

SHURE

ELECTROMAGNETIC COMPATIBILITY LABORATORY **TEST REPORT**

TEST REPORT TITLE: Electromagnetic Compatibility Tests of the Shure QLXD2 L50A Digital Wireless Transmitter in the 657MHz to 663MHz Band

TEST ITEM DESCRIPTION:

The Shure QLXD2 is a digital wireless microphone transmitter, microprocessor controlled transmitter.

For: Shure Incorporated 5800 West Touhy Avenue Niles, IL 60714

Project ID Number: SEL-030/QLXD2 L50A

July 12, 2017 and November 27, 2017 and January 24, 2018 and Date Tested: February 14, 26, 27, 2018, March 8, 2018

Test Personnel: Alex Mishinger, Danny Palaniswami, Juan Castrejon, Brad McCain and Craig Kozokar

Test Specification: FCC Part 15C, Section 15.236g

 TEST REPORT BY:
 Lay Houlin
 Global Compliance Engineer

 APPROVED BY:
 Mumore Bracken
 GCNojectEngineer

 Signature
 Position

MAY 1,2018

TABLE OF CONTENTS

<u>P</u> A	ARAGRA	PH DESCRIPTION OF CONTENTS	PAGE NO.
0.	Report Rev	vision History	4
1.	Introductio	5	
	1.1.	Scope of Tests	5
	1.2.	Purpose	5
	1.3.	Deviation, Additions and Exclusions	5
	1.4.	EMC Laboratory Identification	5
	1.5.	Summary of Tests Performed	5
2.	Applicable	Documents	6
3.	EUT Setup	and Operation	6
	3.1	General Description	6
	3.2	Test Samples	6
	3.3	Operational Mode	6
4	Test Instru	mentation	7
5	Procedure		7
6	Other Test	Conditions	7
	6.1	Test Personnel	7
	6.2	Disposition of the EUT	7
7	Results of	Tests	7
8	Conclusior	ns	7
9	Certificatio	on	7
10	Equipment	t List	8
11	Appendix /	Α	9
12	Appendix I	В	
13	Appendix	С	29

Note: This report shall not be reproduced, except in full, without the written approval of the Shure Incorporated Electromagnetic Laboratory (SEL). Total Page Count is 42.

Page 2 of 42

LIST OF APPENDICIES

APPENDIX	TEST DESCRIPTION
А	Radiated RF Spurious Emissions Measurement, 30 MHz to 10 GHz
В	Maximum Radiated Power
С	Necessary Bandwidth

Page 3 of 42

REPORT REVISION HISTORY

Revision	Date	Description
0	March 30, 2018	Initial release

Page 4 of 42

1. INTRODUCTION

1.1. Scope of Tests

This report presents the results of testing per FCC Part 15C, Section 236g, Radiated RF Spurious Emissions, Maximum Radiated Output, and Necessary Bandwidth. The following data was taken following the measurement method as described in the document section(s) listed on page 1 of this document. Provided is the data for the test sample. Also included is a summary of the measurements made and a description of the measurement setup. The test sample meet the requirements of the above standards. The equipment under test (EUT) contained a transmitter that was designed to transmit in the UHF TV frequency bands shown in Table 1.

Model	Band	Frequency (MHz)	Output Power (mW)
QLXD2	L50A	657 - 663	1 and 10

Table 1. EUT Frequency Band and Power Levels

1.2. Purpose

This series of testing was performed to determine if the test item would meet the requirements of FCC Part 15C, Section 236g.

1.3. Deviations, Additions and Exclusions

None

1.4. EMC Laboratory Identification

The electromagnetic compatibility tests were performed at the Shure Electromagnetic Laboratory, Shure Incorporated, 5800 West Touhy Ave, Niles, Illinois 60714-4608. This laboratory is registered with Industry Canada as Site # 616A-1. The Shure Electromagnetic Laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP). The NVLAP Lab Code is: 200946-0.

1.5. Summary of Tests Performed

The following electromagnetic compatibility tests (Table 2) were performed on the test item in accordance with ETSI specifications.

Table 2. Summary of tests performed

	1			
Test Spec	Description	Tested Frequency	Appendix	Test Results
FCC Part 15C	Radiated Spurious Emissions	30 MHz to 10 GHz	А	Pass
FCC Part 15C	Maximum Radiated Power	657.125MHz 662.875MHz	В	Pass
FCC Part 15C	Necessary Bandwidth Measurements	657.125MHz 662.875MHz	С	Pass

2. APPLICABLE DOCUMENTS

The following documents of the exact issue designated form part of this document to the extent specified herein:

FCC Part 15C, Section 236g

EN 300 422-1 v1.4.2 (2011-08), "Wireless Microphone "Electromagnetic Compatibility and Radio spectrum Matters (ERM); Wireless microphones in the 25MHz to 3GHz frequency range; Part 1; Technical characteristics and methods of measurements"

ANSI C63.4 (2014), "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"

3. EUT SET-UP AND OPERATION

3.1. General Description

The test sample used was Shure QLXD2 digital wireless microphone transmitter. The EUT was arranged and tested per individual Appendices.

3.2 Test Sample

The following product sample was tested:

Table 3: Shure QLXD2 L50A Digital Wireless Transmitter Sample

QLXD2 L50A Serial Numbers #1

3.3 Operational Mode

All necessary bandwidth tests were performed separately in the transmit frequency and output power modes shown in Table 4.

ſ	Band	Frequency in MHz	L/H	Power Level in mW
	L50A	657.125	Low	1 and 10
	L50A	662.875	High	1 and 10

Table 4. EUT Frequencies and Power Levels

All radiated spurious emissions and maximum radiated power tests were performed separately in the transmit frequency and output power modes shown in Table 5.

Band	Frequency in MHz	L/H	Power Level in mW
L50A	657.125	Low	10
L50A	662.875	High	10

Table 5. EUT Frequencies and Power Levels

4. Test Instrumentation

A list of the test equipment used can be found in Table 10-1. All equipment used was within calibration during and throughout the duration of the tests. All calibrations are traceable to the National Institute of Standards and Technology (NIST).

5. Procedure

The specific test procedures are presented in the individual appendices.

6. Other Test Conditions:

6.1. Test Personnel

All EMC tests were performed by qualified personnel from the Shure EMC Laboratory.

6.2. Disposition of the EUT

The EUTs and all associated equipment were returned to Shure Incorporated upon completion of the tests.

7. Results of Tests:

The results are presented in Appendices. It was found that the EUT meet the requirements of FCC Part 15C, Section 236g for Radiated RF Spurious Emissions, Maximum Radiated Power, and Necessary Bandwidth.

8. Conclusions:

It was determined that the Shure QLXD2 L50A Digital Wireless Microphone Transmitter did fully comply with the requirements of FCC Part 15C, Section 236g, Radiated RF Spurious Emissions, Maximum Radiated Power, and Necessary Bandwidth.

9. Certification:

Shure EMC Laboratory certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications.

The data presented in this test report pertains to the EUTs at the test date. Any electrical or mechanical modification made to the EUTs subsequent to the specified test date will serve to invalidate the data and void this certification.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Page 7 of 42

10. Equipment List

Table 10-1 Test Equipment									
L# or ID	Description	Manufacturer	Model #	Serial #	Frequency Range	Cal Date	Due Date		
L23-011-01	3 meter RF Chamber	ETS Lindgren	FACT-3	AJ640	25MHz - 18GHz	8/8/2017	8/8/2018		
L23-011-02	Electric Powered Turntable	ETS Lindgren	2088	N/A	N/A	N/A	N/A		
L23-011-08	Controller	EMCO	2090	29799	N/A	N/A	N/A		
L23-011-09	Antenna Positioner	ETS Lindgren	2071-2	35500	N/A	N/A	N/A		
L23-011-15	BiConiLog Antenna	ETS Lindgren	3142C	34790	25MHz-1GHz	6/22/2017	6/22/2018		
L23-011-44	BiConiLog Antenna	ETS Lindgren	3142C	79899	25MHz-1GHz	2/27/2017	2/27/2018		
L23-011-54	EMI Test Receiver	Rohde & Schwarz	ESR26	100220	9kHz-26GHz	3/30/2017	3/30/2018		
L23-011-31	EMI/EMS Test Software	Rohde & Schwarz	EMC32	V 9.21.00	N/A	N/A	N/A		
L23-011-55	Horn antenna with pre- amplifier	ETS Lindgren	3117-PA	206583	1GHz to 18 GHz	4/27/2017	4/27/2018		
L23-011-41	Horn Antenna	ETS Lindgren	3117	123511	1GHz to 18 GHz	5/7/2017	5/7/2018		
L23-011-57	High Pass Filter	K&L	11SH10- 940/X10000- 0/0	3	940MHz – 10GHz	3/31/2017	3/31/2018		
L23-022-02	Spectrum Analyzer	Rohde & Schwarz	FSW26	103788	9kHz-26GHz	3/28/2017	3/28/2018		
L23-022-01	Spectrum Analyzer	Rohde & Schwarz	FSU26	201043	9kHz-26GHz	8/23/2017	8/23/2018		
L23-040-09	20dB attenuator	Mini-Circuits	BW-S20W2	N/A	20MHz to 18GHz	2/21/2017	2/21/2018		
L23-040-04	20dB attenuator	Mini-Circuits	BW-S20W5	1133	20MHz to 18GHz	7/18/2017	7/18/2018		
L23-034-05	Temperature Hygrometer	Extech	445703	48254-66	N/A	9/15/2016	9/15/2018		
L23-034-04	Temperature Hygrometer	Extech	445703	48254-13	N/A	9/15/2016	9/15/2018		
L23-023-01	RF Signal Generator	Rohde & Schwarz	SMF100A	101553	20Hz to 26.5GHz	8/23/2017	8/23/2018		

Page 8 of 42

Appendix A

A. RADIATED RF SPURIOUS EMISSIONS - 30 MHZ TO 10 GHZ

Purpose:

This test performed to determine if the EUT meets the radiated RF emission requirements of the FCC Part 15C section 236g over the frequency range from 30MHz to 10GHz. A Quasi-Peak and Average detectors were used for the measurements.

Requirements:

As stated in FCC 15C section 236g, spurious emissions must meet the limits specified in section 8.4 of ETSI EN 300 422-1 V1.4.2 (2011-08)

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence)

Measurement Type	U _{lab}	U _{etsi}
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.12 dB	6.00 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 13 GHz)	4.56 dB	6.00 dB

U_{lab} = Determined for Shure EMC Laboratory

 U_{ETSI} = From ETSI EN 300 422-1 Table 6

Since U_{lab} is less than or equal to U_{ETSI} :

Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

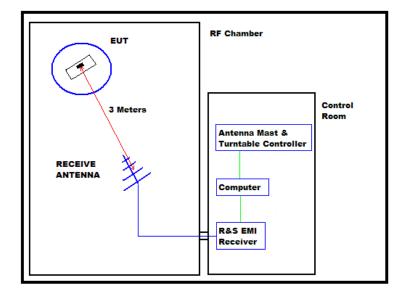
Test Setup and Instrumentation:

Photographs of the test setup are shown in Figure 1 and Figure 2. The test instrumentation can be determined from Table 10-1.

EUT Operation:

The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. The EUT was checked for proper operation after it was setup on the table. For radiated spurious emissions the testing was conducted with the EUT set to the low and high frequency within the operating frequency range, and at 10mW RF output.

Page 9 of 42



Specific Test Procedures:

Appendix A

All tests were performed in a 28ft. x 20ft. x 18.5ft. 3m semi-anechoic test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4-2003 for site attenuation.

The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All power lines and signal lines entering the enclosure pass through filters on the enclosure wall. The power line filters prevent extraneous signals from entering the enclosure on these leads.

BLOCK DIAGRAM OF SHIELDED ENCLOSURE

Preliminary radiated measurements were performed to determine the frequencies where the significant emissions might be found. With the EUT at one set position and the measurement antenna at a set height (i.e. without maximizing), the radiated emissions were measured using a peak detector and automatically plotted. The BiConiLog measuring antenna was positioned at a 3 meter distance from the EUT.

Page 10 of 42

Appendix A

All significant broadband and narrowband signals found in the preliminary sweeps were then measured using a peak detector at a test distance of 3 meters. The measurements were made with a BiConiLog antenna over the frequency range of 30 MHz to 1 GHz, and a double ridged waveguide antenna over the frequency range of 1 GHz to 10 GHz.

To ensure that maximum emission levels were measured, the following steps were taken:

- i. The EUT was rotated so that all of its sides were exposed to the receiving antenna.
- ii. Since the measuring antennas are linearly polarized, both horizontal and vertical field components were measured.
- iii. The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.

The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, another antenna was set in place of the EUT and connected to a calibrated signal generator. (A tuned dipole was used for all measurements below 1GHz and a double ridged waveguide antenna was used for all measurements above 1GHz.) The output of the signal generator was adjusted to match the received level at the EMI receiver. The signal level was recorded. The reading was corrected to compensate for cable loss and antenna gain.

Results:

The plots of the peak preliminary radiated voltage levels and maximized peak radiated voltage levels results are presented on page 12 thru page 23. The ERP measurements are shown on pages 24 thru page 25. All emissions measured from the EUT were within the ETSI EN 300 422-1 specification limits.

Figure 1: QLXD2 Transmitter Test Setup

Figure 2: QLXD2 Transmitter Test Setup

Page 11 of 42

Appendix A

SHURE Radiated RF Emissions Test Report

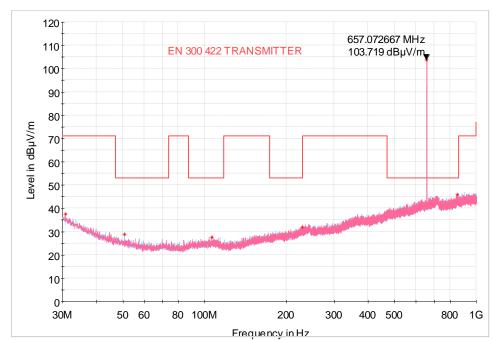
Common Information

Test Description: EUT Serial Number Operating Conditions: Testing data Operator Name: FCC15C Radiated Emissions 30MHz - 1GHz QLXD2 L50A # 1 657.125MHz, 10mW Tested on January 24, 2018 Alex Mishinger

EMI Auto Test Template: COMPLIANCE TEST FCC15C-EN300422 Transmitter 30MHz to 1GHz 79899 EU

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	Open-Are 30 MHz -	ea-Test-Site	9899 2017 02 27 m		
Preview Measurements: Antenna height: Polarization: Turntable position: Graphics Display: Sweep Test Template:	100 - $400\ cm$, Step Size = $50\ cm$, Positioning Speed = $6\ H+V$ 0 - $360\ deg$, Continuously , Measuring Speed = $5\ Show\ separate\ traces\ for\ horizontal\ and\ vertical\ polarization\ Compliance\ Test\ EN300422\ Transmitter\ 25MHz\ 1GHz\ 79899\ PREVIEW$				
Adjustment: Antenna height: Turntable position: Template for Single Meas.:	Range = 50 cm , Measuring Speed = 1 Range = 90 deg , Measuring Speed = 5 : COMPLIANCE TEST EN300422 Transmitter 25 to 1000 MHz 79899 FINAL				
Final Measurements: Template for Single Meas.:	N300422 Transm	itter 25 to 1000 N	IHz		
Subrange Receiver: [ESR 26] 25 MHz - 30 MHz 30 MHz - 1 GHz	Step Size 2.25 kHz 30 kHz	Detectors PK+ PK+	IF BW 9 kHz 120 kHz	Meas. Time 1 s 1 s	Preamp 0 dB 0 dB

Page 12 of 42


Appendix A

Hardware Setup: EMI radiated\Electric Field Strength 79899 2017 02 27 - [EMI radiated] Subrange 1

Subrange 1	
Frequency Range:	25 MHz - 1 GHz
Receiver:	ESR 26 [ESR 26] @ GPIB0 (ADR 20), SN 1316.3003K26/101347, FW 2.26, CAL 5/28/2016
Signal Path:	Receiver-EMI to 1 GHz FW 1.0
	Correction Table: Receiver-EMI Antenna 18GHz L23_041_38 8m
Antenna:	ETS 3142C 79899 SN 79899, CAL 12/5/2015
	Correction Table (vertical): BiconiLog 3142C Hor-79899 2017 02 27
	Correction Table (horizontal): BiconiLog 3142C Hor-79899 2017 02 27
Antenna Tower:	Tower [EMCO 2090 Antenna Tower] @ GPIB0 (ADR 8), FW REV 3.21
Turntable:	Turntable [EMCO Turntable] @ GPIB0 (ADR 9), SN 29799, FW REV 3.21

Page 13 of 42

Full Spectrum

Critical Results

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/ m)	Comment	Corr. (dB)
30.776000	37.55	71.00	33.45			100.0	н	0.0		5:10:20 PM - 1/24/2018	
50.596333	28.92	53.00	24.08		-	300.0	н	225.0		5:10:20 PM - 1/24/2018	
851.137333	45.81	53.00	7.19		-	400.0	н	356.0		5:10:20 PM - 1/24/2018	
106.177333	27.66	53.00	25.34			100.0	v	232.0		5:10:20 PM - 1/24/2018	
657.072667	103.72	53.00	-50.72			350.0	v	180.0		5:10:20 PM - 1/24/2018	
229.011667	32.03	53.00	20.97			350.0	V	308.0		5:10:20 PM - 1/24/2018	

Final Results

	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Comment
ſ											

Page 14 of 42

Appendix A

SHURE Radiated RF Emissions Test Report

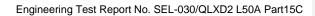
Common Information

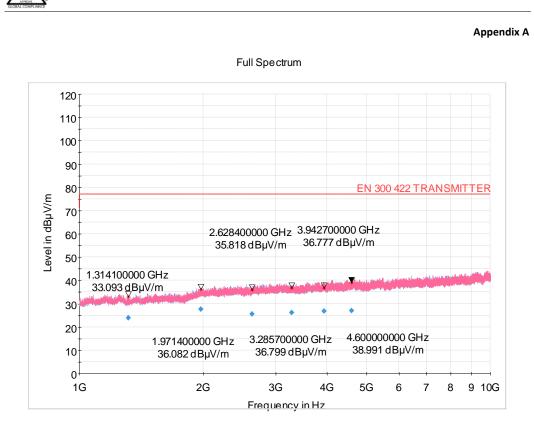
Test Description: EUT: Serial Number Operating Frequency: Power Level / Mod Mode: Name: Comments: FCC15C Radiated Emissions 1GHz - 10GHz QLXD2 L50A # 1 657.125MHz 10mW Brad McClain Tested on February 14, 2018

EMI Auto Test Template: COMPLIANCE TEST FCC15C-EN300422 Transmitter 1GHz to 10GHz 3117-PA 200363

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	Open-Are 1 GHz - 1	ctric Field Strength 3117-PA 200363 2017 10 17 en-Area-Test-Site Hz - 10 GHz BμV/m - 120 dBμV/m							
Preview Measurements: Antenna height: Polarization: Turntable position: Graphics Display: Sweep Test Template:	100 - 400 cm , Step Size = 50 cm , Positioning Speed = 6 H + V 0 - 360 deg , Continuously , Measuring Speed = 5 Show separate traces for horizontal and vertical polarization COMPLIANCE TEST EN300422 Transmitter 1-18 GHz 3117-PA 200363 PREVIEW								
Adjustment: Antenna height: Turntable position: Template for Single Meas.:	Range = COMPLIA	Range = 50 cm , Measuring Speed = 1 Range = 90 deg , Measuring Speed = 5 COMPLIANCE TEST EN300422 Transmitter 1 to 18 GHz 3117- PA 200363 MAX							
Final Measurements: Template for Single Meas.:		COMPLIANCE TEST EN300422 Transmitter 1 to 18 GHz 3117- PA 200363 FINAL							
Subrange Receiver: [ESR 26]	Step Size	Detectors		Meas. Time	Preamp				
1 GHz - 18 GHz	250 kHz	AVG	1 MHz	1 s	0 dB				

Page 15 of 42




Appendix A

Hardware Setup: EMI radiated\Electric Field Strength 3117-PA 200363 2017 10 17 - [EMI radiated]

Subrange 1	
Frequency Range:	1 GHz - 18 GHz
Receiver:	ESR 26 [ESR 26] @ GPIB0 (ADR 20), SN 1316.3003K26/101347, FW 2.26, CAL 5/28/2016
Signal Path:	Receiver-EMI to 18 GHz FW 1.0
Antenna:	Correction Table: Receiver-EMI Antenna TEMP 2016 11 23 EMI3117-PA 200385 SN 200385, CAL 10/16/2018
	Correction Table (vertical): Horn ETS 3117-PA 200363 2017 10 16
	Correction Table (horizontal): Horn ETS 3117-PA 200363 2017 10 16
	Correction Table (vertical): L23_041_47 Cable Correction Table (horizontal): L23_041_47 Cable
Antenna Tower:	Tower [EMCO 2090 Antenna Tower] @ GPIB0 (ADR 8), FW REV 3.21
Turntable:	Turntable [EMCO Turntable] @ GPIB0 (ADR 9), SN 29799, FW REV 3.21

Page 16 of 42

Critical Frequencies

Frequency (MHz)	MaxPeak (dBµV/m)	DET 2 (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/ m)	Comment
1314.100000	33.09		77.00	43.91			389.0	V	153.0	-16.1	1:50:03 PM - 2/14/2018
1971.400000	36.08		77.00	40.92			304.0	V	312.0	-13.3	1:47:45 PM - 2/14/2018
2628.400000	35.82		77.00	41.18			218.0	v	333.0	-12.1	1:46:31 PM - 2/14/2018
3285.700000	36.80		77.00	40.20			400.0	v	174.0	-11.0	1:51:02 PM - 2/14/2018
3942.700000	36.78		77.00	40.22	-		120.0	Н	333.0	-9.0	1:45:17 PM - 2/14/2018
4600.000000	38.99		77.00	38.01	-		303.0	V	327.0	-7.2	1:48:46 PM - 2/14/2018

Final Result

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)	Comment
1314.100000	23.78	77.00	53.22	1000.0	1000.000	389.0	v	154.0	-16.1	1:50:11 PM - 2/14/2018
1971.400000	27.65	77.00	49.35	1000.0	1000.000	304.0	v	312.0	-13.3	1:47:54 PM - 2/14/2018
2628.400000	25.63	77.00	51.37	1000.0	1000.000	218.0	v	333.0	-12.1	1:46:38 PM - 2/14/2018
3285.700000	26.13	77.00	50.87	1000.0	1000.000	400.0	v	174.0	-11.0	1:51:07 PM - 2/14/2018
3942.700000	26.68	77.00	50.32	1000.0	1000.000	120.0	Н	333.0	-9.0	1:45:25 PM - 2/14/2018
4600.000000	27.04	77.00	49.96	1000.0	1000.000	303.0	v	327.0	-7.2	1:48:54 PM - 2/14/2018

Page 17 of 42

Appendix A

SHURE Radiated RF Emissions Test Report

Common Information

Test Description: EUT Serial Number Operating Conditions: Testing Data: Operator Name: FCC15C Radiated Emissions 30MHz - 1GHz QLXD2 L50A # 1 662.875MHz, 10mW Tested on November 27, 2017 Alex Mishinger

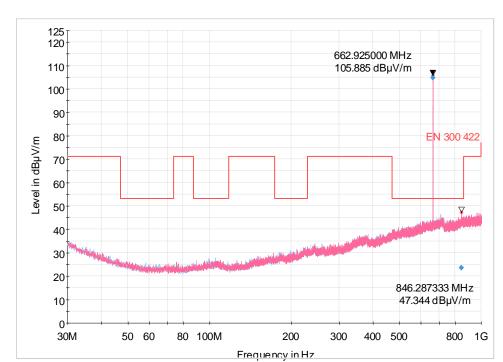
EMI Auto Test Template: Bandsaw COMPLIANCE TEST FCC 15C 30MHz to 1GHz 34790 FCC

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	Open-Are 30 MHz -	ïeld Strength 3 ea-Test-Site 1 GHz n - 125 dBµV/i			
Preview Measurements: Graphics Display: Sweep Test Template: Final Measurements: Template for Single Meas.:	Compliand	e Test FCC150	C 30MHz 1GHz 3	ertical polarizatior 4790 PREVIEW 9 MHz 34790 FIN/	
Adjustment: Template for Single Meas.: Final Measurements:				MHz 34790 MAX	-
Template for Single Meas.: Subrange 30 MHz - 1 GHz	COMPLIA Step Size 30 kHz	ANCE TEST FO Detectors PK+	CC15C 30 to 1000 IF BW 120 kHz	0 MHz 34790 FIN Meas. Time 1 s	IAL Preamp 0 dB

Receiver:

30 kHz P [ESR 26]

Page 18 of 42



Appendix A

Hardware Setup: EMI radiated\Electric Field Strength 34790 - [EMI radiated] Subrange 1

Subrange i	
Frequency Range:	30 MHz - 1 GHz
Receiver:	ESR 26 [ESR 26] @ GPIB0 (ADR 20), SN 1316.3003K26/101347, FW 2.26, CAL 5/28/2017
Signal Path:	Receiver-EMI to 1 GHz FW 1.0
	Correction Table: Receiver-EMI Antenna 18GHz L23_041_38 8m
Antenna:	ETS 3142C 34790 SN 34790, CAL 6/3/2017
	Correction Table (vertical): BiconiLog 3142C Hor-34790 2017 06 17
	Correction Table (horizontal): BiconiLog 3142C Hor-34790 2017 06 17
Antenna Tower:	Tower [EMCO 2090 Antenna Tower] @ GPIB0 (ADR 8), FW REV 3.21
Turntable:	Turntable [EMCO Turntable] @ GPIB0 (ADR 9), SN 29799, FW REV 3.21

Page 19 of 42

Appendix A

Critical	Freq	uencies
----------	------	---------

	Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Comment
Γ	662.925000	105.88	53.00	-52.88		-	148.0	V	173.0	22.2	1:13:55 PM - 11/27/2017
	846.287333	47.34	53.00	5.66		-	100.0	V	44.0	24.2	1:15:20 PM - 11/27/2017

Final Frequencies

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)	Comment
662.925000	104.69	53.00	-51.69	1000. 0	120.000	148.0	v	173.0	22.2	1:14:08 PM -
846.287333	23.54	53.00	29.46	1000. 0	120.000	100.0	v	45.0	24.2	1:15:33 PM -

 $\underline{\land}$

Appendix A

SHURE Radiated RF Emissions Test Report

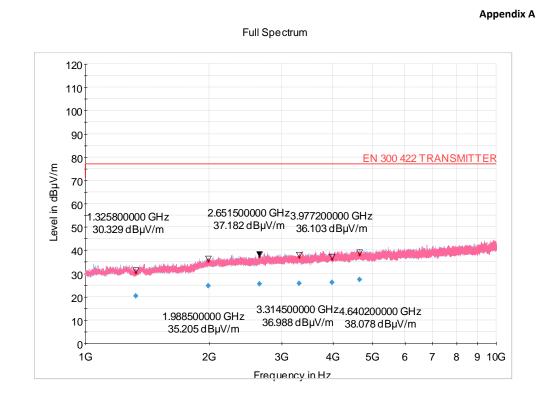
Common Information

Test Description: EUT: Serial Number Operating Frequency: Power Level / Mod Mode: Name: Comments: FCC15C Radiated Emissions 1GHz - 10GHz QLXD2 L50A # 1 662.875MHz 10mW Brad McClain Tested on February 14, 2018

EMI Auto Test Template: COMPLIANCE TEST FCC15C-EN300422 Transmitter 1GHz to 10GHz 3117-PA 200363

Hardware Setup: Measurement Type: Frequency Range: Graphics Level Range:	Open-Are 1 GHz - 1	Electric Field Strength 3117-PA 200363 2017 10 17 Open-Area-Test-Site 1 GHz - 10 GHz 0 dBμV/m - 120 dBμV/m							
Preview Measurements: Antenna height: Polarization: Turntable position: Graphics Display: Sweep Test Template:	100 - 400 cm , Step Size = 50 cm , Positioning Speed = 6 H + V 0 - 360 deg , Continuously , Measuring Speed = 5 Show separate traces for horizontal and vertical polarization COMPLIANCE TEST EN300422 Transmitter 1-18 GHz 3117-PA 200363 PREVIEW								
Adjustment: Antenna height: Turntable position: Template for Single Meas.:	Range =	90 deg , Measi ANCE TEST EI	ring Speed = 1 uring Speed = 5 N300422 Transm	nitter 1 to 18 GHz	3117-				
Final Measurements: Template for Single Meas.:	COMPLIA PA 20036		N300422 Transm	nitter 1 to 18 GHz	3117-				
Subrange Receiver: [ESR 26] 1 GHz - 18 GHz	Step Size 250 kHz	Detectors AVG	IF BW 1 MHz	Meas. Time 1 s	Preamp 0 dB				

Page 21 of 42

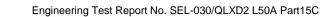


Appendix A

Hardware Setup: EMI radiated\Electric Field Strength 3117-PA 200363 2017 10 17 - [EMI radiated]

Subrange 1	
Frequency Range:	1 GHz - 18 GHz
Receiver:	ESR 26 [ESR 26] @ GPIB0 (ADR 20), SN 1316.3003K26/101347, FW 3.36 SP2, CAL 5/28/2016
Signal Path:	Receiver-EMI to 18 GHz FW 1.0
Antenna:	Correction Table: Receiver-EMI Antenna TEMP 2016 11 23 EMI3117-PA 200385 SN 200385, CAL 10/16/2018 Correction Table (vertical): Horn ETS 3117-PA 200363 2017 10
	16 Correction Table (horizontal): Horn ETS 3117-PA 200363 2017 10 16 Correction Table (vertical): L23_041_47 Cable Correction Table (horizontal): L23_041_47 Cable
Antenna Tower:	Tower [EMCO 2090 Antenna Tower] @ GPIB0 (ADR 8), FW REV 3.21
Turntable:	Turntable [EMCO Turntable] @ GPIB0 (ADR 9), SN 29799, FW REV 3.21

Page 22 of 42


Critical Frequencies

	Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/ m)	Comment	Corr. (dB)
Ī	1325.800000	30.33	77.00	46.67			161.0	Н	214.0		2:42:11 PM - 2/14/2018	
[1988.500000	35.21	77.00	41.79			336.0	v	45.0		2:47:59 PM - 2/14/2018	
	2651.500000	37.18	77.00	39.82			111.0	н	9.0		2:40:50 PM - 2/14/2018	
Ī	3314.500000	36.99	77.00	40.01			381.0	Н	207.0		2:44:54 PM - 2/14/2018	
[3977.200000	36.10	77.00	40.90			146.0	v	208.0		2:46:22 PM - 2/14/2018	
	4640.200000	38.08	77.00	38.92			285.0	Н	27.0		2:43:45 PM - 2/14/2018	

Final Frequencies

	•										
Frequency	Average	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.	Comment	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	Time	(kHz)	(cm)		(deg)	(dB/m)		(dB)
				(ms)							
1325.800000	20.42	77.00	56.58	1000.0	1000.000	161.0	н	214.0	-16.2	2:42:19 PM - 2/14/2018	
1988.500000	24.69	77.00	52.31	1000.0	1000.000	336.0	v	45.0	-13.1	2:48:08 PM - 2/14/2018	
2651.500000	25.57	77.00	51.43	1000.0	1000.000	111.0	н	9.0	-11.9	2:40:58 PM - 2/14/2018	
3314.500000	25.79	77.00	51.21	1000.0	1000.000	381.0	н	207.0	-11.0	2:45:02 PM - 2/14/2018	
3977.200000	26.20	77.00	50.80	1000.0	1000.000	146.0	v	208.0	-8.8	2:46:30 PM - 2/14/2018	
4640.200000	27.48	77.00	49.52	1000.0	1000.000	285.0	н	27.0	-7.1	2:43:54 PM - 2/14/2018	

Page 23 of 42

Appendix A

Date:	February 27, 2018
EUT:	QLXD2
Band:	L50A
Serial Number:	#1
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to Low 657.125 MHz
Tested By:	Alex Mishinger, February 26 & 27, 2018

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
1314.250	Average	н	23.78	-79.0	4.0	4.35	-79.4	-30
1314.250	Average	V	23.78	-79.0	4.0	4.35	-79.4	-30
1971.375	Average	Н	27.65	-76.0	5.0	3.66	-74.7	-30
1971.375	Average	V	27.65	-76.0	5.0	3.66	-74.7	-30
2628.500	Average	Н	25.63	-79.0	6.4	4.41	-77.0	-30
2628.500	Average	V	25.63	-79.0	6.4	4.41	-77.0	-30
3285.625	Average	Н	26.13	-78.0	7.6	4.66	-75.1	-30
3285.625	Average	V	26.13	-78.0	7.6	4.66	-75.1	-30
3942.750	Average	н	26.68	-78.0	8.9	5.08	-74.2	-30
3942.750	Average	V	26.68	-78.0	8.9	5.08	-74.2	-30
4599.875	Average	Н	27.04	-79.0	9.4	5.66	-75.3	-30
4599.875	Average	V	27.04	-79.0	9.4	5.66	-75.3	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Page 24 of 42

Ap	pendix	٢A
----	--------	----

Date:	February 27, 2018
EUT:	QLXD2
Band:	L50A
Serial Number:	#1
Specification:	EN 300 422-1, Spurious Radiated Emissions
Comments:	Test Distance is 3 meters
Mode:	EUT set to High 662.875 MHz
Tested By:	Alex Mishinger, February 26 & 27, 2018

Frequency in MHz	Detector Used	Antenna Polarity	Measured Level in dBuV	Matched Sig. Gen. Reading in dBm	Antenna Gain in dB	Cable Loss in dB	ERP Total in dBm	ETSI Limit in dBm
1325.750	Average	н	20.42	-80.0	4.0	3.49	-79.5	-30
1325.750	Average	V	20.42	-80.0	4.0	3.49	-79.5	-30
1988.625	Average	н	24.69	-76.0	5.0	3.66	-74.7	-30
1988.625	Average	V	24.69	-76.0	5.0	3.66	-74.7	-30
2651.500	Average	Н	25.57	-76.0	6.4	4.37	-74.0	-30
2651.500	Average	V	25.57	-76.0	6.4	4.37	-74.0	-30
3314.375	Average	Н	25.79	-76.0	7.8	4.48	-72.7	-30
3314.375	Average	V	25.79	-76.0	7.8	4.48	-72.7	-30
3977.250	Average	Н	26.20	-75.0	8.9	4.96	-71.1	-30
3977.250	Average	V	26.20	-75.0	8.9	4.96	-71.1	-30
4640.125	Average	н	27.48	-77.0	9.4	5.72	-73.3	-30
4640.125	Average	V	27.48	-77.0	9.4	5.72	-73.3	-30

Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB)

Page 25 of 42

Appendix **B**

B. Maximum Radiated Power

Purpose:

This test performed to determine if the EUT meets the Maximum Radiated Power requirements of the FCC Part15C, Section 15.236.

Requirements:

As stated in FCC 15C Section 15.236 (6)(2), the maximum radiated power in the 600MHz guard band and the 600MHz duplex gap: 20mW EIRP.

Measurement Uncertainty:

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence)

Measurement Type	U _{lab}
Conducted measurements (30 MHz – 1000 MHz)	1.24 dB

 $U_{\text{lab}\,\text{=}}$ Determined for Shure EMC Laboratory

Since U_{lab} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

Test Setup and Instrumentation:

Photographs of the test setup are shown in Figure 1. The test instrumentation can be determined from Table 10-1.

EUT Operation:

The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. For rated output power, the testing was conducted with the EUT set to the low and high frequency within the operating frequency range, and at 10mW RF output.

Page 26 of 42

Appendix **B**

Specific Test Procedures:

The output of the EUT was connected to a spectrum analyzer through 20dB of attenuation. The EUT was set to transmit on the low, middle, and high frequencies in the low band and low and high frequencies in the high band. The channel power was measured.

The spectrum analyzer was set to:

RBW 10kHz VBW 100kHz Channel BW 200kHz Span 1MHz Detector Average State Average

Results:

The EIRP for low and high frequencies meets the FCC15C 15.236 requirements.

Figure 1: Test setup for Maximum Radiated Output

Page 27 of 42

Appendix B

Test Information

EUT Name:	QLXD2 L50A
Serial Number:	# 1
Test Description:	Maximum Rated Output
Operating Conditions:	Low Frequency, 657.125MHz, 10mW
Operator Name:	Craig Kozokar
Comment:	FCC Part15C, Section 15,236
Date Tested:	Tested on March 8, 2018

Power Meter	Measured Antenna	Cable Loss	EIRP	EIRP	Margin	
Measurement	Gain	in dB	in dBm	Limit	In dB	
in dBm	in dBi			in dBm		
+7.93	-0.60	0.40	7.73	13.00	5.27	

EIRP (dBm) = Measurement (dBm) + Measured Antenna Gain (dB) + Cable Loss (dB)

Measured QLXD2 L50A antenna gain is -0.60dBi

Test Information

EUT Name:	QLXD2 L50A
Serial Number:	# 1
Test Description:	Maximum Rated Output
Operating Conditions: Operator Name: Comment:	High Frequency, 662.875MHz, 10mW Craig Kozokar FCC Part15C, Section 15.236
Date Tested:	Tested on March 8, 2018

Power Meter Measurement in dBm	Measured Antenna Gain in dBi	Cable Loss in dB	EIRP in dBm	EIRP Limit in dBm	Margin In dB
+7.83	-0.60	0.40	7.63	13.00	5.37

EIRP (dBm) = Measurement (dBm) + Measured Antenna Gain (dB) + Cable Loss (dB)

Measured QLXD2 L50A antenna gain is -0.60dBi

Page 28 of 42

Appendix C

NECESSARY BANDWIDTH MEASUREMENTS

B.1 PURPOSE

This test was performed to determine if the EUT meets the necessary bandwidth requirements of EN 300 422-1, section 8.3.3., with the EUT operating at 657.125MHz and 662.875MHz.

B.2 REQUIREMENTS

As stated in EN 300 422-1, section 8.3.3, the emission mask given in section 8.3.3.2 shall not be exceeded.

B.3 TEST SETUP AND INSTRUMENTATION

A photograph of the test setup is shown in Figure B-1. The test instrumentation can be determined from Table 10-1.

B.4 MEASUREMENT UNCERTAINTY

All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system.

Values of Expanded Measurement Uncertainty (95% Confidence):

Measurement Type	U _{LAB}
Occupied Bandwidth	±0.130 %

U_{lab} = Determined for Shure EMC Laboratory

Since U_{LAB} is less than or equal to U_{ETSI} :

- Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

B.5 EUT OPERATION

The EUT was powered up and the transmit frequency and power output of the EUT were selected. The EUT was checked for proper operation after it was setup for the test. Testing was conducted with the EUT set to transmit at 657.125 and 662.875 MHz, at an output power level of 1mW and 10mW. The transmitter was modulated per EN300422-1 V1.4.2 (2011-08), clause 7.1.2.

B.6 TEST PROCEDURE The test procedure followed is shown in EN300422-1 V1.4.2 (2011-08), section 8.3.3.1.

Page 29 of 42

Appendix C

B.7 RESULTS

The necessary bandwidth data is presented on pages 31 and 42. Data is shown on the figures for each transmitter. The figure shows the maximum relative level within the emission mask with modulation. As shown by the test data, the necessary bandwidth of the EUT meets the requirements of EN 300 422-1, section 8.3.3.

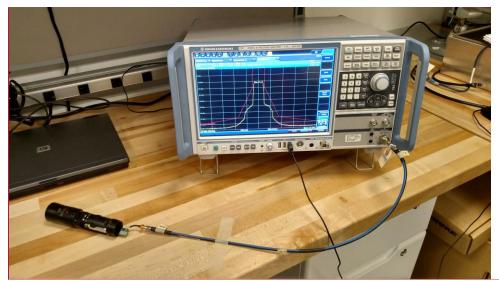


Figure B-1 - Test Setup for Necessary Bandwidth

Commented [KC1]:
Commented [KC2R1]:

Page 30 of 42

Appendix C

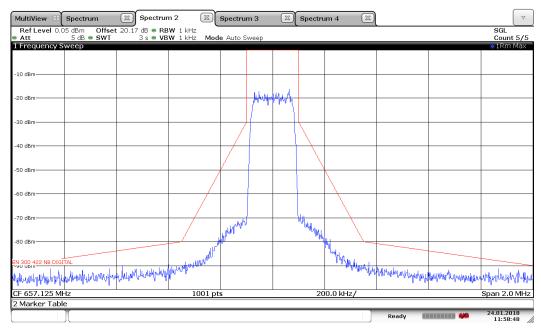
Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested: QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth Low Frequency, 657.125MHz, 1mW Juan Castrejon 8.3.3.1: Step 1; Carrier Power Tested on January 24, 2018

MultiView 😁	Spectrum	Spectrur	n 2 🛛 🖾	Spectrum 3	Spectru	um 4 🛛 🖾			
Ref Level 15 Att	.00 dBm Offse 5 dB = SWT	et 20.17 dB • R	BW 1 MHz BW 1 MHz						SGL Count 5/5
1 Zero Span	340 - 341	53 - 0							 1Rm Avg
10 dBm								N	41[1] 0.05 dBn 2.79900
0 d8m									M1
Jubin									
-10 dBm									+
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
80 dBm									
CF 657.125 MI	 Hz			100	l pts				
) (Ready		24.01.2018 11:58:16

11:58:16 24.01.2018

Page 31 of 42



Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth Low Frequency, 657.125MHz, 1mW Juan Castrejon 8.3.3.1: Step 2;Maximum Relative Level Test January 24, 2018

11:58:49 24.01.2018

					Appendix (
Test Information					
EUT Name:	QLXD2 L50	A			
Serial Number: Test Description:	#1 EN 300 422	Digital Neces	sarv Bandwi	łth	
Operating Conditions:		ncy, 657.125M	-		
Operator Name:	Juan Castre	jon			
Comment:	8.3.3.1: Ster Wide band r	o 3;Lower and	upper frequer	ncy transmitter	
Date Tested:		uary 24, 2018			
iew ↔ Spectrum X Spectrum 2 .evel 0.05 dBm Offset 20.17 dB ● RBW 1	Spectrum 3	Spectru	um 4 🛛 🖾		SGL
5 dB 🖷 SWT 20 s 🖷 VBW 1					Count 5/5
uency Sweep					● IRm Avg
	pri	mount			
			a construction of the second sec		

Page 33 of 42

Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth Low Frequency, 657.125MHz, 10mW Juan Castrejon 8.3.3.1: Step 1; Carrier Power Tested on January 24, 2018

MultiView 88	Spectrum	Spectrur	n 2 🛛 🖾	Spectrum 3	🛛 🖾 Spectrı	.m 4 🛛 🕱			
Ref Level 15 Att	5.00 dBm Offse 5 dB = SWT	et 20.17 dB • R	BW 1 MHz BW 1 MHz						SGL Count 5/5
1 Zero Span	545 0 541	5300	D17 111112						 1Rm Avg
10 dBm						M1		M1	[1] 10.14 dBm 1.92600 s
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-80 dBm									
CF 657.125 M	Hz			100	, pts				300.0 ms/
	Л						Ready		24.01.2018 12:03:19

12:03:20 24.01.2018

Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth Low Frequency, 657.025MHz, 10mW Juan Castrejon 8.3.3.1: Step 2;Maximum Relative Level Test on January 24, 2018

(.	Spectrum 2	Spectrum 3	Spectru	ım 4 🛛 🖾			
RefLevel 10.14 dBm Offset : Att 15 dB • SWT	20.17 dB • RBW 1 kHz 3 s • VBW 1 kHz Mo	ode Auto Sweep					SGL Count 5/5
1 Frequency Sweep							●1Rm Max
0 dBm							
		NUM	ned				
-10 dBm			mariny				
-20 dBm							
-30 dBm							
-40 dBm	/	um -	lika				
-50 dBm		Manyan	When the second				
-60 dBm		*					
-70 dBm				- William March			
EN 300 422 NB DIGITAL	MWV			- MAL			
-70 dBm EN 300 422 NB DIGITAL AND MARCHINA AND AND AND AND AND AND AND AND AND A	Myphynik kriefer "				and a hole working	power where	Manahiman
CF 657.125 MHz	1001 p	ts	20	0.0 kHz/		12 TO 1 M	Span 2.0 MHz
2 Marker Table							
					Ready		24.01.2018 12:03:44

12:03:44 24.01.2018

Appendix C

Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth Low Frequency, 657.125MHz, 10mW Juan Castrejon 8.3.3.1: Step 3;Lower and upper frequency transmitter Wide band noise floor Test on January 24, 2018

MultiView 🔠 Spectrum	Spectrum 2 🕅 S	pectrum 3	Spectru	ım 4 🛛 🖾			
● Att 15 dB ● SWT	7 dB • RBW 1 kHz 20 s • VBW 1 kHz Mode	e Auto Sweep					SGL Count 5/5
1 Frequency Sweep							●1Rm Avg
0 dBm							
-10 dBm		Maria	ment				
-20 dBm							
-30 dBm			\rightarrow				
-40 dBm							
-50 dBm	/	hall with	working				
			in the second seco	$\langle \rangle$			
-60 dBm							
-70 dBm-							
	madent			Harry			
N 300 422 NB DIGITAL				- W			
CF 657.125 MHz	may along a stable				hannamaria	mananeway welled	house and a second
CF 657.125 MHz	1001 pts		20	0.0 kHz/			Span 2.0 MH
2 Marker Table					Deceder (199		24.01.2018
					Ready		12:04:06

12:04:07 24.01.2018

Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth High Frequency, 662.875MHz, 1mW Danny Palaniswami 8.3.3.1: Step 1; Carrier Power Tested on July 12, 2017

Deft and the opt		🖾 🛛 Sp	ectrum 2 🚽	🗕 🖾 Spectr	um 3 🛛 🤌 🖾			
Att	dBm Offset 5 dB = SWT		W 1 MHz W 1 MHz					SGL Count 5/5
Zero Span	5 UD 🛡 3 WI	3 S 🛡 VE	W INNZ					 1Rm Avg
zero opan							M1	[1] -0.12 dBm
0 dBm								867.00 m
d8m		M1						
10 dBm								
20 dBm								
80 dBm								
40 dBm								
50 dBm								
50 dBm								
70 dBm								
30 dBm								
F 662.875 MHz	. I			1001	nte	1	1	300.0 ms/
002.073 MHZ				1001	i pis			07.12.2017
						Ready		17:24:32

17:24:32 07.12.2017

Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth High Frequency, 662.875MHz, 1mW Danny Palaniswami 8.3.3.1: Step 2;Maximum Relative Level Test on July 12, 2017

Ref Level -0.12 dBm Offset 20.00			pectre	ım 3	¥ 🛛	<u>ا</u> ر			
Att 5 dB 🖷 SWT 3	dB RBW 1 kHz Ss VBW 1 kHz Mod	e Auto S	weep						SGL Count 5/
Frequency Sweep									●1Rm Ma>
10 dBm									
20 dBm			Moun	Achila					
			1	Albea II					
			/ /						
30 dBm									
					\mathbf{X}				
40 dBm					\rightarrow				
					$\sim \lambda$				
50 dBm									
50 dBm									
		(\mathbf{X}			
60 dBm									
		1							
70 dBm									
		MANNA			Mr. Mudu				
		JUN ^{RE}			Why.				
80 dBm		,							
						1946.			
N 300 422 NB DIGITAL	A A A A A A A A A A A A A A A A A A A					MAN			
And a stand and the stand and the stand	Norwayward					· · · · · · · · · · · · · · · · · · ·	warman and and and	hillerichandersonstruktion	thurpphyladia
F 662.875 MHz	1001 pts	;			20	0.0 kHz/	1	1	Span 2.0 MH
							Ready		07.12.2017 17:25:26

17:25:26 07.12.2017

Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment:

Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth High Frequency, 662.875MHz, 1mW Danny Palaniswami 8.3.3.1: Step 3;Lower and upper frequency transmitter Wide band noise floor Test on July 12, 2017

MultiView 🗄 Spectrum 🛛 🛛	Spectrum 2	🖾 Spe	ctrum 3	X	Ð			
	B <mark>●RBW</mark> 1kHz s ●VBW 1kHz Mode	e Auto Swee	D					SGL Count 5/5
l Frequency Sweep								1Rm Avg
-10 dBm								
20 d8m								
		m	when					
-30 dBm								
				\backslash				
40 dBm			_	\rightarrow				
				\sim				
-50 dBm		/	_					
					\backslash			
-60 dBm	/							
					$\langle \rangle$			
-70 dBm								
		Jurand		Mongle.	$\langle \rangle$			
-80 dBm		and the second s		- Why				
					Ny .			
N 300 422 NB DIGITAL	1. Martin Martin				W. Marrie			
1	where abut the				and	manuture		
www.userheithamarchitynuserheith							a nor marketing	pulpromana
CF 662.875 MHz	1001 pts			20	0.0 kHz/			Span 2.0 MH 07.12.2017

17:27:23 07.12.2017

Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth High Frequency, 662.875MHz, 10mW Danny Palaniswami 8.3.3.1: Step 1; Carrier Power Tested on July 12, 2017

MultiView	B) Spectrum	🖾 Sp	ectrum 2	🖾 Spectr	'um 3 🛛 🖾			
Ref Level 15. Att	00 dBm Offset 5 dB ● SWT		BW 1 MHz BW 1 MHz					SGL Count 5/5
1 Zero Span								IRm Avg
							M1	[1] 10.02₁dBm 2.89≣00 s
10 dBm								2,89≣00 s I
0 dBm								
o ubili								
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm								
-80 dBm								
00 00								
CF 662.875 MI	lz			1001	l pts	 		300.0 ms/
	1					Ready		07.12.2017
								17:28:11

17:28:12 07.12.2017

Appendix C

Test Information

EUT Name: Serial Number: Test Description: Operating Conditions: Operator Name: Comment: Date Tested:

QLXD2 L50A #1 EN 300 422 Digital Necessary Bandwidth High Frequency, 662.875MHz, 10mW Danny Palaniswami 8.3.3.1: Step 2;Maximum Relative Level Test on July 12, 2017

MultiView 🗄 Spectrun		🖾 Sp	pectrum	13 🔆 🛛	Z)			
Ref Level 10.02 dBm Offs Att 10 dB = SW	set 20.00 dB ● RBW 1 kHz T 3 s ● VBW 1 kHz Mo	de Auto Sv	veep					SGL Count 5/5
1 Frequency Sweep								●1Rm Max
0 dBm								
o usin								
			. د د به	d l				
-10 dBm			www	¥4				
		(
-20 dBm		<u> </u>						
-30 dBm								
-40 dBm					·			
		Jul .		k.,	Ν			
-50 dBm		MUNUM		Marghan	$\langle \rangle$			
-30 ubm				. 0 - Ali	hter \			
	/ / / / / / //				· η			
-60 dBm								
					$ \rangle$			
-70 dBm	Wil				- Har -			
	MANNIN				Mut with y			
EN 300 422 NB DIGITAL	W ·				"UNHA			
	man west half the and					My Hill Market Hard at		
EN 300 #22 NB DIGITAL	Address of A second sec					Ready Beady	MMM MMMM	Mir walling i
UF 002.875 MHZ	1001 pt	s		20	00.0 kHz/			Span 2.0 MHz 07.12.2017
						Ready		17:29:21

17:29:21 07.12.2017

Appendix C

Test Information

EUT Name:
Serial Number:
Test Description:
Operating Conditions:
Operator Name:
Comment:

Date Tested:

#1 EN 300 422 Digital Necessary Bandwidth High Frequency, 662.875MHz, 10mW Danny Palaniswami 8.3.3.1: Step 3;Lower and upper frequency transmitter Wide band noise floor Test on July 12, 2017

MultiView 8	Spectrum 🖾 Spectrum 2 🖾 Spectrum 3 🖾										
Ref Level 10.02 dBm Offset 20.00 dB RBW 1 kHz ● Att 10 dB SWT 20 s ● VBW 1 kHz Mode Auto Sweep											SGL Count 5/5
1 Frequency Sv											IRm Avg
0 dBm											
-10 dBm					physic						
					prove	have h					
-20 dBm							$\left(- \right)$				
				/			$\langle \rangle$				
00 db					1		\sim				
-30 dBm											
				17			\sim				
-40 dBm				/			<u> </u>				
10 0.011			1	1	1			Ν			
				· ,	J		. .	$\langle \cdot \rangle$			
-50 dBm			/	B. M			- William				
				\mathcal{V}			" he	$\langle \rangle$			
			- / <i>f</i>]				χ λ			
-60 dBm											
-70 dBm											
			and the					Jun 1			
EN 300 422 NB DIGIT.	AL		and the second s					N.			
			ر میں میں اور					No and Ann			
		and Manual	ww						www.		
CF 662.875 MH	7	and the second	1001 pt	·c			20	10.0 kHz/	moundading	dan wanter	Span 2.0 MHz
GI 002.075 MIT	<u>د</u>		1001 pt	.3			20				07.12.2017
	L								Ready		17:31:59

QLXD2 L50A

17:31:59 07.12.2017