Engineering Test Report No. SEL-043/ULXD1 J50A FCC15C

SHURE

ELECTROMAGNETIC COMPATIBILITY LABORATORY TEST REPORT

TEST REPORT TITLE: Electromagnetic Compatibility Tests of the Shure ULXD1 Digital Wireless Transmitter in the J50A Band (572MHz to 608MHz, and 614MHz to 616MHz)

TEST ITEM DESCRIPTION:

The Shure ULXD1 is a digital wireless microphone transmitter.

For: Shure Incorporated 5800 West Touhy Avenue Niles, IL 60714

Project ID Number: SEL-043/ULXD1 J50A FCC15C

Date Tested: February 26 thru March 8, 2019

Test Personnel: Jamal Qureshi, Juan Castrejon, and Craig Kozokar

Test Specification:

IC RSS-GEN – General Requirements and Information for the Certification of Radio Apparatus IC RSS-210 - License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment FCC Title 47, Part 2.1051 FCC Part 15C, Section 15.236(g) FCC Part 15C, Section 15.236(d)(1) FCC Part 15C, Section 15.236(f)(1) FCC Part 15C, Section 15.236(f)(2) FCC Part 15C, Section 15.236(f)(3)

TEST REPORT BY: Cray Royla

Global Compliance Engineer

3-15-2019

Engineer Project Managing, G.C. Position

3-15-2019 Date

APPROVED BY:

TABLE OF CONTENTS

<u>P</u> /	ARAGRA	PH DESCRIPTION OF CONTENTS	PAGE NO.
0.	Report Rev	vision History	4
1.	Introduction	on	5
	1.1.	Scope of Tests	5
	1.2.	Purpose	5
	1.3.	Deviation, Additions and Exclusions	5
	1.4.	EMC Laboratory Identification	5
	1.5.	Summary of Tests Performed	6
2.	Applicable	Documents	6
3.	EUT Setup	and Operation	7
	3.1	General Description	7
	3.2	Test Samples	7
	3.3	Operational Mode	7
4		Imentation	
5	Procedure	·	7
6	Other Test	t Conditions	7
	6.1	Test Personnel	7
	6.2	Disposition of the EUT	7
7	Results of	Tests	8
8	Conclusion	ns	8
9	Certificatio	on	8
10	Equipmen	t List	9
11	Appendix /	Α	10
12	Appendix	В	27
13	Appendix	С	45
	••	D	
15	Appendix	Ε	61

Note: This report shall not be reproduced, except in full, without the written approval of the Shure Incorporated Electromagnetic Laboratory (SEL). Total Page Count is 72.

LIST OF APPENDICIES

APPENDIX	TEST DESCRIPTION
А	Necessary Bandwidth, Frequency Offset, Maximum Bandwidth
В	Radiated Spurious Emissions
C	Maximum Rated Power
D	Frequency Tolerance
E	Conducted Spurious Emissions at the Antenna Port

REPORT REVISION HISTORY

Revision	Date	Description
0	March 15, 2019	Initial release

1. INTRODUCTION

1.1. Scope of Tests

This report presents the results of testing per FCC Part 15C, Section 15.236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3), FCC OET Basic Certification Requirements for Wireless Microphones, FCC Part 2.1051, RSS-Gen, and RSS-210. The following data was taken following the measurement method as described in the document section(s) listed on page 1 of this document. Provided is the data for the test sample. Also included is a summary of the measurements made and a description of the measurement setup. The test samples meet the requirements of the above standards. The equipment under test (EUT) contained a transmitter that was designed to transmit in the UHF TV frequency bands shown in Table 1.

Model	Band	Frequency (MHz)	Output Power (mW)
ULXD1	J50A	572 to 608	1, 10, 20
ULXD1	J50A	614 to 616	1, 10

Table 1. EUT Frequencies and Power Levels

1.2. Purpose

This series of testing was performed to determine if the test item would meet the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3), the FCC OET Basic Certification Requirements for Wireless Microphones, FCC Part 2.1051 RSS-Gen, and RSS-210.

1.3 Deviations, Additions and Exclusions

None

1.4 EMC Laboratory Identification

The electromagnetic compatibility tests were performed at the Shure Electromagnetic Laboratory, Shure Incorporated, 5800 West Touhy Ave, Niles, Illinois 60714-4608. This laboratory is registered with Industry Canada as Site # 616A-1. The Shure Electromagnetic Laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP).

The NVLAP Lab Code is: 200946-0.

1.5 Summary of Tests Performed

The following electromagnetic compatibility tests (Table 2) were performed on the test item in accordance with ETSI specifications.

FCC Part 15C	Description	EUT	Tested Frequency in MHz Appendix Test Res		Test Results
Test Spec		Firmware	. ,		
15.236(g)	Necessary Bandwidth	2.2.24	572.000, 589.925, 607.875,	А	Pass
12.220(g)	Necessary Banuwiuth		614.125, 615.875	A	
15.236(f)(1)	Frequency Offset	2.2.24	572.000, 589.925, 607.875,	А	Pass
13.230(1)(1)	Frequency Onset		614.125, 615.875	A	
15.236(f)(2)	Maximum Bandwidth	2.2.24	572.000, 589.925, 607.875,	А	Pass
15.250(1)(2)			614.125, 615.875		
15.236(g)	Radiated Spurious	2.2.24	572.000, 589.925, 607.875,	В	Dava
13.230(g)	Emissions		614.125, 615.875	D	Pass
15.236(d)(1)	Maximum Rated Power	2.2.24	572.000, 589.925, 607.875,	С	Pass
15.250(u)(1)	Maximum Rateu Power		614.125, 615.875	C	Pass
$1 = 22 \epsilon (f)(2)$	Fraguency Telerance	2.2.24	572.000, 589.925, 607.875,	D	Dass
15.236(f)(3)	Frequency Tolerance		614.125, 615.875		Pass
2.1015	Conducted Spurious	2.2.24	572.000, 589.925, 607.875,	F	Pass
2.1015	Emissions		614.125, 615.875	E	

Table 2. Summary of tests performed

2 APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

FCC Part 15C, Section 15.236(g)

FCC Part 15C, Section 15.236(d)(1)

FCC Part 15C, Section 15.236(f)(1)

FCC Part 15C, Section 15.236(f)(2)

FCC Part 15C, Section 15.236(f)(3)

FCC Title 47, Chapter I, Subchapter A, Part 2 – Frequency Allocations and Radio Treaty Matters, General Rules and Regulations, Subpart J – Equipment Authorization Procedures

EN 300 422-1 V1.4.2 (2011-08), "Electromagnetic compatibility and Radio spectrum Matters (ERMM); Wireless Microphones in the 25 MHz to 3 GHz frequency range; Part 1: technical characteristics and methods of measurement"

ANSI C63.4 (2014), "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

"Federal Communications Commission Office of Engineering and Technology, Laboratory Division BASIC CERTIFICATION REQUIREMENTS FOR WIRELESS MICROPOHONES" Dated December 13, 2017

RSS-Gen Issue 5, "General Requirements for Compliance of Radio Apparatus"

RSS-210 Issue 9, "Licence-Exempt Radio Apparatus: Category I Equipment"

3 EUT SET-UP AND OPERATION

3.1. General Description

The test sample used was Shure ULXD1 digital wireless microphone transmitter. The EUT was arranged and tested per individual Appendices.

3.2 Test Sample

The following product sample was tested:

Table 3: Shure ULXD1 Digital Wireless Transmitter Sample

Band	Serial Numbers
J50A	J5x WMrev02 GC SAMPLE

3.3 Operational Mode

The transmit frequency and output power modes shown in the individual appendixes.

4. Test Instrumentation

A list of the test equipment used can be found in Table 10-1. All equipment used was within calibration during and throughout the duration of the tests. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

5. Procedure

The specific test procedures are presented in the individual appendices.

6. Other Test Conditions:

6.1. Test Personnel

All EMC tests were performed by qualified personnel from the Shure EMC Laboratory.

6.2. Disposition of the EUT

The EUTs and all associated equipment were returned to Shure Incorporated upon completion of the tests.

7. Results of Tests:

The results are presented in Appendices. It was found that the EUT meets the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3), the FCC OET Basic Certification Requirements for Wireless Microphones, FCC 2.1051, RSS-Gen, and RSS-210

8. Conclusions:

It was determined that the Shure ULXD1 Digital Wireless Microphone Transmitter did fully comply with the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(f)(1), Section 15.236(f)(2), Section 15.236(f)(3) and the FCC OET Basic Certification Requirements for Wireless Microphones, FCC 2.1051, RSS-Gen, RSS-210.

9. **Certification**:

Shure EMC Laboratory certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the EUTs at the test date. Any electrical or mechanical modification made to the EUTs subsequent to the specified test date will serve to invalidate the data and void this certification.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

10. Equipment List

Table 10-1 Test Equipment								
L# or ID	Description	Manufacturer	Model #	Serial #	Frequency Range	Cal Date	Due Date	
L23-011-01	3 meter RF Chamber	ETS Lindgren	FACT-3	AJ640	25MHz - 18GHz	8/8/2016	8/8/2019	
L23-011-02	Electric Powered Turntable	ETS Lindgren	2088	N/A	N/A	N/A	N/A	
L23-011-08	Controller	EMCO	2090	29799	N/A	N/A	N/A	
L23-011-09	Antenna Positioner	ETS Lindgren	2071-2	35500	N/A	N/A	N/A	
L23-011-15	BiConiLog Antenna	ETS Lindgren	3142C	34790	25MHz-1GHz	6/22/2017	6/22/2019	
L23-011-54	EMI Test Receiver	Rohde & Schwarz	ESR26	100220	9kHz-26GHz	11/28/2017	11/28/2019	
L23-011-31	EMI/EMS Test Software	Rohde & Schwarz	EMC32	V 9.21.00	N/A	N/A	N/A	
L23-011-53	Horn antenna with pre- amplifier	ETS Lindgren	3117-PA	200363	1GHz to 18 GHz	10/16/2017	4/27/2019	
L23-011-41	Horn Antenna	ETS Lindgren	3117	123511	1GHz to 18 GHz 5/7/2017		5/7/2019	
L23-011-56	High Pass Filter	K&L	11SH10- 940/X10000- 0/0	2	940MHz – 10GHz	10/18/2017	3/31/2019	
L23-022-02	Spectrum Analyzer	Rohde & Schwarz	FSW26	103788	9kHz-26GHz	4-24-2018	4-24-2020	
L23-022-01	Spectrum Analyzer	Rohde & Schwarz	FSU26	201043	9kHz-26GHz	8/23/2017	8/23/2019	
L23-034-02	Temperature Hygrometer	Extech	445703	48254-65	N/A	5/2/2018	5/2/2019	
L23-034-04	Temperature Hygrometer	Extech	445703	48254-13	N/A	5/2/2018	5/2/2019	
L23-040-03	20dB Attenuator	MCL	BW- N20W5+	N/A	20MHz to 18GHz	5/31/2018	5/31/2020	
L23-045-36	RF Power Sensor	ETS-Lindgren	7002-006	151071	10MHz to 6GHz	1-31-2018	1-31-2020	
L23-024-01	Frequency Counter	Agilent	53220A	MY50006485	DC to 6GHz	11-27-2018	11-27-2020	
L23-034-08	Thermometer	Extech	TM100	13018733	N/A	4-25-2018	04-25-2020	
L19-006-01	Temperature Chamber	ESPEC	SU-240	910004211	N/A	4-5-2018	4-5-2019	
L23-023-01	RF Signal Generator	Rohde & Schwarz	SMF100A	101553	20Hz to 26.5GHz	8/23/2017	8/23/2019	

NECESSARY BANDWIDTH FREQUENCY OFFSET OPERATING BANDWIDTH

PURPOSE

This test was performed to determine if the EUT meets the necessary bandwidth requirements of EN 300 422-1, section 8.3.2., and RSS-210 Annex G, with the EUT operating at 572.000MHz, 589.875MHz, 607.875, 614.125, and 615.875MHz.

This testing results show the EUT meets FCC 15C 15.236(f)(1), a frequency offset of the lower band limits by 25kHz or an integral multiple thereof. The frequency offset is 125 kHz.

The testing results show the EUT meets FCC 15C 15.236(f)(2) and RSS-210, operating bandwidth does not exceed 200kHz.

REQUIREMENTS

As stated in EN 300 422-1, section 8.3.2, the emission mask given in section 8.3.2.2 shall not be exceeded.

TEST SETUP AND INSTRUMENTATION

A photograph of the test setup is shown in Figure A-1. The test instrumentation can be determined from Table 10-1.

MEASUREMENT UNCERTAINTY

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. Values of Expanded Measurement Uncertainty (95% Confidence):

Measurement Type	U _{LAB}
Necessary Bandwidth	±0.130 %

U_{lab} = Determined for Shure EMC Laboratory

Since U_{LAB} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

EUT OPERATION

The EUT was powered up and the transmit frequency and power output of the EUT were selected. The EUT was checked for proper operation after it was setup for the test. Testing was conducted with the EUT set to transmit at 572.000MHz, 589.925MHz, 607.875, at an output power level of 1mW and 20mW, except 614.125 and 615.875 which will have the power level of 1mW and 10mW. The transmitter was modulated per EN300422-1 V1.4.2 (2011-08), clause 7.1.2.

TEST PROCEDURE

The test procedure followed is shown in EN300422-1 V1.4.2 (2011-08), section 8.3.2.

RESULTS

The necessary bandwidth data is presented on pages 12 and 26. Data is shown on the figures for each transmitter. The figure shows the maximum relative level within the emission mask with modulation. As shown by the test data, the necessary bandwidth of the EUT meets the requirements of EN 300 422-1, section 8.3.2. The RSS-Gen maximum ISED Canada 99% bandwidth measurement was 163 kHz.

The temperature during the testing was 74 degrees F, with relative humidity of 17%.

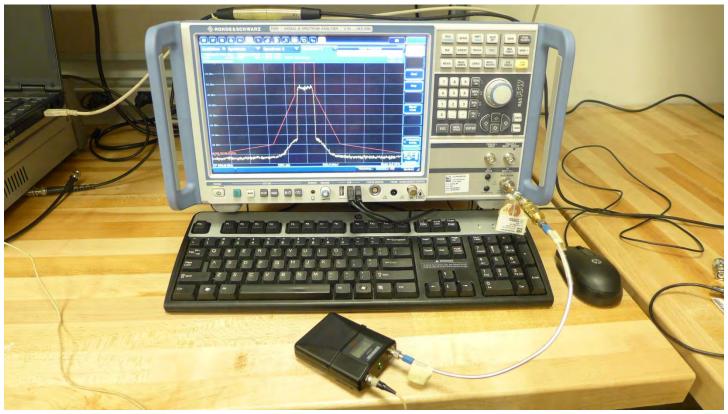
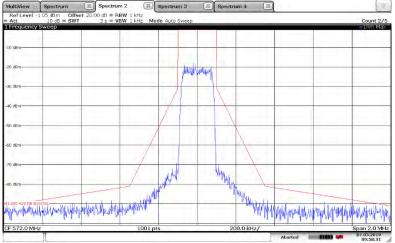


Figure A-1 - Test Setup for Necessary Bandwidth

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:


ULXD1 J50A
J5x WMrev02 GC SAMPLE
EN 300 422 Digital Necessary Bandwidth
Low Band, Low Frequency, 572.000MHz, 1mW
Craig Kozokar
8.3.2.1: Step 1; Carrier Power
Tested on March 7, 2019

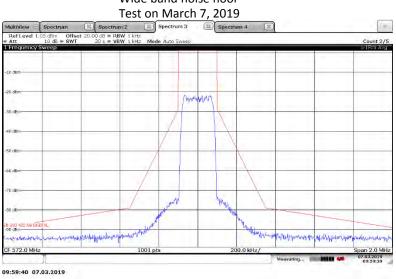
	E	Spectrum 4	Spectrum 3	Spectrum 2	Spectrum 🔤	MultiView
Count S				0 dE = RBW 1 MHz 3 s = VBW 1 MHz	2:00 d8m Offset 20 2:d8 = SW1	Ref Level 12 Att
1Rm A						Zero Span
01[1] 1.18 (10 dəm
		HI.	-		1	dem-
						10 dem
			-			20 dam
	_		-	_		30 dBm
						40 dBm
						S0 dBm
			-			eo dem
						70 dBm-
						60 dBm
300.0 r	1	L pts	100	- de	z	CF 572.0 MH
07:08:2019	Measuring				1	

9:57:32 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Band, Low Frequency, 572.000MHz, 1mW Craig Kozokar 8.3.2.1: Step 2;Maximum Relative Level Test on March 7, 2019

09:58:31 07.03.2019



Test Information

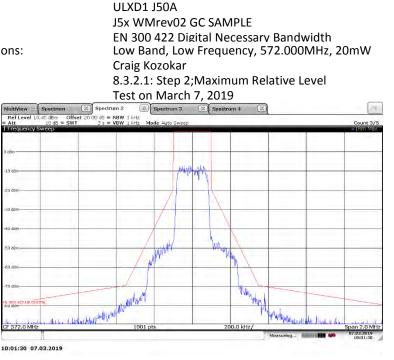
EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth Low Band, Low Frequency, 572.000MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

Date Tested:

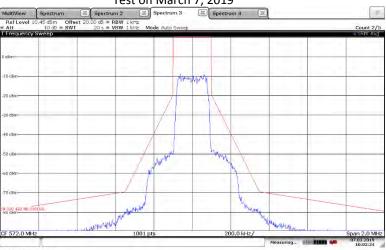
Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Band, Low Frequency, 572.000MHz, 20mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019


	1	Spectrum d	Spectrum 3	num 2 🖭	Specim	Spectrum	MultiView
Count 3/5				RBW 1 MHz VBW 1 MHz	t 20.00 dE = F	00 dBm Offse 4 dB = SWT	Ref Level 14
TRm Avg							Zero Span
M1[1] 10.81 dB 1,80600							10 ožm
_							0 d9m
							-10 dem
-				-			-20 dem
							10. dBm
							40 dBm-
							50 dBm
							40 dBm-
							-70 dem
							60 dBm
300.0 ms		1 pts	100	-	-		F 572.0 MHz
07.03.2019 10:00:52	Measuring	a pra	100			11	A 01210 (4112

10:00:53 07.03.2019

Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Band, Low Frequency, 572.000MHz, 20mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on March 7, 2019

Date Tested:

10:02:24 07.03.2019

Appendix A

Test Information EUT Name: Serial Number: Test Description:			J5>	XD1 J50A WMrev02 300 422 D			ndwidth	
Operating Condit Operator Name: Comment: Date Tested:	ions:		Cra 8.3	w Band, Mi aig Kozokar 3.2.1: Step 3 sted on Ma	1; Carrier	Power	9.925MHz	, 1mW
	MultiView	Spectrum	Spectrum 2	Spectrum 3	Spectrum	t 💽		~
	Ref Level 1- Att	4.00 dBm Offs 4 dB = SWT	et 20.00 dB = RBW 1 3 s = VBW 1	MHz MHz			_	Count 4/5
	1 Zero Span						MIT	-1Rm Avg
	10 d8m-							a 08688,1
	0.08m				142			
	D Shart							
	-10 dBm	_						
	1000							
	-20 dam-							
	-30 dBm-							
	910 dām-							
	-10,050						1	
	-30 dBm	_					in the second second	
		1						
	-88 dBm-							
	1.1							
	-70 63/0-							
	80 0200-							
	SHIESO						and the second se	
	CF 589.925 M	MHz		10	001 pts			300.0 ms/

10:03:55 07.03.2019

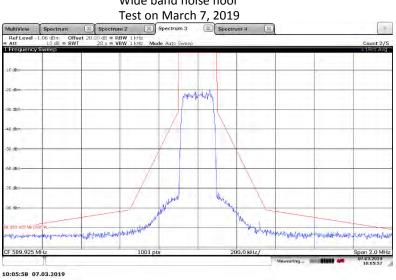
Test Information

EUT Name: Serial Number: Test Description: **Operating Conditions: Operator Name:** Comment: Date Tested:

ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Band, Middle Frequency, 589.925MHz, 1mW Craig Kozokar 8.3.2.1: Step 2; Maximum Relative Level Test on March 7, 2019 Spectrum 2 .9 Spectrum 3 Spectrum 4 dB = RBW Count 2/5 ANNIA

MA analisen suting a far water a stranged as the far the half the second and t

10:04:48 07.03.2019



Test Information

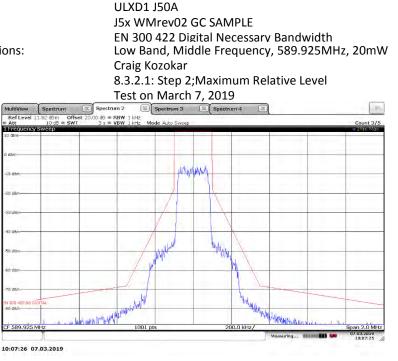
EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth Low Band, Middle Frequency, 589.925MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

Test Information

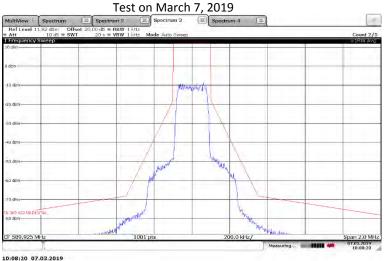
EUT Name:			ULXD	1 J
Serial Number:			J5x W	/Mr
Test Description:			EN 30	004
Operating Condit	ions:		Low B	Ban
Operator Name:			Craig	Ko
Comment:			8.3.2.	1: 9
Date Tested:			Teste	d o
	MultiView	Spectrum	Spectrum 2	S) SE
	Ref Level 14	dB = SWT	et 20.00 dB * RBW 1 MHz 3 s * VBW 1 MHz	
	1 Zero Span			
	10 dBm			-
	0 080			-
	-10 dBm			-
	111 4114			

ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Band, Middle Frequency, 589.925MHz, 20mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019


CF 589.925 MHz	1001 p	300.0 ms/ 07.03.2019 10:06:43
SR ((2/))		
76.02/0-		
-80 0E/0-		
-50 dbm-		
-10.dSm-		
-30 dSm-		
-30,dam-		
-KD dism		
0.696		

10:06:44 07.03.2019

Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Band, Middle Frequency, 589.925MHz, 20mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on March 7, 2019

Date Tested:

Test Information

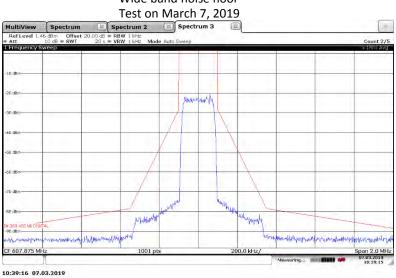
EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

ons:	Low Band, High Frequency, 607 Craig Kozokar 8.3.2.1: Step 1; Carrier Power					EN 300 422 Digital Necessarv Ba Low Band, High Frequency, 607. Craig Kozokar			arv Bandv y, 607.875		W
ultiView E Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	E.		- (=)					
RefLevel 14.00 dBm ⊂ 0 Att 4 dB ≡ S	WT 3 s = VBW 1 MHz					Count 3/5					
Zero Span					MILLI	 1Rm Avg 1.25 dBm 					
dBm-		-			wit[1]	1.80600 s					
_											
18m		_	141								
6 dBm					1						
3 dBm-											
0-dBm-											
- deni	1			1 1 1 1 1							
B dBra	1					_					
2 I I I I I I I I I I I I I I I I I I I											
o dem											
3 dBm											
-											
) dBm-											
dBm-											
607.875 MHz		100	1 pts			300.0 ms/					
				Measuring	100 ALL 1	7.03.2019					

ULXD1 J50A

Test Information

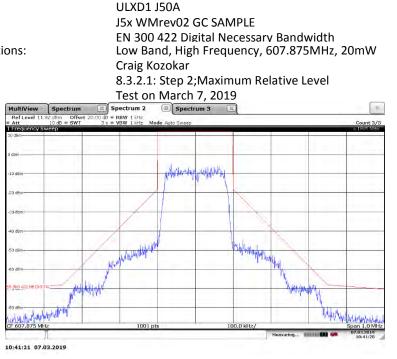
10


EUT Name: ULXD1 J50A Serial Number: J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth Test Description: **Operating Conditions:** Low Band, High Frequency, 607.875MHz, 1mW **Operator Name:** Craig Kozokar Comment: 8.3.2.1: Step 2; Maximum Relative Level Date Tested: Test on March 7, 2019 Spectrum 2 Spectrum 3 MultiView Spectrum RBW 1 kH photositespiring by the White Market hilpsoppilities MANAM 1914 Availabert 001 10:38:08 07.03.2019

Test Information

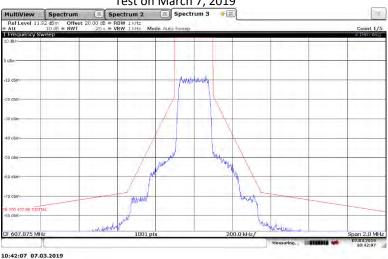
EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth Low Band, High Frequency, 607.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

Date Tested:


Test Information

FUT Name:		ULXD1	150A			
Serial Number:		-	/rev02 GC S	ΔΜΡΙΕ		
Test Description:					ary Bandwidth	
Operating Conditions:				quency	, 607.875MHz, 2	20m vv
Operator Name:		Craig K	ozokar			
Comment:		8.3.2.1	: Step 1; Car	rier Pov	ver	
Date Tested:		Tested	on March 7	2019		
MultiView	Spectrum	Spectrum 2	Spectrum 3	-		-
RefLevel 14 Att	00 d0m Offset 20 ⊈d8 ● SWT	0.00 d8 = RBW 1 MHz 3 s = VBW 1 MHz	*			Count 3/5
1 Zero Span			1	2	9	1[1] 11.47 dBm
tD dim-				f feat		1.80600 s
0 dišm						
-10 (Br)						-
20.00						
-20 dbin-						
-30 dBm						
1 million 1						
-411 dBer-						
-50 d2m						
Capita Malery						1
-6.0 dBm						-
-70 dBd)						
ina wan						-
CF 607.875 M	12		1001 pts	_		300.0 ms/
GE 007.075 M	1		And pts		Measuring., milli 🖬 🦛	07.03.2019 10:40:31
10:40:32 07.	03.2019					

Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

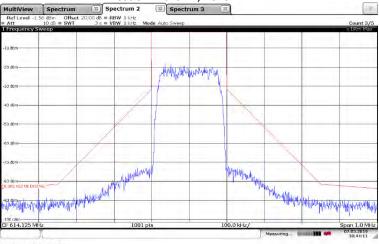
Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth Low Band, High Frequency, 607.875MHz, 20mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor Test on March 7, 2019

Date Tested:

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:


ULXD1 J50A	
J5x WMrev02 GC SAMPLE	
EN 300 422 Digital Necessarv Bandwi	dth
High Band, Low Frequency, 614.125N	/Hz, 1mW
Craig Kozokar	
8.3.2.1: Step 1; Carrier Power	
Tested on March 7, 2019	

MultiView	Spectrum	(2) Spectru		pectrum 3			
Ref Level 14.0	OdBor Offset 2	20.00 dB = RBW 1 h 3 s = VBW 1 h	9Hz 9H2				Count
Zero Span	740 - 6111	91 - 101 T					= 1Rm 4
10 dēm				-			1 606
o dem					24		
10 dBm	_				_		
2D dBm-			_	_			
30 dBm-							
-D dBm							
-50 dBm-							
eo dam				_			
70 d9m-							
80 dBm							
CF 614, 125 MH	z			1001 pts	_		300.0
					9	Measuring	07.03.201

10:43:18 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth High Band, Low Frequency, 614.125MHz, 1mW Craig Kozokar 8.3.2.1: Step 2;Maximum Relative Level Test on March 7, 2019

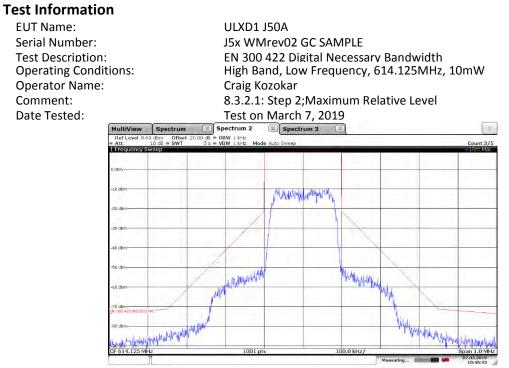

10:44:12 07.03.2019

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment:

Date Tested:

10:45:12 07.03.2019


Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth High Band, Low Frequency, 614.125MHz, 10mW Craig Kozokar 8.3.2.1: Step 1; Carrier Power Tested on March 7, 2019

MultiView	Spectrum	Spectrum 2	💷 Spectrum 3	1		1.8
Ref Level 14.0 Att	dBm Offset 2 4 dB = SWT	20.00 dB = RBW 1 MHz 3 s = VBW 1 MHz				Count 3/5
Zero Span	s ab = birri	53 - 10H 11-12				LEVIT AVO
				N		A41[1] 8.75 dBr
10 dism				1		1:80600
) dilan	·		· · · · · · · · · · · · · · · · · · ·			
-						
constant.						
10 dam						
20 dBm-			· · . · · · · · · · · ·			
ec com						
30 dBm						
1.						
40 dBm				1		
a line and a little		in the second se	11 I			
50 d8m						
h (1)						
οU dBm-		-				
/U dam		-	1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a			
du dam						
F 614.125 M	12		1001 pts		a second second second	300.0 ms
					Measurburs	07.03.2019

10:46:01 07.03.2019

10:46:44 07.03.2019

Test Information

EUT Name: Serial Number:	ULXD1 J50A J5x WMrev02 GC SAMPLE	
Test Description:	EN 300 422 Digital Necessary Bandwidth	
Operating Conditions:	High Band, Low Frequency, 614.125MHz, 1	10mW
Operator Name:	Craig Kozokar	
Comment:	8.3.2.1: Step 3;Lower and upper frequency	rtransmitter band
	Wide band noise floor	
Date Tested:	Test on March 7, 2019	
MultiView Spectrum	Spectrum 2 📧 Spectrum 3 🔺 🖾	\$
Ref Level 8.69 d5m Offset 20.00 d8 Att 10 d8 SWT 20 s 1 Frequency Sweep	RBW 1 kHz Wode Auto Sweep	Count 1/5
D dBm-		
-10 dbm	Maseric	-
-30 dBm-		
-30 d8m		
-40 dbm		
-30 d9m-		
	allowing water	
-60 d8m-		
-70 d8m-		
EN 100 422 ND DIGITAL		
	and what have a series and	
-90 dam CF 614.125 MHz	1001 pts 200,0 kHz/	Span 2.0 MHz
10:47:37 07.03.2019	Measuring Maasuri	10:47:36

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

			EN 300 High Ba Craig Ko 8.3.2.1	422 Dig and, Hig ozokar Step 1	GC SAM gital Neo h Frequ ; Carrien ch 7, 20	cessarv iency, 6 r Power	15.875	idth MHz, 1r	nW
N	Spectrum		ectrum 2	E Spectr	rum 3 📃	1			
14.0	0 dBm Offset -4 dB ⊫ SWI	20.00 dB = RI 3 s = VE	BW 1 MHE BW 1 MHE			-			Count 3/5
	_		-					MID	[] -1.59 dBm 1.80600 s
-									
				A					
									1.1.1
			-						
			i:						1
-	_								
					1				

10:48:58 07.03.2019

E 615 875 M

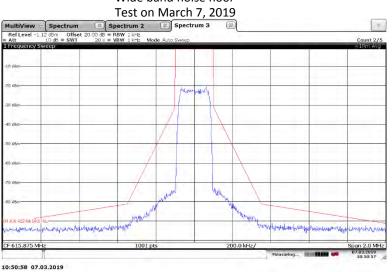
so dev

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessarv Bandwidth High Band, High Frequency, 615.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 2;Maximum Relative Level Test on March 7, 2019

MultiView S	spectrum 🖾	Spectrum 2	🖾 Spec	trum 3				Ť
RefLevel -1 12 dt Att 10			de Auto Sweep					Count 3/5
Frequency Swee			and Parto officep				-	= 1Rm Max
								1.1.1
10.dBm-								
	100 C 10 C							1.00
20 dBm-			Hint & Arr	the distant	-			
			1 kinder	Total Analysis of the				
30 d2m				1	-			
		/	11	1	1			
40 dBm-			1		1	-		-
so dem-				-				
		/				<u> </u>		_
60 dBm	- /			-	-	1		-
1.5	1							
70 dBm-		1.1			had al		5.0	-
		I they bear your	0		MAN WALL			
eo dem- N 800 422 NE DIGITAL	~	a dest Martin	1		- a way	These	<u> </u>	
	1. Wellay Mallin	ular				- Manufallantic	1 miles	
No. We also also also also also also also also	adultine with the state				t wheelp where we are		a shheetedh	4/manhhha
CF 615.875 MHz		1001 p		1	00.0 kHz/			Span 1.0 MHz

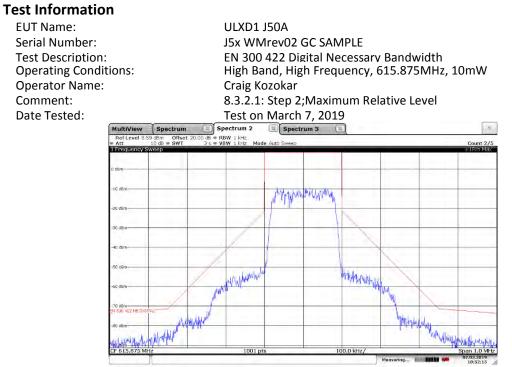
10:49:48 07.03.2019



Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: **Operator Name:** Comment:

.


ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth High Band, High Frequency, 615.875MHz, 1mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor

Test Information

EUT Name:		ULXD1	J50A				
Serial Number:	J5x WMrev02 GC SAMPLE						
Test Description:	EN 300 422 Digital Necessary Bandwidth						
Operating Conditions:	High Band, High Frequency, 615.875MHz, 10mW						
Operator Name:		Craig Kozokar					
Comment:							
		8.3.2.1: Step 1; Carrier Power					
Date Tested on March 7, 2019							
	Spectrum	Spectrum 2 0.00 dB = RBW 1 MHz	Spectrum 3	12			
Att 1 Zero Span	4 d8 ≈ SWT	3s ● VBW 1 MH≥				Count 3/5	
10 dBm				112		M1[1] 8:40 dBm 1:80600 s	
p dbm-							
E serie							
-10 dBr:							
-20 dBm							
420 200				1.1			
-30 d0m							
-40 dpr							
-10.000				1.1			
ndb de-							
-50 06-							
-70 dem							
-at the							
			1001-1			200.0	
CF 615.875 M			1001 pts		Measuring	300.0 ms/ 07.03.2019 10:51:41	
10:51:41 07	03.2019						

10:52:15 07.03.2019

Test Information

Date Tested: Test on March 7, 2019	EUT Name: Serial Number: Test Description: Operating Conditio Operator Name: Comment:	ons:	ULXD1 J50A J5x WMrev02 GC SAMPLE EN 300 422 Digital Necessary Bandwidth High Band, High Frequency, 615.875MHz, 10mW Craig Kozokar 8.3.2.1: Step 3;Lower and upper frequency transmitter band Wide band noise floor						
MultiView Spectrum 2 Spectrum 3 Ref Level 6.05 oftim Offset 2000 db = RBW 1 viet Count 2/5 Instantiation Offset 2000 db = VBW 1 viet Count 2/5 Instantiation Offset 2000 db = VBW 1 viet Mode Auto Sweep Instantiation Offset 2000 db = VBW 1 viet Count 2/5 Instantiation Offset 2000 db = VBW 1 viet Mode Auto Sweep Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet Instantiation Offset 2000 db = VBW 1 viet Viet <	Date Tested:								
Att 10 GB SWT 20 s VBW Mode Auto Stweep Count 2/5 I FERCURING SWEED		Part of the second s	m 🖾 Spectrum 2			1		×)	
Dialism		= Att 10 dB = SW		le Auto Sweep	_	_		Count 2/5	
-20 c8e		And the second second				1		1 42 2	
-20 c8e		D dBm-							
-20 c8n		-10 dBm			1.4	1.4			
30 cite				Whyshy	mul				
-20 cilin		-20 dBm-		1					
No con		-30 dBm		1					
No con		- ch view-							
mand busines									
In the second seco		-50 dbm-			Rec.				
-50 dBm		-50. c8m		math	"WHY				
		1. m				7	-		
-70 (88)		-70 dBm						-	
as the real to the second		5N 300 432 NB 010174	petion			head			
and and a second and		90 citim	an marken beread			hungered	MARINA		
CF 615.875 MHz 1001 pts 200.0 kHz/ Span 2.0 MHz		CF 615.875 MHz	1001 pt	S	20				
10:53:34 07.03.2019		10:53:34 07.03.2019				1 00	iosuing	10:53:34	

Radiated Spurious Emissions

Purpose:

This test performed to determine if the EUT meets the radiated RF emission requirements of the FCC Part 15C section 236(g) and FCC OET Basic Certification Requirements for Wireless Microphones over the frequency range from 30MHz to 7GHz. A Quasi-Peak and Average detectors were used for the measurements. Both FCC Part 15C and IC RSS-Gen require measurements to the 10th harmonic of the carrier.

Requirements:

As stated in FCC 15C section 236(g), the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G, Compliance for spurious emission requirements shall be demonstrated using the applicable measurement procedures of ETSI EN 300 422-1. Compliance with the emission limits shall be demonstrated using a QP detector below 1GHz and a RMS Average detector above 1GHz. Emissions shall be investigated up to the 10th harmonic of the fundamental.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Measurement Type	U _{lab}	U _{ETSI}
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.24 dB	6.00 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 13 GHz)	4.56 dB	6.00 dB

Values of Expanded Measurement Uncertainty (95% Confidence)

U_{lab =} Determined for Shure EMC Laboratory

U_{ETSI =} From ETSI EN 300 422-1 Table 10

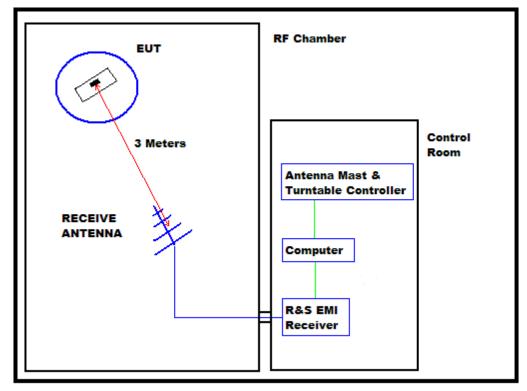
Since U_{lab} is less than or equal to U_{ETSI} :

Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
 Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

Test Setup and Instrumentation:

A Shure TQG Microphone was plugged into the EUT microphone socket. Photographs of the test setup are shown in Figure B 1 and Figure B 2. The test instrumentation can be determined from Table 10-1.

EUT Operation:


The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. The EUT was checked for proper operation after it was setup on the test table. For radiated spurious emissions the testing was performed with the EUT set to the Low Band, 572.000, 589.925, 607.875, with RF power output of 1mW and 20mW, and the High Band, 614.125 and 615.875, with RF power output of 1mW and 10mW.

Specific Test Procedures:

All tests were performed in a 28ft. x 20ft. x 18.5ft. 3m semi-anechoic test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2003 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All power lines and signal lines entering the enclosure pass through filters on the enclosure wall. The power line filters prevent extraneous signals from entering the enclosure on these leads.

BLOCK DIAGRAM OF SHIELDED ENCLOSURE

Preliminary radiated measurements were performed to determine the frequencies where the significant emissions might be found. With the EUT at one set position and the measurement antenna at a set height (i.e. without maximizing), the radiated emissions were measured using a peak detector and automatically plotted. The BiConiLog measuring antenna was positioned at a 3 meter distance from the EUT for below 1GHz testing, and a double ridged waveguide antenna above 1GHz testing.

All significant broadband and narrowband signals found in the preliminary sweeps were then measured using a peak detector at a test distance of 3 meters. The measurements were made with a BiConiLog antenna over the frequency range of 30 MHz to 1 GHz, and a double ridged waveguide antenna over the frequency range of 1 GHz to 10 GHz.

To ensure that maximum emission levels were measured, the following steps were taken:

- i. The EUT was rotated so that all of its sides were exposed to the receiving antenna.
- ii. Since the measuring antennas are linearly polarized, both horizontal and vertical field components were measured.
- iii. The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, another antenna was set in place of the EUT and connected to a calibrated signal generator. (A tuned dipole was used for all measurements below 1GHz and a double ridged waveguide antenna was used for all measurements above 1GHz.) The output of the signal generator was adjusted to match the received level at the EMI receiver. The signal level was recorded. The reading was corrected to compensate for cable loss and antenna gain.

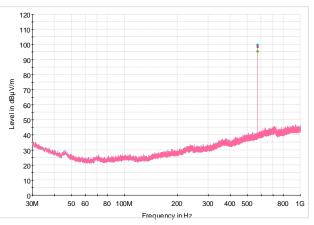
Results:

The plots of the peak preliminary radiated voltage levels in the graphs on page 30 thru page 39. The ERP measurements are shown on pages 40 thru page 44. All emissions measured from the EUT were within the ETSI EN 300 422-1 specification limits.

The temperature during the testing in the RF Chamber was 73 degrees F, with relative humidity of 17%.

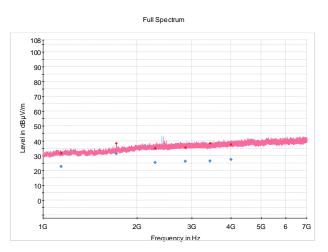
Figure B 1: ULXD1 Transmitter Test Setup

Figure B 2: ULXD1 Transmitter Test Setup


Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Low Frequency, 572.000MHz 1mW

SHURE Radiated RF Emissions Test Report

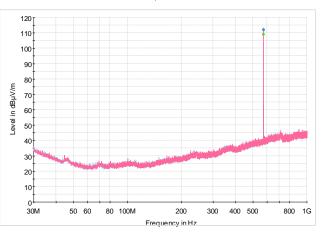

Jamal Qureshi Tested on February 27, 2019

Full Spectrum

SHURE Radiated RF Emissions Test Report

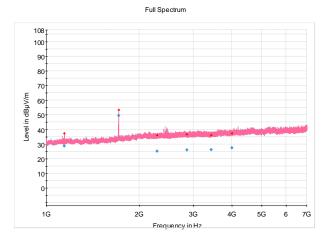
FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Low Frequency, 572.000MHz 1mW Jamal Qureshi Tested on March 1, 2019

Common Information



Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Low Frequency, 572.000MHz 20mW Jamal Qureshi Tested on February 27, 2019

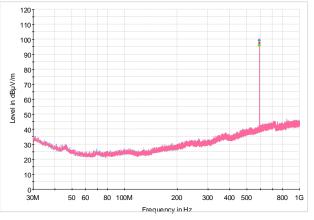

SHURE Radiated RF Emissions Test Report

Full Spectrum

SHURE Radiated RF Emissions Test Report

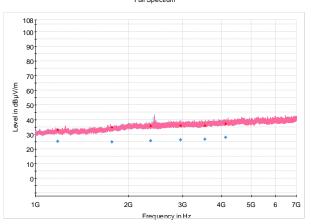
FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Low Frequency, 572.000MHz 20mW Jamal Qureshi Tested on March 4, 2019

Common Information



Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

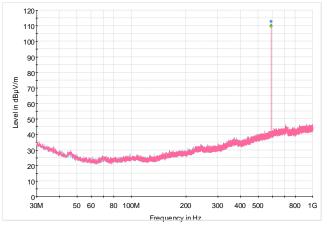

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Middle Frequency, 589.925MHz 1mW Jamal Qureshi Tested on February 27, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Middle Frequency, 589.925MHz 1mW Jamal Qureshi Tested on March 4, 2019 Full Spectrum

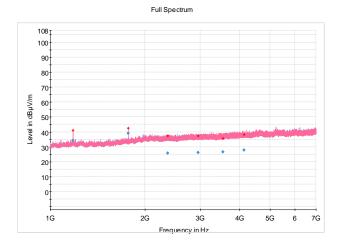
Common Information



Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

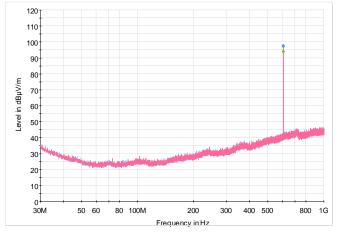
SHURE Radiated RF Emissions Test Report


FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Middle Frequency, 589.925MHz 20mW Jamal Qureshi Tested on February 27, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

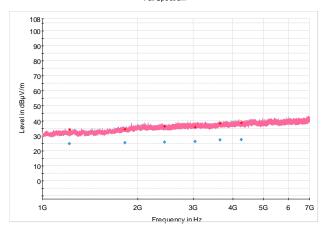
Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, Middle Frequency, 589.925MHz 20mW Jamal Qureshi Tested on March 4, 2019



Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

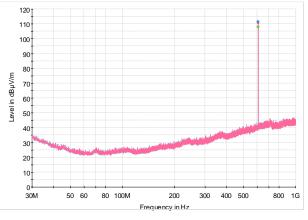

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, High Frequency, 607.875MHz 1mW Jamal Qureshi Tested on February 27, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, High Frequency, 607.875MHz 1mW Jamal Qureshi Tested on March 4, 2019 Full Spectrum

Common Information



Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, High Frequency, 607.875MHz 20mW Jamal Qureshi Tested on February 27, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 6GHz ULXD1 J50A J5x WMrev02 GC SAMPLE Low Band, High Frequency, 607.875MHz 20mW Jamal Qureshi Tested on March 4, 2019

Full Spectrum 108 100 90 80 70 Level in dBµ V/m 60 50[.] 40 30 • 20 10 0. 1G 2G 4G 5G 6 7G 3G Frequency in Hz

Common Information

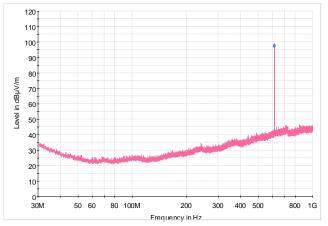
Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

Common Information

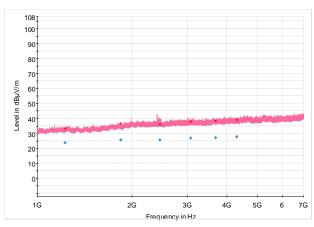
Test Description:

Serial Number: Operating Frequency:


RF Power Level Tester Name:

Date Tested

EUT:


SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, Low Frequency, 614.125MHz 1mW Jamal Qureshi Tested on February 27, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, Low Frequency, 614.125MHz 1mW Jamal Qureshi Tested on March 4, 2019 Full Spectrum

Common Information

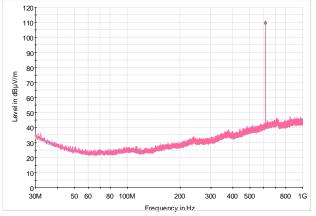
Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

Common Information Test Description:

Operating Frequency:

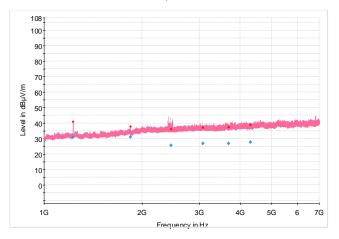
Serial Number:

RF Power Level


Tester Name:

Date Tested

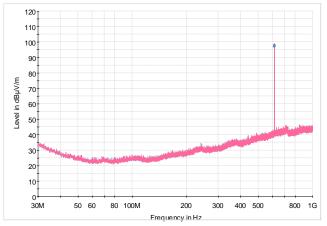
EUT:


SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, Low Frequency, 614.125MHz 10mW Jamal Qureshi Tested on March 1, 2019 Full Spectrum

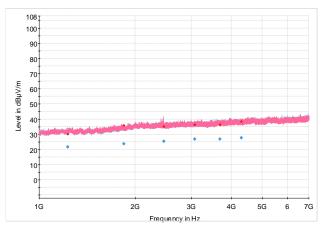
SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, Low Frequency, 614.125MHz 10mW Jamal Qureshi Tested on March 1, 2019 Full Spectrum



Common Information

Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

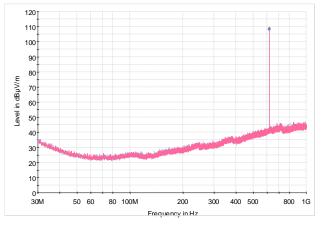

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, High Frequency, 615.875MHz 1mW Jamal Qureshi Tested on February 27, 2019 Full Spectrum

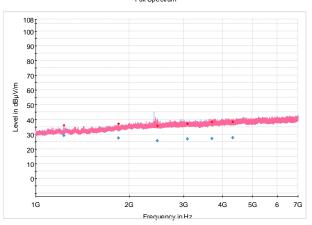
SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, High Frequency, 615.875MHz 1mW Jamal Qureshi Tested on March 4, 2019 Full Spectrum

Common Information


Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

SHURE Radiated RF Emissions Test Report


Common Information Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested

FCC 15C Radiated Emissions 30MHz - 1GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, High Frequency, 615.875MHz 10mW Jamal Qureshi Tested on March 1, 2019 Full Spectrum

SHURE Radiated RF Emissions Test Report

FCC 15C Radiated Emissions 1GHz - 7GHz ULXD1 J50A J5x WMrev02 GC SAMPLE High Band, High Frequency, 615.875MHz 10mW Jamal Qureshi Tested on March 1, 2019 Full Spectrum

Common Information

Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Low Frequency, 572.000MHz, 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
572.000	QP	V	99.37	3.46	0.00	2.75		
1144.000	Average	V	22.73	-77.3	3.43	3.57	-77.46	-30
1716.000	Average	V	31.43	-64.9	5.55	4.20	-63.56	-30
2288.000	Average	V	25.61	-90.0	5.61	4.72	-89.11	-30
2860.000	Average	V	26.43	-90.0	6.89	5.07	-88.18	-30
3432.000	Average	V	26.59	-90.0	8.15	5.47	-87.32	-30
4004.000	Average	V	27.81	-90.0	8.86	6.29	-87.43	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Low Frequency, 572.000MHz, 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
572.000	QP	V	112.13	16.2	0.00	2.75		
1144.000	Average	V	28.76	-66.8	3.43	3.57	-66.91	-30
1716.000	Average	V	49.45	-46.4	5.55	4.20	-45.00	-30
2288.000	Average	V	25.61	-90.0	5.61	4.72	-89.11	-30
2860.000	Average	V	26.43	-90.0	6.89	5.07	-88.18	-30
3432.000	Average	V	25.59	-90.0	8.15	5.47	-87.32	-30
4004.000	Average	V	27.81	-90.0	8.86	6.29	-87.43	-30

Date: EUT:	March 6, 2019
Band:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Middle Frequency, 589.925MHz, 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
589.925	QP	V	99.26	2.97	0.00	2.76		
1179.850	Average	V	25.10	-71.1	3.56	3.66	-71.22	-30
1769.775	Average	V	24.82	-75.7	5.26	4.24	-74.66	-30
2359.700	Average	V	26.08	-90.0	5.70	4.75	-89.05	-30
2949.625	Average	V	26.66	-90.0	6.97	5.20	-88.23	-30
3539.550	Average	V	27.00	-90.0	8.23	5.56	-87.33	-30
4129.475	Average	V	28.20	-90.0	9.19	6.16	-86.97	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, Middle Frequency, 589.925MHz, 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
589.925	QP	V	112.74	16.45	0.00	2.76		
1179.850	Average	V	34.23	-59.9	3.56	3.66	-59.95	-30
1769.775	Average	V	28.99	-56.4	5.26	4.24	-55.41	-30
2359.700	Average	V	26.07	-90.0	5.70	4.75	-89.05	-30
2949.625	Average	V	26.66	-90.0	6.97	5.20	-88.23	-30
3539.550	Average	V	26.53	-90.0	8.23	5.56	-87.33	-30
4129.475	Average	V	28.20	-90.0	9.19	6.16	-86.97	-30

March 6, 2019
ULXD1
J50A
J5x WMrev02 GC SAMPLE
EN 300 422-1, Spurious Radiated Emissions
Test Distance is 3 meters
EUT set to Low Band, High Frequency, 607.875MHz, 1mW
Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
607.875	QP	V	97.39	0.84	0.00	2.78		
1215.750	Average	V	24.68	-72.2	3.60	3.68	-72.25	-30
1823.625	Average	V	25.38	-76.0	5.03	4.25	-75.25	-30
2431.500	Average	V	25.84	-90.0	5.81	4.81	-89.00	-30
3039.375	Average	V	26.57	-90.0	7.07	5.25	-88.18	-30
3647.250	Average	V	27.19	-90.0	4.95	6.09	-91.14	-30
4255.125	Average	V	27.92	-90.0	9.45	6.44	-86.99	-30

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low Band, High Frequency, 607.875MHz, 20mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
607.875	QP	V	111.39	14.83	0.00	2.78		
1215.750	Average	V	34.65	-59.34	3.60	3.68	-59.42	-30
1823.625	Average	V	33.38	-62.52	5.03	4.25	-61.74	-30
2431.500	Average	V	25.48	-90.0	5.81	4.81	-89.00	-30
3039.375	Average	V	26.57	-90.0	7.07	5.25	-88.18	-30
3647.250	Average	V	27.15	-90.0	4.95	6.09	-91.14	-30
4255.125	Average	V	27.92	-90.0	9.45	6.44	-86.99	-30

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, Low Frequency, 614.125MHz, 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
614.125	QP	V	97.09	0.16	0.00	2.80		
1228.250	Average	V	23.79	-73.1	3.56	3.66	-73.17	-30
1842.375	Average	V	25.60	-72.4	5.11	4.33	-71.63	-30
2456.500	Average	V	25.85	-90.0	5.89	4.84	-88.95	-30
3070.625	Average	V	26.99	-90.0	7.11	5.31	-88.20	-30
3684.750	Average	V	27.13	-90.0	8.33	6.06	-87.73	-30
4298.875	Average	V	27.83	-90.0	9.48	6.45	-86.97	-30

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, Low Frequency, 614.125MHz, 10mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
614.125	QP	V	109.27	12.14	0.00	2.80		
1228.250	Average	V	30.88	-62.9	3.56	3.66	-62.96	-30
1842.375	Average	V	31.03	-63.4	5.11	4.33	-62.57	-30
2456.500	Average	V	25.85	-90.0	5.89	4.84	-88.95	-30
3070.625	Average	V	26.99	-90.0	7.11	5.31	-88.20	-30
3684.750	Average	V	27.13	-90.0	8.33	6.06	-87.73	-30
4298.875	Average	V	27.83	-90.0	9.48	6.45	-86.97	-30

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, High Frequency, 615.875MHz, 1mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
615.875	QP	V	97.87	0.54	0.00	2.84		
1231.750	Average	V	22.21	-90.0	3.54	3.66	-90.12	-30
1847.625	Average	V	23.98	-90.0	5.13	4.29	-89.16	-30
2463.500	Average	V	25.91	-90.0	5.90	4.85	-88.95	-30
3079.375	Average	V	27.12	-90.0	7.13	5.24	-88.11	-30
33695.250	Average	V	27.31	-90.0	8.33	6.90	-87.57	-30
4311.125	Average	V	27.92	-90.0	9.48	6.65	-87.17	-30

Date:	March 6, 2019
EUT:	ULXD1
Band:	J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High Band, High Frequency, 615.875MHz, 10mW
Tested By:	Jamal Qureshi

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
615.875	QP	V	108.25	11.09	0.00	2.80		
1231.750	Average	V	29.21	-46.3	3.54	3.66	-46.44	-30
1847.625	Average	V	27.49	-51.0	5.13	4.29	-50.12	-30
2463.500	Average	V	25.91	-90.0	5.90	4.85	-88.95	-30
3079.375	Average	V	27.11	-90.0	7.13	5.24	-88.11	-30
3695.250	Average	V	27.31	-90.0	8.33	5.90	-87.57	-30
4311.125	Average	V	27.92	-90.0	9.48	6.65	-87.17	-30

Maximum Radiated Power

Purpose:

This test performed to determine if the EUT meets the Maximum Radiated Power requirements of the FCC Part15C, Section 15.236, the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G.

Requirements:

As stated in FCC 15C Section 15.236 (6)(2). the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence)

Measurement Type	U _{lab}
Radiated measurements (30 MHz – 1000 MHz)	4.24 dB

 $U_{\text{lab}\,\text{=}}$ Determined for Shure EMC Laboratory

Since U_{lab} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

Test Setup and Instrumentation:

Photographs of the test setup are shown in Figure B 1. The test instrumentation can be determined from Table 10-1.

EUT Operation:

The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. For rated output power, the testing was performed with the EUT set to the Low Band, 572.000, 589.925, 607.875, with RF power output of 1mW and 20mW, and the High Band, 614.125 and 615.875, with RF power output of 1mW and 20mW.

Specific Test Procedures:

The Maximum Rated Power test was performed during the Spurious Emission testing, Appendix B. The carrier frequency power level was documented in Appendix B.

Results:

The EIRP for all frequencies measured meets the FCC15C 15.236 requirements, the FCC OET Basic Certification Requirements for Wireless Microphones requirements, and RSS-210 Annex G.

The results are shown on page 47 thru page 56.

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, Low Frequency, 572.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
99.37	3.46	2.15	2.75	2.86	1.93	50.00	48.07

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, Low Frequency, 572.000MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in F Chamber in dB		Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
112.13	+16.19	2.15	2.75	15.59	36.22	50.00	13.78

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, Middle Frequency, 589.925MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
99.26	2.97	2.15	2.76	2.36	1.72	50.00	48.28

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, Middle Frequency, 589.925MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
111.74	+16.45	2.15	2.76	15.84	38.37	50.00	11.63

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, High Frequency, 607.875MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
97.39	0.84	2.15	2.78	0.21	1.05	50.00	48.95

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, High Frequency, 607.875MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
111.39	+14.83	2.15	2.78	14.20	26.30	50.00	23.70

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to High Band, Low Frequency, 614.125MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
97.09	0.16	2.15	2.80	-0.49	0.89	50.00	49.11

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

ULXD1 J50A
J5x WMrev02 GC SAMPLE
Maximum Rated Output
EUT set to High Band, Low Frequency, 614.125MHz, 10mW
Jamal Qureshi
FCC Part15C, Section 15.236
Tested on March 6, 2019

Measured in RF Chamber in dBu		Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
109.27	+12.14	2.15	2.80	11.49	14.09	50.00	35.91

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to High Band, High Frequency, 615.875MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
97.87	0.54	2.15	2.84	-0.15	0.97	50.00	49.03

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to High Band, High Frequency, 615.875MHz, 10mW
Operator Name:	Jamal Qureshi
Comment:	FCC Part15C, Section 15.236
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
108.25	+11.09	2.15	2.84	10.40	10.97	50.00	39.03

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, Low Frequency, 572.000MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
	in dBm						ł
99.37	3.46	2.15	2.75	2.86	1.94	250.00	248.06

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

20mW

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
112.13	+16.19	2.15	2.75	15.59	36.22	250.00	213.78

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, Middle Frequency, 589.925MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
99.26	2.97	2.15	2.76	2.36	1.72	250.00	248.28

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, Middle Frequency, 589.925MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In mW
112.74	+16.45	2.15	2.76	15.84	38.37	250.00	211.63

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, High Frequency, 607.875MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
97.39	0.84	2.15	2.78	0.21	1.05	250.00	248.95

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to Low Band, High Frequency, 607.875MHz, 20mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
111.39	+14.83	2.15	2.78	14.20	26.30	250.00	223.70

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to High Band, Low Frequency, 614.125MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
97.09	0.16	2.15	2.80	-0.49	0.89	250.00	249.11

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

ULXD1 J50A
J5x WMrev02 GC SAMPLE
Maximum Rated Output
EUT set to High Band, Low Frequency, 614.125MHz, 10mW
Jamal Qureshi
RSS-210
Tested on March 6, 2019

Measured in RF Chamber in dBu\	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
109.27	+12.14	2.15	2.80	11.49	14.09	250.00	235.91

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to High Band, High Frequency, 615.875MHz, 1mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
97.87	0.54	2.15	2.84	-0.15	0.97	250.00	249.03

EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) - Cable Loss (dB)

Test Information

EUT Name:	ULXD1 J50A
Serial Number:	J5x WMrev02 GC SAMPLE
Test Description:	Maximum Rated Output
Operating Conditions:	EUT set to High Band, High Frequency, 615.875MHz, 10mW
Operator Name:	Jamal Qureshi
Comment:	RSS-210
Date Tested:	Tested on March 6, 2019

Measured in RF Chamber in dBuV	Substitution Signal Generator Measurement in dBm	Equivalent Antenna Gain in dB	Cable Loss in dB	EIRP in dBm	EIRP in mW	EIRP Limit in mW	Margin In dB
108.25	+11.09	2.15	2.84	10.40	10.97	250.00	239.03

FREQUENCY TOLERANCE

PURPOSE:

This test was performed to determine if the EUT meets the frequency stability requirements of the FCC Part 15C, Section 15.236(f)(3) and the RSS-210 Annex G Table G1, specifications over the EUT operating frequency range of 470MHz to 534MHz.

REQUIREMENTS:

As stated in paragraph 15.236(f)(3) and, for low power auxiliary stations operating in the bands allocated for TV broadcasting, the frequency tolerance of the transmitter shall be 0.005 percent. RSS-210 Annex G Table G1 require \pm 50ppm.

MEASUREMENT UNCERTAINTY:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence):

Measurement Type	U _{lab}	
Frequency Error (Stability)	.0000000583 ppm	

Ulab = Determined for Shure EMC Laboratory

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;

 Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

TEST SETUP AND INSTRUMENTATION:

The EUT firmware was temporarily changed to transmit a CW signal just for this test. The EUT was heated and cooled in an ESPEC temperature chamber over a temperature range of -30C to +50C. The temperature around the EUT was measured and monitored by a J-Type thermocouple connected to an Extech thermometer. The EUTs frequency was measured with a frequency counter set to measure signal count at 0.1Hz resolution. The EUT was measured at low, middle, and high frequencies in the low band, and low and high frequencies in the high band. Photographs of the test setup are shown as Figure D-1. The test instrumentation can be determined from Table 10-1.

EUT OPERATION:

The antenna port of the EUT was connected to the 50 Ohm input of a frequency counter. The EUT was operated at 10mW.

TEST PROCEDURES:

- a. The temperature chamber was set to 20C, ambient temperature, with the EUT inside and powered on.
- b. The EUT was allowed to soak for at least 15 minutes after the temperature chamber reached the set temperature.
- c. The measured frequency of the transmitter was measured on the frequency counter.
- d. Steps a. through c. were repeated at -30C through +50C in ten degree increments for representative low, mid and high frequencies within the EUTs operational band.

RESULTS:

The frequency stability measurements are presented on pages 59 and 60. As shown by the test data, the test frequency deviation was within the 0.005 percent limit set out in the FCC Part 15C Section 15.236(f)(3) and the RSS-210 specifications.

The temperature in the test room during the test was 75 degrees F, with relative humidity of 18%.

Figures D-1 - Test Setup for Frequency Stability

Test InformationEUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Test DateTempNominal FrequencyMeasured Frequency			ULXD1 J50A J5x WMrev02 GC SAMPLE FCC Part 15C Section 15.236(f)(3) Frequency Tolerance Low Band: Low, Middle, and High frequency at 10mW, -30C to +50C Juan Castreion R & S FSU Spectrum Analyzer and ESPEC Temp Chamber March 8, 2019 Deviation (%) Frequency Deviation PPM Pass Or Fail					
°C	(MHz)	(MHz)		Stability (%)	(Hz)			
-30	572.000	572.000116	0.000020	0.005	116.16	0.203077	PASS	
-20	572.000	572.000154	0.000027	0.005	154.32	0.269790	PASS	
-10	572.000	572.000320	0.000056	0.005	320.22	0.559825	PASS	
0	572.000	572.000398	0.000070	0.005	389.11	0.695997	PASS	
10	572.000	572.000433	0.000076	0.005	433.10	0.757168	PASS	
20	572.000	572.000444	0.000078	0.005	444.17	0.776521	PASS	
30	572.000	572.000436	0.000076	0.005	436.44	0.763007	PASS	
40	572.000	572.000456	0.000080	0.005	455.74	0.796748	PASS	
50	572.000	572.000494	0.000086	0.005	494.03	0.863689	PASS	
-30	589.925	589.925123	0.000021	0.005	123.48	0.209315	PASS	
-20	589.925	589.925153	0.000026	0.005	152.88	0.259152	PASS	
-10	589.925	589.925310	0.000053	0.005	310.44	0.526236	PASS	
0	589.925	589.925410	0.000069	0.005	409.55	0.694241	PASS	
10	589.925	589.925446	0.000076	0.005	445.70	0.755520	PASS	
20	589.925	589.925458	0.000078	0.005	458.00	0.776370	PASS	
30	589.925	589.925449	0.000076	0.005	449.33	0.761673	PASS	
40	589.925	589.925478	0.000081	0.005	477.74	0.809832	PASS	
50	589.925	589.925506	0.000086	0.005	505.66	0.857160	PASS	
-30	607.875	607.875132	0.000022	0.005	131.55	0.216410	PASS	
-20	607.875	607.875157	0.000026	0.005	156.55	0.257537	PASS	
-10	607.875	607.875316	0.000052	0.005	315.55	0.519103	PASS	
0	607.875	607.875420	0.000069	0.005	419.55	0.690191	PASS	
10	607.875	607.875459	0.000075	0.005	458.70	0.754596	PASS	
20	607.875	607.875473	0.000078	0.005	472.80	0.777791	PASS	
30	607.875	607.875463	0.000076	0.005	463.44	0.762394	PASS	
40	607.875	607.875497	0.000082	0.005	497.34	0.818162	PASS	
50	607.875	607.875507	0.000083	0.005	507.32	0.834579	PASS	

Test Information EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Test Date			ULXD1 J50A J5x WMrev02 GC SAMPLE FCC Part 15C Section 15.236(f)(3) Frequency Tolerance <u>High Band</u> : Low and High frequency at 10mW, -30C to +50C Juan Castreion R & S FSU Spectrum Analyzer and ESPEC Temp Chamber March 8, 2019					
Temp °C	Nominal Frequency (MHz)	Measured Frequency (MHz)	Deviation (%)	Frequency Stability (%)	Deviation (Hz)	РРМ	Pass Or Fail	
-30	614.125	614.125137	0.000022	0.005	137.44	0.223798	PASS	
-20	614.125	614.125152	0.000025	0.005	151.50	0.246692	PASS	
-10	614.125	614.125317	0.000052	0.005	316.60	0.515530	PASS	
0	614.125	614.125423	0.000069	0.005	423.14	0.689013	PASS	
10	614.125	614.125461	0.000075	0.005	461.10	0.750824	PASS	
20	614.125	614.125478	0.000078	0.005	478.11	0.778824	PASS	
30	614.125	614.125467	0.000076	0.005	467.11	0.760611	PASS	
40	614.125	614.125510	0.000083	0.005	510.11	0.830629	PASS	
50	614.125	614.125509	0.000083	0.005	509.30	0.829310	PASS	
-30	615.875	615.875139	0.000023	0.005	139.32	0.226215	PASS	
-20	615.875	615.875119	0.000019	0.005	119.17	0.193497	PASS	
-10	615.875	615.875320	0.000052	0.005	319.77	0.519213	PASS	
0	615.875	615.875424	0.000069	0.005	423.83	0.688175	PASS	
10	615.875	615.875460	0.000075	0.005	459.60	0.746255	PASS	
20	615.875	615.875482	0.000078	0.005	482.17	0.782902	PASS	
30	615.875	615.875468	0.000076	0.005	468.22	0.760252	PASS	
40	615.875	615.875515	0.000084	0.005	514.72	0.835754	PASS	
50	615.875	615.875505	0.000082	0.005	505.17	0.820248	PASS	

Spurious Emissions at Antenna Terminals

Purpose:

This test performed to determine if the EUT meets the conducted spurious emissions at the antenna port requirements of the FCC Part 2.1051.

Requirements:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. The expanded measurement uncertainty (95% confidence) has been determined to be ± 1.28 dB.

Test Setup and Instrumentation:

Photograph of the test setup is shown in Figure E 1. The test instrumentation can be determined from Table 10-1.

EUT Operation:

The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. For conducted spurious emissions the testing was performed with the EUT set to the Low Band, low, middle, and high frequencies with RF power output of 1mW and 20mW. Then the High Band, low and high frequencies with RF power output of 1mW.

Specific Test Procedures:

The testing was performed as states in FCC Part 2.1051.

Results:

The plots of the antenna port spurious emissions are shown on page 63 thru page 72. All emissions measured from the EUT were within the ETSI EN 300 422-1 specification limits. All spurious emissions were at least

The temperature during the testing was 76 degrees F, with relative humidity of 17%.

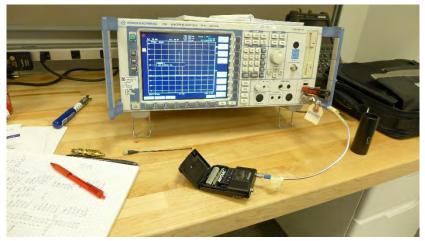
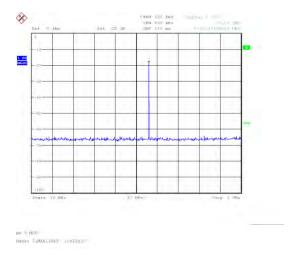
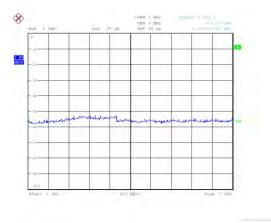



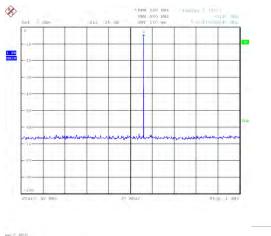
Figure E 1: ULXD1 Transmitter Test Setup


Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Low Frequency, 572.000MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

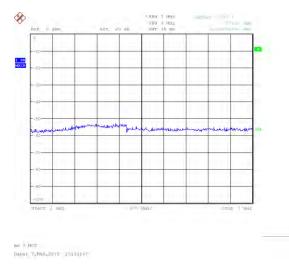
Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 j50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Low Frequency, 572.000MHz, 1mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019



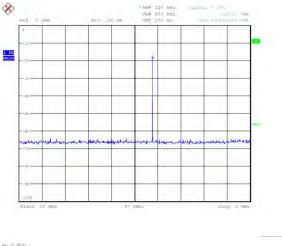
nw 0 MOD Date: 7.MAR,2013 10:33:05

Test Information

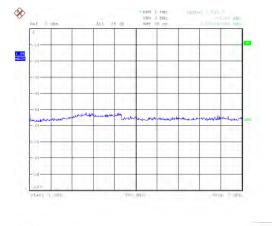

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Low Frequency, 572.000MHz, 20mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

mer C 5500 Dete: 7.MAB.2019 10:23:40

Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Low Frequency, 572.000MHz, 20mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019

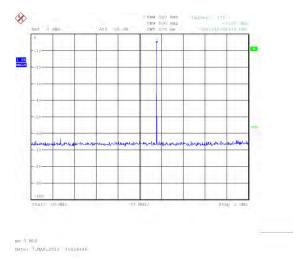
Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Middle Frequency, 589.925MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

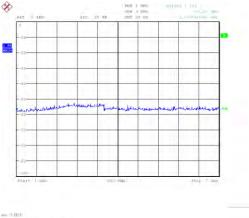
m+ D MOD Data: 7.MAR.2019 10:25:36

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Middle Frequency, 589.925MHz, 1mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019



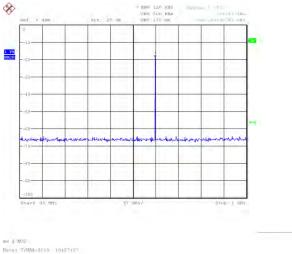
me 0.MOD Datu: 7:MAR,2019 10:13:57


Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Middle Frequency, 589.925MHz, 20mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

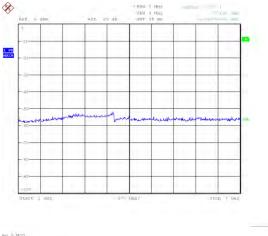
Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, Middle Frequency, 589.925MHz, 20mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019


nn: 0 MOD Dégle: 7.9648.2019 - 10:36:57

Test Information

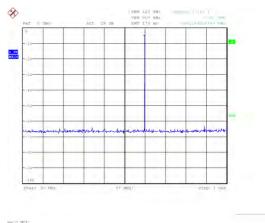
EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:


ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, High Frequency, 607.875MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

Test Information

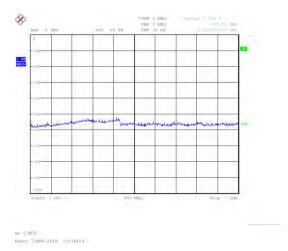
EUT Name: Serial Number: Test Description: Operating Conditions: **Frequency Range Operator Name:** Date Tested:

ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, High Frequency, 607.875MHz, 1mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019



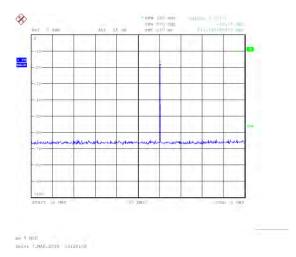
mw 0 M00 Date: 7.MAR.2019 19:07:40

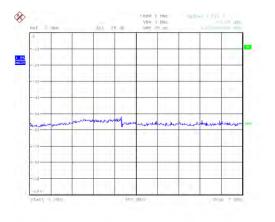
Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, High Frequency, 607.875MHz, 20mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

me'0 MED Date: 7.90AH.2013 10127:89

Test Information

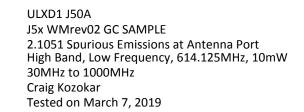

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port Low Band, High Frequency, 607.875MHz, 20mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019

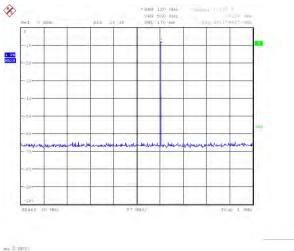

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Band, Low Frequency, 614.125MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

Test Information

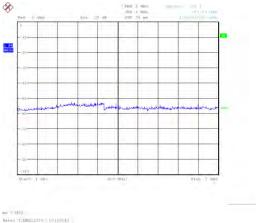
EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Band, Low Frequency, 614.125MHz, 1mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019




mw 0.MOD Datu: 7:MAR,2010 10:39100

Test Information

EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:

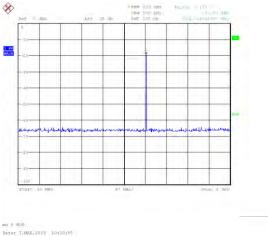


Date: 7.MAR,2019 10:29:45

Test Information

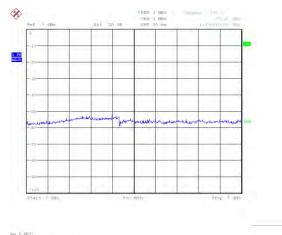
EUT Name: Serial Number: Test Description: **Operating Conditions:** Frequency Range **Operator Name:** Date Tested:

ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Band, Low Frequency, 614.125MHz, 10mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019



Test Information

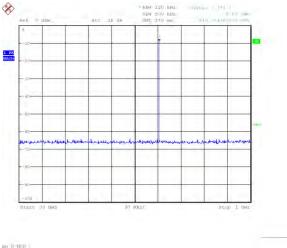
EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:


ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Band, High Frequency, 615.875MHz, 1mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

Test Information

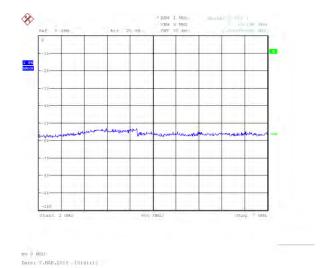
EUT Name: Serial Number: Test Description: **Operating Conditions: Frequency Range Operator Name:** Date Tested:

ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Band, High Frequency, 615.875MHz, 1mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019



mw 0 MOD Date: 7.MAR.2019 10140;36

Test Information


EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Band, High Frequency, 615.875MHz, 10mW 30MHz to 1000MHz Craig Kozokar Tested on March 7, 2019

mw 0 MOD Dater 7.MAR.2010 10:31:26

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Frequency Range Operator Name: Date Tested: ULXD1 J50A J5x WMrev02 GC SAMPLE 2.1051 Spurious Emissions at Antenna Port High Band, High Frequency, 615.875MHz, 10mW 1GHz to 7GHz Craig Kozokar Tested on March 7, 2019

Page 72 of 72