+</u> 50	PASS	PASS
0	598.000	598.000225	0.000038	0.005	224.7	0.375769	<u>+</u> 50	PASS	PASS
10	598.000	598.000260	0.000044	0.005	260.3	0.435351	<u>+</u> 50	PASS	PASS
20	598.000	598.000181	0.000030	0.005	180.5	0.301906	<u>+</u> 50	PASS	PASS
30	598.000	598.000162	0.000027	0.005	162.5	0.271722	<u>+</u> 50	PASS	PASS
40	598.000	598.000108	0.000018	0.005	108.4	0.181338	<u>+</u> 50	PASS	PASS
50	598.000	598.000060	0.000010	0.005	60.1	0.100518	<u>+</u> 50	PASS	PASS

Spurious Emissions at Antenna Terminals

Purpose:

This test performed to determine if the EUT meets the conducted spurious emissions at the antenna port requirements of the FCC Part 2.1051.

Requirements:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. The expanded measurement uncertainty (95% confidence) has been determined to be \pm 1.28 dB.

Test Setup and Instrumentation:

Photograph of the test setup is shown in Figure E 1. The test instrumentation can be determined from Table 10-1.

EUT Operation:

The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. For conducted spurious emissions the testing was performed with the EUT set to the low, middle, and high frequencies with RF power output of 1mW and 20mW.

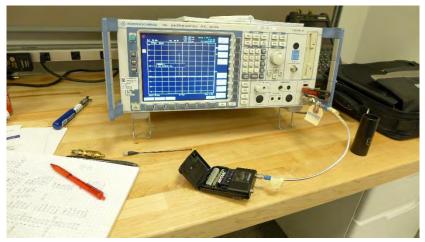
Specific Test Procedures:

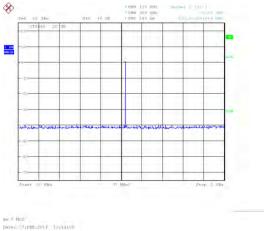
The testing was performed as states in FCC Part 2.1051.

Results:

The plots of the antenna port spurious emissions are shown on page 46 thru page 51. All emissions measured from the EUT were within the ETSI EN 300 422-1 specification limits. All spurious emissions were at least

The temperature during the testing was 76 degrees F, with relative humidity of 17%.




Figure E 1: ULXD1 Transmitter Test Setup

Test Information

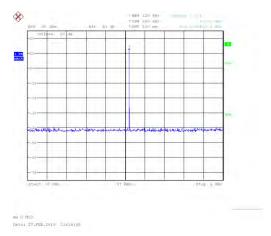
EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:

ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Frequency, 534.000MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on February 27, 2019

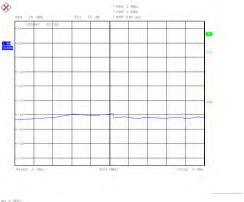
Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: **Frequency Range Operator Name:** Date Tested:

ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Frequency, 534.000MHz, 1mW 1GHz to 6GHz Craig Kozokar Tested on February 27, 2019



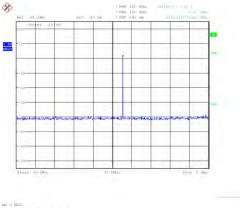
me 0 900 Date: 27.FRS.2019 (14:01:10)


Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Frequency, 534.000MHz, 20mW 30MHz to 1000MHz Craig Kozokar Tested on February 27, 2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Frequency, 534.000MHz, 20mW 1GHz to 6GHz Craig Kozokar Tested on February 27, 2019


nar P MSD Date: 271PBB.2013 30102:00

Test Information

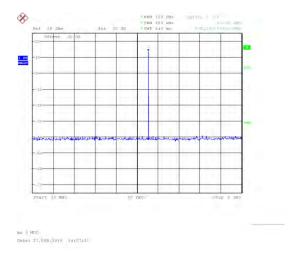
EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:

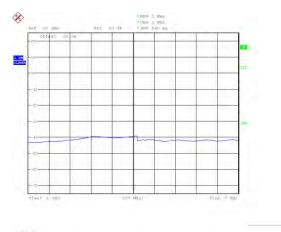
ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Middle Frequency, 566.000MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on February 27, 2019

ne 0 MCD) Date: 27.P65-2019 (110811)

Test Information

EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:

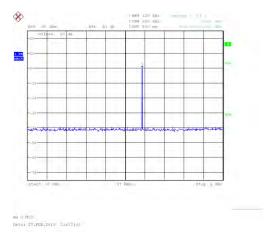

ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Middle Frequency, 566.000MHz, 1mW 1GHz to 6GHz Craig Kozokar Tested on February 27, 2019


Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Middle Frequency, 566.000MHz, 20mW 30MHz to 1000MHz Craig Kozokar Tested on February 27, 2019

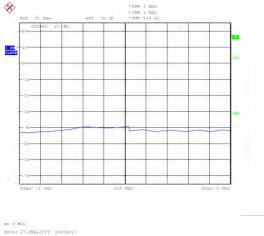
Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Middle Frequency, 566.000MHz, 20mW 1GHz to 6GHz Craig Kozokar Tested on February 27, 2019


mw. 0 MoD Date: 27,FBB,2019 (14:03:23

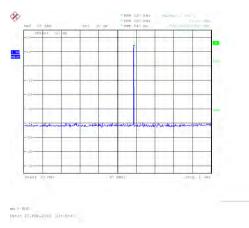
Test Information

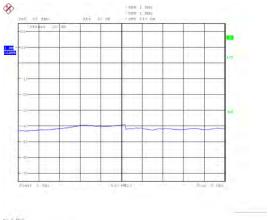
EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:


ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Frequency, 598.000MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on February 27, 2019

Test Information

EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:


ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Frequency, 598.000MHz, 1mW 1GHz to 6GHz Craig Kozokar Tested on February 27, 2019


Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Frequency, 598.000MHz, 20mW 30MHz to 1000MHz Craig Kozokar Tested on February 27, 2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 H50 H5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Frequency, 598.000MHz, 20mW 1GHz to 6GHz Craig Kozokar Tested on February 27, 2019

me.0.900 Doto:27.989.3010 14:04:51