

1250 Peterson Dr., Wheeling, IL 60090

FCC Rules and Regulations / Intentional Radiators

Low Power Auxiliary Stations

Part 74, Subpart H, Sections 74.801 - 74.882

H5 - 518 MHz to 542 MHz, J3 - 572 MHz to 596 MHz and L4 - 638 MHz to 662 MHz Bands

THE FOLLOWING **"MEETS"** THE ABOVE TEST SPECIFICATION

Formal Name:	SLX Handheld Wireless Microphone Transmitter
Kind of Equipment:	Wireless microphone transmitter
Test Configuration:	Connect to a Microphone Cartridge
Model Number(s):	SLX2
Model(s) Tested:	SLX2
Serial Number(s):	NA
Date of Tests:	December 15, 2003
Test Conducted For:	Shure Inc. 222 Hartrey Ave. Evanston, Illinois 60202

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report. This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems.

Shure Inc. SLX2 10460

1250 Peterson Dr., Wheeling, IL 60090

SIGNATURE PAGE

Report By:

amon C Rove

Arnom C. Rowe Test Engineer EMC-001375-NE

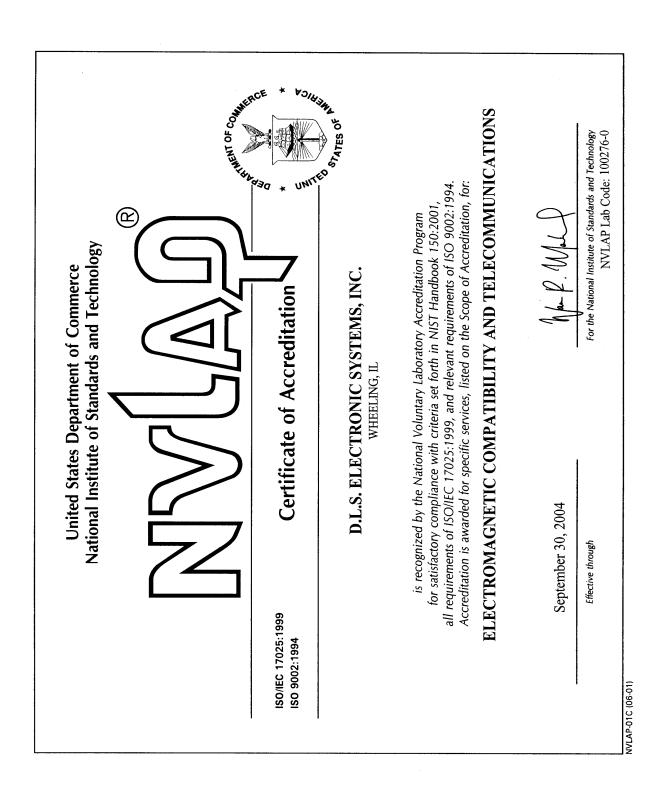
Reviewed By:

William Misting

William Stumpf OATS Manager

Approved By:

Brian J. Mattoon


Brian Mattson General Manager

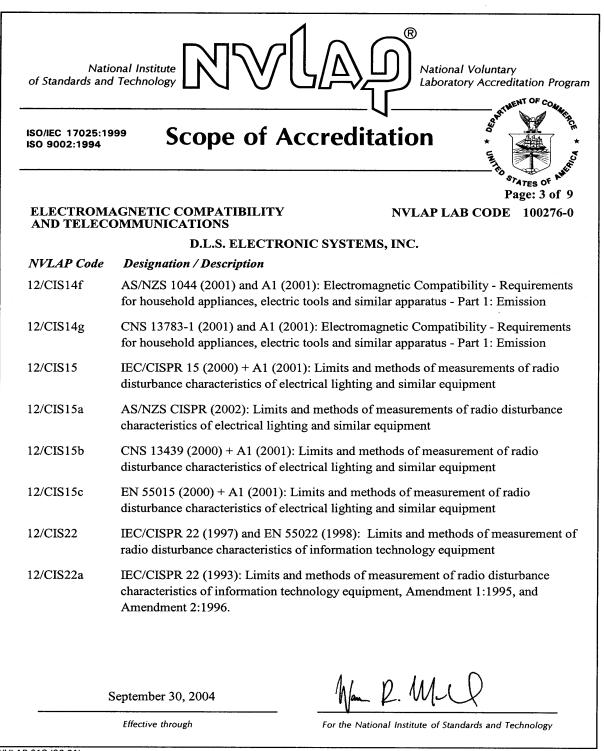
Company Official:

Shure Inc.

1250 Peterson Dr., Wheeling, IL 60090

1250 Peterson Dr., Wheeling, IL 60090

Natio of Standards and ISO/IEC 17025:19 ISO 9002:1994		
	AGNETIC COMPATIBILITY	Solution of 9 Page: 1 of 9 NVLAP LAB CODE 100276-0
AND IELEC	DMMUNICATIONS D.L.S. ELECTRONI 1250 Peter Wheeling, IL Mr. Brian J Phone: 847-537-6400 E-Mail: bmattso: URL: http://ww	son Drive 60090-6454 . Mattson Fax: 847-537-6488 n@dlsemc.com
NVLAP Code	Designation / Description	
Emissions Test	Methods:	
12/160D21		nental Conditions and Test Procedures for Emission of Radio Frequency Energy
12/300220a	Matters; Short Range Devices; Rad	lectromagnetic compatibility and Radio spectrum lio equipment to be used in the 25 MHz to 1000 evels ranging up to 500 mW; Part 1: Technical
12/300386a	-	tic compatibility and radio spectrum matter rk equipment; Electromagnetic compatibility
12/C63.17		ional Standard for Methods of Measurement of the compatibility of Unlicensed Personal Devices
:	September 30, 2004	Man R. M. R
<u></u>	Effective through	For the National Institute of Standards and Technology



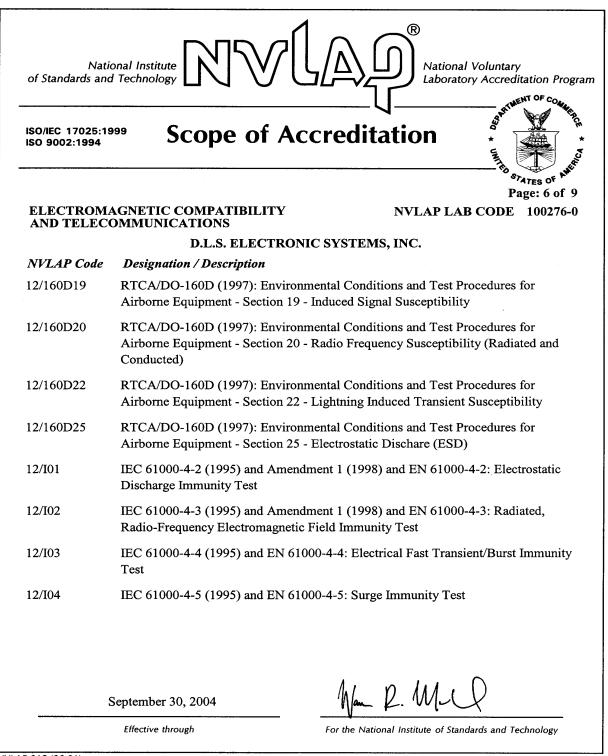
1250 Peterson Dr., Wheeling, IL 60090

ISO/IEC 17025:19 ISO 9002:1 994	Scope of Accr	editation Files of units of the second seco		
	AGNETIC COMPATIBILITY OMMUNICATIONS	NVLAP LAB CODE 100276-0		
	D.L.S. ELECTRONIC SY	YSTEMS, INC.		
NVLAP Code	Designation / Description			
12/C6317a	ANSI C63.17-1998: American National Standard for Methods of Measurement of the Electromagnetic and Operational Compatibility of Unlicensed Personal Communications Services (UPCS) Devices			
12/CIS11	IEC/CISPR 11 + A1 (1997), EN 55011 (1998), AS/NZS 2064 (1997), and CNS 137803 (1997): Limits and Methods of Measurement of Electromagnetic Disturbance Characteristics of Industrial, Scientific, and Medical Radio-Frequency Equipment			
12/CIS13	IEC/CISPR 13 (2001-04), EN 55013 (2001), AS/NZS 1053 (2001), and CNS 13439 (2001): Sound and television broadcast receivers and associated equipment - Radio disturbance characteristics - Limits and methods of measurement			
12/CIS14	CISPR 14-1 (March 30, 2000): Limits and methods of measurement of radio interference characteristics of household electrical appliances, portable tools and similar electrical apparatus - Part 1: Emissions			
12/CIS14a	EN 55014-1 (1993) with Amendments	A1 (1997) & A2 (1999)		
12/CIS14d	IEC/CISPR 14-1 (2001) and A1 (2001): Electromagnetic Compatibility - Requirements for household appliances, electric tools and similar apparatus - Part 1: Emissions			
12/CIS14e	. ,	ctromagnetic Compatibility - Requirements and similar apparatus - Part 1: Emission		

1250 Peterson Dr., Wheeling, IL 60090

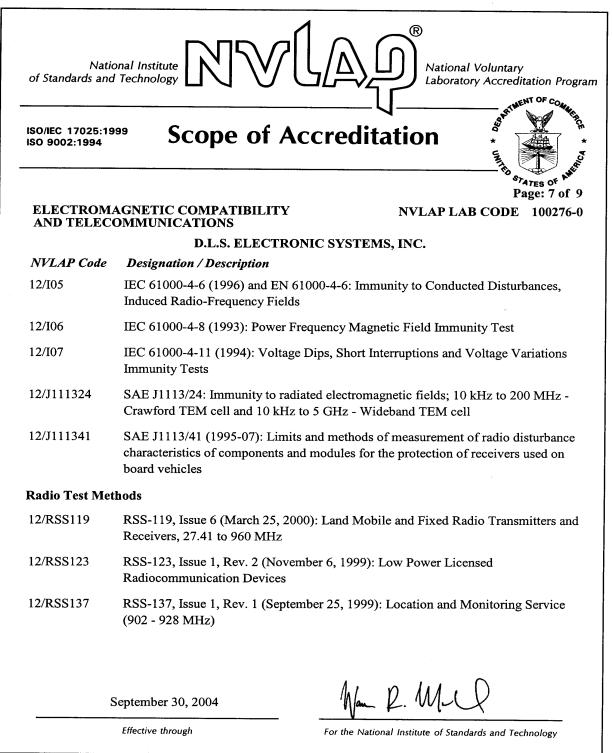
1250 Peterson Dr., Wheeling, IL 60090

ISO 9002:1994	Scope of Accrec	litation *	
	GNETIC COMPATIBILITY MMUNICATIONS	NVLAP LAB CODE 100276-0	
	D.L.S. ELECTRONIC SYST	'EMS, INC.	
NVLAP Code	Designation / Description		
	CNS 13438 (1997): Limits and Methods of Characteristics of Information Technology		
	IEC 61000-3-2, Edition 2.1 (2001-10), EN (2000): Electromagnetic compatibility (EM current emissions (equipment input current	IC) Part 3-2: Limits - Limits for harmonic	
	EN 61000-3-3 (1995), IEC 61000-3-3 (1995), and AS/NZS 2279.3 (1995): EMC - Part 3: Limits - Section 3. Limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment with rated current up to 16A		
	FCC OST/MP-5 (1986): FCC Methods of Measurement of Radio Noise Emissions for ISM Equipment (cited in FCC Method 47 CFR Part 18 - Industrial, Scientific, and Medical Equipment)		
	ANSI C63.4 (2001) with FCC Method - 47 CFR Part 15, Subpart B: Unintentional Radiators		
	ANSI C63.4 (2001) with FCC Method - 47 Radiators	CFR Part 15, Subpart C: Intentional	
	ANSI C63.4 (2001) with FCC Method - 47 Personal Communications Service Devices	CFR Part 15, Subpart D: Unlicensed	

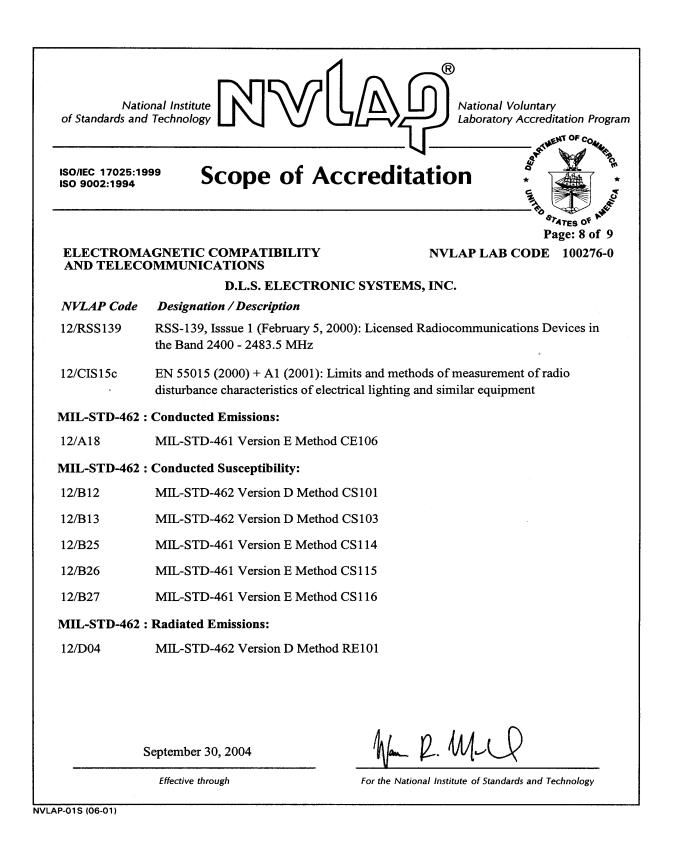

1250 Peterson Dr., Wheeling, IL 60090

ISO/IEC 17025:19 ISO 9002:1994	Scope of Accr	STATES OF AN		
	AGNETIC COMPATIBILITY OMMUNICATIONS	Page: 5 of 9 NVLAP LAB CODE 100276-0		
	D.L.S. ELECTRONIC S	SYSTEMS, INC.		
NVLAP Code	Designation / Description			
12/FCC15e	ANSI C63.4 (2001) with FCC Method National Information Infrastructure Ser			
12/T51	AS/NZS CISPR 22 (2002) and AS/NZ Limits and Methods of Measurement o	S 3548 (1997): Electromagnetic Interference - f Information Technology Equipment		
12/VCCIa	Agreement of Voluntary Control Coun Equipment - Technical Requirements:	cil for Interference by Information Technology V-3/02.04		
Immunity Test	Methods:			
12/1089a	GR-1089-CORE, Issue 3, October 200 Electrical Safety - Generic Criteria for (sections 2, 3.3, and 3.5)	2: Electromagnetic Compatibility and Network Telecommunications Equipment		
12/160D16	RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for Airborne Equipment - Section 16 - Power Input			
12/160D17	RTCA/DO-160D (1997): Environmental Conditions and Test Procedures for Airborne Equipment - Section 17 - Voltage Spike			
12/160D18	RTCA/DO-160D (1997): Environment Airborne Equipment - Section 18 - Au Power Inputs	tal Conditions and Test Procedures for dio Frequency Conducted Susceptibility -		
		-		
	September 30, 2004	Man R. M.C		

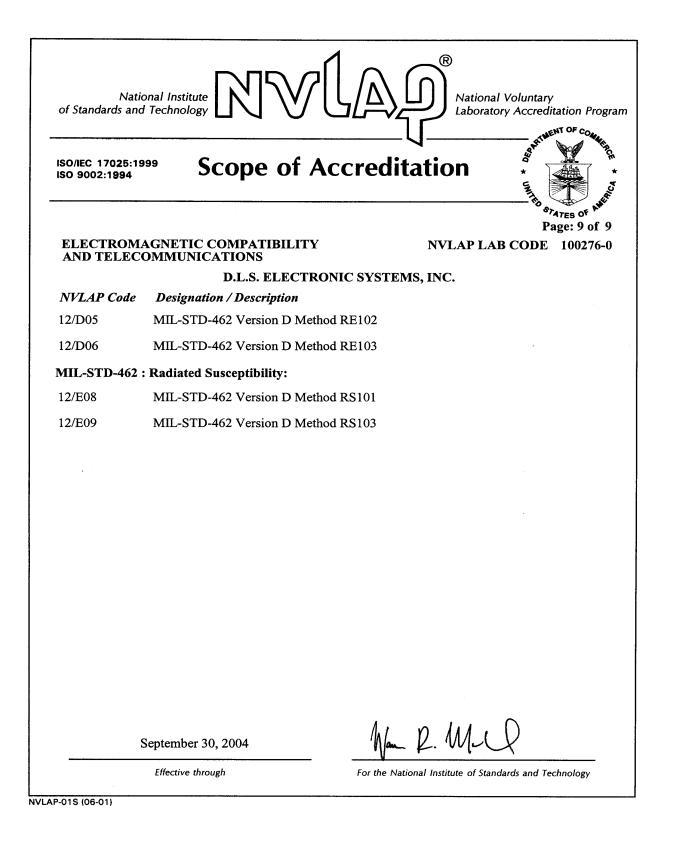
Page -8-



1250 Peterson Dr., Wheeling, IL 60090



1250 Peterson Dr., Wheeling, IL 60090



1250 Peterson Dr., Wheeling, IL 60090

1250 Peterson Dr., Wheeling, IL 60090

i.	Cover Page	1
ii.	Signature Page	2
iii.	NVLAP Certificate of Accreditation	3
iv.	NVLAP Scope of Accreditation	4
v.	Table of Contents	13
1.0	Summary of Test Report	17
2.0	Introduction	17
3.0	Object	17
4.0	Test Set-Up	18
5.0	Test Equipment	19
6.0	Conducted Emission Measurements	20
7.0	Radiated Emission Measurements	21
8.0	Description of Test Sample	22
8.0	Additional Description of Test Sample	23
9.0	Additional Description of Test Sample	25
10.0	Photo Information and Test Set-Up	26
11.0	Radiated Photos Taken During Testing	27
11.0	Conducted Photos Taken During Testing	28
12.0	Results of Tests	29
13.0	Conclusion	29
TAE	BLE 1 – EQUIPMENT LIST	30

Appe	ndix A – H5 - 518 MHz to 542 MHz Subpart H Emissions Test	
1.0	Test Set-Up	
2.0	RF Power Output	
2.0	Graph(s) taken of the RF Power Output	
3.0	Modulation Characteristics	
3.0	Graph(s) taken of the Modulation Characteristics	
4.0	Occupied Bandwidth	41
4.0	Graph(s) taken of the Occupied Bandwidth	42
5.0	Occupied Bandwidth Photos Taken During Testing	
6.0	Frequency Deviation and Tolerance	47
7.0	Spurious Emissions At Antenna Terminals	48
7.0	Conducted Emission Data and Charts made at the Antenna Terminals	49
8.0	Field Strength of Spurious Emission Measurements	
8.0	Radiated Data taken for Spurious Emissions using the Substitution Method	
8.0	Radiated Graph(s) Taken During Testing for Spurious Emissions	
9.0	Frequency Stability (Temperature)	79
9.0	Graph(s) Taken During Testing for Frequency Stability (Temperature)	
10.0	Frequency Stability (Temperature) Photos Taken During Testing	
11.0	Frequency Stability (Voltage Variation)	90
11.0	Graph(s) Taken During Testing for Frequency Stability (Voltage Variation)	91
12.0	Frequency Stability (Voltage) Photos Taken During Testing	

Appen	ndix B – J3 - 572 MHz to 596 MHz Subpart H Emissions Test	95
1.0	Test Set-Up	96
2.0	RF Power Output	96
2.0	Graph(s) taken of the RF Power Output	97
3.0	Modulation Characteristics	100
3.0	Graph(s) taken of the Modulation Characteristics	101
4.0	Occupied Bandwidth	104
4.0	Graph(s) taken of the Occupied Bandwidth	105
5.0	Occupied Bandwidth Photos Taken During Testing	109
6.0	Frequency Deviation and Tolerance	110
7.0	Spurious Emissions At Antenna Terminals	111
7.0	Conducted Emission Data and Charts made at the Antenna Terminals	112
8.0	Field Strength of Spurious Emission Measurements	113
8.0	Radiated Data and Charts taken for Spurious Emissions using the Substitution Method	115
8.0	Radiated Data and Graph(s) Taken During Testing for Spurious Emissions	117
9.0	Frequency Stability (Temperature)	142
9.0	Graph(s) Taken During Testing for Frequency Stability (Temperature)	143
10.0	Frequency Stability (Temperature) Photos Taken During Testing	152
10.0	Frequency Stability (Voltage Variation)	153
10.0	Graph(s) Taken During Testing for Frequency Stability (Voltage Variation)	154
12.0	Frequency Stability (Voltage) Photos Taken During Testing	157

Appe	ndix C – L4 - 638 MHz to 662 MHz Subpart H Emissions Test	158
1.0	Test Set-Up	159
2.0	RF Power Output	159
2.0	Graph(s) taken of the RF Power Output	160
3.0	Modulation Characteristics	163
3.0	Graph(s) taken of the Modulation Characteristics	164
4.0	Occupied Bandwidth	167
4.0	Graph(s) taken of the Occupied Bandwidth	168
5.0	Occupied Bandwidth Photos Taken During Testing	172
6.0	Frequency Deviation and Tolerance	173
7.0	Spurious Emissions At Antenna Terminals	174
7.0	Conducted Emission Data and Graphs made at the Antenna Terminals	175
8.0	Field Strength of Spurious Emission Measurements	176
8.0	Radiated Data taken for Spurious Emissions using the Substitution Method	178
8.0	Radiated Graph(s) Taken During Testing for Spurious Emissions	
9.0	Frequency Stability (Temperature)	
9.0	Graph(s) Taken During Testing for Frequency Stability (Temperature)	
10.0	Frequency Stability (Temperature) Photos Taken During Testing	215
11.0	Frequency Stability (Voltage Variation)	216
11.0	Graph(s) Taken During Testing for Frequency Stability (Voltage Variation)	217
12.0	Frequency Stability (Voltage) Photos Taken During Testing	

1250 Peterson Dr., Wheeling, IL 60090

1.0 SUMMARY OF TEST REPORT

It was found that the SLX Handheld Wireless Microphone Transmitter, Model Number(s) SLX2, "meets" the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861, for low power auxiliary stations. The <u>conducted</u> emissions test was not required because the SLX Handheld Wireless Microphone Transmitter is powered from a D.C. power source. It does not have a line cord to plug into the A.C. power line.

This test report relates only to the items tested and contains the following number of pages.

Text:	220
Charts:	69

2.0 INTRODUCTION

On December 15, 2003, a series of radio frequency interference measurements was performed on SLX Handheld Wireless Microphone Transmitter, Model Number(s) SLX2, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in Part 2 - Frequency Allocations and Radio Treaty Matters: General Rules and Regulations, Subpart J, Equipment Authorization Procedures of the Code of Federal Regulations 47. H5 - 518 MHz to 542 MHz, J3 - 572 MHz to 596 MHz & L4 - 638 MHz to 662 MHz Bands were tested. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861, for low power auxiliary stations.

1250 Peterson Dr., Wheeling, IL 60090

4.0 TEST SET-UP

All tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-1992, Section 7, (Figures 9a, 9b, 9c and 9d). The conducted tests if required were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the American National Standards Institute, ANSI C63.4-1992, Section 4, (Figure 2).

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable, which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-1992, Sections 6 and 8.

1250 Peterson Dr., Wheeling, IL 60090

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/ESI 40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and or ESI 26/ESI 40 fixed tuned receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/ESI 40 Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the ESI 26/ESI 40 Fixed Tuned Receiver.

The bandwidths shown below are specified by ANSI C63.4-2000, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

6.0 CONDUCTED EMISSION MEASUREMENTS

The SLX Handheld Wireless Microphone Transmitter is powered from a D.C. power source and will not at any time be directly plugged into the public utility lines, therefore the conducted emissions test was not performed.

1250 Peterson Dr., Wheeling, IL 60090

7.0 RADIATED EMISSION MEASUREMENTS

Preliminary radiation measurements were performed at a three meter test distance. The frequency range from 30 MHz to 1000 MHz was automatically scanned and plotted at various angles.

After preliminary measurements were taken, the EUT was taken to one of our three meter open field test site located at Genoa City, Wisconsin, FCC File No. 31040/SIT, where final radiated emissions measurements were made over the entire frequency range.

For signals in the frequency range of 30 to 200 MHz were measured with a Biconical Antenna or Tuned Dipole as the pickup device. From 200 MHz, a Log Periodic Antenna or a Tuned Dipole was used and above 1000 MHz a Double Ridge Horn Antenna was used.

During the test for frequencies below 1000 MHz, the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level of emissions. For frequencies greater than 1000 MHz the Double Ridge Horn Antenna was set at 1 or 3 meters from the EUT with the antenna height varied from 1 to 4 meters above the ground plane. Tests were made in both horizontal and vertical planes of polarization. The EUT, peripheral equipment and cables were configured to meet the conditions in ANSI C63.4-1992, Sections 6 & 8.

NOTE:

All radiated emissions measurements were made at a test room temperature of 70°F at 29% relative humidity.

1250 Peterson Dr., Wheeling, IL 60090

8.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 9.0)

8.1 Description:

The Shure Model SLX2 is a uP (microprocessor) controlled frequency agile UHF handheld microphone transmitter operating over the frequency range of 518 to 608 MHz and 614 to 662 MHz. The products are identical, with the exception of the frequency components needed for each range. The User interface includes "mode" and "set" buttons, and an LCD that displays battery status, group/channel, and transmitter/receiver frequency synchronization.

8.0 DESCRIPTION OF TEST SAMPLE: (CON'T)

8.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 244mm Width: 57mm Height: 57mm

8.3 LINE FILTER USED:

NA

8.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

NA

Clock Frequencies:

16 MHz, 2.4576 MHz & 0.32768 MHz

1250 Peterson Dr., Wheeling, IL 60090

8.0 DESCRIPTION OF TEST SAMPLE: (CON'T)

- 8.5 DESCRIPTION OF ALL CIRCUIT BOARDS:
 - 1. Populated Circuit Board

PN: 190-048 Rev. 3

1250 Peterson Dr., Wheeling, IL 60090

9.0 ADDITIONAL DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)

1: There were no changes made at D.L.S. Electronic Systems, Inc.

I certify that the above, combined with paragraph 8.0, describes the equipment tested and that the equipment will be manufactured as stated.

By:

Signature

Title

For:

Company

Date

1250 Peterson Dr., Wheeling, IL 60090

10.0 PHOTO INFORMATION AND TEST SET-UP

Item 0 SLX Handheld Wireless Microphone Transmitter Model Number: SLX2 Serial Number: NA

1250 Peterson Dr., Wheeling, IL 60090

11.0 RADIATED PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

11.0 RADIATED PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

12.0 RESULTS OF TESTS

The radio interference emission charts results can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report. Those points on the emission charts shown with a yellow mark are background frequencies which were verified during testing.

13.0 CONCLUSION

It was found that the SLX Handheld Wireless Microphone Transmitter, Model Number(s) SLX2 <u>"meets"</u> the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861, for low power auxiliary stations. H5 - 518 MHz to 542 MHz, J3 - 572 MHz to 596 MHz & L4 - 638 MHz to 662 MHz Bands were tested. The <u>conducted</u> emissions test was not required because the SLX Handheld Wireless Microphone Transmitter is powered from a D.C. power source. It does not have a line cord to plug into the A.C. power line.

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
Spectrum	Hewlett/	8566B	2240A002041	100 Hz – 22 GHz	10/04
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	2043A00121	10 kHz – 1 GHz	10/04
Adapter	Packard				
Spectrum	Hewlett/	8566B	2421A00452	100 Hz – 22 GHz	2/04
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	2043A00450	10 kHz – 1 GHz	2/04
Adapter	Packard				
Spectrum	Hewlett/	8591A	3009A00700	9 kHz – 1.8 GHz	3/04
Analyzer	Packard				
Receiver	Electrometrics	EMC-30	44168	10 kHz – 1 GHz	9/04
. .	D 1 1 0				11/01
Receiver	Rohde &	ESI 26	837491/010	20 Hz – 26 GHz	11/04
	Schwarz				
Receiver	Rohde &	ESI 40	837808/006	20 Hz – 40 GHz	12/04
	Schwarz				
Receiver	Rohde &	ESI 40	837808/005	20 Hz – 40 GHz	12/04
	Schwarz				
Antenna	EMCO	3104C	00054891	20 MHz – 200 MHz	2/04
Antenna	Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/04
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	3/04

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

Test Equipment	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Due Dates
Antenna	Electrometrics	3146	1205	200 MHz – 1 GHz	3/04
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	2/04
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	3/04
Antenna	EMCO	3115	2479	1 GHz – 18 GHz	8/04
Antenna	EMCO	3115	99035731	1 GHz – 18 GHz	4/04
Antenna	Rohde & Schwarz	HUF-Z1	829381001	20 MHz – 1 GHz	2/04
Antenna	Rohde & Schwarz	HUF-Z1	829381005	20 MHz – 1 GHz	8/04
LISN	Solar	8012-50-R- 24-BNC	8305116	10 MHz – 30 MHz	8/04
LISN	Solar	8012-50-R- 24-BNC	814548	10 MHz – 30 MHz	8/04
LISN	Solar	9252-50-R- 24-BNC	961019	10 MHz – 30 MHz	12/04
LISN	Solar	9252-50-R- 24-BNC	971612	10 MHz – 30 MHz	10/04
LISN	Solar	9252-50-R- 24-BNC	92710620	10 MHz – 30 MHz	7/04

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

SUBPART H

LOW POWER AUXILIARY STATIONS

SLX2-H5 - 518 MHz to 542 MHz

Group 1 Channel 8 & Group 1 Channel 16

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1.0 TEST SET-UP

All radiated emission tests were performed at D.L.S. Electronic Systems, Inc. The radiated tests were made with the test item placed on a non-conductive turntable located in the Test Room with the receive antenna placed three or one meter(s) from the device under test.

2.0 RF-POWER OUTPUT – PART 2.1046

As stated in PART 74.861 (e)(1)(ii), the RF output power should not exceed .25 watts. The RF output of the SLX Handheld Wireless Microphone Transmitter was connected to a Spectrum Analyzer through suitable attenuation. All cables, connectors, and attenuators were calibrated prior to testing. The RF output power was measured using the following test method:

Actual Measurements Taken:

121.79 dBuV Measured output of the transmitter +0 dB includes measured pads & cable loss 121.79 dBuV equals 0.0302 watts

LIMIT:

Manufacturer's rated output power = .035 watts

MARGIN:

.25 - 0.0302 = .2198 watts

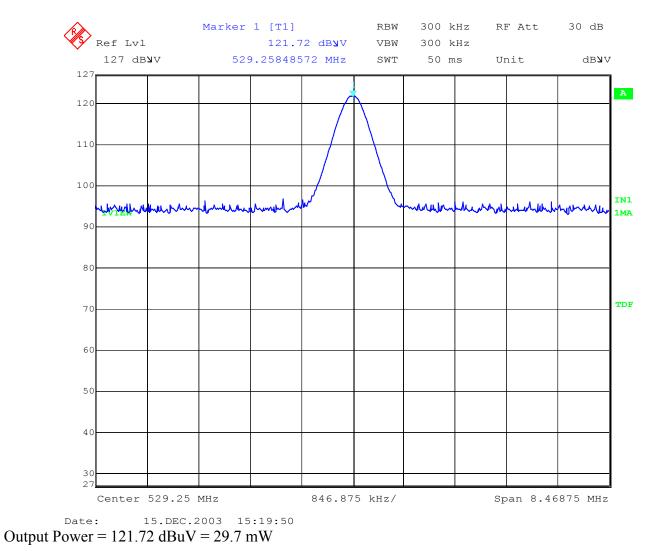
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

GRAPH(S) TAKEN OF THE RF POWER

OUTPUT MEASUREMENT

PART 2.1046



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:	SLX2
Test:	Output Power
Operator:	Craig Brandt
Comment:	H5 Band

CH 8 529.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:	SLX2
Test:	Output Power
Operator:	Craig Brandt
Comment:	H5 Band

CH 16 542.00 MHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

3.0 MODULATION CHARACTERISTICS – PART 2.1047

a. Voice modulated communication equipment.

A curve showing the frequency response of the audio modulating circuit over a range of 20 Hz to 20 kHz Hz is submitted with this report.

b. Equipment which employs modulation limiting

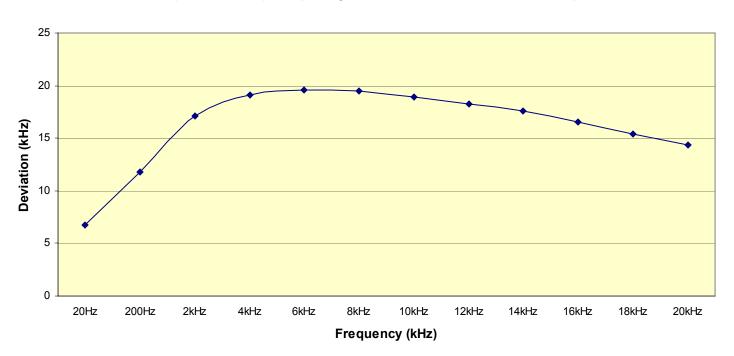
A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

GRAPH(S) TAKEN SHOWING THE FREQUENCY

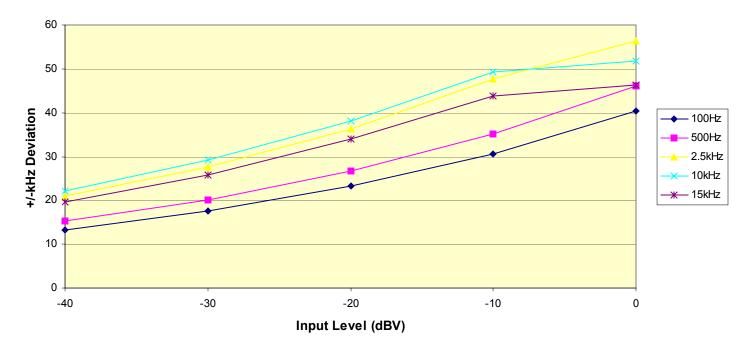
RESPONSE OF THE


AUDIO MODULATING CIRCUIT

PART 2.1047

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


SLX2 (638.000MHz) Frequency vs Deviation for -45dBV RMS Input

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

SLX2 (638.000 MHz) Input Level vs Deviation

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

4.0 OCCUPIED BANDWIDTH - PART 2.1049

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99.0% of the total mean power and measured under the following conditions:

For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated $43+10 \log_{10}$ (mean output power, in watts) dB below the mean output power of the transmitting unit (device under test).

For low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum of ± 75 kHz is permitted when frequency modulation is used. The operating bandwidth shall not exceed 200 kHz.

Carson's Rule:

Section 2.202 (g)

Bn = 2M+2DK, K=1	Bn = Bandwidth
M = 15 kHz,	M = Maximum Modulating Frequency
D = 45 kHz,	D = Peak Deviation

Bn = 2(15) + 2(45)(1) = 120 kHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

GRAPH(S) TAKEN OF THE OCCUPIED BANDWIDTH

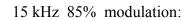
PART 2.1049

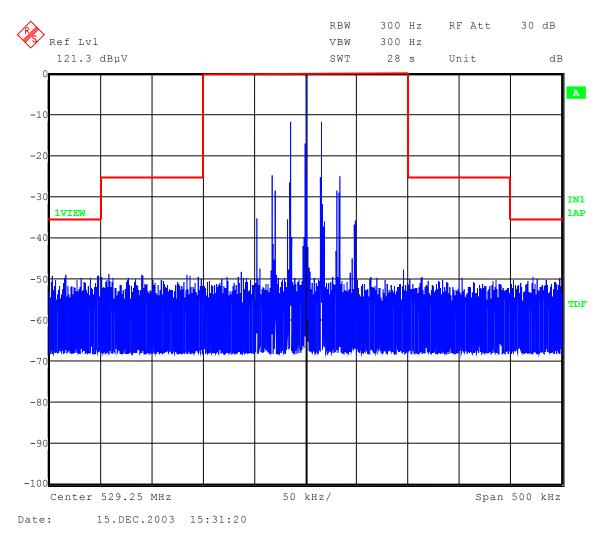
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:H5 CH 8 529.25 MHz

RBW 300 Hz RF Att 30 dB Ref Lvl VBW 300 Hz 121.3 dBµV 28 s dB SWT Unit Α -10 -20 -30 IN1 1AP **1VIEW** -40 -50 l III والمراز التعمل والمربية وروسان والمتلكون أواخر والطائر أوار فلل JU linder die fail be TDF -60 Contraction of the second s -70 -80 -90 -100 50 kHz/ Center 529.25 MHz Span 500 kHz Date: 15.DEC.2003 15:25:52

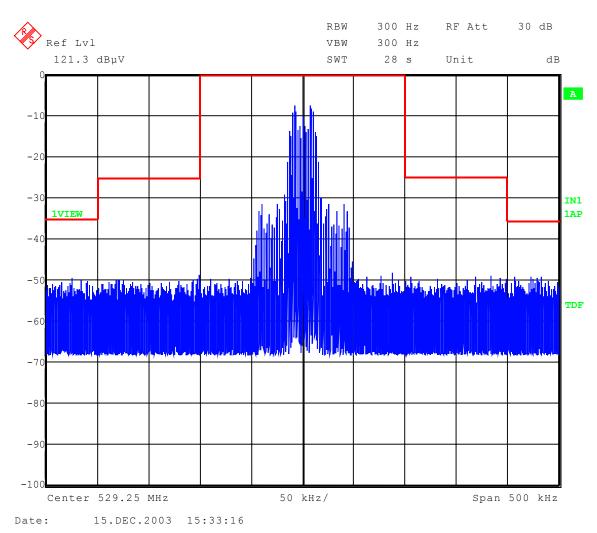

Unmodulated carrier:



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:	SLX2
Test:	Occupied Bandwidth
Operator:	Craig Brandt
Comment:	H5 CH 8 529.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:H5 CH 8 529.25 MHz


16 dB > 50% modulation:

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

5.0 OCCUPIED BANDWIDTH PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

6.0 FREQUENCY DEVIATION AND TOLERANCE - PART 74.861

Paragraph e-3 states that the <u>maximum authorized deviation shall be 75 kHz</u> for all frequency modulation emissions in the frequency bands 518 MHz to 542 MHz.

Paragraph e-4 states that the <u>frequency tolerance</u> of the transmitter shall be <u>.005 percent.</u>

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

7.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 2.1051

Spurious conducted emissions were measured at the antenna terminals using an artificial load. Plots were made showing the amplitude of each harmonic emission with the equipment operated as specified in 2.989. As shown by the radiated charts there was no reason to believe that there were any spurious emissions other than the harmonics that were than individually investigated when doing the conducted test at the antenna terminals. Measurements were made up to the 10th harmonic of the fundamental. The following setup was used showing placement of the attenuators:

NOTE: This test was not run because there is no antenna port.

Under TestdBdBSpeerfullyPadcablePadAnalyzer	Equipment	(0	30'	0	Spectrum
	Under Test			cable	dB Pad	1

The allowed emissions for transmitters operating in the 518 MHz to 542 MHz bands for SLX Handheld Wireless Microphone Transmitter equipment are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

NOTE: See the following pages for the data ad graphs of the actual measurements made:

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

CONDUCTED EMISSION DATA AND CHARTS TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS MADE

AT THE ANTENNA TERMINALS

PART 2.1051

NOTE: This test was not run because there is no antenna port.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

8.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS – PART 2.1053

Radiated measurements were performed at a 1 or 3 meter test distance automatically scanning the frequency range from 200 MHz to 10000 MHz, depending upon the fundamental frequency.

For the SLX Handheld Wireless Microphone Transmitter, the highest fundamental frequency is 704 MHz so the scans were made up to 10000 MHz, to cover the tenth harmonic.

All signals in the frequency range of 30 MHz to 200 MHz were measured with a Biconical Antenna and from 200 MHz to 1000 MHz a Log Periodic Antenna was used as the pickup devices. From 1000 MHz to 10000 MHz, a Double Ridge Horn Antenna was used. The cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Tests were made in both the horizontal and vertical planes of polarization.

The allowed emissions for transmitters operating in the 518 MHz to 542 MHz bands for SLX Handheld Wireless Microphone Transmitter are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

Company: Model Tested: Report Number:

Shure Inc. SLX2 10460

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

8.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T) -PART 2.1053

As stated in Part 74, Section 74.861 (e-1 iii) the limit is 250 mW in the frequency range 518 MHz to 542 MHz.

To determine the **LIMIT** for Spurious Emissions the following method was used:

Mean output power in watts:

Manufacturer's rated wattage = .035 Watts (See Paragraph 2.0, page 2 of this Appendix)

Free Space Formula

Convert to 3 meter test distance using the Free Space Formula

 $\sqrt{49.2 * rated wattage} = 0.4374167 \text{ volts/meter} = 437416.7 \text{ uV/m}$ Distance

 $20*Log(437416.7) = 112.8179 \, dBuV/m$

Therefore, the Fundamental at three meters equals 112.8179 dBuV,

The emissions must be reduced by:

43 + 10*LOG100.035 watts) = 28.44068 dB

Therefore, the **LIMIT** at three meters equals:

112.8179 dBuV/m extrapolated level for 0.035 watts

-28.44068 dB required reduction below the unmodulated fundamental

84.37723 dBuV/M maximum spurious emissions allowed

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED EMISSION <u>DATA</u> AND <u>CHARTS</u> TAKEN

FOR SPURIOUS EMISSIONS

USING THE SUBSTITUTION METHOD

ANSI/TIA/EIA-603-1992 SECTION 2.2.12

Shure Inc. SLX2 10460

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

NOTE:

Substitution method was not run, because all levels are greater than 20 db below the limit.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED EMISSION DATA AND GRAPH(S) TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS

PART 2.1053

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

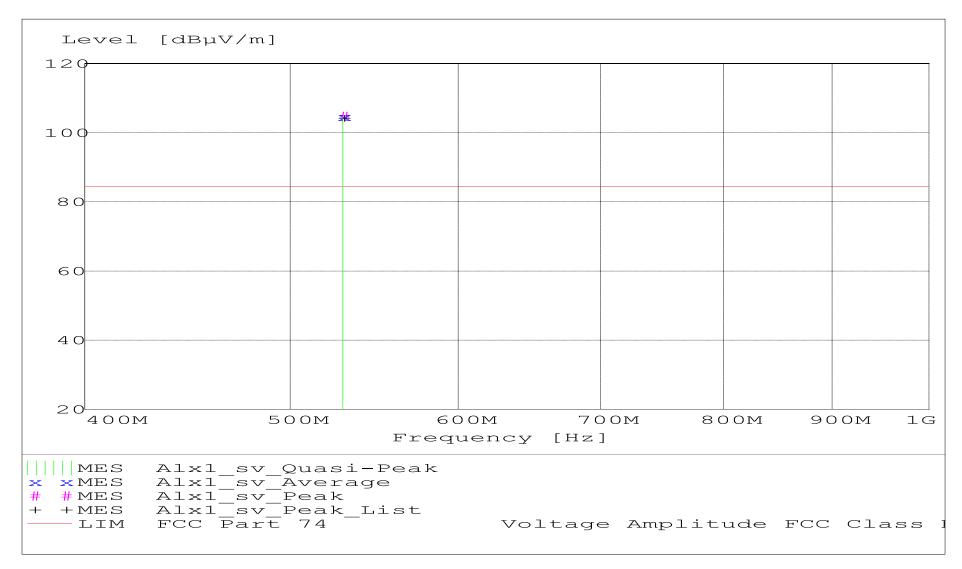
Electric Field Strength

EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 8 529.25 MHz Date: 12/15/2003

TEXT: "Site 3 MidV 3M"

Short Description:Test Set-up Vert30-1000MHzTEST EQUIPMENT:Receiver --- Rohde & Schwarz ESI 26 SN: 837491/010

Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895


Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx1_sv_Final"

12/15/2003 8:24AM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EUT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
529.250000	61.96	17.81	24.9	104.7	84.4	-20.3	1.00	180	MAX PEAK	Fundamental
529.250000	61.89	17.81	24.9	104.6	84.4	-20.3	1.00	180	QUASI-PEAK	Fundamental
529.250000	61.87	17.81	24.9	104.6	84.4	-20.2	1.00	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

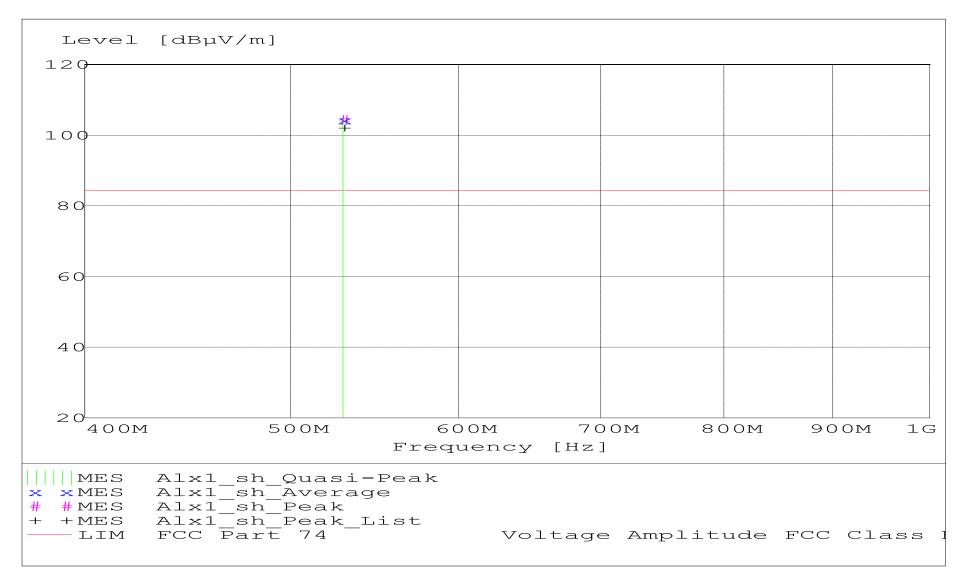
Electric Field Strength

EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 8 529.25 MHz Date: 12/15/2003

TEXT: "Site 3 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895


Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx1_sh_Final"

12/15/2003 8:30AM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EUT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
529.250000	61.57	17.81	24.9	104.3	84.4	-19.9	1.10	180	MAX PEAK	Fundamental
529.250000	61.54	17.81	24.9	104.3	84.4	-19.9	1.10	180	QUASI-PEAK	Fundamental
529.250000	61.51	17.81	24.9	104.3	84.4	-19.9	1.10	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

Electric Field Strength

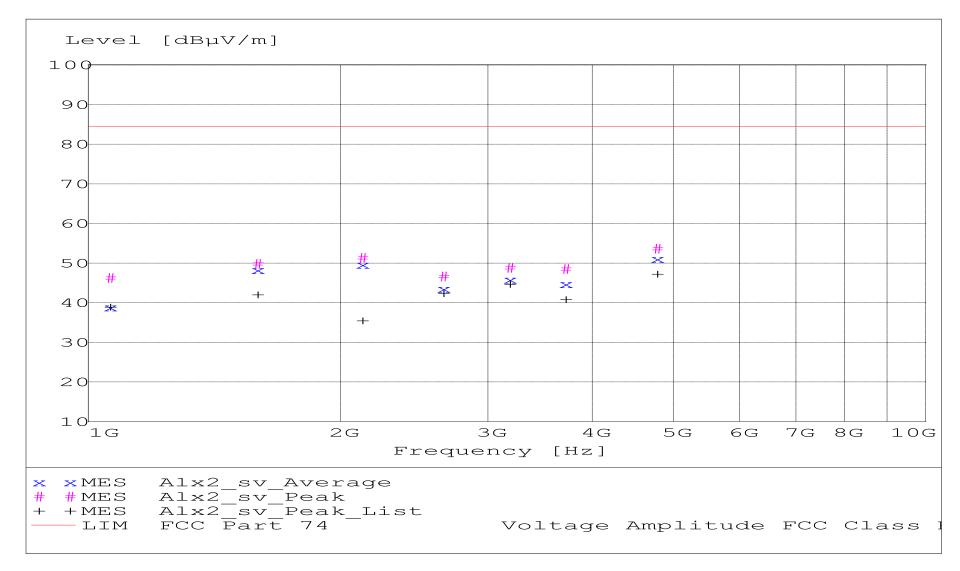
EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 8 529.25 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----


1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx2_sv_Final"

12/15/2003 8:57AM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
4763.250000	58.24	33.69	-38.3	53.6	84.4	30.7	1.00	180	MAX PEAK	None
2117.000000	63.17	28.43	-40.3	51.3	84.4	33.1	1.10	180	MAX PEAK	None
4763.250000	55.69	33.69	-38.3	51.1	84.4	33.3	1.00	180	AVERAGE	None
1587.750000	63.99	26.96	-41.1	49.8	84.4	34.6	1.00	225	MAX PEAK	None
2117.000000	61.51	28.43	-40.3	49.7	84.4	34.7	1.10	180	AVERAGE	None
3175.500000	58.52	30.72	-40.4	48.9	84.4	35.5	1.10	315	MAX PEAK	None
3704.750000	56.05	31.91	-39.4	48.6	84.4	35.8	1.00	270	MAX PEAK	None
1587.750000	62.49	26.96	-41.1	48.3	84.4	36.1	1.00	225	AVERAGE	None
2646.250000	57.71	29.55	-40.6	46.6	84.4	37.7	1.00	180	MAX PEAK	None
1058.500000	62.63	25.02	-41.4	46.3	84.4	38.1	1.00	180	MAX PEAK	None
3175.500000	55.60	30.72	-40.4	45.9	84.4	38.4	1.10	315	AVERAGE	None
3704.750000	52.27	31.91	-39.4	44.8	84.4	39.6	1.00	270	AVERAGE	None
2646.250000	54.61	29.55	-40.6	43.5	84.4	40.8	1.00	180	AVERAGE	None
1058.500000	55.25	25.02	-41.4	38.9	84.4	45.5	1.00	180	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

Electric Field Strength

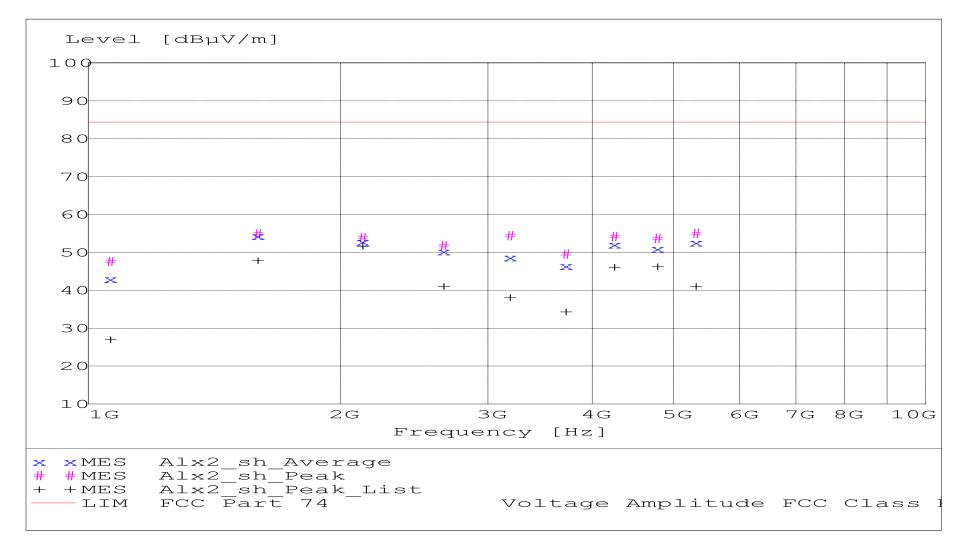
EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 8 529.25 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----


1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx2_sh_Final"

12/15/2003 9:15AM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
5292.500000	59.07	34.40	-38.4	55.1	84.4	29.3	1.00	180	MAX PEAK	None
1587.750000	69.14	26.96	-41.1	55.0	84.4	29.4	2.00	225	MAX PEAK	None
3175.500000	64.11	30.72	-40.4	54.5	84.4	29.9	1.20	225	MAX PEAK	None
1587.750000	68.51	26.96	-41.1	54.3	84.4	30.0	2.00	225	AVERAGE	None
4234.000000	59.88	32.85	-38.5	54.2	84.4	30.1	2.00	225	MAX PEAK	None
2117.000000	65.79	28.43	-40.3	53.9	84.4	30.4	1.40	180	MAX PEAK	None
4763.250000	58.24	33.69	-38.3	53.6	84.4	30.7	2.00	225	MAX PEAK	None
2117.000000	64.69	28.43	-40.3	52.8	84.4	31.5	1.40	180	AVERAGE	None
5292.500000	56.66	34.40	-38.4	52.7	84.4	31.7	1.00	180	AVERAGE	None
4234.000000	57.76	32.85	-38.5	52.1	84.4	32.3	2.00	225	AVERAGE	None
2646.250000	62.90	29.55	-40.6	51.8	84.4	32.5	1.20	135	MAX PEAK	None
4763.250000	55.56	33.69	-38.3	51.0	84.4	33.4	2.00	225	AVERAGE	None
2646.250000	61.38	29.55	-40.6	50.3	84.4	34.1	1.20	135	AVERAGE	None
3704.750000	57.09	31.91	-39.4	49.6	84.4	34.8	1.10	225	MAX PEAK	None
3175.500000	58.37	30.72	-40.4	48.7	84.4	35.7	1.20	225	AVERAGE	None
1058.500000	63.99	25.02	-41.4	47.6	84.4	36.7	1.10	135	MAX PEAK	None
3704.750000	53.89	31.91	-39.4	46.4	84.4	38.0	1.10	225	AVERAGE	None
1058.500000	59.32	25.02	-41.4	43.0	84.4	41.4	1.10	135	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

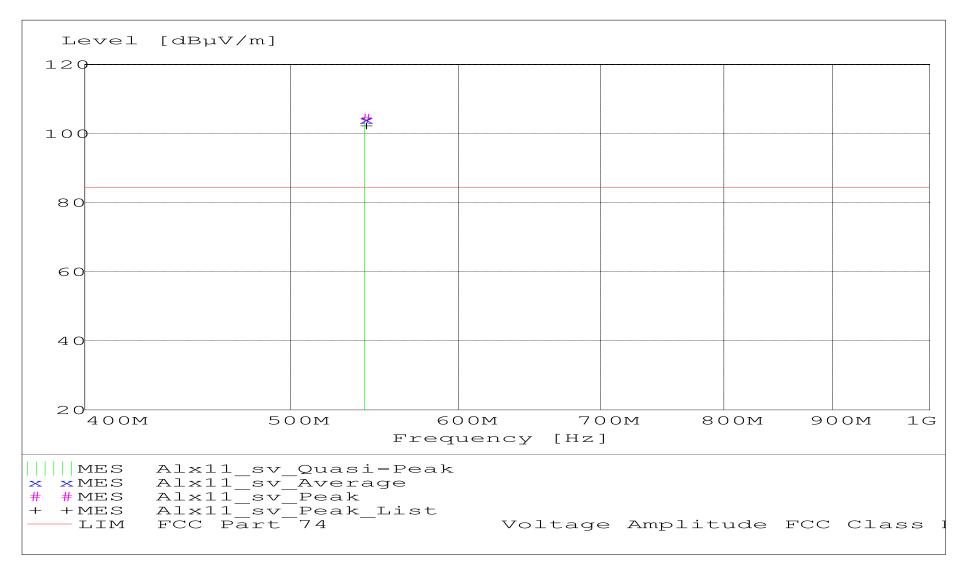
Electric Field Strength

EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 16 542.00 MHz Date: 12/15/2003

TEXT: "Site 3 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 26 SN: 837491/010

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895


Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx11_sv_Final"

12/15/2003 1:46PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
542.000000	61.36	17.92	25.1	104.4	84.4	-20.0	1.00	180	MAX PEAK	Fundamental
542.000000	61.14	17.92	25.1	104.2	84.4	-19.8	1.00	180	QUASI-PEAK	Fundamental
542.000000	61.07	17.92	25.1	104.1	84.4	-19.7	1.00	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

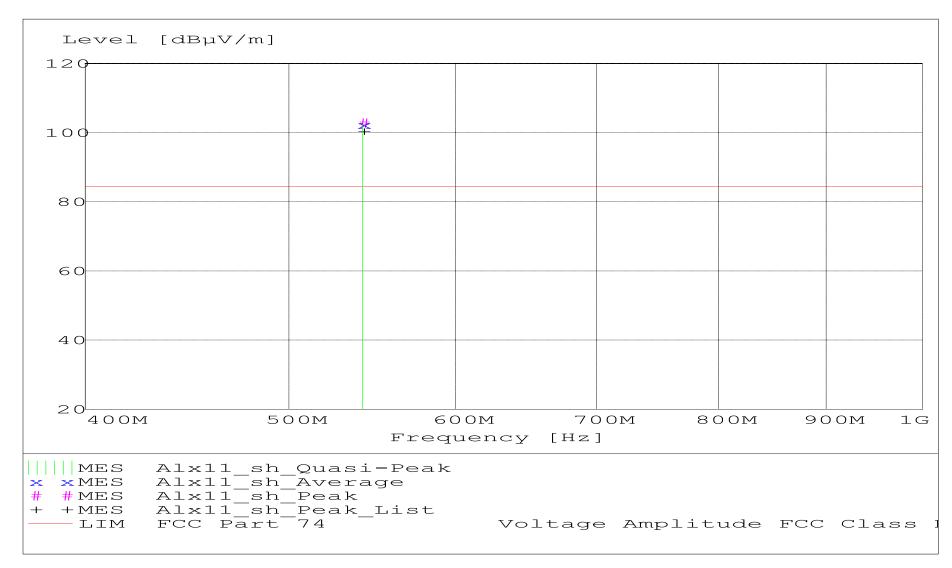
Electric Field Strength

EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 16 542.00 MHz Date: 12/15/2003

TEXT: "Site 3 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895


Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx11_sh_Final"

12/15/2003 1:51PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
542.000000	59.78	17.92	25.1	102.8	84.4	-18.4	1.20	180	MAX PEAK	Fundamental
542.000000	59.40	17.92	25.1	102.4	84.4	-18.0	1.20	180	QUASI-PEAK	Fundamental
542.000000	59.33	17.92	25.1	102.3	84.4	-18.0	1.20	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

Electric Field Strength

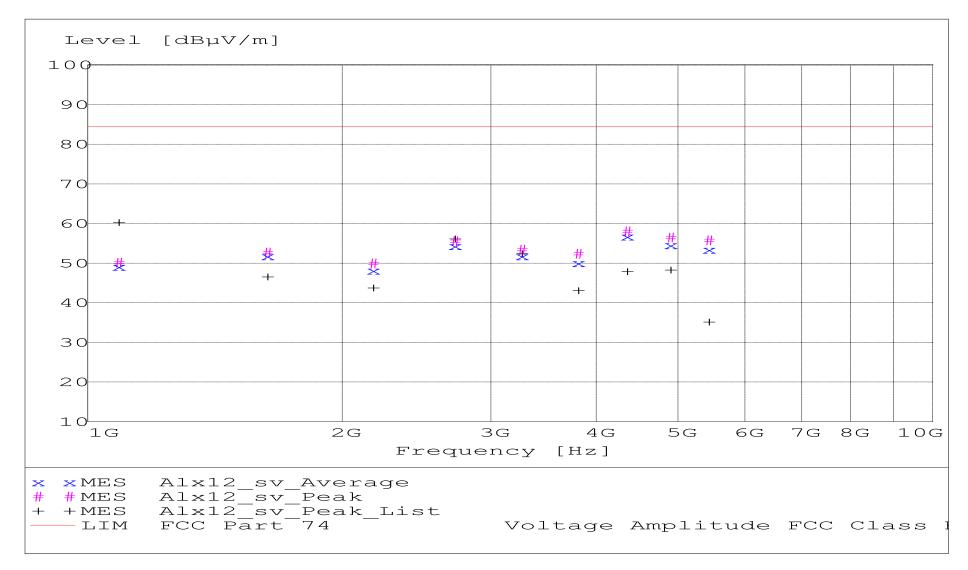
EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 16 542.00 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----


1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx12_sv_Final"

12/15/2003 2:09PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
4336.000000 4336.000000 4878.000000 2710.000000 4878.000000 2710.000000 5420.000000 3252.000000 1626.000000 3252.000000 1626.000000 1626.000000 1084.000000	63.58 62.29 60.92 59.88 66.43 59.05 65.23 57.56 62.76 66.80 59.21 61.12 65.88 66.43 56.84	32.87 32.87 34.03 34.40 29.70 34.03 29.70 34.40 30.85 27.08 32.18 30.85 27.08 25.12 32.18	-38.4 -38.5 -38.5 -40.6 -38.5 -40.6 -38.5 -40.2 -41.2 -39.0 -40.2 -41.2 -41.2 -41.4 -39.0	58.1 56.8 55.8 55.5 54.6 54.3 53.5 53.4 52.7 52.4 51.8 51.8 50.2 50.1	84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4	26.3 27.6 27.9 28.6 28.8 29.8 30.0 30.9 30.9 31.7 31.9 32.6 32.6 34.2 34.3	1.00 1.20 1.00 1.10 1.10 1.20 1.10 1.00 1.10 2.00 1.10 2.00 1.20 1.10	180 180 180 180 180 180 180 315 180 180 315 180 180 180	MAX PEAK AVERAGE MAX PEAK MAX PEAK AVERAGE AVERAGE AVERAGE MAX PEAK MAX PEAK AVERAGE AVERAGE MAX PEAK AVERAGE	None None None None None None None None
2168.000000 1084.000000 2168.000000	61.69 65.40 59.86	28.54 25.12 28.54	-40.2 -41.4 -40.2	50.0 49.1 48.2	84.4 84.4 84.4	34.4 35.2 36.2	1.10 1.20 1.10	180 180 180 180	MAX PEAK AVERAGE AVERAGE	None None None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FCC Part 74

Electric Field Strength

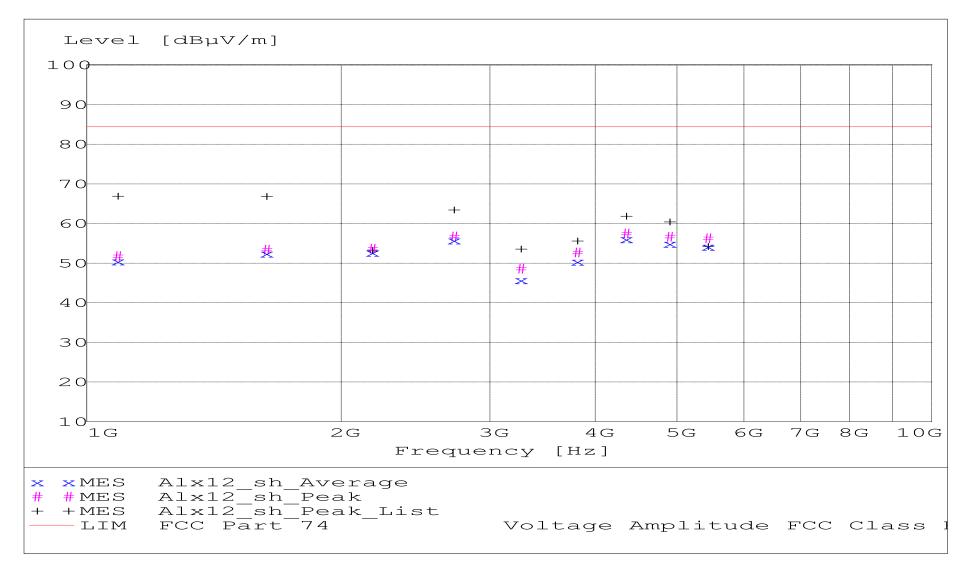
EUT: SLX2 H5 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: H5 CH 16 542.00 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----


1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

MEASUREMENT RESULT: "Alx12_sh_Final"

12/15/2003 2:25PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EuT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
4336.000000	63.03	32.87	-38.4	57.5	84.4	26.9	2.10	90	MAX PEAK	None
2710.000000	67.67	29.70	-40.6	56.8	84.4	27.6	1.10	135	MAX PEAK	None
4878.000000	61.18	34.03	-38.5	56.7	84.4	27.6	1.20	180	MAX PEAK	None
5420.000000	60.40	34.40	-38.5	56.3	84.4	28.1	1.30	180	MAX PEAK	None
4336.000000	61.58	32.87	-38.4	56.1	84.4	28.3	2.10	90	AVERAGE	None
2710.000000	66.66	29.70	-40.6	55.8	84.4	28.6	1.10	135	AVERAGE	None
4878.000000	59.45	34.03	-38.5	55.0	84.4	29.4	1.20	180	AVERAGE	None
5420.000000	58.27	34.40	-38.5	54.2	84.4	30.2	1.30	180	AVERAGE	None
2168.000000	65.41	28.54	-40.2	53.7	84.4	30.7	1.30	225	MAX PEAK	None
1626.000000	67.54	27.08	-41.2	53.4	84.4	30.9	1.50	270	MAX PEAK	None
3794.000000	59.48	32.18	-39.0	52.7	84.4	31.7	1.20	135	MAX PEAK	None
2168.000000	64.39	28.54	-40.2	52.7	84.4	31.7	1.30	225	AVERAGE	None
1626.000000	66.56	27.08	-41.2	52.5	84.4	31.9	1.50	270	AVERAGE	None
1084.000000	68.04	25.12	-41.4	51.8	84.4	32.6	2.10	315	MAX PEAK	None
1084.000000	66.76	25.12	-41.4	50.5	84.4	33.9	2.10	315	AVERAGE	None
3794.000000	57.20	32.18	-39.0	50.4	84.4	33.9	1.20	135	AVERAGE	None
3252.000000	57.97	30.85	-40.2	48.6	84.4	35.7	1.30	180	MAX PEAK	None
3252.000000	55.05	30.85	-40.2	45.7	84.4	38.6	1.30	180	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

9.0 FREQUENCY STABILITY (TEMPERATURE)– PART 2.1055(a1)

The frequency stability was measured from -30° to $+50^{\circ}$ centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the SLX Handheld Wireless Microphone Transmitter oscillator circuitry to stabilize. The following information was taken:

FREQUENCY STABILITY FOR TEMPERATURE VARIATION IN MHz:

-30° EUT WILL NC	OT OPERATE AT -30 deg.c
-20°	529.24946894
-10°	529.25087174
0°	529.25119238
+10°	529.2509519
+20°	529.25039078
+30°	529.2495491
+40°	529.24892786
+50°	529.24878758

Worst Case Variance:

<u>1212.42</u> Hz

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance:	=	<u>0.00005</u>
Assigned Frequency:	=	<u>529250000</u> Hz
Limit = 529250000 * 0.005%	=	<u>26462.5</u> Hz

This is well within the specified limits.

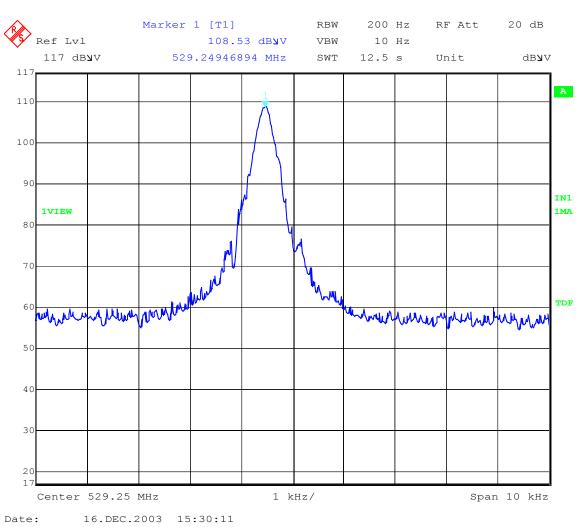
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE TEMPERATURE

PART 2.1055a

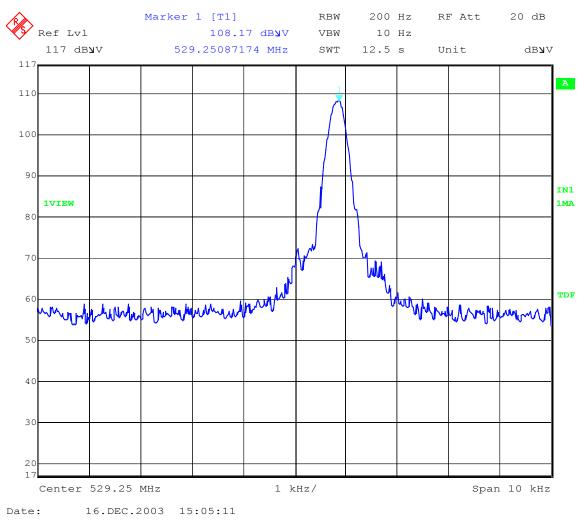

This is well within the specified limits.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz

-20 deg. C

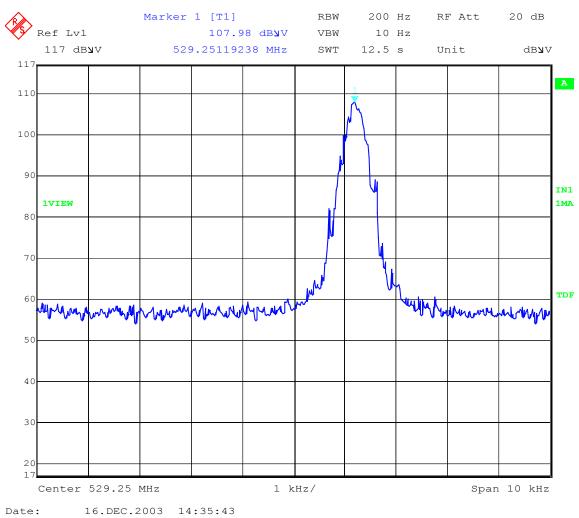


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz

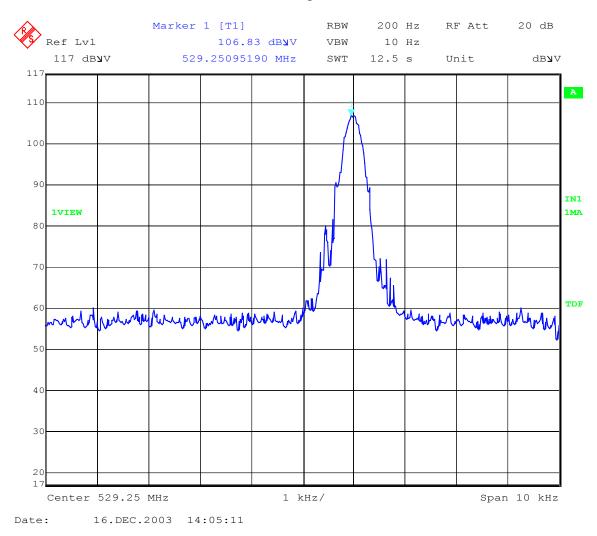
-10 deg. C



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

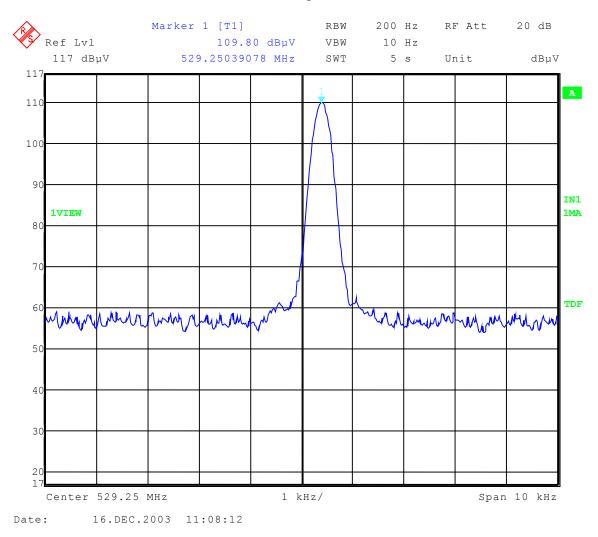
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

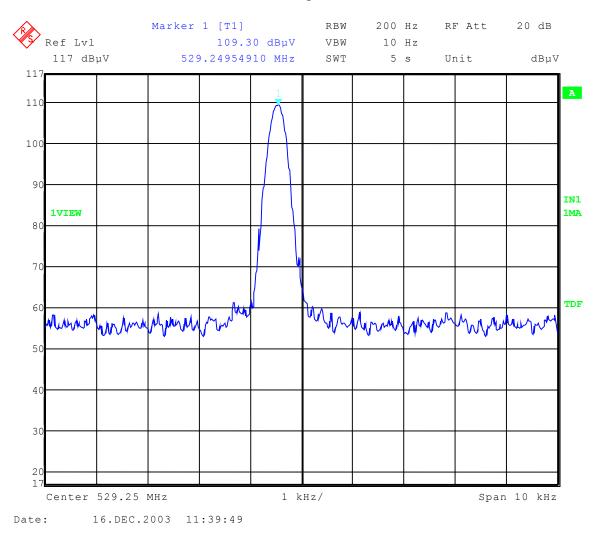
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

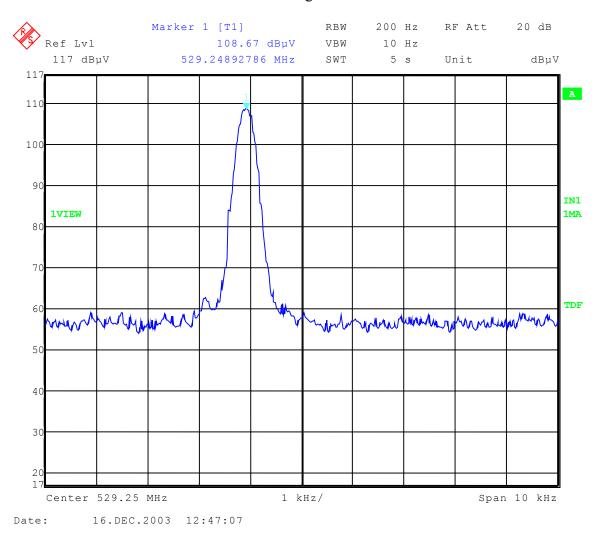
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

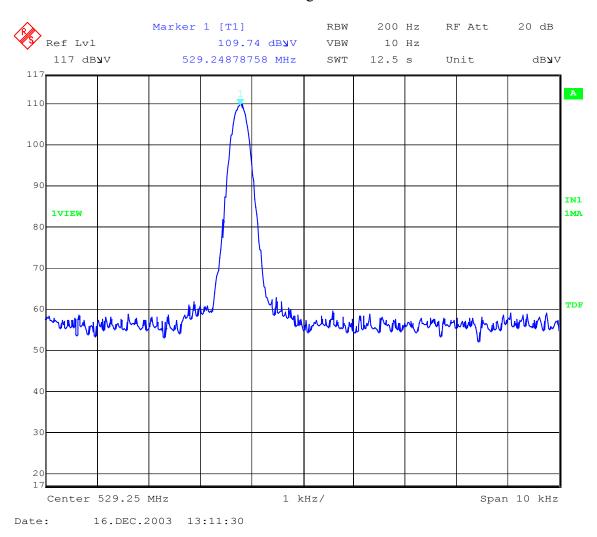
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:H5 CH 8 529.25 MHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

10.0 FREQUENCY STABILITY (TEMPERATURE) PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

11.0 FREQUENCY STABILITY (VOLTAGE VARIATION)– PART 2.1055(d1)

The frequency stability of SLX Handheld Wireless Microphone Transmitter was measured by varying the primary supply voltage from 85% to 115% of nominal value for all equipment other than hand carried battery equipment.

FREQUENCY STABILITY FOR VOLTAGE VARIATION:

85%	0
100%	0
115%	0

NOTE: This test was not run because the device is battery operated.

FREQUENCY STABILITY FOR HAND HELD DEVICES:

For **hand carried**, **battery powered equipment**, the supply voltage was reduced to the battery operating end point specified by the manufacturer. Readings were taken at the reduced end point and with a fresh battery:

Fresh Battery verses Battery end point:

 Frequency #1
 529.25063126

 Frequency #2
 529.25063126

 Frequency #3
 0

 Frequency #4
 0

 Frequency #5
 0

 Frequency #6
 0

Worst Case Variance: = <u>0</u>

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance: = 0.005%

Limit:	=	<u>26462.5</u>
--------	---	----------------

This is well within the specified limits.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

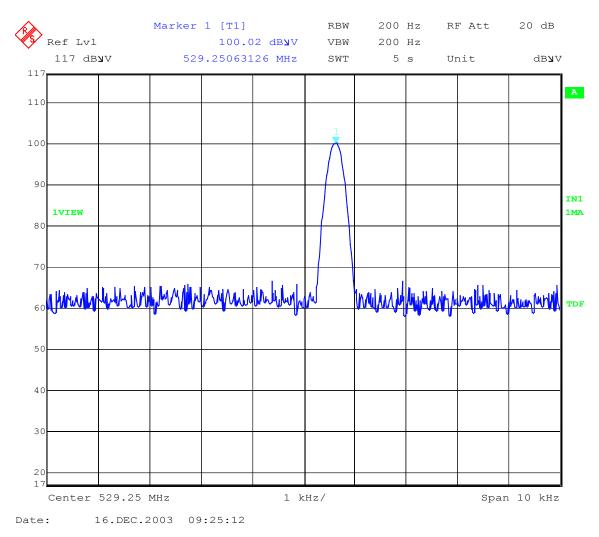
<u>GRAPH(S)</u> TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

PRIMARY SUPPLY VOLTAGE

PART 2.1055d

This is well within the specified limits.

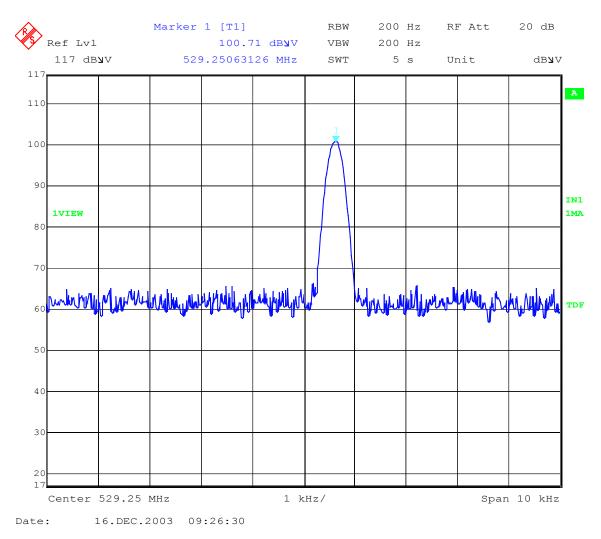


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Frequency Stability - VoltageOperator:Craig BrandtComment:H5 CH 8 529.25 MHz

3.0 Volts



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

EUT:SLX2Test:Frequency Stability - VoltageOperator:Craig BrandtComment:H5 CH 8 529.25 MHz

2.3 Volts

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

12.0 FREQUENCY STABILITY (VOLTAGE) PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

SUBPART H

LOW POWER AUXILIARY STATIONS

SLX2-J3 - 572 MHz to 596 MHz

Group 2 Channel 8 & Group 2 Channel 16

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

1.0 TEST SET-UP

All radiated emission tests were performed at D.L.S. Electronic Systems, Inc. The radiated tests were made with the test item placed on a non-conductive turntable located in the Test Room with the receive antenna placed three or one meter(s) from the device under test.

2.0 RF-POWER OUTPUT – PART 2.1046

As stated in PART 74.861 (e)(1)(ii), the RF output power should not exceed .25 watts. The RF output of the SLX Handheld Wireless Microphone Transmitter was connected to a Spectrum Analyzer through suitable attenuation. All cables, connectors, and attenuators were calibrated prior to testing. The RF output power was measured using the following test method:

Actual Measurements Taken:

122.01 dBuV Measured output of the transmitter +0 dB includes measured pads & cable loss 122.01 dBuV equals 0.0318 watts

LIMIT:

Manufacturer's rated output power = .035 watts

MARGIN:

.25 - 0.0318 = .2182 watts

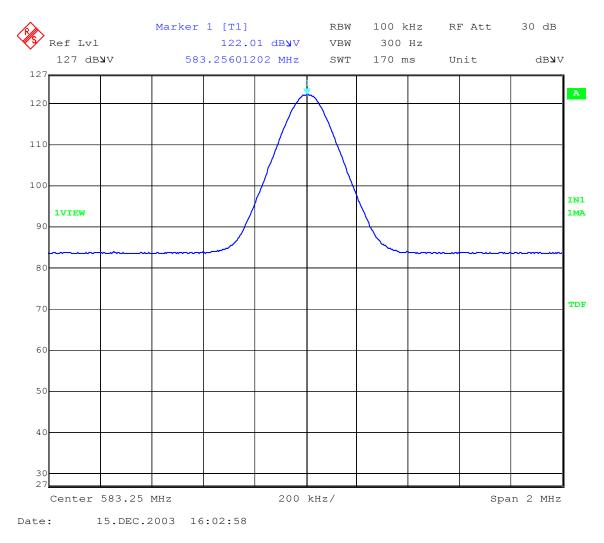
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

GRAPH(S) TAKEN OF THE RF POWER

OUTPUT MEASUREMENT

PART 2.1046



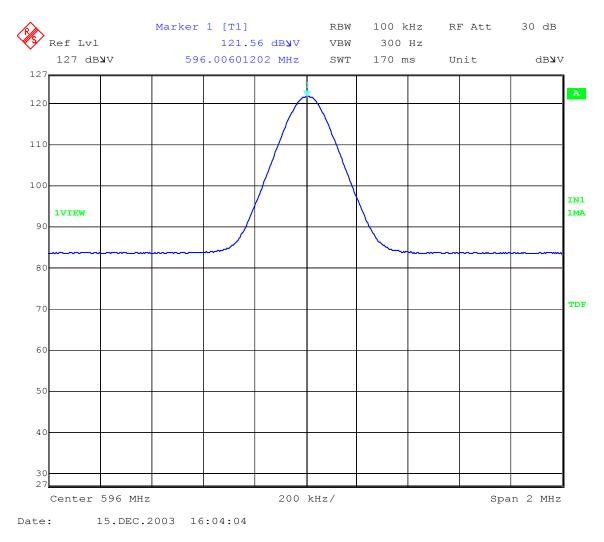
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:	SLX2
Test:	Output Power
Operator:	Craig Brandt
Comment:	J3 Band

CH 8 583.25 MHz

Output Power = 122.01 dBuV = 31.8 mW



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:	SLX2
Test:	Output Power
Operator:	Craig Brandt
Comment:	J3 Band

CH 16 596.00 MHz

Output Power = 121.56 dBuV = 28.6 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

3.0 MODULATION CHARACTERISTICS – PART 2.1047

a. Voice modulated communication equipment.

A curve showing the frequency response of the audio modulating circuit over a range of 20 Hz to 20 kHz Hz is submitted with this report.

b. Equipment which employs modulation limiting

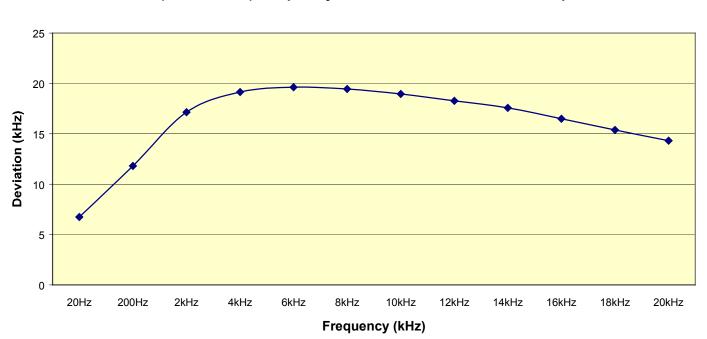
A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

GRAPH(S) TAKEN SHOWING THE FREQUENCY

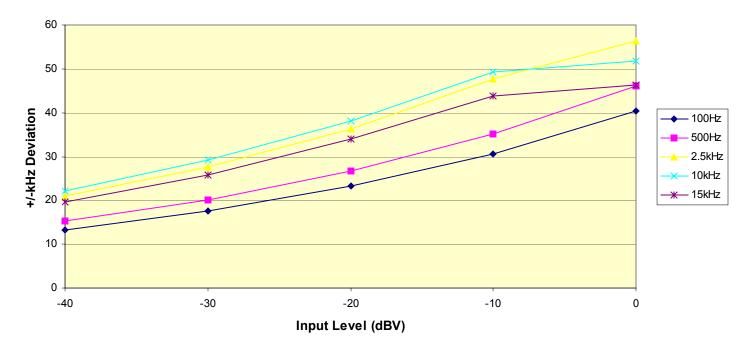
RESPONSE OF THE


AUDIO MODULATING CIRCUIT

PART 2.1047

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B


SLX2 (638.000MHz) Frequency vs Deviation for -45dBV RMS Input

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

SLX2 (638.000 MHz) Input Level vs Deviation

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

4.0 OCCUPIED BANDWIDTH - PART 2.1049

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99.0% of the total mean power and measured under the following conditions:

For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated $43+10 \log_{10}$ (mean output power, in watts) dB below the mean output power of the transmitting unit (device under test).

For low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum of ± 75 kHz is permitted when frequency modulation is used. The operating bandwidth shall not exceed 200 kHz.

Carson's Rule:

Section 2.202 (g)

Bn = 2M+2DK, K=1	Bn = Bandwidth
M = 15 kHz,	M = Maximum Modulating Frequency
D = 45 kHz,	D = Peak Deviation

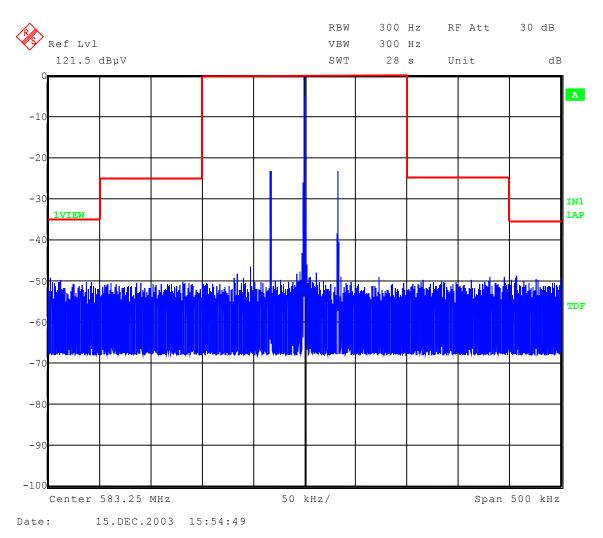
Bn = 2(15) + 2(45)(1) = 120 kHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

GRAPH(S) TAKEN OF THE OCCUPIED BANDWIDTH

PART 2.1049

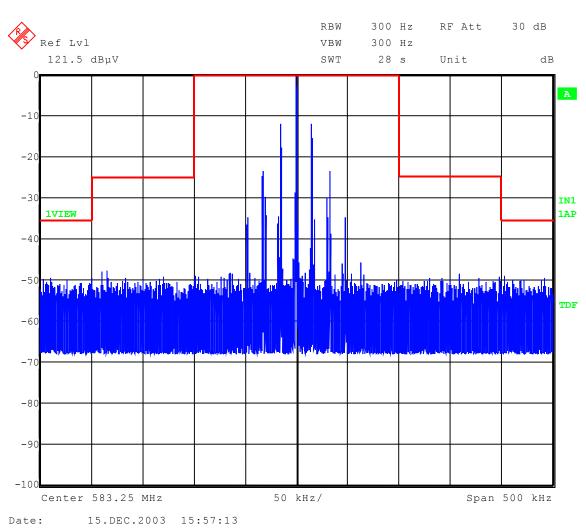


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:J3 CH 8 583.25 MHz

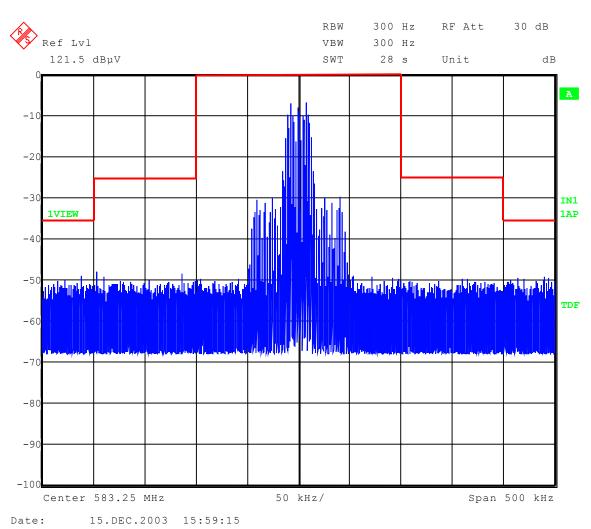
Unmodulated carrier:



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:J3 CH 8 583.25 MHz


15 kHz 85% mod.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:J3 CH 8 583.25 MHz


16 dB > 50% mod.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

5.0 OCCUPIED BANDWIDTH PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

6.0 FREQUENCY DEVIATION AND TOLERANCE - PART 74.861

Paragraph e-3 states that the <u>maximum authorized deviation shall be 75 kHz</u> for all frequency modulation emissions in the frequency bands 572 MHz to 596 MHz.

Paragraph e-4 states that the <u>frequency tolerance</u> of the transmitter shall be <u>.005 percent</u>.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

7.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 2.1051

Spurious conducted emissions were measured at the antenna terminals using an artificial load. Plots were made showing the amplitude of each harmonic emission with the equipment operated as specified in 2.989. As shown by the radiated charts there was no reason to believe that there were any spurious emissions other than the harmonics that were than individually investigated when doing the conducted test at the antenna terminals. Measurements were made up to the 10th harmonic of the fundamental. The following setup was used showing placement of the attenuators:

NOTE: This test was not run because there is no antenna port.

Equipment		0	30'	0	Spectrum
Under Test		dB Pad	cable	dB Pad	Analyzer
	-				

The allowed emissions for transmitters operating in the 572 MHz to 596 MHz bands for SLX Handheld Wireless Microphone Transmitter equipment are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

NOTE: See the following pages for the data ad graphs of the actual measurements made:

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

CONDUCTED EMISSION DATA AND GRAPH(S) TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS MADE

AT THE ANTENNA TERMINALS

PART 2.1051

NOTE: This test was not run because there is no antenna port.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

8.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS – PART 2.1053

Radiated measurements were performed at a 1 or 3 meter test distance automatically scanning the frequency range from 200 MHz to 10000 MHz, depending upon the fundamental frequency.

For the SLX Handheld Wireless Microphone Transmitter, the highest fundamental frequency is 704 MHz so the scans were made up to 10000 MHz, to cover the tenth harmonic.

All signals in the frequency range of 30 MHz to 200 MHz were measured with a Biconical Antenna and from 200 MHz to 1000 MHz a Log Periodic Antenna was used as the pickup devices. From 1000 MHz to 10000 MHz, a Double Ridge Horn Antenna was used. The cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Tests were made in both the horizontal and vertical planes of polarization.

The allowed emissions for transmitters operating in the 572 MHz to 596 MHz bands for SLX Handheld Wireless Microphone Transmitter are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

8.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T) – PART 2.1053

As stated in Part 74, Section 74.861 (e-1 iii) the limit is 250 mW in the frequency range 572 MHz to 596 MHz.

To determine the **LIMIT** for Spurious Emissions the following method was used:

Mean output power in watts:

Manufacturer's rated wattage = .035 Watts (See Paragraph 2.0, page 2 of this Appendix)

Free Space Formula

Convert to 3 meter test distance using the Free Space Formula

 $\frac{\sqrt{49.2 * rated wattage}}{\text{Distance}} = 0.4374167 \text{ volts/meter} = 437416.7 \text{ uV/m}$

 $20*Log(437416.7) = 112.8179 \, dBuV/m$

Therefore, the Fundamental at three meters equals 112.8179 dBuV,

The emissions must be reduced by:

43 + 10*LOG100.035 watts) = 28.44068 dB

Therefore, the **LIMIT** at three meters equals:

112.8179 dBuV/m extrapolated level for 0.035 watts

-28.44068 dB required reduction below the unmodulated fundamental

84.37723 dBuV/M maximum spurious emissions allowed

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

RADIATED EMISSION <u>DATA</u> AND <u>GRAPH(S)</u> TAKEN

FOR SPURIOUS EMISSIONS

USING THE SUBSTITUTION METHOD

ANSI/TIA/EIA-603-1992 SECTION 2.2.12

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

Operator: Craig Brandt Date of test: 12-22-03

Field Strength of Spurious Radiation - Substitution Method

Limit = -13 dBm

(equency (MHz) & larization	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and horn antenna (dB)	Gain of horn antenna (dBi)	Strength of emission [ERP] (dBm)	Margin (dB)
	5.25 MHz rizontal	64.9	-36.8	2.96	9.3	-32.5	19.56

Model: SLX2-J3

EIRP = Signal generator output - cable loss + antenna gain ERP_(ref. to $\frac{1}{2}\lambda$ dipole) = Signal generator output - cable loss + antenna gain - 2.1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

RADIATED EMISSION <u>DATA</u> AND <u>GRAPH(S)</u> TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS

PART 2.1053

1250 Peterson Dr., Wheeling, IL 60090

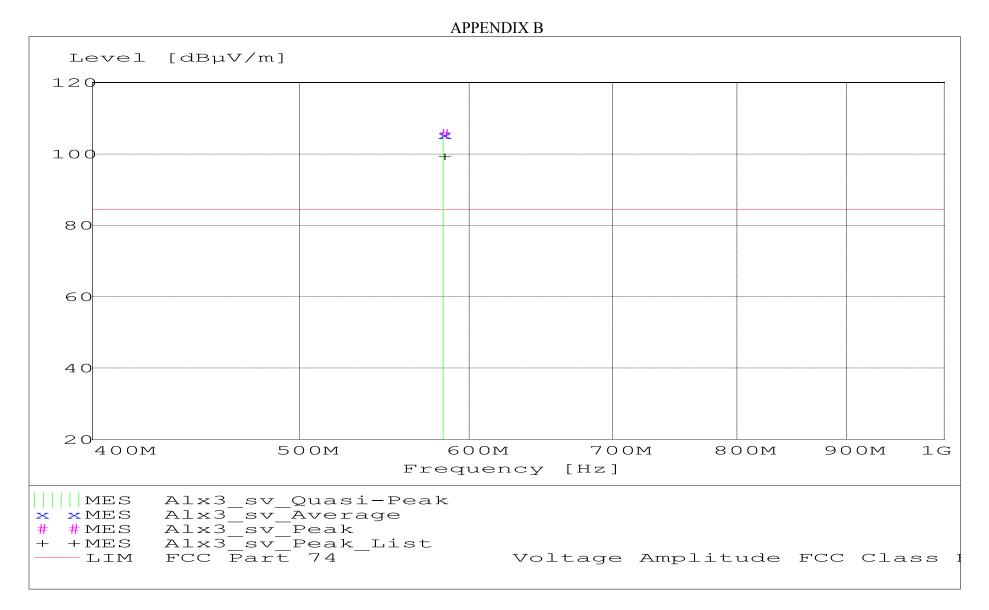
APPENDIX B

FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 8 583.25 MHz Date: 12/15/2003

TEXT: "Site 3 MidV 3M"


Short Description:Test Set-up Vert30-1000MHzTEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 26 SN: 837491/010

Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx3_sv_Final"

12/15/2003 9:26AM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	Dettett	
583.250000	61.87	18.47	25.3	105.7	84.4	-21.3	1.60	180	MAX PEAK	Fundamental
583.250000	61.59	18.47	25.3	105.4	84.4	-21.0	1.60	180	QUASI-PEAK	Fundamental
583.250000	61.51	18.47	25.3	105.3	84.4	-21.0	1.60	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

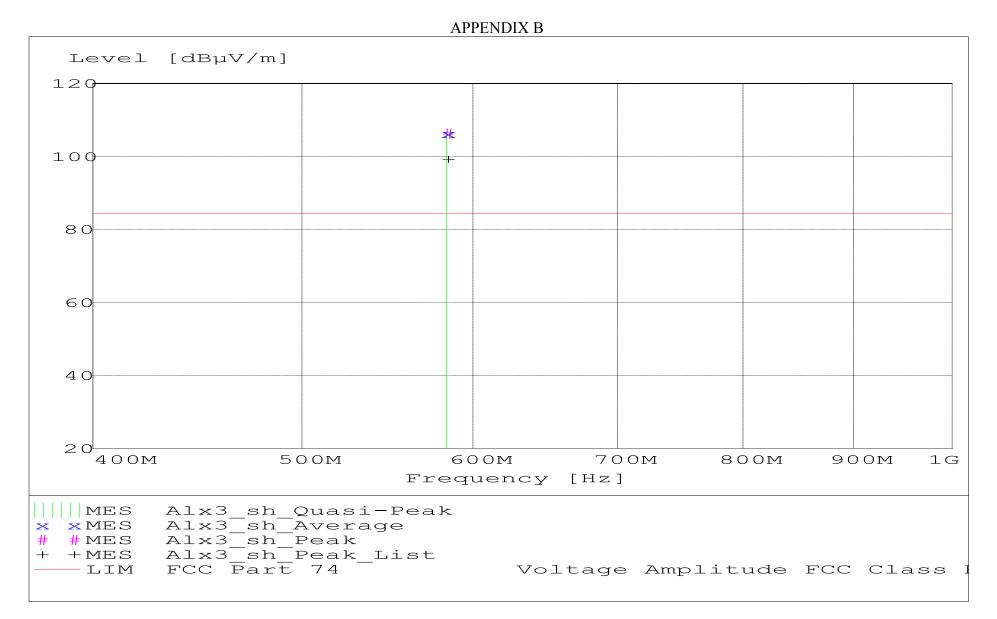
APPENDIX B

FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 8 583.25 MHz Date: 12/15/2003

TEXT: "Site 3 MidH 3M"


Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx3_sh_Final"

12/15/2003 9:32AM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	Detector	
583.250000	62.52	18.47	25.3	106.3	84.4	-22.0	1.00	180	MAX PEAK	Fundamental
583.250000	62.51	18.47	25.3	106.3	84.4	-22.0	1.00	180	QUASI-PEAK	Fundamental
583.250000	62.43	18.47	25.3	106.2	84.4	-21.9	1.00	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

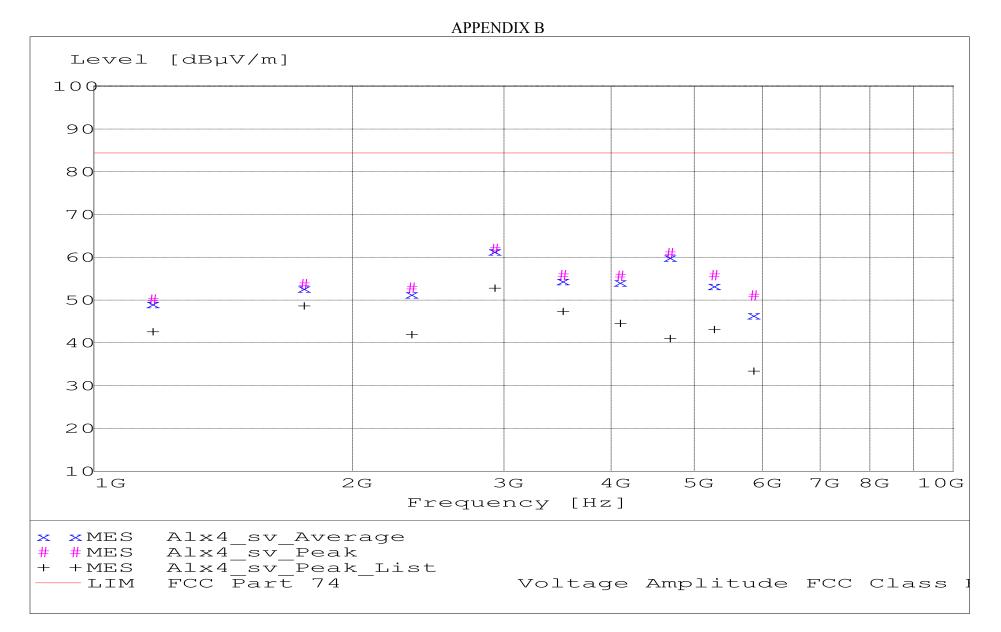
FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 8 583.25 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006


Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx4_sv_Final"

12/15/2003 9:57AM

Frequency MHz	Level dBµV	Antenna Factor dBµV/m	System Loss dB	Total Level dBµV/m	Limit dBµV/m	Margin dB	Height Ant. m	EUT Angle deg	Final Detector	Comment
2916.250000 2916.250000 4666.000000 4666.000000 5249.250000 4082.750000 4082.750000 4082.750000 1749.750000 2333.000000 1749.750000 2333.000000 5832.500000 1166.500000	72.40 71.86 65.79 64.79 59.88 64.11 61.44 62.71 59.90 67.30 57.36 64.50 66.35 63.01 54.73 66.17	30.20 30.20 33.40 33.40 31.30 32.82 31.30 32.82 27.45 34.40 28.87 27.45 28.87 34.53 25.43	-40.6 -40.6 -38.2 -38.2 -38.4 -39.5 -38.5 -39.5 -38.5 -41.0 -38.4 -40.4 -41.0 -40.4 -41.0 -40.4 -41.5	62.0 61.4 61.0 60.0 55.9 55.7 54.5 54.2 53.7 53.4 52.9 52.8 51.4 51.1 50.1	84.4 84.4 84.4 84.4 84.4 84.4 84.4 84.4	22.4 22.9 23.4 24.4 28.5 28.5 28.7 29.9 30.2 30.6 31.0 31.4 31.6 32.9 33.3 34.3	1.00 1.00 1.60 1.00 2.20 1.00 2.20 1.00 1.60 1.40 1.00 1.40 1.00	180 180 180 180 135 180 135 180 180 315 180 315 180 315 0 0	MAX PEAK AVERAGE MAX PEAK AVERAGE MAX PEAK MAX PEAK AVERAGE MAX PEAK AVERAGE MAX PEAK AVERAGE AVERAGE MAX PEAK MAX PEAK MAX PEAK	None None None None None None None None
1166.500000 5832.500000	65.24 50.13	25.43 34.53	-41.5 -38.2	49.2 46.5	84.4 84.4	35.2 37.9		0 0	AVERAGE AVERAGE	None None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

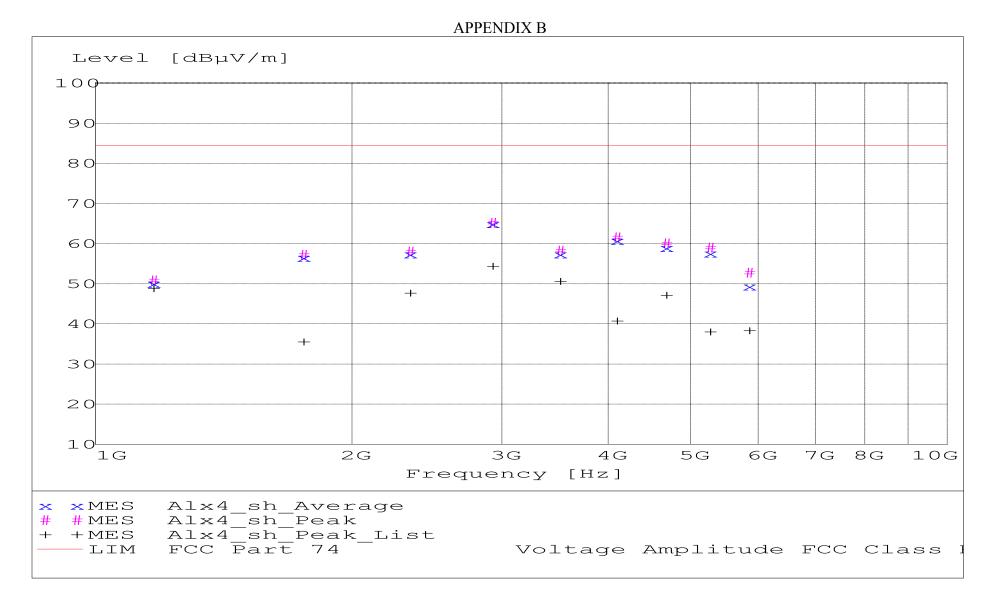
FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 8 583.25 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006


Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx4_sh_Final"

12/15/2003 10:15AM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
2916.250000	75.69	30.20	-40.6	65.3	84.4	19.1	1.00	135	MAX PEAK	None
2916.250000	75.32	30.20	-40.6	64.9	84.4	19.5	1.00	135	AVERAGE	None
4082.750000	67.30	32.82	-38.5	61.6	84.4	22.8	2.00	135	MAX PEAK	None
4082.750000	66.49	32.82	-38.5	60.8	84.4	23.6	2.00	135	AVERAGE	None
4666.000000	64.89	33.40	-38.2	60.1	84.4	24.3	1.90	135	MAX PEAK	None
5249.250000	63.03	34.40	-38.4	59.0	84.4	25.3	1.00	180	MAX PEAK	None
4666.000000	63.79	33.40	-38.2	59.0	84.4	25.4	1.90	135	AVERAGE	None
3499.500000	66.55	31.30	-39.5	58.3	84.4	26.1	1.00	90	MAX PEAK	None
2333.000000	69.64	28.87	-40.4	58.1	84.4	26.3	1.10	135	MAX PEAK	None
5249.250000	61.62	34.40	-38.4	57.6	84.4	26.7	1.00	180	AVERAGE	None
2333.000000	68.95	28.87	-40.4	57.4	84.4	27.0	1.10	135	AVERAGE	None
3499.500000	65.58	31.30	-39.5	57.3	84.4	27.0	1.00	90	AVERAGE	None
1749.750000	70.76	27.45	-41.0	57.2	84.4	27.2	2.20	225	MAX PEAK	None
1749.750000	70.08	27.45	-41.0	56.5	84.4	27.8	2.20	225	AVERAGE	None
5832.500000	56.44	34.53	-38.2	52.8	84.4	31.6	1.30	225	MAX PEAK	None
1166.500000	66.93	25.43	-41.5	50.9	84.4	33.5	2.00	180	MAX PEAK	None
1166.500000	66.13	25.43	-41.5	50.1	84.4	34.3	2.00	180	AVERAGE	None
5832.500000	53.05	34.53	-38.2	49.4	84.4	35.0	1.30	225	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

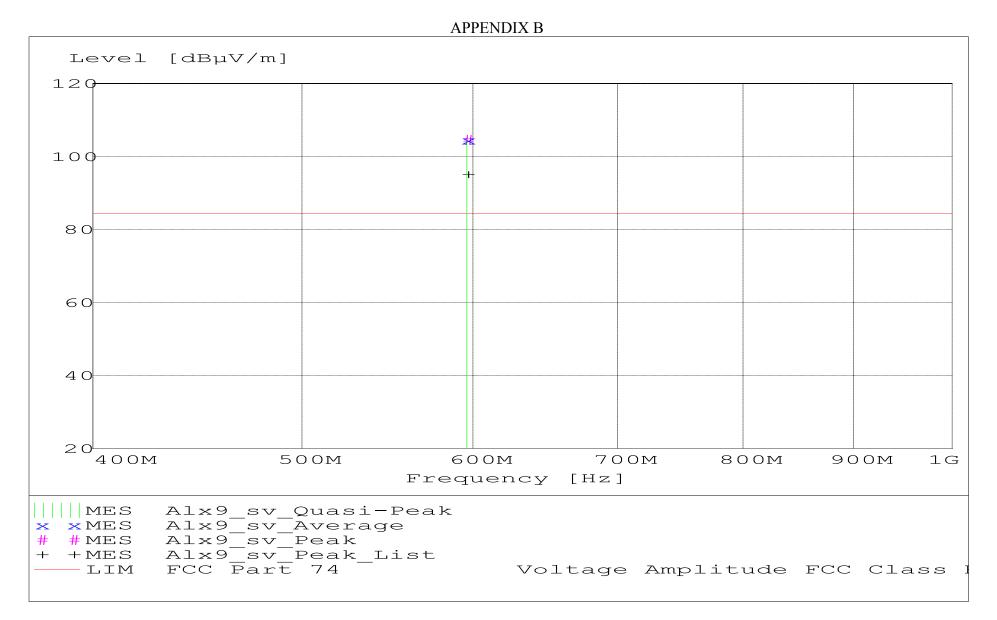
APPENDIX B

FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 16 596.00 MHz Date: 12/15/2003

TEXT: "Site 3 MidV 3M"


Short Description:Test Set-up Vert30-1000MHzTEST EQUIPMENT:Receiver --- Rohde & Schwarz ESI 26 SN: 837491/010

Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx9_sv_Final"

12/15/2003 12:51PM

Frequency	Level	Antenna	System		Limit	Margin	Height	EUT	Final	Comment
MHz	dBµV	Factor dBµV/m	Loss dB	Level dBµV/m	dBµV/m	dB	Ant. m	Angle deg	Detector	
596.000000	60.54	18.74	25.3	104.6	84.4	-20.2	1.60	135	MAX PEAK	Fundamental
596.000000	60.45	18.74	25.3	104.5	84.4	-20.2	1.60	135	QUASI-PEAK	Fundamental
596.000000	60.40	18.74	25.3	104.5	84.4	-20.1	1.60	135	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

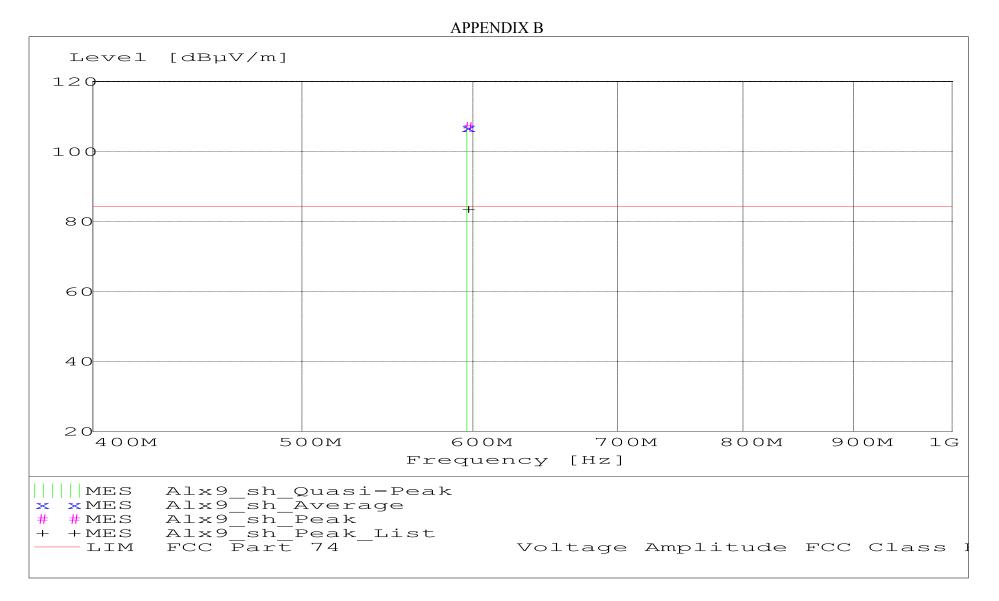
APPENDIX B

FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 16 596.00 MHz Date: 12/15/2003

TEXT: "Site 3 MidH 3M"


Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx9_sh_Final"

12/15/2003 12:58PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	Detector	
596.000000	63.00	18.74	25.3	107.1	84.4	-22.7	1.00	180	MAX PEAK	Fundamental
596.000000	62.76	18.74	25.3	106.8	84.4	-22.5	1.00	180	QUASI-PEAK	Fundamental
596.000000	62.72	18.74	25.3	106.8	84.4	-22.4	1.00	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

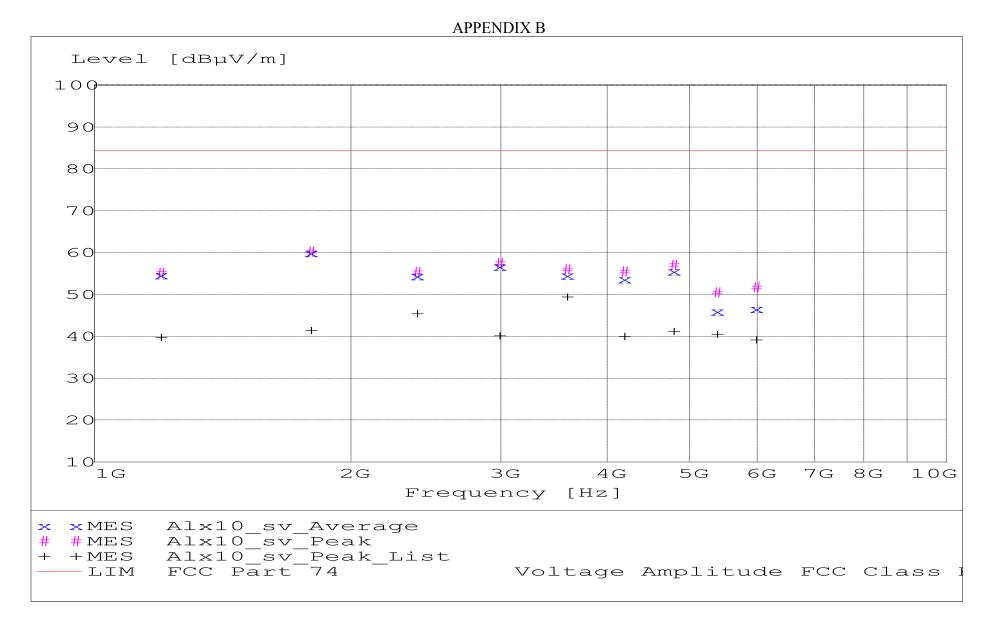
FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 16 596.00 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006


Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx10_sv_Final"

12/15/2003 1:19PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
1788.000000	73.52	27.56	-40.8	60.3	84.4	24.1	1.30	225	MAX PEAK	None
1788.000000	73.11	27.56	-40.8	59.9	84.4	24.5	1.30	225	AVERAGE	None
2980.000000	67.79	30.35	-40.6	57.5	84.4	26.8	2.00	180	MAX PEAK	None
4768.000000	61.69	33.70	-38.3	57.1	84.4	27.3	1.20	180	MAX PEAK	None
2980.000000	66.92	30.35	-40.6	56.7	84.4	27.7	2.00	180	AVERAGE	None
3576.000000	63.85	31.53	-39.4	56.0	84.4	28.4	1.00	0	MAX PEAK	None
4768.000000	60.20	33.70	-38.3	55.6	84.4	28.8	1.20	180	AVERAGE	None
4172.000000	61.31	32.83	-38.6	55.5	84.4	28.9	2.10	180	MAX PEAK	None
2384.000000	66.80	28.97	-40.4	55.4	84.4	29.0	1.60	270	MAX PEAK	None
1192.000000	71.13	25.53	-41.5	55.2	84.4	29.2	1.10	225	MAX PEAK	None
1192.000000	70.57	25.53	-41.5	54.6	84.4	29.7	1.10	225	AVERAGE	None
3576.000000	62.42	31.53	-39.4	54.6	84.4	29.8	1.00	0	AVERAGE	None
2384.000000	65.86	28.97	-40.4	54.4	84.4	30.0	1.60	270	AVERAGE	None
4172.000000	59.50	32.83	-38.6	53.7	84.4	30.7	2.10	180	AVERAGE	None
5960.000000	55.27	34.58	-38.1	51.7	84.4	32.6	1.00	30	MAX PEAK	None
5364.000000	54.59	34.40	-38.5	50.5	84.4	33.9	1.00	270	MAX PEAK	None
5960.000000	50.10	34.58	-38.1	46.6	84.4	37.8	1.00	30	AVERAGE	None
5364.000000	50.10	34.40	-38.5	46.0	84.4	38.4	1.00	270	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

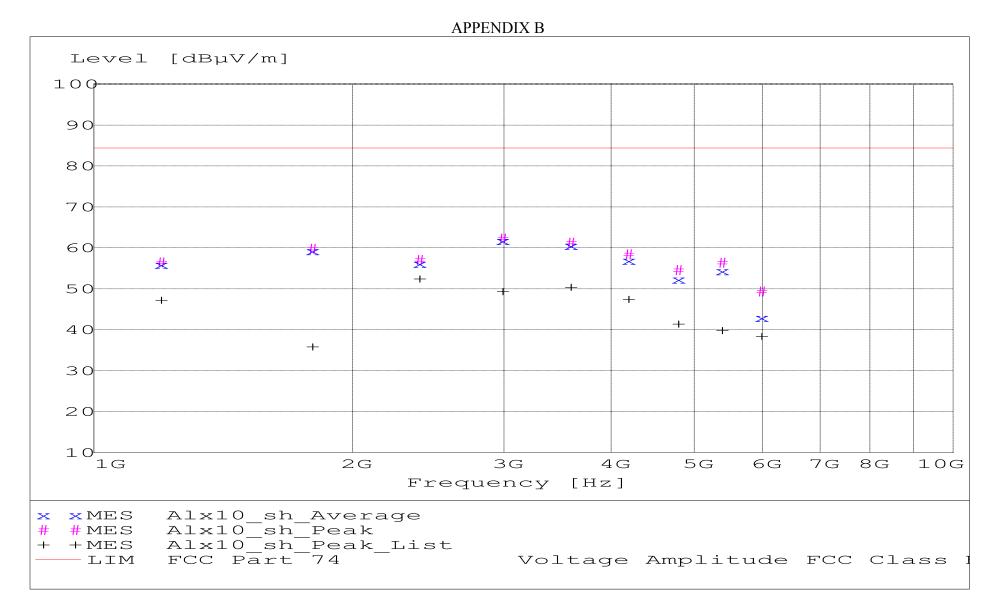
FCC Part 74

Electric Field Strength

EUT: SLX2 J3 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: J3 CH 16 596.00 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006


Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

MEASUREMENT RESULT: "Alx10_sh_Final"

12/15/2003 1:37PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBμV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
2980.000000	72.52	30.35	-40.6	62.3	84.4	22.1	1.00	225	MAX PEAK	None
2980.000000	71.99	30.35	-40.6	61.7	84.4	22.6	1.00	225	AVERAGE	None
3576.000000	69.14	31.53	-39.4	61.3	84.4	23.1	1.00	90	MAX PEAK	None
3576.000000	68.40	31.53	-39.4	60.5	84.4	23.8	1.00	90	AVERAGE	None
1788.000000	73.02	27.56	-40.8	59.8	84.4	24.6	1.10	135	MAX PEAK	None
1788.000000	72.51	27.56	-40.8	59.3	84.4	25.1	1.10	135	AVERAGE	None
4172.000000	64.24	32.83	-38.6	58.4	84.4	25.9	2.00	225	MAX PEAK	None
2384.000000	68.53	28.97	-40.4	57.1	84.4	27.3	1.00	90	MAX PEAK	None
4172.000000	62.75	32.83	-38.6	57.0	84.4	27.4	2.00	225	AVERAGE	None
1192.000000	72.40	25.53	-41.5	56.5	84.4	27.9	1.00	180	MAX PEAK	None
5364.000000	60.53	34.40	-38.5	56.4	84.4	28.0	1.00	180	MAX PEAK	None
2384.000000	67.63	28.97	-40.4	56.2	84.4	28.2	1.00	90	AVERAGE	None
1192.000000	71.84	25.53	-41.5	55.9	84.4	28.5	1.00	180	AVERAGE	None
4768.000000	59.21	33.70	-38.3	54.6	84.4	29.8	1.00	135	MAX PEAK	None
5364.000000	58.51	34.40	-38.5	54.4	84.4	30.0	1.00	180	AVERAGE	None
4768.000000	56.91	33.70	-38.3	52.3	84.4	32.1	1.00	135	AVERAGE	None
5960.000000	52.94	34.58	-38.1	49.4	84.4	35.0	1.20	135	MAX PEAK	None
5960.000000	46.47	34.58	-38.1	42.9	84.4	41.4	1.20	135	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

9.0 FREQUENCY STABILITY (TEMPERATURE)– PART 2.1055(a1)

The frequency stability was measured from -30° to $+50^{\circ}$ centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the SLX Handheld Wireless Microphone Transmitter oscillator circuitry to stabilize. The following information was taken:

FREQUENCY STABILITY FOR TEMPERATURE VARIATION IN MHz:

-30° EUT WILL NOT	Γ OPERATE AT –30 deg.c
-20°	583.24930862
-10°	583.25083166
0°	583.25109218
+10°	583.25071142
+20°	583.24982966
+30°	583.24878758
+40°	583.24792585
+50°	583.24764529

Worst Case Variance:

<u>2354.71</u> Hz

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance:	=	<u>0.00005</u>
Assigned Frequency:	=	<u>583250000</u> Hz
Limit = 583250000 * 0.005%	=	<u>29162.5</u> Hz

This is well within the specified limits.

1250 Peterson Dr., Wheeling, IL 60090

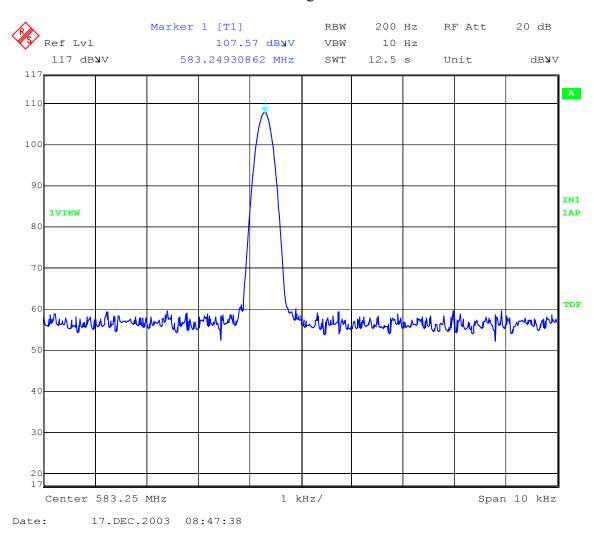
APPENDIX B

<u>GRAPH(S)</u> TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE TEMPERATURE

PART 2.1055a

This is well within the specified limits.

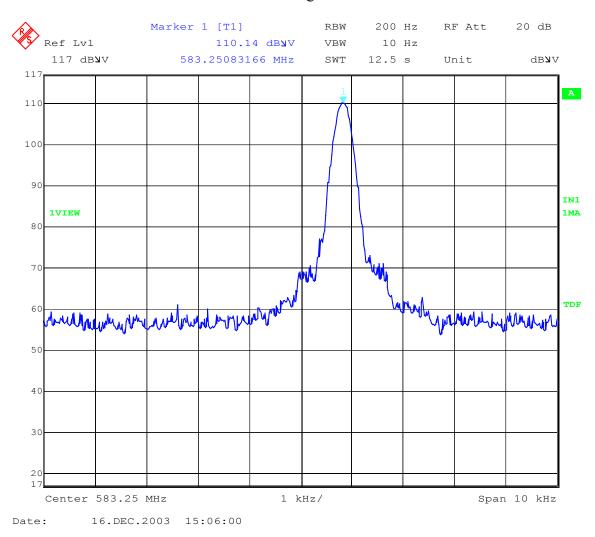


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz

-20 deg. C

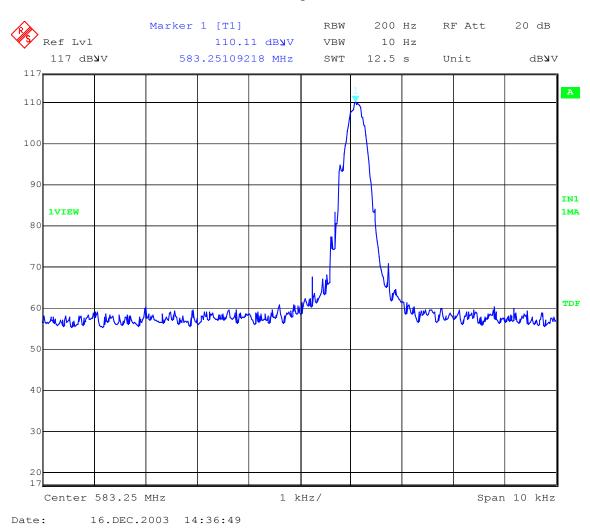


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz

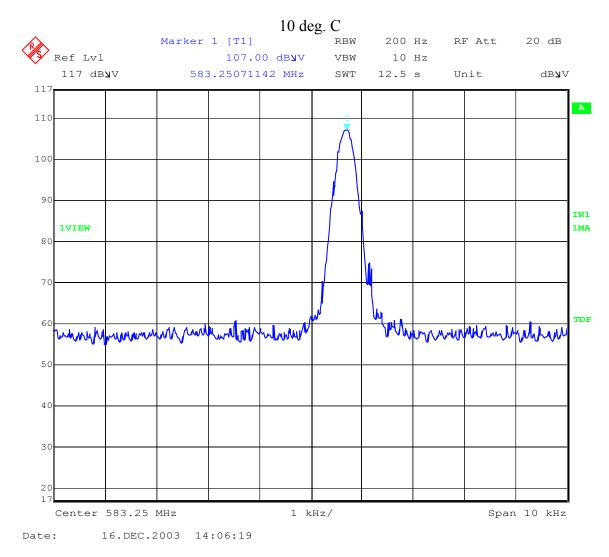
-10 deg. C



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

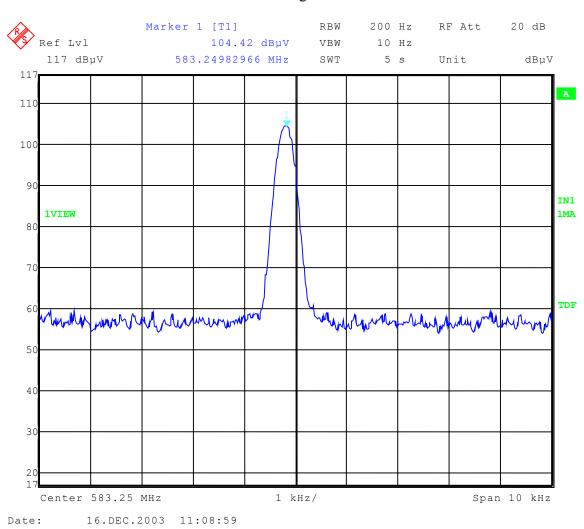
EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

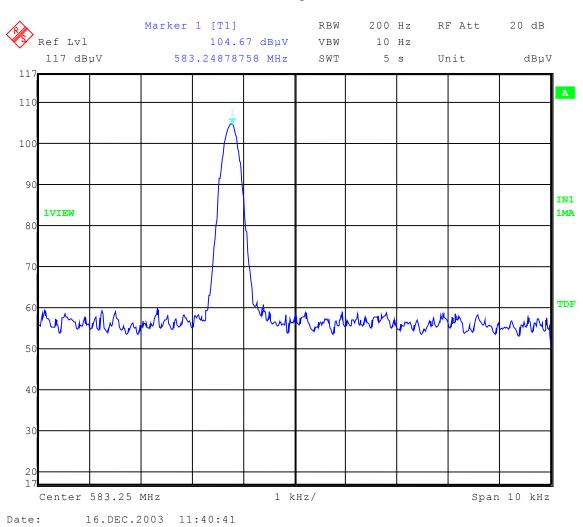
EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

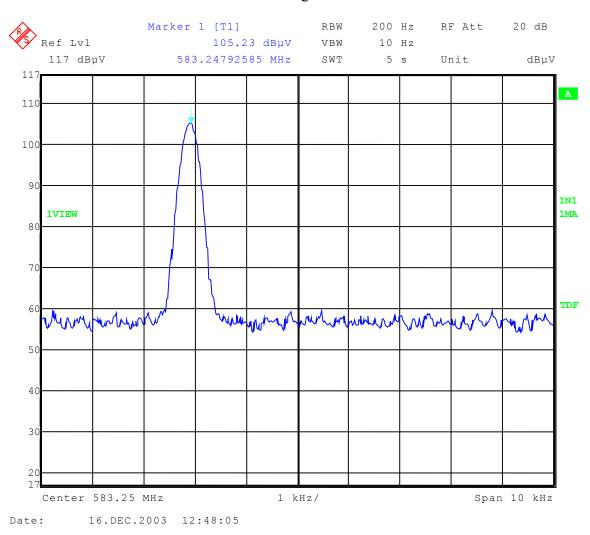
EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

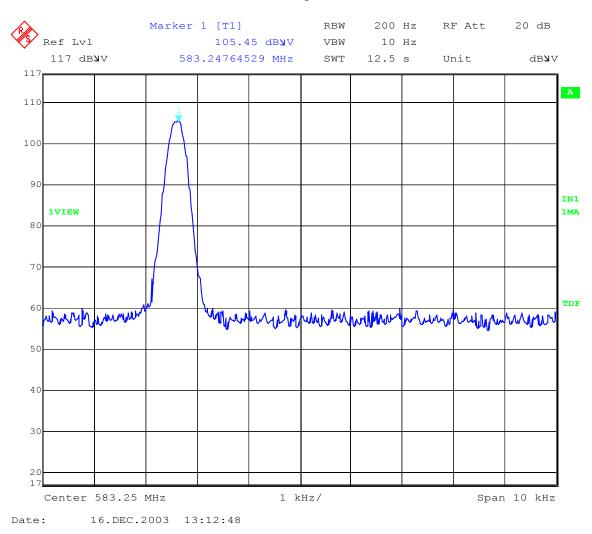
EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:	SLX2
Test:	Frequency Stability - Temperature
Operator:	Craig Brandt
Comment:	J3 CH 8 583.25 MHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

10.0 FREQUENCY STABILITY (TEMPERATURE) PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

10.0 FREQUENCY STABILITY (VOLTAGE VARIATION)– PART 2.1055(d1)

The frequency stability of SLX Handheld Wireless Microphone Transmitter was measured by varying the primary supply voltage from 85% to 115% of nominal value for all equipment other than hand carried battery equipment.

FREQUENCY STABILITY FOR VOLTAGE VARIATION:

85%	0
100%	0
115%	0

NOTE: This test was not run because the device is battery operated.

FREQUENCY STABILITY FOR HAND HELD DEVICES:

For **hand carried**, **battery powered equipment**, the supply voltage was reduced to the battery operating end point specified by the manufacturer. Readings were taken at the reduced end point and with a fresh battery:

Fresh Battery verses Battery end point:

Frequency #1583249829.66Frequency #2583249809.62Frequency #30Frequency #40Frequency #50Frequency #60

Worst Case Variance: = <u>20.04</u>

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance: = 0.005%

Limit: $=$ <u>2</u>	9162.5
---------------------	--------

This is well within the specified limits.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

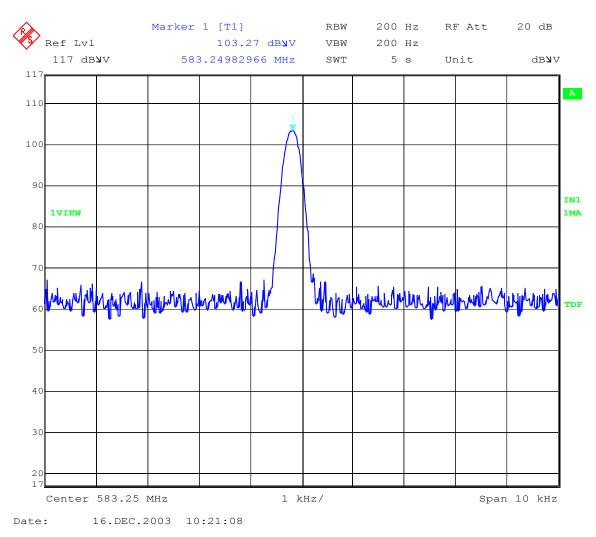
<u>GRAPH(S)</u> TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

PRIMARY SUPPLY VOLTAGE

PART 2.1055d

This is well within the specified limits.

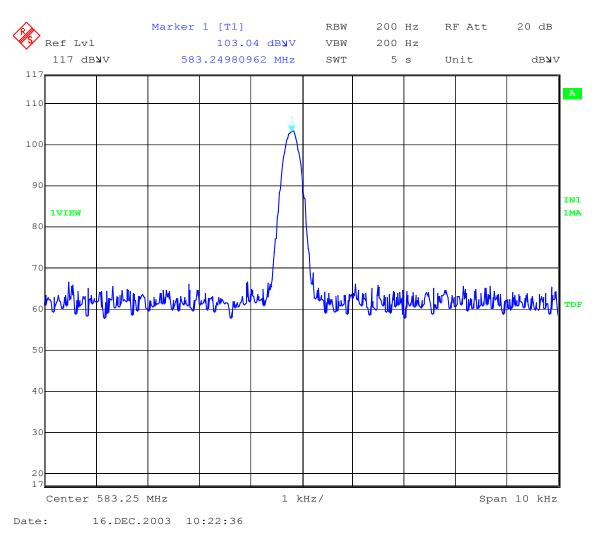


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:SLX2Test:Frequency Stability - VoltageOperator:Craig BrandtComment:J3 CH 8 583.25 MHz

3.0 volts



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

EUT:SLX2Test:Frequency Stability - VoltageOperator:Craig BrandtComment:J3 CH 8 583.25 MHz

2.3 volts

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX B

12.0 FREQUENCY STABILITY (VOLTAGE) PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

SUBPART H

LOW POWER AUXILIARY STATIONS

SLX2-L4 - 638 MHz to 662 MHz

Group 3 Channel 8 & Group 3 Channel 16

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

1.0 TEST SET-UP

All radiated emission tests were performed at D.L.S. Electronic Systems, Inc. The radiated tests were made with the test item placed on a non-conductive turntable located in the Test Room with the receive antenna placed three or one meter(s) from the device under test.

2.0 RF-POWER OUTPUT – PART 2.1046

As stated in PART 74.861 (e)(1)(ii), the RF output power should not exceed .25 watts. The RF output of the SLX Handheld Wireless Microphone Transmitter was connected to a Spectrum Analyzer through suitable attenuation. All cables, connectors, and attenuators were calibrated prior to testing. The RF output power was measured using the following test method:

Actual Measurements Taken:

121.65 dBuV Measured output of the transmitter +0 dB includes measured pads & cable loss 121.65 dBuV equals 0.0292 watts

LIMIT:

Manufacturer's rated output power = .035 watts

MARGIN:

.25 - 0.0292 = .2208 watts

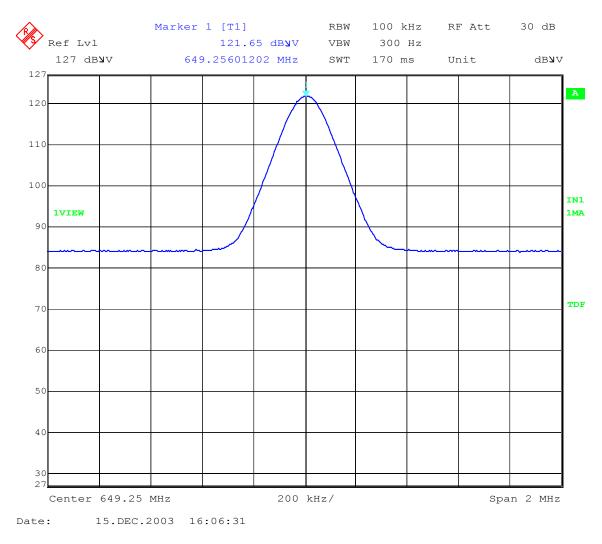
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

GRAPH(S) TAKEN OF THE RF POWER

OUTPUT MEASUREMENT

PART 2.1046



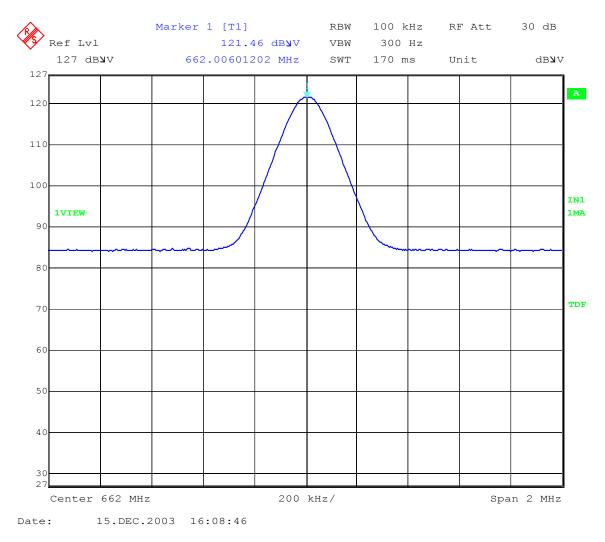
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:	SLX2
Test:	Output Power
Operator:	Craig Brandt
Comment:	L4 Band

CH 8 649.25 MHz

Output Power = 121.65 dBuV = 29.2 mW



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:	SLX2
Test:	Output Power
Operator:	Craig Brandt
Comment:	L4 Band

CH 16 662.00 MHz

Output Power = 121.46 dBuV = 28.0 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

3.0 MODULATION CHARACTERISTICS – PART 2.1047

a. Voice modulated communication equipment.

A curve showing the frequency response of the audio modulating circuit over a range of 20 Hz to 20 kHz Hz is submitted with this report.

b. Equipment which employs modulation limiting

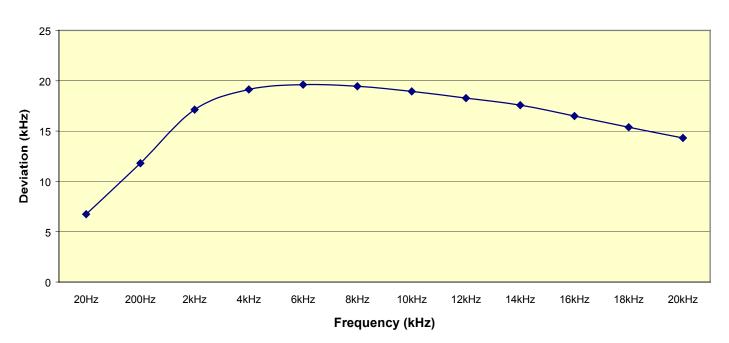
A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

GRAPH(S) TAKEN SHOWING THE FREQUENCY

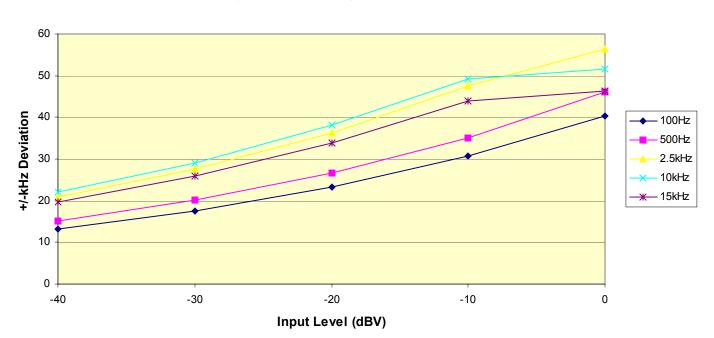
RESPONSE OF THE


AUDIO MODULATING CIRCUIT

PART 2.1047

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C



SLX2 (638.000MHz) Frequency vs Deviation for -45dBV RMS Input

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

SLX2 (638.000 MHz) Input Level vs Deviation

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

4.0 OCCUPIED BANDWIDTH - PART 2.1049

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99.0% of the total mean power and measured under the following conditions:

For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated $43+10 \log_{10}$ (mean output power, in watts) dB below the mean output power of the transmitting unit (device under test).

For low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum of ± 75 kHz is permitted when frequency modulation is used. The operating bandwidth shall not exceed 200 kHz.

Carson's Rule:

Section 2.202 (g)

Bn = 2M+2DK, K=1	Bn = Bandwidth
M = 15 kHz,	M = Maximum Modulating Frequency
D = 45 kHz,	D = Peak Deviation

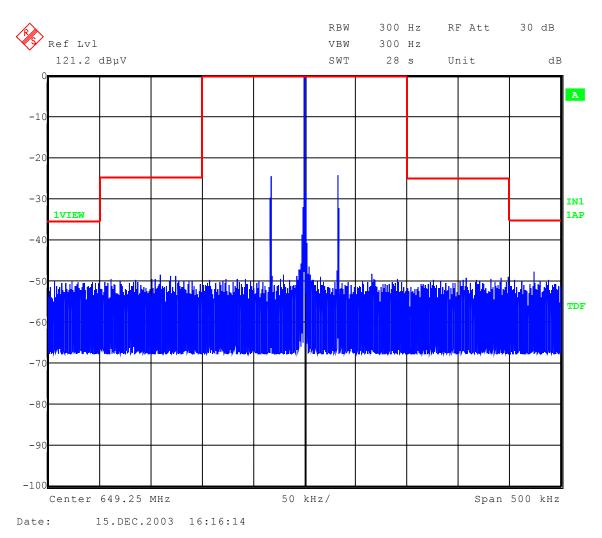
Bn = 2(15) + 2(45)(1) = 120 kHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

GRAPH(S) TAKEN OF THE OCCUPIED BANDWIDTH

PART 2.1049

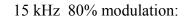


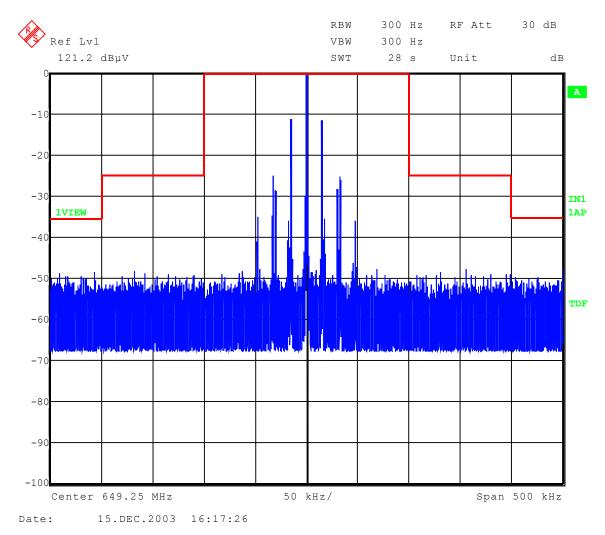
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:L4 CH 8 649.25 MHz

Unmodulated carrier:

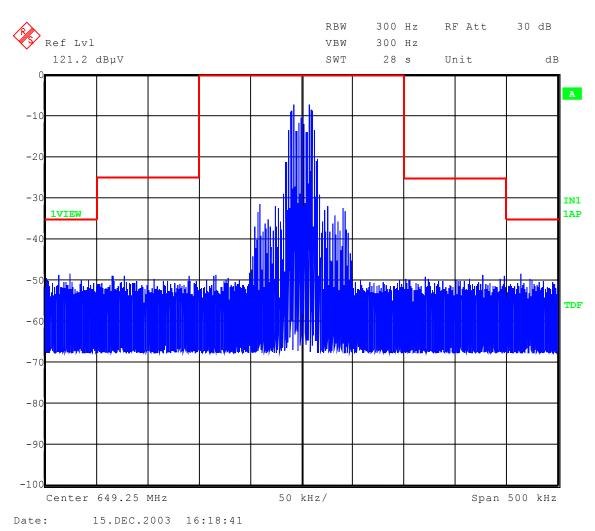




1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:L4 CH 8 649.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Occupied BandwidthOperator:Craig BrandtComment:L4 CH 8 649.25 MHz

16 dB > 50% modulation:

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

5.0 OCCUPIED BANDWIDTH PHOTOS TAKEN DURING TESTING

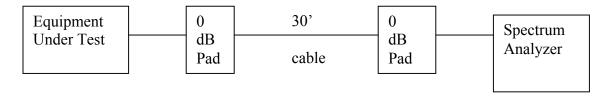
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

6.0 FREQUENCY DEVIATION AND TOLERANCE - PART 74.861

Paragraph e-3 states that the <u>maximum authorized deviation shall be 75 kHz</u> for all frequency modulation emissions in the frequency bands 638 MHz to 662 MHz.

Paragraph e-4 states that the <u>frequency tolerance</u> of the transmitter shall be <u>.005 percent.</u>


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

7.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 2.1051

Spurious conducted emissions were measured at the antenna terminals using an artificial load. Plots were made showing the amplitude of each harmonic emission with the equipment operated as specified in 2.989. As shown by the radiated charts there was no reason to believe that there were any spurious emissions other than the harmonics that were than individually investigated when doing the conducted test at the antenna terminals. Measurements were made up to the 10th harmonic of the fundamental. The following setup was used showing placement of the attenuators:

NOTE: This test was not run because there is no antenna port.

The allowed emissions for transmitters operating in the 638 MHz to 662 MHz bands for SLX Handheld Wireless Microphone Transmitter equipment are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

NOTE: See the following pages for the data ad graphs of the actual measurements made:

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

CONDUCTED EMISSION DATA AND GRAPH(S) TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS MADE

AT THE ANTENNA TERMINALS

PART 2.1051

NOTE: This test was not run because there is no antenna port.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

8.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS – PART 2.1053

Radiated measurements were performed at a 1 or 3 meter test distance automatically scanning the frequency range from 200 MHz to 10000 MHz, depending upon the fundamental frequency.

For the SLX Handheld Wireless Microphone Transmitter, the highest fundamental frequency is 704 MHz so the scans were made up to 10000 MHz, to cover the tenth harmonic.

All signals in the frequency range of 30 MHz to 200 MHz were measured with a Biconical Antenna and from 200 MHz to 1000 MHz a Log Periodic Antenna was used as the pickup devices. From 1000 MHz to 10000 MHz, a Double Ridge Horn Antenna was used. The cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Tests were made in both the horizontal and vertical planes of polarization.

The allowed emissions for transmitters operating in the 638 MHz to 662 MHz bands for SLX Handheld Wireless Microphone Transmitter are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

8.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T) – PART 2.1053

As stated in Part 74, Section 74.861 (e-1 iii) the limit is 250 mW in the frequency range 638 MHz to 662 MHz.

To determine the **LIMIT** for Spurious Emissions the following method was used:

Mean output power in watts:

Manufacturer's rated wattage = .035 Watts (See Paragraph 2.0, page 2 of this Appendix)

Free Space Formula

Convert to 3 meter test distance using the Free Space Formula

 $\frac{\sqrt{49.2 * rated wattage}}{\text{Distance}} = 0.4374167 \text{ volts/meter} = 437416.7 \text{ uV/m}$

 $20*Log(437416.7) = 112.8179 \, dBuV/m$

Therefore, the Fundamental at three meters equals 112.8179 dBuV,

The emissions must be reduced by:

43 + 10*LOG100.035 watts) = 28.44068 dB

Therefore, the **LIMIT** at three meters equals:

112.8179 dBuV/m extrapolated level for 0.035 watts

-28.44068 dB required reduction below the unmodulated fundamental

84.37723 dBuV/M maximum spurious emissions allowed

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

RADIATED EMISSION DATA TAKEN

FOR SPURIOUS EMISSIONS

USING THE SUBSTITUTION METHOD

ANSI/TIA/EIA-603-1992 SECTION 2.2.12

Shure Inc. SLX2 10460

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

NOTE:

Substitution method was not run, because all levels are greater than 20 db below the limit.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

RADIATED EMISSION <u>DATA</u> AND <u>GRAPH(S)</u> TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS

PART 2.1053

1250 Peterson Dr., Wheeling, IL 60090

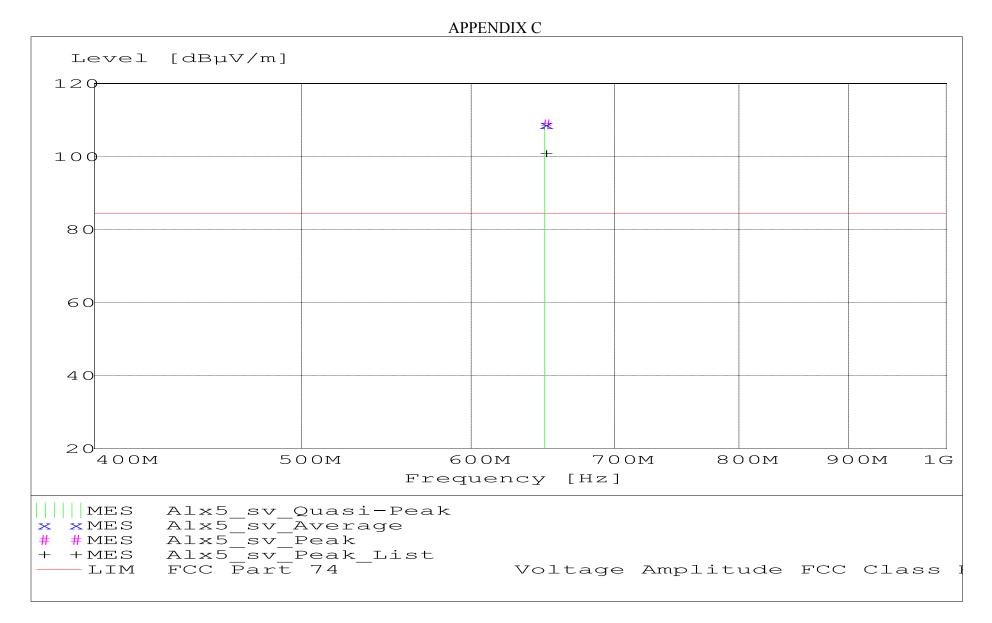
APPENDIX C

FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 8 649.25 MHz Date: 12/15/2003

TEXT: "Site 3 MidV 3M"


Short Description:Test Set-up Vert30-1000MHzTEST EQUIPMENT:Receiver --- Rohde & Schwarz ESI 26 SN: 837491/010

Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx5_sv_Final"

12/15/2003 10:26AM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg	20000001	
649.250000	63.05	20.18	25.6	108.9	84.4	-24.5	1.30	180	MAX PEAK	Fundamental
649.250000	63.01	20.18	25.6	108.8	84.4	-24.4	1.30	180	QUASI-PEAK	Fundamental
649.250000	62.95	20.18	25.6	108.8	84.4	-24.4	1.30	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

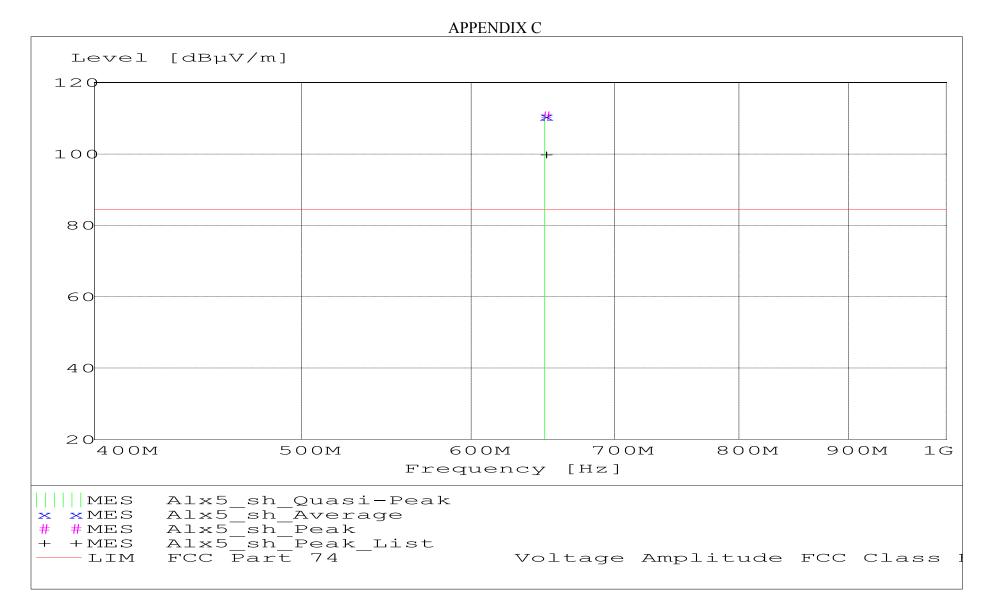
APPENDIX C

FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 8 649.25 MHz Date: 12/15/2003

TEXT: "Site 3 MidH 3M"


Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx5_sh_Final"

12/15/2003 10:32AM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EUT	Final	Comment
		Factor	Loss	Level	- /		Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
		00 10		110 0	0.4.4		1 0 0	1.0.0		
649.250000	64.84	20.18	25.6	110.6	84.4	-26.3	1.00	180	MAX PEAK	Fundamental
649.250000	64.78	20.18	25.6	110.6	84.4	-26.2	1.00	180	QUASI-PEAK	Fundamental
649.250000	64.76	20.18	25.6	110.6	84.4	-26.2	1.00	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 8 649.25 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx6_sv_Final"

12/15/2003 10:52AM

Frequency MHz	Level dBµV	Antenna Factor dBµV/m	System Loss dB	Total Level dBµV/m	Limit dBµV/m	Margin dB	Height Ant. m	EUT Angle deg	Final Detector	Comment
MHZ 5194.000000 4544.750000 1947.750000 4544.750000 1947.750000 3246.250000 3246.250000 3246.250000 2597.000000 3895.500000 3895.500000 3895.500000 6492.500000 1298.500000	αβμν 66.30 67.30 65.32 73.52 66.45 71.09 67.42 66.48 58.52 65.79 60.53 64.65 55.60 58.43 51.46 63.03	34.40 33.03 34.40 28.04 33.03 28.04 30.84 30.84 30.84 34.54 29.43 32.49 29.43 34.54 32.49 34.54 32.49 34.54	<pre> -38.6 -38.6 -38.6 -40.6 -38.6 -40.6 -40.2 -40.2 -38.1 -40.5 -39.3 -40.5 -39.3 -39.3 -38.1 -39.3 -38.3 -41.6 </pre>	<pre>dBµV/m 62.1 61.7 61.2 60.9 60.9 58.5 58.1 57.1 54.9 54.8 53.7 53.6 52.0 51.6 48.1 47.3</pre>	84.4 84.4	<pre>dB 22.2 22.7 23.2 23.4 23.5 25.9 26.3 27.2 29.4 29.6 30.7 30.8 32.4 32.8 36.3 37.0</pre>	m 1.00 1.20 1.00 2.00 1.20 2.00 1.00 1.00 1.00 2.00 1.00	aeg 180 180 180 180 180 180 180 180	MAX PEAK MAX PEAK AVERAGE MAX PEAK AVERAGE MAX PEAK AVERAGE MAX PEAK MAX PEAK AVERAGE AVERAGE AVERAGE MAX PEAK MAX PEAK	None None None None None None None None
1298.500000 6492.500000	61.58 40.92	25.93 34.90	-41.6 -38.3	45.9 37.6	84.4 84.4	38.5 46.8	1.00 1.20	180 90	AVERAGE AVERAGE	None None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

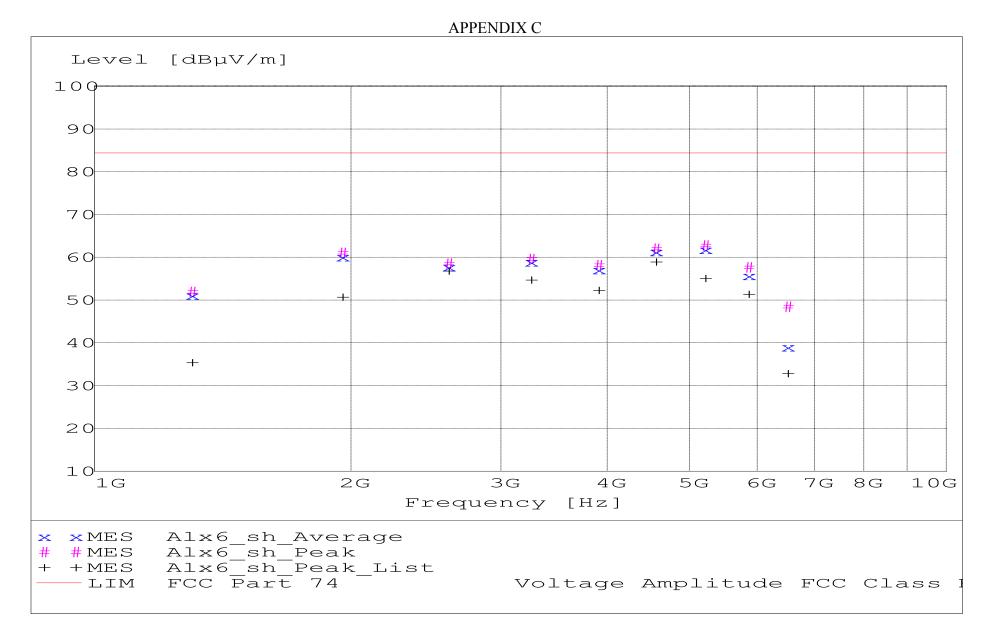
FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 8 649.25 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006


Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx6_sh_Final"

12/15/2003 11:13AM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
5194.000000	66.93	34.40	-38.6	62.8	84.4	21.6	1.30	180	MAX PEAK	None
4544.750000	67.67	33.03	-38.6	62.1	84.4	22.3	2.00	180	MAX PEAK	None
5194.000000	65.99	34.40	-38.6	61.8	84.4	22.5	1.30	180	AVERAGE	None
4544.750000	66.91	33.03	-38.6	61.3	84.4	23.1	2.00	180	AVERAGE	None
1947.750000	73.65	28.04	-40.6	61.1	84.4	23.3	1.00	225	MAX PEAK	None
1947.750000	72.67	28.04	-40.6	60.1	84.4	24.3	1.00	225	AVERAGE	None
3246.250000	69.01	30.84	-40.2	59.7	84.4	24.7	2.00	180	MAX PEAK	None
3246.250000	68.21	30.84	-40.2	58.9	84.4	25.5	2.00	180	AVERAGE	None
2597.000000	69.64	29.43	-40.5	58.6	84.4	25.8	2.00	225	MAX PEAK	None
3895.500000	65.02	32.49	-39.3	58.2	84.4	26.2	1.00	225	MAX PEAK	None
2597.000000	68.79	29.43	-40.5	57.8	84.4	26.6	2.00	225	AVERAGE	None
5843.250000	61.31	34.54	-38.1	57.7	84.4	26.7	1.00	180	MAX PEAK	None
3895.500000	63.90	32.49	-39.3	57.1	84.4	27.3	1.00	225	AVERAGE	None
5843.250000	59.28	34.54	-38.1	55.7	84.4	28.7	1.00	180	AVERAGE	None
1298.500000	67.67	25.93	-41.6	52.0	84.4	32.4	1.30	270	MAX PEAK	None
1298.500000	66.82	25.93	-41.6	51.1	84.4	33.2	1.30	270	AVERAGE	None
6492.500000	51.86	34.90	-38.3	48.5	84.4	35.9	1.80	0	MAX PEAK	None
6492.500000	42.38	34.90	-38.3	39.0	84.4	45.4	1.80	0	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

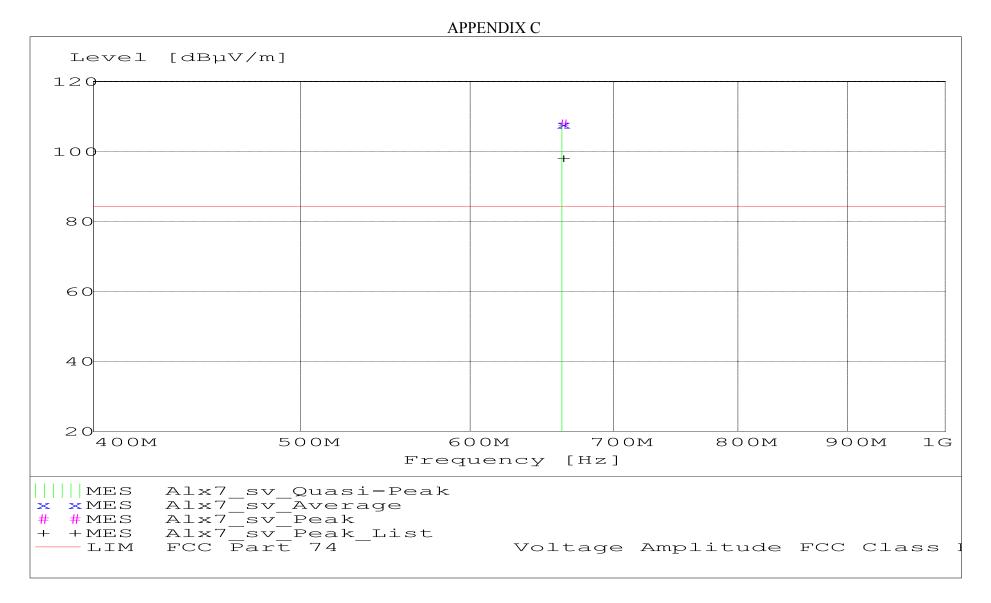
APPENDIX C

FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 16 662.00 MHz Date: 12/15/2003

TEXT: "Site 3 MidV 3M"


Short Description:Test Set-up Vert30-1000MHzTEST EQUIPMENT:Receiver --- Rohde & Schwarz ESI 26 SN: 837491/010

Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx7_sv_Final"

12/15/2003 11:23AM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EUT	Final	Comment
MHz	dBμV	Factor dBµV/m	Loss dB	Level dBµV/m	dBµV/m	dB	Ant. m	Angle deg	Detector	
662.000000	61.57	20.65	25.6	107.9	84.4	-23.5	1.30	180	MAX PEAK	Fundamental
662.000000	61.49	20.65	25.6	107.8	84.4	-23.4	1.30	180	QUASI-PEAK	Fundamental
662.000000	61.48	20.65	25.6	107.8	84.4	-23.4	1.30	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

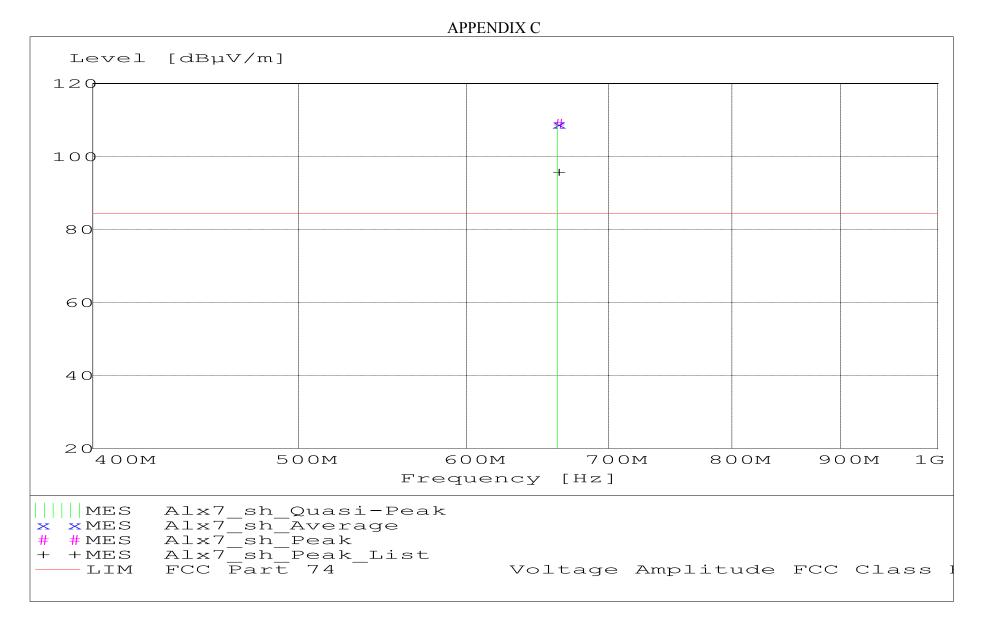
APPENDIX C

FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 16 662.00 MHz Date: 12/15/2003

TEXT: "Site 3 MidH 3M"


Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde & Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx7_sh_Final"

12/15/2003 11:28AM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EUT	Final	Comment
	1	Factor	Loss	Level		1-	Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
662.000000	62.72	20.65	25.6	109.0	84.4	-24.6	1.00	180	MAX PEAK	Fundamental
662.000000	62.66	20.65	25.6	108.9	84.4	-24.6	1.00	180	QUASI-PEAK	Fundamental
662.000000	62.60	20.65	25.6	108.9	84.4	-24.5	1.00	180	AVERAGE	Fundamental

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

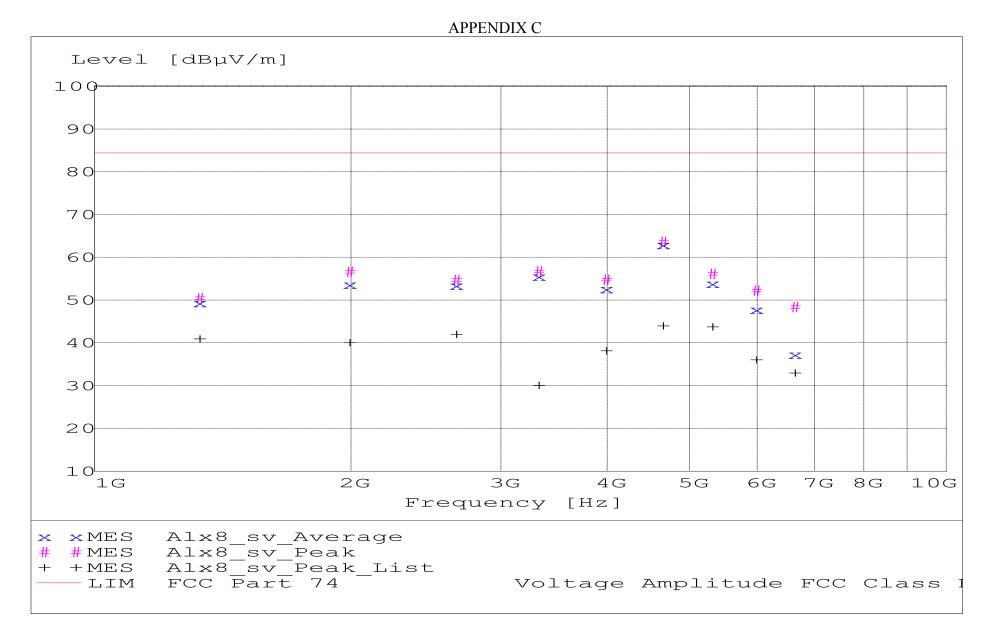
FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 16 662.00 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006


Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx8_sv_Final"

12/15/2003 12:22PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
4634.000000	68.77	33.30	-38.4	63.6	84.4	20.7	1.00	180	MAX PEAK	None
4634.000000	68.08	33.30	-38.4	62.9	84.4	21.4	1.00	180	AVERAGE	None
3310.000000	65.79	30.96	-40.1	56.7	84.4	27.7	1.10	180	MAX PEAK	None
1986.000000	69.14	28.16	-40.7	56.6	84.4	27.8	2.00	180	MAX PEAK	None
5296.000000	60.14	34.40	-38.4	56.1	84.4	28.2	1.10	135	MAX PEAK	None
3310.000000	64.67	30.96	-40.1	55.6	84.4	28.8	1.10	180	AVERAGE	None
3972.000000	61.05	32.72	-39.0	54.8	84.4	29.6	1.20	180	MAX PEAK	None
2648.000000	65.79	29.56	-40.6	54.7	84.4	29.6	1.00	180	MAX PEAK	None
5296.000000	57.92	34.40	-38.4	53.9	84.4	30.5	1.10	135	AVERAGE	None
1986.000000	66.22	28.16	-40.7	53.7	84.4	30.7	2.00	180	AVERAGE	None
2648.000000	64.56	29.56	-40.6	53.5	84.4	30.9	1.00	180	AVERAGE	None
3972.000000	58.90	32.72	-39.0	52.7	84.4	31.7	1.20	180	AVERAGE	None
5958.000000	55.78	34.58	-38.1	52.3	84.4	32.1	1.20	225	MAX PEAK	None
1324.000000	66.17	26.03	-41.7	50.5	84.4	33.9	1.00	180	MAX PEAK	None
1324.000000	65.07	26.03	-41.7	49.4	84.4	35.0	1.00	180	AVERAGE	None
6620.000000	51.46	35.28	-38.3	48.4	84.4	35.9	1.10	270	MAX PEAK	None
5958.000000	51.28	34.58	-38.1	47.8	84.4	36.6	1.20	225	AVERAGE	None
6620.000000	40.35	35.28	-38.3	37.3	84.4	47.0	1.10	270	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

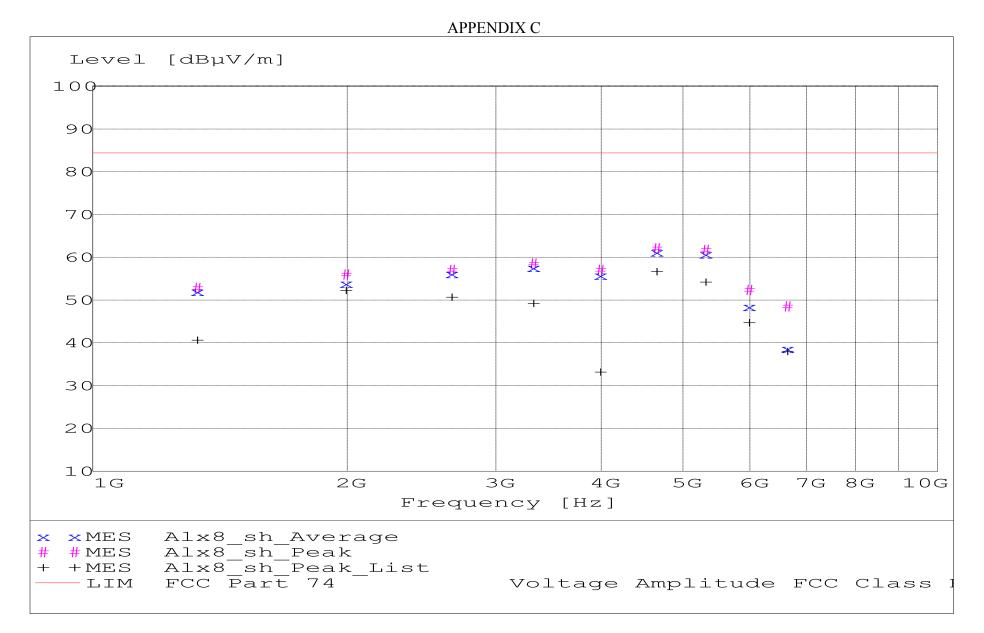
FCC Part 74

Electric Field Strength

EUT: SLX2 L4 Manufacturer: Shure, Inc. Operating Condition: 70 deg F; 29% R.H. Test Site: Site 3 Operator: Craig Brandt Test Specification: Comment: L4 CH 16 662.00 MHz Date: 12/15/2003

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up Horz1GHz-TEST EQUIPMENT: Receiver --- Rohde & Schwarz ESI 40 SN: 837808/006


Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ----

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

MEASUREMENT RESULT: "Alx8_sh_Final"

12/15/2003 12:41PM

Frequency	Level	Antenna Factor	System Loss	Total Level	Limit	Margin	Height Ant.	EUT Angle	Final Detector	Comment
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
4634.000000	67.30	33.30	-38.4	62.2	84.4	22.2	2.00	270	MAX PEAK	None
5296.000000	65.79	34.40	-38.4	61.8	84.4	22.6	1.00	180	MAX PEAK	None
4634.000000	66.38	33.30	-38.4	61.2	84.4	23.1	2.00	270	AVERAGE	None
5296.000000	64.77	34.40	-38.4	60.8	84.4	23.6	1.00	180	AVERAGE	None
3310.000000	67.67	30.96	-40.1	58.6	84.4	25.8	1.20	180	MAX PEAK	None
3310.000000	66.68	30.96	-40.1	57.6	84.4	26.8	1.20	180	AVERAGE	None
2648.000000	68.16	29.56	-40.6	57.1	84.4	27.3	1.10	135	MAX PEAK	None
3972.000000	63.31	32.72	-39.0	57.1	84.4	27.3	2.10	225	MAX PEAK	None
2648.000000	67.25	29.56	-40.6	56.2	84.4	28.2	1.10	135	AVERAGE	None
1986.000000	68.53	28.16	-40.7	56.0	84.4	28.4	1.60	225	MAX PEAK	None
3972.000000	62.02	32.72	-39.0	55.8	84.4	28.6	2.10	225	AVERAGE	None
1986.000000	66.41	28.16	-40.7	53.9	84.4	30.5	1.60	225	AVERAGE	None
1324.000000	68.53	26.03	-41.7	52.8	84.4	31.5	1.20	180	MAX PEAK	None
5958.000000	55.91	34.58	-38.1	52.4	84.4	32.0	1.20	135	MAX PEAK	None
1324.000000	67.66	26.03	-41.7	52.0	84.4	32.4	1.20	180	AVERAGE	None
6620.000000	51.59	35.28	-38.3	48.6	84.4	35.8	1.70	0	MAX PEAK	None
5958.000000	51.95	34.58	-38.1	48.4	84.4	35.9	1.20	135	AVERAGE	None
6620.000000	41.68	35.28	-38.3	38.6	84.4	45.7	1.70	0	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

9.0 FREQUENCY STABILITY (TEMPERATURE)– PART 2.1055(a1)

The frequency stability was measured from -30° to $+50^{\circ}$ centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the SLX Handheld Wireless Microphone Transmitter oscillator circuitry to stabilize. The following information was taken:

FREQUENCY STABILITY FOR TEMPERATURE VARIATION IN MHz:

-30° EUT WILL N	OT OPERATE AT –30 deg.c
-20°	649.24930862
-10°	649.25103206
0°	649.25141283
+10°	649.25099198
+20°	649.2499499
+30°	649.24886774
+40°	649.24798597
+50°	649.24768537

Worst Case Variance:

<u>2314.63</u> Hz

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance:	=	<u>0.00005</u>
Assigned Frequency:	=	<u>649250000</u> Hz
Limit = 649250000 * 0.005%	=	<u>32462.5</u> Hz

This is well within the specified limits.

1250 Peterson Dr., Wheeling, IL 60090

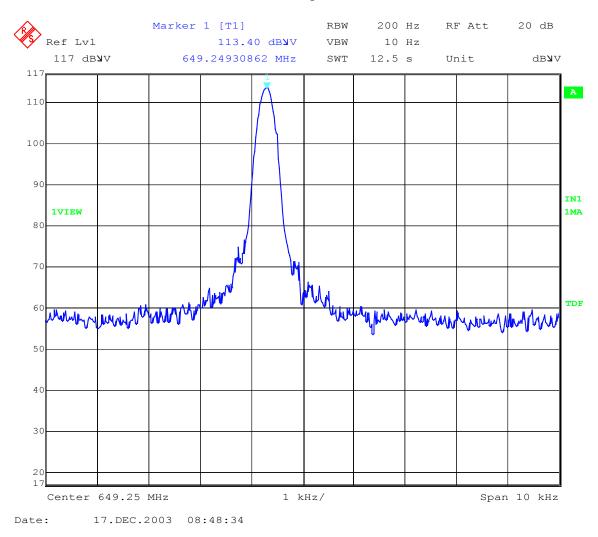
APPENDIX C

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE TEMPERATURE

PART 2.1055a

This is well within the specified limits.

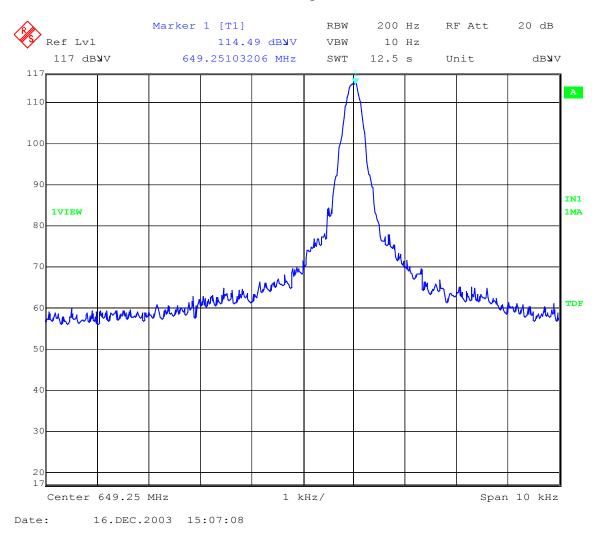


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz

-20 deg. C

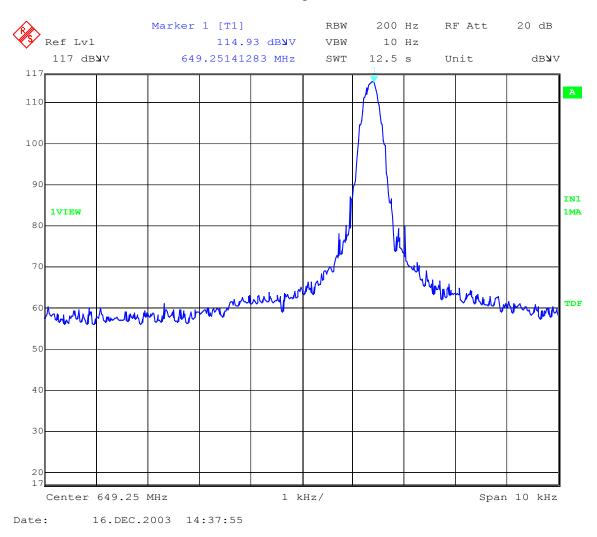


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz

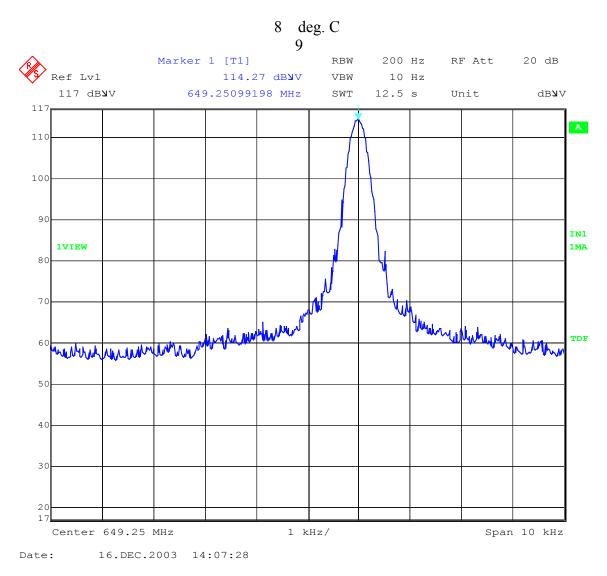
-10 deg. C



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

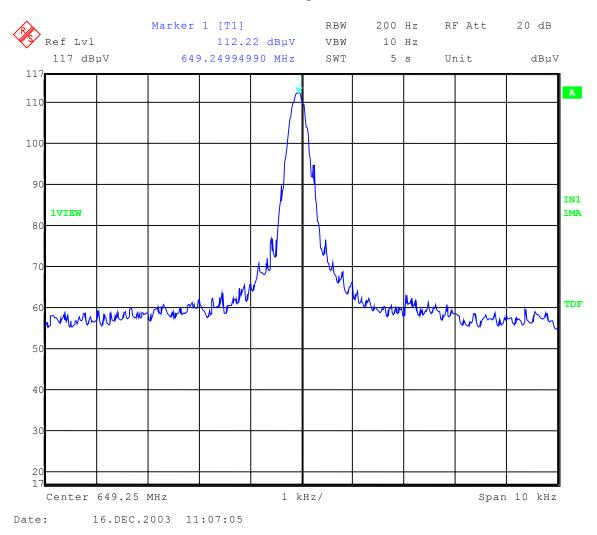
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

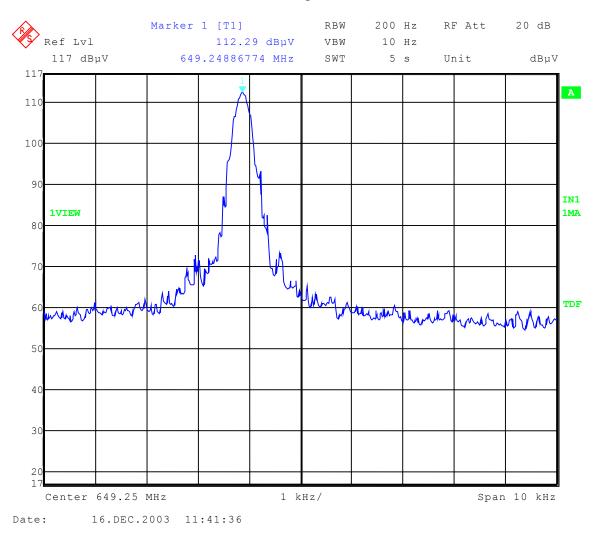
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

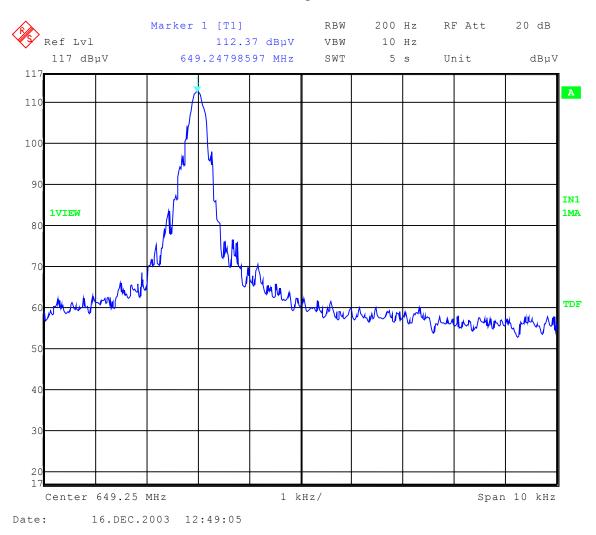
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

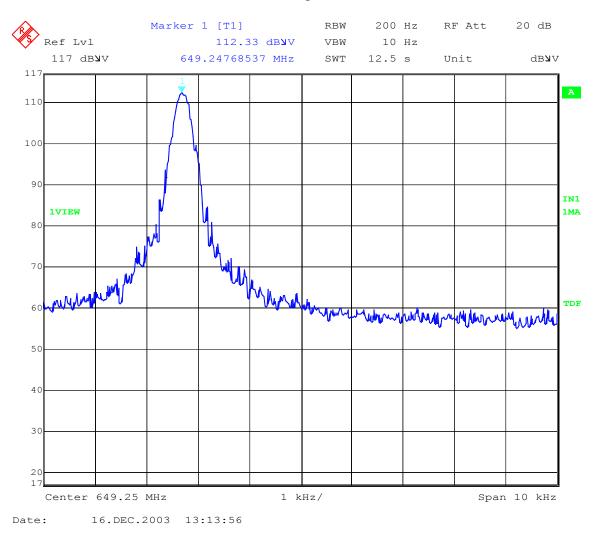
EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Frequency Stability - TemperatureOperator:Craig BrandtComment:L4 CH 8 649.25 MHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

10.0 FREQUENCY STABILITY (TEMPERATURE) PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

11.0 FREQUENCY STABILITY (VOLTAGE VARIATION)– PART 2.1055(d1)

The frequency stability of SLX Handheld Wireless Microphone Transmitter was measured by varying the primary supply voltage from 85% to 115% of nominal value for all equipment other than hand carried battery equipment.

FREQUENCY STABILITY FOR VOLTAGE VARIATION:

85%	0
100%	0
115%	0

NOTE: This test was not run because the device is battery operated.

FREQUENCY STABILITY FOR HAND HELD DEVICES:

For **hand carried**, **battery powered equipment**, the supply voltage was reduced to the battery operating end point specified by the manufacturer. Readings were taken at the reduced end point and with a fresh battery:

Fresh Battery verses Battery end point:

 Frequency #1
 649250270.54

 Frequency #2
 649250290.58

 Frequency #3
 0

 Frequency #4
 0

 Frequency #5
 0

 Frequency #6
 0

Worst Case Variance: = 20.04

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance:	=	<u>0.005%</u>
.		

Limit: = 32462.5

This is well within the specified limits.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

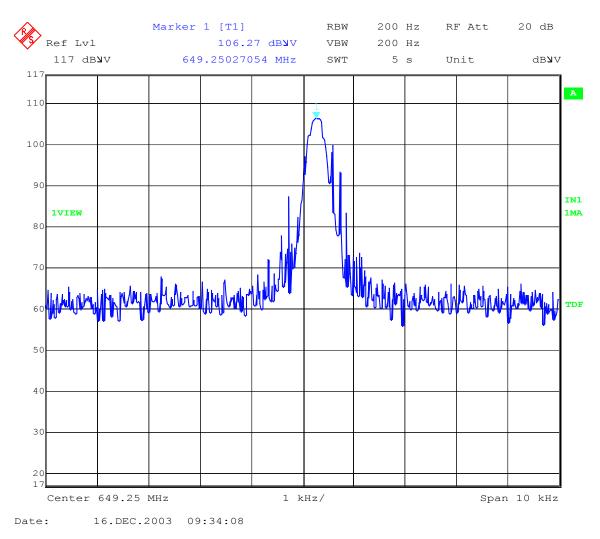
GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

PRIMARY SUPPLY VOLTAGE

PART 2.1055d

This is well within the specified limits.

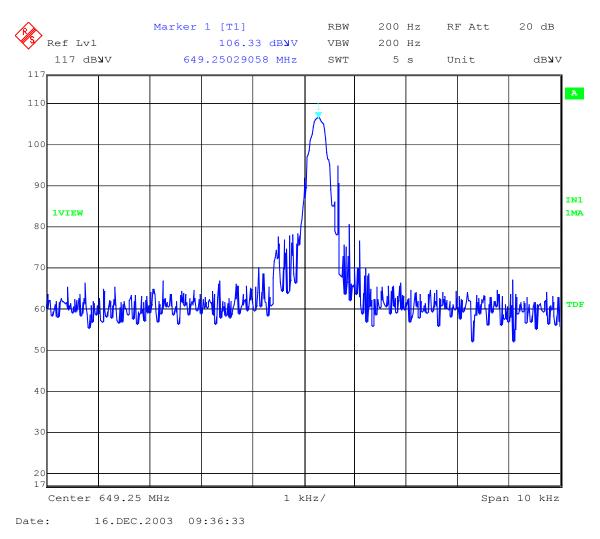


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Frequency Stability - VoltageOperator:Craig BrandtComment:L4 CH 8 649.25 MHz

3.0 volts



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

EUT:SLX2Test:Frequency Stability - VoltageOperator:Craig BrandtComment:L4 CH 8 649.25 MHz

2.3 volts

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX C

12.0 FREQUENCY STABILITY (VOLTAGE) PHOTOS TAKEN DURING TESTING

