

1250 Peterson Dr., Wheeling, IL 60090

FCC Rules and Regulations / Intentional Radiators

Low Power Auxiliary Stations

Part 74, Subpart H, Sections 74.801 - 74.882

THE FOLLOWING **<u>"MEETS"</u>** THE ABOVE TEST SPECIFICATION

Formal Name:	PSM Antenna Combiner
Kind of Equipment:	Antenna Combiner
Test Configuration:	BNC to BNC (Tested at 120 vac, 60 Hz)
Model Number(s):	PA821
Model(s) Tested:	PA821
Serial Number(s):	DM007
Date of Tests:	May 6, 8 & 14, 2003
Test Conducted For:	Shure Inc. 222 Hartrey Avenue Evanston, Illinois 60202

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report. This report must not be reproduced (except in full), without the approval of D.L.S. Electronic Systems.

1250 Peterson Dr., Wheeling, IL 60090

SIGNATURE PAGE

Report By:

Anon C Rove

Arnom C. Rowe Test Engineer EMC-001375-NE

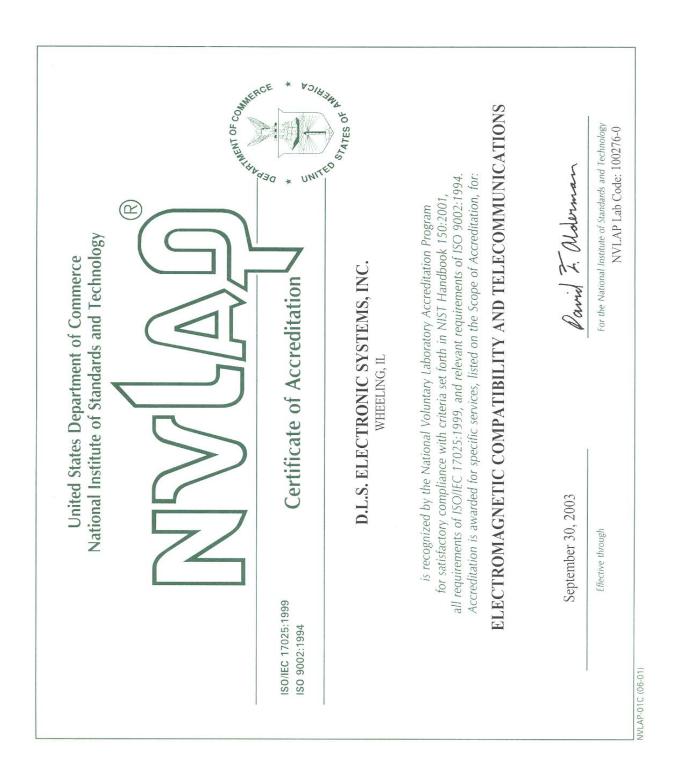
Reviewed By:

William Mitting

William Stumpf OATS Manager

Approved By:

Brian J. Mattoon


Brian Mattson General Manager

Company Official:

Shure Inc.

1250 Peterson Dr., Wheeling, IL 60090



1250 Peterson Dr., Wheeling, IL 60090

Natio of Standards and	onal Institute Technology	National Voluntary Laboratory Accreditation Prog
ISO/IEC 17025:19 ISO 9002:1994	Scope of A	Accreditation
		Page: 1 of
	AGNETIC COMPATIBILITY OMMUNICATIONS	NVLAP LAB CODE 100276-
	1250 Pe Wheeling, Mr. Bri Phone: 847-537-64 E-Mail: bmat	ONIC SYSTEMS, INC. Peterson Drive , IL 60090-6454 ian J. Mattson 400 Fax: 847-537-6488 ttson@dlsemc.com //www.dlsemc.com
NVLAP Code	Designation / Description	
Emissions Test	Methods:	
12/CIS14		Limits and methods of measurement of radio nousehold electrical appliances, portable tools and art 1: Emissions
12/CIS14a	EN 55014-1 (1993) with Amen	adments A1 (1997) & A2 (1999)
12/CIS14b	AS/NZS 1044 (1995)	
12/CIS14c	CNS 13783-1	
12/CIS22		55022 (1998): Limits and methods of measurement as of information technology equipment
12/CIS22a		ad methods of measurement of radio disturbance echnology equipment, Amendment 1:1995, and
	September 30, 2003	David I. alderman
		p wwwi · · ·

1250 Peterson Dr., Wheeling, IL 60090

Page -5-

1250 Peterson Dr., Wheeling, IL 60090

Natic of Standards and	nal Institute Technology	National Voluntary Laboratory Accreditation Prog
ISO/IEC 17025:19 ISO 9002:1994	⁹⁹ Scope of A	ccreditation *
FLECTROM	AGNETIC COMPATIBILITY	Page: 3 of 3 NVLAP LAB CODE 100276-0
	OMMUNICATIONS	NVLAP LAB CODE 100276-0
		NIC SYSTEMS, INC.
NVLAP Code	Designation / Description	
12/I06	IEC 61000-4-8 (1993): Power F	requency Magnetic Field Immunity Test
12/I07	IEC 61000-4-11 (1994): Voltage Immunity Tests	e Dips, Short Interruptions and Voltage Variations
S	September 30, 2003	David F. alderman
	Effective through	For the National Institute of Standards and Technology

TABLE OF CONTENTS

i.	Cover Page	1
ii.	Signature Page	2
iii.	NVLAP Certificate of Accreditation	3
iv.	NVLAP Scope of Accreditation	4
V.	Table of Contents	7
1.0	Summary of Test Report	9
2.0	Introduction	9
3.0	Object	9
4.0	Test Set-Up 1	0
5.0	Test Equipment 1	1
6.0	Conducted Emission Measurements 1	2
7.0	Radiated Emission Measurements 1	3
8.0	Description of Test Sample 1	4
8.0	Additional Description of Test Sample 1	5
8.0	Description of Test Sample 1	6
9.0	Additional Description of Test Sample 1	7
10.0	Photo Information and Test Set-Up 1	8
11.0	Radiated Photos Taken During Testing 1	9
12.0	Results of Tests	1
13.0	Conclusion	1
TABL	E 1 – EQUIPMENT LIST	2

1250 Peterson Dr., Wheeling, IL 60090

TABLE OF CONTENTS

Appe	ndix A – Electric Field Radiated Emissions Test	
1.0	Test Set-Up	
2.0	RF Power Output	
2.0	RF Power Output Photos Taken During Testing	
2.0	Graph(s) taken of the RF Power Output (Signal In vs Signal Out)	
3.0	Modulation Characteristics	
3.0	Graph(s) taken of the Modulation Characteristics	
4.0	Occupied Bandwidth	
4.0	Occupied Bandwidth Photos Taken During Testing	
4.0	Graph(s) taken of the Occupied Bandwidth (Signal In vs Signal Out)	
5.0	Frequency Deviation and Tolerance	
4.0	Graph(s) taken of the Frequency Deviation with Modulation	
6.0	Spurious Emissions At Antenna Terminals	
6.0	Conducted Emissions Photos Taken During Testing	
6.0	Inter-Modulation Data and Charts made at the Antenna Terminals	
6.0	Conducted Emission Data and Charts made at the Antenna Terminals	
7.0	Field Strength of Spurious Emission Measurements	
7.0	Field Strength of Spurious Emission Measurements	
7.0	Radiated Emissions Photos Taken During Testing	
7.0	Radiated Data taken for Spurious Emissions using the Substitution Method	
7.0	Radiated Data and Graph(s) Taken During Testing for Spurious Emissions	
8.0	Frequency Stability (Temperature)	
8.0	Graph(s) Taken During Testing for Frequency Stability (Temperature)	
9.0	Frequency Stability (Voltage Variation)	
9.0	Graph(s) Taken During Testing for Frequency Stability (Voltage Variation)	

1250 Peterson Dr., Wheeling, IL 60090

1.0 SUMMARY OF TEST REPORT

It was found that the PSM Antenna Combiner, Model Number(s) PA821, <u>"meets"</u> the radio interference emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861, for low power auxiliary stations.

This test report relates only to the items tested and contains the following number of pages.

Text:	93
Charts:	25

2.0 INTRODUCTION

On May 6, 8 & 14, 2003, a series of radio frequency interference measurements was performed on PSM Antenna Combiner, Model Number(s) PA821, Serial Number: DM007. The tests were performed according to the procedures of the FCC as stated in Part 2 - Frequency Allocations and Radio Treaty Matters: General Rules and Regulations, Subpart J, Equipment Authorization Procedures of the Code of Federal Regulations 47. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861, for low power auxiliary stations.

1250 Peterson Dr., Wheeling, IL 60090

4.0 TEST SET-UP

All tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-1992, Section 7, (Figures 9a, 9b, 9c and 9d). The conducted tests if required were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the American National Standards Institute, ANSI C63.4-1992, Section 4, (Figure 2).

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable, which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-1992, Sections 6 and 8.

1250 Peterson Dr., Wheeling, IL 60090

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/ESI 40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and or ESI 26/ESI 40 fixed tuned receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/ESI 40 Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the ESI 26/ESI 40 fixed tuned receiver.

The bandwidths shown below are specified by ANSI C63.4-2000, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

6.0 CONDUCTED EMISSION MEASUREMENTS

NOTE:

The AC power line conducted emissions are not required for low power auxiliary stations.

1250 Peterson Dr., Wheeling, IL 60090

7.0 RADIATED EMISSION MEASUREMENTS

Preliminary radiation measurements were performed at a 3 meter test distance. The frequency range from 30 MHz to 1000 MHz was automatically scanned and plotted at various angles.

After preliminary measurements were taken, the EUT was taken to one of our 3 meter open field test sites located at Genoa City, Wisconsin, FCC File No. 31040/SIT, where final radiated emissions measurements were made over the entire frequency range.

For signals in the frequency range of 30 to 200 MHz were measured with a Biconical Antenna or Tuned Dipole as the pickup device. From 200 MHz, a Log Periodic Antenna or a Tuned Dipole was used and above 1000 MHz a Double Ridge Horn Antenna was used.

During the test for frequencies below 1000 MHz, the equipment was rotated and the antenna was raised and lowered from 1 meter to 4 meters to find the maximum level of emissions. For frequencies greater than 1000 MHz the Double Ridge Horn Antenna was set at 1 or 3 meters from the EUT with the antenna height varied from 1 to 4 meters above the ground plane. Tests were made in both horizontal and vertical planes of polarization. The EUT, peripheral equipment and cables were configured to meet the conditions in ANSI C63.4-1992, Sections 6 & 8.

NOTE:

All radiated emissions measurements were made at a test room temperature of **70°F** at **41%** relative humidity.

1250 Peterson Dr., Wheeling, IL 60090

- 8.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 9.0)
 - 8.1 Description:

The Shure PA821 Antenna Combiner actively combines antenna outputs from up to eight PSM wireless transmitters to a single antenna, improving RF performance and reducing rack clutter.

1250 Peterson Dr., Wheeling, IL 60090

- 8.0 DESCRIPTION OF TEST SAMPLE: (CON'T)
 - 8.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 285.2mm Width: 398.8mm Height: 43.4mm

8.3 LINE FILTER USED:

NA

8.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

100 kHz

Clock Frequencies:

NA

- 8.0 DESCRIPTION OF TEST SAMPLE: (CON'T)
 - 8.5 DESCRIPTION OF ALL CIRCUIT BOARDS:
 - 1. Populated Circuit Board

PN: 190A018 Rev. 2

1250 Peterson Dr., Wheeling, IL 60090

- 9.0 ADDITIONAL DESCRIPTION OF TEST SAMPLE: (See also Paragraph 8.0)
 - 1: There were no additional descriptions noted at the time of test.

I certify that the above, as described in paragraph 8.0, describes the equipment tested and will be manufactured as stated.

By:

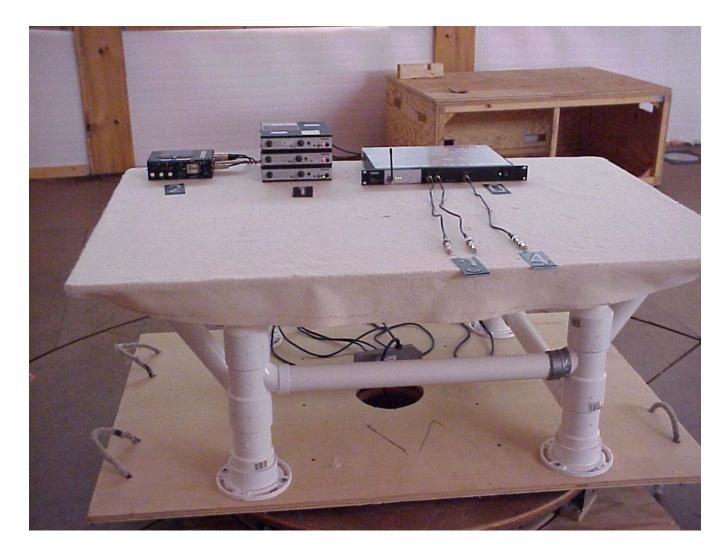
Signature

Title

For:

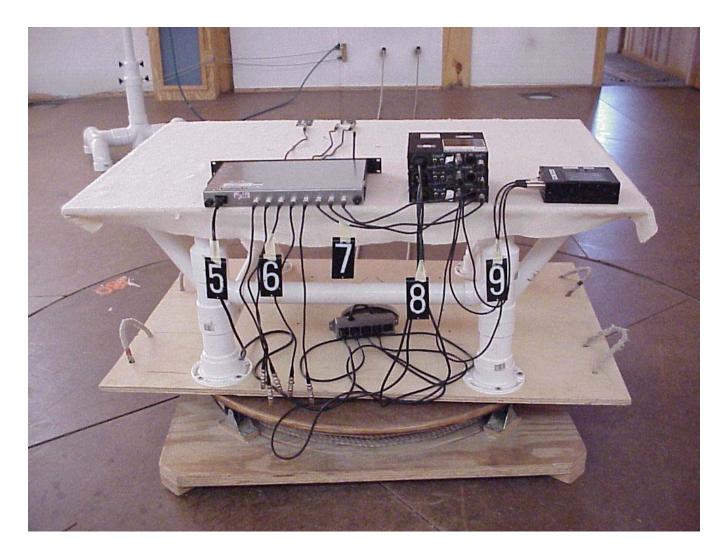
Company

Date


1250 Peterson Dr., Wheeling, IL 60090

10.0 PHOTO INFORMATION AND TEST SET-UP

- Item 0 PSM Antenna Combiner Model Number: PA821 Serial Number: DM007
- Item 1 Three 100mW P7T Shure Transmitters (not EUT).
- Item 2 FP33 Shure Mixer L10-01-09
- Item 3 Shielded "A" In and "B" In Coax Cables with BNC Metal Shells and terminations. .7m
- Item 4 Shielded "AB" Out Coax Cable with BNC Metal Shells and termination. .7m
- Item 5 Non-Shielded AC Power Cord. 2m
- Item 6 Five shielded Input Coax Cables with BNC Metal Shells and terminations. .7m
- Item 7 Three shielded Input Coax Cables to Transmitters with BNC Metal Shells and terminations. .7m
- Item 8 Three non-shielded transmitter AC Power Line Cords. 2m
- Item 9 Three Cables from Transmitter to Mixer.



11.0 RADIATED PHOTOS TAKEN DURING TESTING

11.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)

12.0 RESULTS OF TESTS

The radio interference emission charts results can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report. Those points on the emission charts shown with a yellow mark are background frequencies that were verified during testing.

13.0 CONCLUSION

It was found that the PSM Antenna Combiner, Model Number(s) PA821 <u>"meets"</u> the radio interference emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861, for low power auxiliary stations.

1250 Peterson Dr., Wheeling, IL 60090

Test	Manufacturer	Model	Serial	Frequency	Cal Due
Equipment		Number	Number	Range	Dates
Spectrum	Hewlett/	8566B	2240A002041	100 Hz – 22 GHz	10/03
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	2043A00121	10 kHz – 1 GHz	10/03
Adapter	Packard				
Spectrum	Hewlett/	8566B	2421A00452	100 Hz – 22 GHz	2/04
Analyzer	Packard				
Quasi-Peak	Hewlett/	85650A	2043A00450	10 kHz – 1 GHz	2/04
Adapter	Packard				
Receiver	Rohde &	ESI 26	837491/010	20 Hz – 26 GHz	11/03
	Schwarz				
Receiver	Rohde &	ESI 40	837808/005	20 Hz – 40 GHz	12/03
	Schwarz				
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	2/04
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	3/04
Antenna	EMCO	3115	6204	1 GHz – 18 GHz	5/04
Antenna	ЕМСО	3115	99035731	1 GHz – 18 GHz	4/04
Antenna	Rohde & Schwarz	HUF-Z1	829381001	20 MHz – 1 GHz	2/04
Antenna	Rohde & Schwarz	HUF-Z1	829381005	20 MHz – 1 GHz	8/03
LISN	Solar	9252-50-R- 24-BNC	971612	10 MHz – 30 MHz	10/03

TABLE 1 – EQUIPMENT LIST

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

1.0 TEST SET-UP

All radiated emission tests were performed at D.L.S. Electronic Systems, Inc. The radiated tests were made with the test item placed on a non-conductive turntable located in the Test Room with the receive antenna placed three or one meter(s) from the device under test.

2.0 RF-POWER OUTPUT – PART 2.1046

As stated in PART 74.861 (e)(1), the RF output power should not exceed 0.250 watts. The RF output power was measured at the RF output terminal of the transmitter with the transmitter unmodulated. The RF output power was measured using the following test method:

The RF output of the **PSM Antenna Combiner** was connected to a Spectrum Analyzer through suitable attenuation. All cables, connectors, and attenuators were calibrated prior to testing.

Actual Measurements Taken:

87.75 dBuV Measured output of the transmitter +41.10 dB includes measured pads & cable loss 128.85 dBuV equals 0.1534 milliwatts

LIMIT:

Manufacturer's rated output power = .1 watt per signal (unity gain) watts

MARGIN:

0.1-0.1534=<u>99.8466</u> milliwatts

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

2.0 RF POWER OUTPUT PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

GRAPH(S) TAKEN OF THE RF POWER

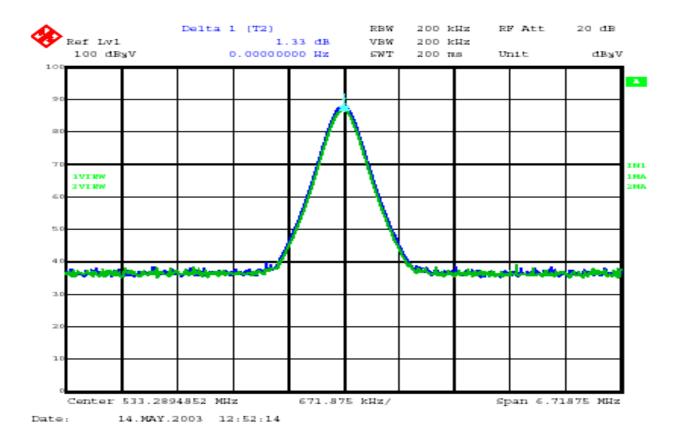
OUTPUT MEASUREMENT

SIGNAL IN VERSUS SIGNAL OUT

PART 2.1046

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

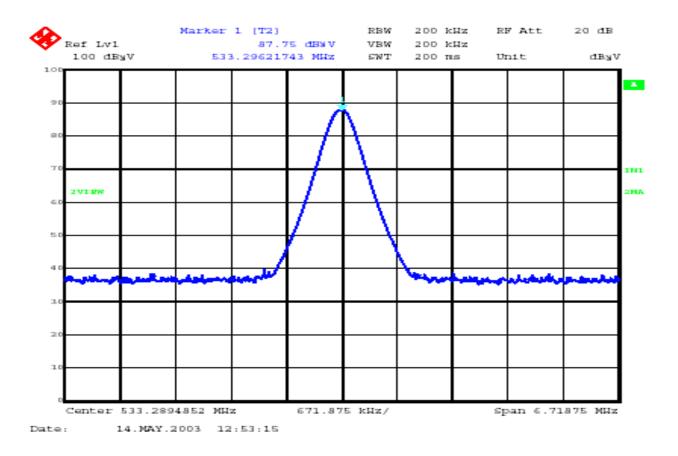
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Output Power
Operator:	Craig Brandt

Frequency = 533 MHz Green = Input Blue = Output

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

DLS Electronic Systems, Inc.

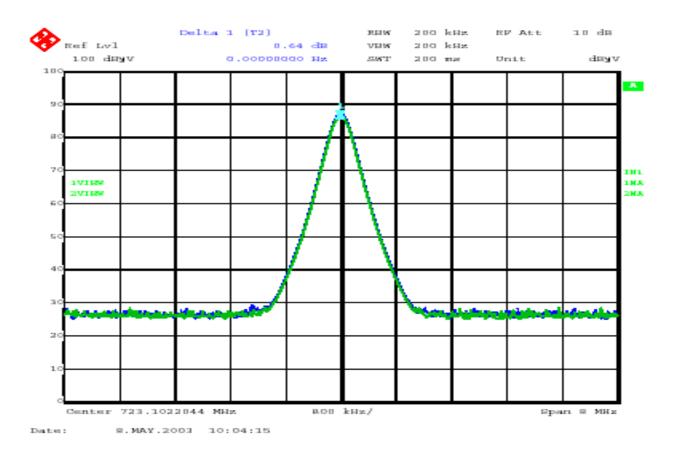
Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Output Power
Operator:	Craig Brandt

Frequency = 533 MHz Blue = Output

Output Power = 87.75 dBµV + 1.0 dB cable loss + 40.10 external atten. = 128.85 dBµV = 153.4 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

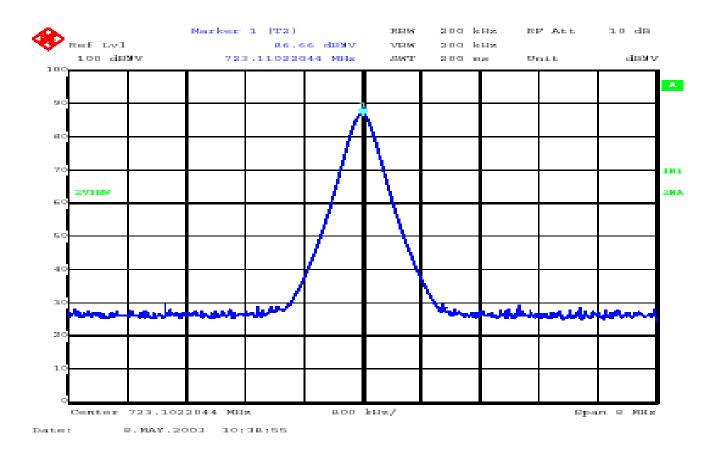
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-8-03
Test:	Output Power
Operator:	Craig Brandt

Frequency = 724 MHz Green = Input Blue = Output

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

DLS Electronic Systems, Inc.

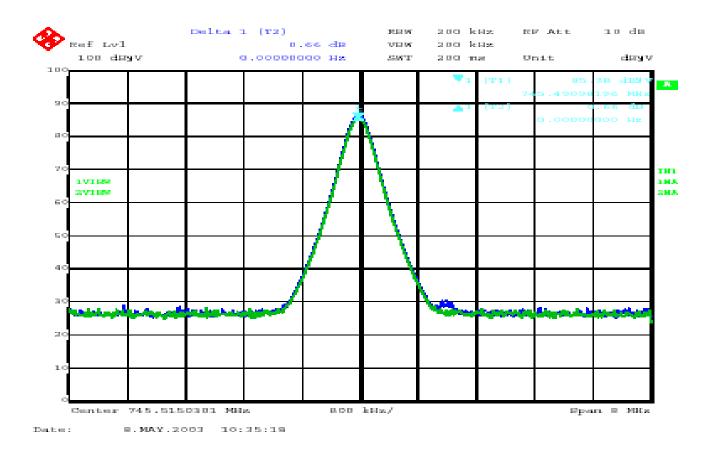
Company:	Shure, Inc.
Model:	PA821
Date:	5-8-03
Test	Output Power
Operator:	Craig Brandt

Frequency = 724 MHz Blue = Output

Output Power = 86.66 dBµV + 1.0 dB cable loss + 40.11 external atten. = 127.77 dBµV = 119.7 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

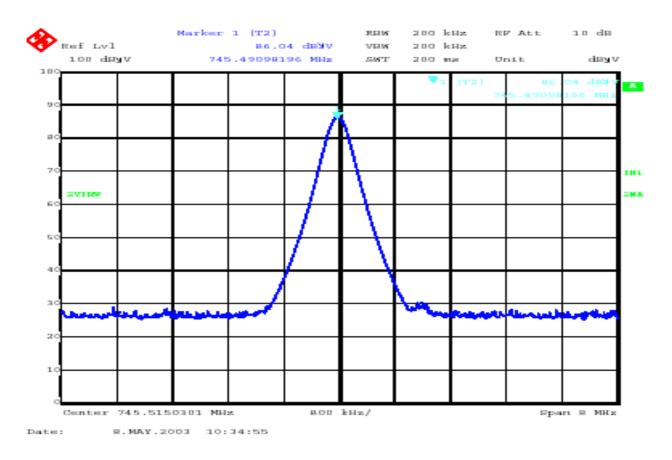
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-8-03
Test	Output Power
Operator:	Craig Brandt

Frequency = 746 MHz Green = Input Blue = Output

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-8-03
Test	Output Power
Operator:	Craig Brandt

Frequency = 746 MHz Blue = Output

Output Power = 86.04 dBµV + 1.0 dB cable loss + 40.10 external atten. = 127.1 dBµV = 102.5 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

3.0 MODULATION CHARACTERISTICS – PART 2.1047

a. Voice modulated communication equipment.

A curve showing the frequency response of the audio modulating circuit over a range of Hz is submitted with this report.

b. Equipment which employs modulation limiting

A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

NOTE:

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

GRAPH(S) TAKEN SHOWING THE FREQUENCY

RESPONSE OF THE

AUDIO MODULATING CIRCUIT

PART 2.1047

NOTE:

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

4.0 OCCUPIED BANDWIDTH - PART 2.1049

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99.0% of the total mean power and measured under the following conditions:

For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated $43+10 \log_{10}$ (mean output power, in watts) dB below the mean output power of the transmitting unit (device under test).

For low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum of ± 75 kHz is permitted when frequency modulation is used. The operating bandwidth shall not exceed 200 kHz.

Carson's Rule:

Section 2.202 (g)

Bn = 2M+2DK, K=1	Bn = Bandwidth
M = 15 kHz,	M = Maximum Modulating Frequency
D = 45 kHz,	D = Peak Deviation

Bn = 2(15) + 2(45)(1) = 120 kHz

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

4.0 OCCUPIED BANDWIDTH PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

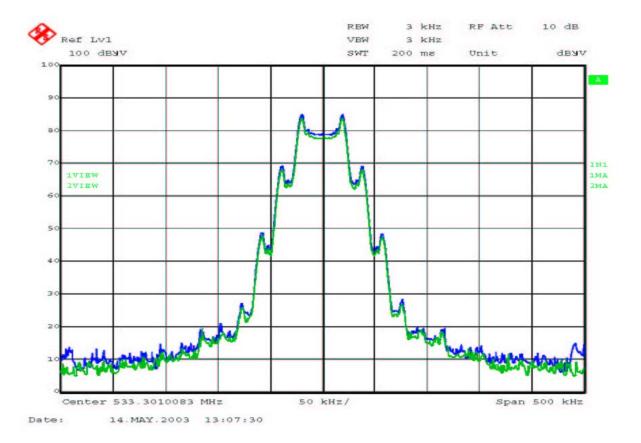
GRAPH(S) TAKEN OF THE OCCUPIED BANDWIDTH

SIGNAL IN VERSUS SIGNAL OUT

PART 2.1049

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

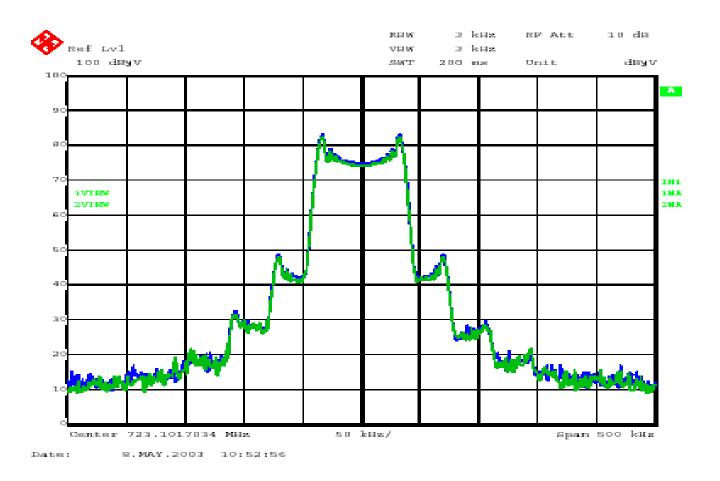
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Bandwidth
Operator:	Craig Brandt

Frequency = 533 MHz Green = Input Blue = Output

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

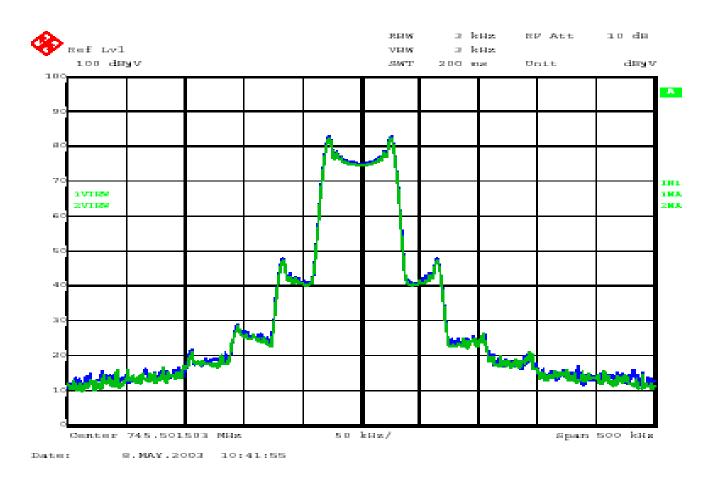
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-8-03
Test:	Bandwidth
Operator:	Craig Brandt

Frequency = 724 MHz Green = Input Blue = Output

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-8-03
Test:	Bandwidth
Operator:	Craig Brandt

Frequency = 746 MHz Green = Input Blue = Output

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

5.0 FREQUENCY DEVIATION AND TOLERANCE - PART 74.861

Paragraph e-3 states that the <u>maximum authorized deviation shall be 75 kHz</u> for all frequency modulation emissions in the frequency bands .

Paragraph e-4 states that the *frequency tolerance* of the transmitter shall be .005 percent.

NOTE:

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

GRAPHS TAKEN OF THE FREQUENCY DEVIATION

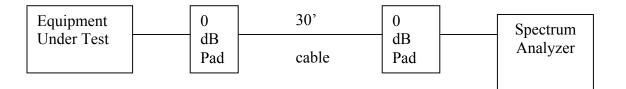
WITH MODULATION

PART 2.1049

NOTE:

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

1250 Peterson Dr., Wheeling, IL 60090


APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

6.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 2.1051

Spurious conducted emissions were measured at the antenna terminals using an artificial load. Plots were made showing the amplitude of each harmonic emission with the equipment operated as specified in 2.989. As shown by the radiated charts there was no reason to believe that there were any spurious emissions other than the harmonics that were than individually investigated when doing the conducted test at the antenna terminals. Measurements were made up to the 10th harmonic of the fundamental. The following setup was used showing placement of the attenuators:

The allowed emissions for transmitters operating in the bands for PSM Antenna Combiner equipment are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

NOTE: See the following pages for the data ad graphs of the actual measurements made:

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

6.0 CONDUCTED EMISSIONS PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

INTER-MODULATION (IM) DATA & CHARTS TAKEN FOR

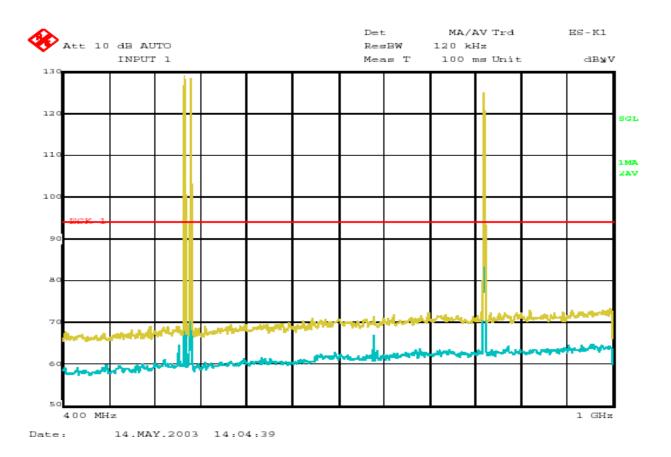
SPURIOUS EMISSION MEASUREMENTS MADE

AT THE ANTENNA TERMINALS

PART 2.1051

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

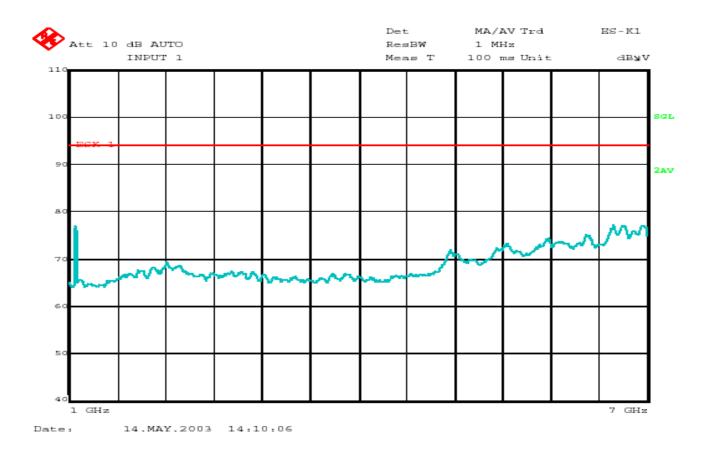
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Inter-Modulation
Operator:	Craig Brandt

$$\label{eq:Frequencies} \begin{split} & \text{Frequencies} = 533 \text{ MHz}, 540 \text{ MHz}, 860 \text{ MHz} \\ & \text{Outputs} = 100 \text{ mW} \end{split}$$

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

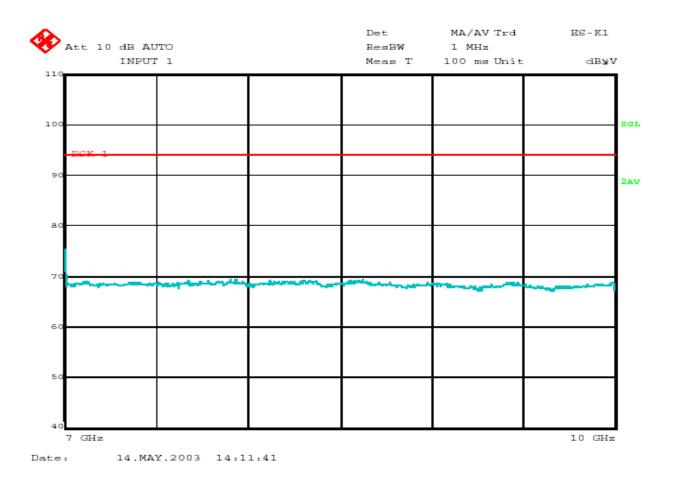
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Inter-Modulation
Operator:	Craig Brandt

Frequencies = 533 MHz, 540 MHz, 860 MHz Outputs = 100 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

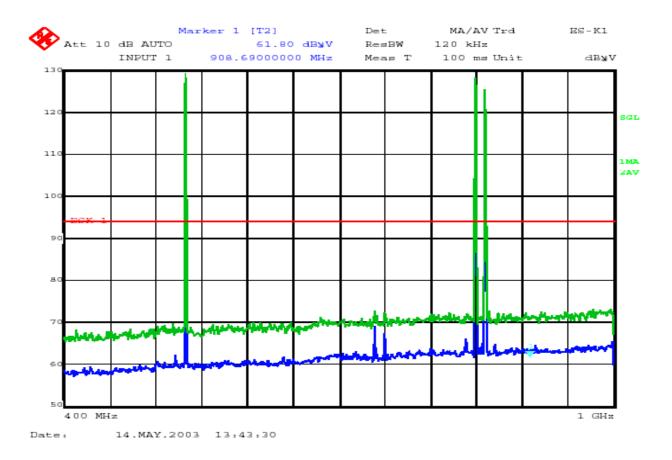
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Inter-Modulation
Operator:	Craig Brandt

Frequencies = 533 MHz, 540 MHz, 860 MHz Outputs = 100 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

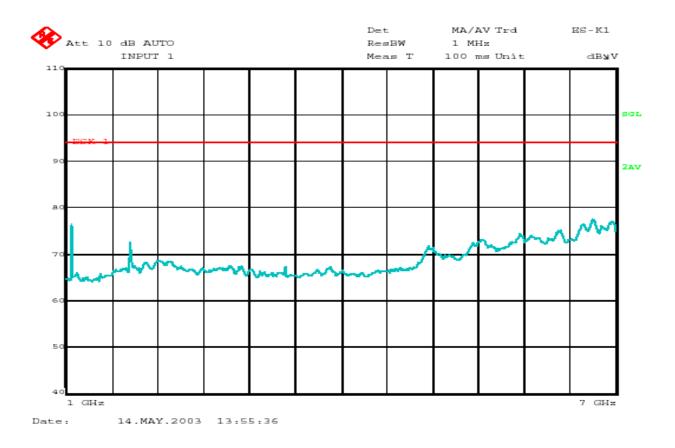
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Inter-Modulation
Operator:	Craig Brandt

$$\label{eq:Frequencies} \begin{split} & \text{Frequencies} = 533 \text{ MHz}, 855 \text{ MHz}, 860 \text{ MHz} \\ & \text{Outputs} = 100 \text{ mW} \end{split}$$

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

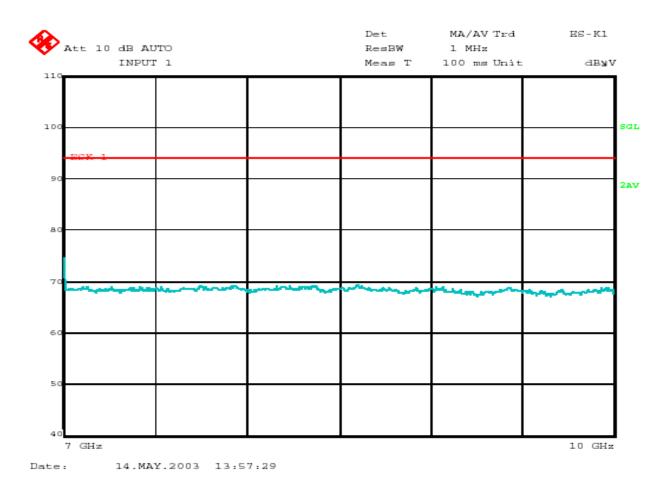
DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Inter-Modulation
Operator:	Craig Brandt

Frequencies = 533 MHz, 855 MHz, 860 MHz Outputs = 100 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

DLS Electronic Systems, Inc.

Company:	Shure, Inc.
Model:	PA821
Date:	5-14-03
Test:	Inter-Modulation
Operator:	Craig Brandt

Frequencies = 533 MHz, 855 MHz, 860 MHz Outputs = 100 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Inter-Modulation test

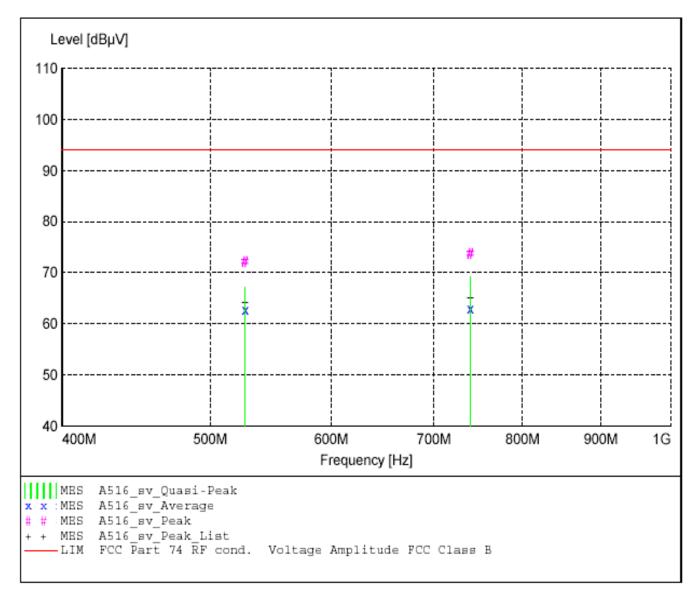
EUF:	PA821
Manufacturer:	Shure, Inc.
Operating Condition:	72 deg F; 46% R.H.
Test Site:	Site 3
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz
Conment:	533 MHz, 540 MHz, 860 MHz inputs, each 100 mW
	Date: 5/14/2003

TEXT: "RF Conducted"

Ehort Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

TEST SET-UP: RF output connected to receiver through 40 dB attenuator.

Page 1/3 5/14/2003 3:39PM A516_sv_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

Page 2/3 5/14/2003 3:39PM A516_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A516_sv_Final"

5/14/2003 2:0 Frequency		Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
MHz	dBµV	Factor dBµV	Loss dB	Level dBµV	dBµV	dB	Ant. π	Angle deg	Detector	
739.460000	27.43	0.00	46.3	74	94	20.3	0.00	D	MAX PEAK	None
526.690000	26.78	0.00	45.2	72	94	22.0	0.00	D	MAX PEAK	None
739.460000	22.82	0.00	46.3	69	94	24.9	0.00	0	QUASI-PEAK	None
526.690000	21.94	0.00	45.2	67	94	26.8	0.00	D	QUASI-PEAK	None
739.460000	16.68	0.00	46.3	63	94	31.1	0.00	D	AVERAGE	None
526.690000	17.43	0.00	45.2	63	94	31.3	0.00	D	AVERAGE	None

Page 3/3 5/14/2003 3:39PM A516_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Inter-Modulation test

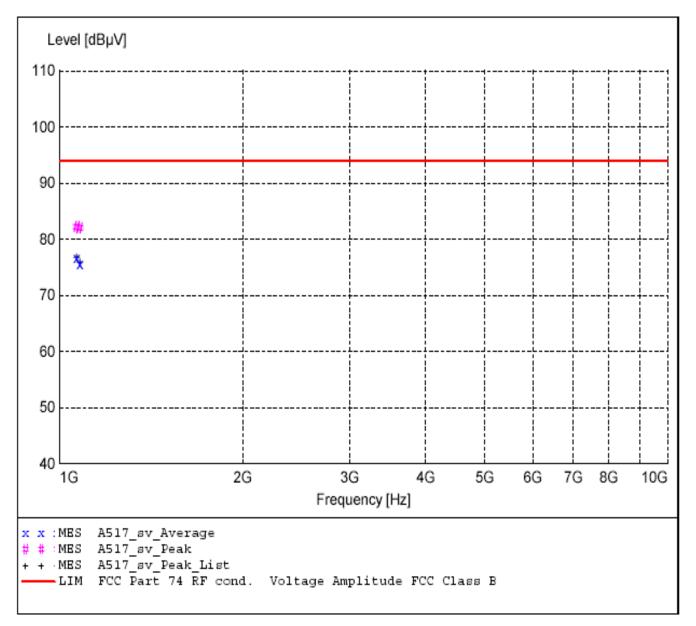
EUT: Manufacturer:	PA921 Shure, Inc.
Operating Condition:	
Test Site:	
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz
Conment:	533 MHz, 540 MHz, 860 MHz inputs, each 100 mW Date: 5/14/2003

TEXT: "RF Conducted"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

TEST SET-UP: RF output connected to receiver through 40 dB attenuator.

Page 1/3 5/14/2003 3:39PM A517_sv_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Page 2/3 5/14/2003 3:39PM A517_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A517_sv_Final"

5/14/2003 2:13 Prequency MHz	lPM Level dBµV	Antenna Factor dBµV	-	Total Level dBµV	Limit dBµV	Margin dB	Height Ant. π		Final Detector	Comment
1066.650000 1079.700000 1066.650000 1079.700000	40.88 40.63 35.41 34.26	D.QD D.QD D.QD D.QD	41.2 41.2 41.2 41.2	B2 B2 77 75	94 94 94 94	11.9 12.2 17.4 18.5	0.00 0.00 0.00 0.00	D D D	MAX PEAK MAX PEAK AVERAGE AVERAGE	None None None

Page 3/3 5/14/2003 3:39PM A517_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Inter-Modulation test

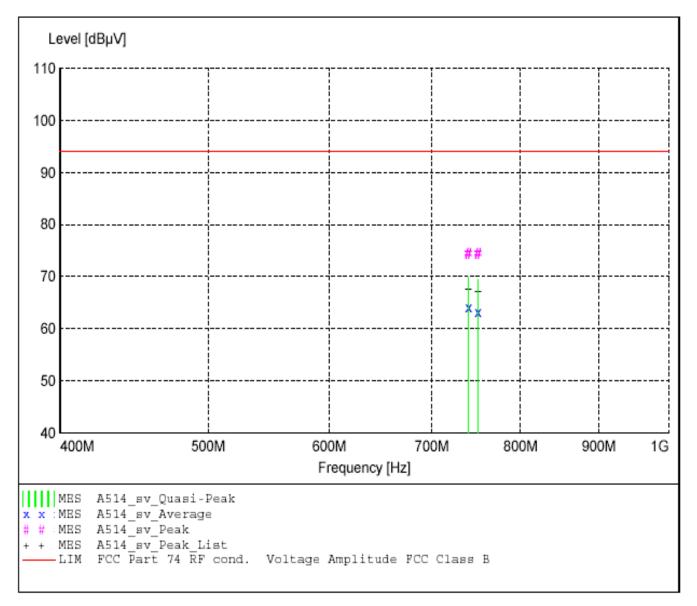
EUT: Manufacturer:	PA821 Shure, Inc.
Operating Condition: Test Site:	72 deg F; 46% R.H. Site 3
Operator:	Craig Brandt
Test Specification:	
Comment:	533 MHz, 855 MHz, 860 MHz inputs, each 100 mW Date: 5/14/2003

TEXT: "RF Conducted"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

TEST SET-UP: RF output connected to receiver through 40 dB attenuator.

Page 1/3 5/14/2003 3:37PM A514_sv_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Page 2/3 5/14/2003 3:37PM A514_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A514_sv_Final"

MHz dBµ	Factor V dBµV	Loss dB	Level dBµV	dBµV	dB	Height Ant. π	EuT Angle deg	Final Detector	Comment
750.240000 28.1 739.500000 28.1 739.500000 23.6 750.240000 23.1 739.500000 17.8	9 D.OD 2 D.OD 2 D.OD	46.3 46.3 46.3 46.3 46.3	74 74 70 69 64	94 94 94 94	19.5 19.6 24.1 24.6 29.9	0.00 0.00 0.00 0.00 0.00	D D D D	MAX PEAK MAX PEAK QUASI-PEAK QUASI-PEAK AVERAGE	None None None None None

Page 3/3 5/14/2003 3:37PM A514_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Inter-Modulation test

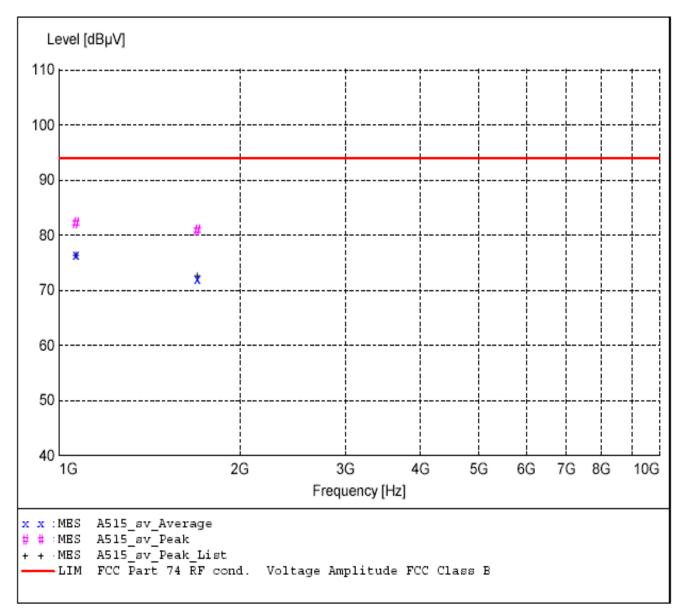
EUF: Manufacturer: Operating Condition: Test Site:	72 deg F; 46% R.H.
Operator: Test Specification: Comment:	Craig Brandt 120 V 60 Hz 533 MHz, 855 MHz, 860 MHz inputs, each 100 mW Date: 5/14/2003

TEXT: "RF Conducted"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

TEST SET-UP: RF output connected to receiver through 40 dB attenuator.

Page 1/3 5/14/2003 3:38PM A515_sv_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Page 2/3 5/14/2003 3:38PM A515_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A515_sv_Final"

5/14/2003 1:5 Frequency MHz	7PM Level dBµV	Antenna Factor dBµV	-	Total Level dBµV	Limit dBµV	Margin dB	Height Ant. π		Final Detector	Comment
1066.600000 1699.350000 1066.600000 1699.350000	41.00 39.29 35.28 30.50	0.00 0.00 0.00 0.00	41.2 41.5 41.2 41.5	82 81 76 72	94 94 94	11.8 13.2 17.5 22.0	0.00 0.00 0.00 0.00	D D D	MAX PEAK MAX PEAK AVERAGE AVERAGE	None None None

Page 3/3 5/14/2003 3:38PM A515_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

CONDUCTED EMISSION DATA & CHARTS TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS MADE

AT THE ANTENNA TERMINALS

PART 2.1051

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Electric Field Strength

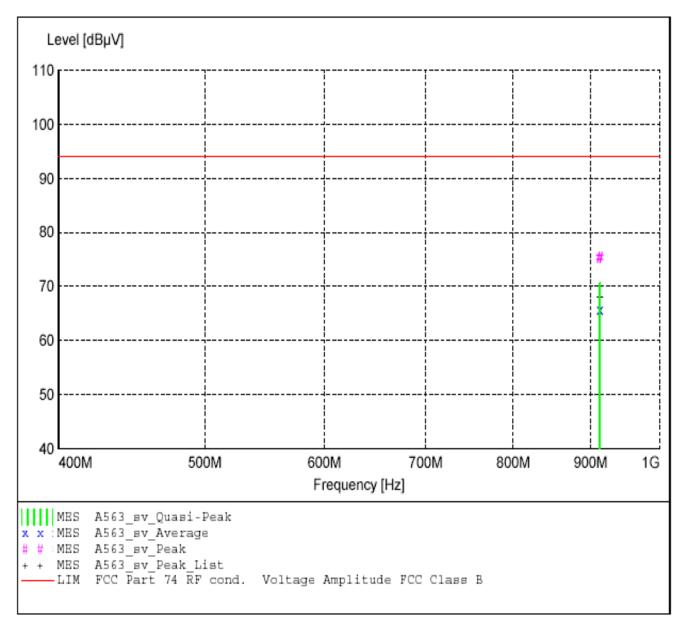
EUT:	PA821
Manufacturer:	Shure, Inc.
Operating Condition:	72 deg F; 46% R.H.
Test Site:	Site 3
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz
Conment:	724 MHz, 533 MHz, 746 MHz inputs, each 100 mW
	Date: 5/6/2003

TEXT: "RF Conducted"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

TEST SET-UP: RF output connected to receiver through 40 dB attenuator.

Page 1/3 5/6/2003 2:56PM A563_sv_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Page 2/3 5/6/2003 2:56PM A563_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A563_sv_Final"

5/6/2003 2:563	PM									
Frequency	Level	Antenna	-			Margin				Comment
MHz	dBµV	Factor dBµV	Loss dB	Level dBµV	dBµV	dB	Ant. π	Angle deg	Detector	
912.880000	28.35	0.00	47.0	75	94	18.6	0.00	D	MAX PEAK	None
912.880000 912.880000	23.62 18.65	0.00 0.00	47.0 47.0	71 66	94 94	23.3 28.3	0.D0 0.D0		QUASI-PEAK AVERAGE	None None

Page 3/3 5/6/2003 2:56PM A563_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Electric Field Strength

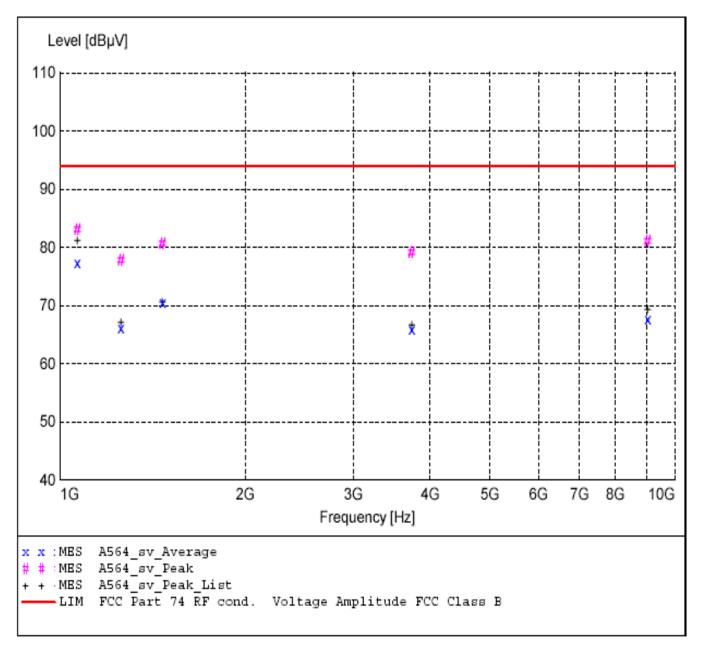
EUC:	PA821
Manufacturer:	Shure, Inc.
Operating Condition:	72 deg F; 46% R.H.
Test Site:	Site 3
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz
Connent:	724 MHz, 533 MHz, 746 MHz inputs, each 100 mW
	Date: 5/6/2003

TEXT: "RF Conducted"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

TEST SET-UP: RF output connected to receiver through 40 dB attenuator.

Page 1/3 5/6/2003 3:24PM A564_sv_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Page 2/3 5/6/2003 3:24PM A564_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A564_sv_Final"

5/6/2003 3:23 Frequency MHz	PM Level dBµV	Antenna Factor dBµV	System Loss dB	Total Level dBµV	Limit dBµV	Margin dB	Height Ant. π	EuT Angle deg	Final Detector	Comment
1066.600000 9035.900000 1468.100000 3732.000000 1256.350000 1066.600000 1468.100000	41.80 37.55 39.21 36.91 36.51 36.13 29.24	0.00 0.00 0.00 0.00 0.00 0.00 0.00	41.2 43.4 41.4 42.2 41.2 41.2 41.2 41.4	83 81 79 78 77 71	94 94 94 94 94 94	11.0 13.0 13.4 14.9 16.2 16.6 23.4	0.00 0.00 0.00 0.00 0.00 0.00	0 0 0 0 0	MAX PEAK MAX PEAK MAX PEAK MAX PEAK MAX PEAK AVERAGE AVERAGE	None Noise Floor Noise Floor None None None
9035.900000 1256.350000 3732.000000	24.37 24.86 23.60	0.00 0.00 0.00	43.4 41.2 42.2	68 66 66	94 94 94	26.2 27.9 28.2	0.D0 0.D0 0.D0	D D D	AVERAGE AVERAGE AVERAGE	Noise Floor None Noise Floor

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

7.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS – PART 2.1053

Radiated measurements were performed at a 1 or 3 meter test distance automatically scanning the frequency range from 200 MHz to 10000 MHz, depending upon the fundamental frequency.

For the PSM Antenna Combiner, the highest fundamental frequency is 746 MHz so the scans were made up to 10000 MHz, to cover the tenth harmonic.

All signals in the frequency range of 30 MHz to 200 MHz were measured with a Biconical Antenna and from 200 MHz to 1000 MHz a Log Periodic Antenna was used as the pickup devices. From 1000 MHz to 10000 MHz, a Double Ridge Horn Antenna was used. The cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Tests were made in both the horizontal and vertical planes of polarization.

The allowed emissions for transmitters operating in the bands for PSM Antenna Combiner are found under Part 74, Section 74.861, Paragraph e-6 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (1) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB.
- (2) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB.
- (3) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10Log10 (mean output power in watts) dB.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

7.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T) – PART 2.1053

As stated in Part 74, Section 74.861 (e-1 iii) the limit is 250 mW in the frequency range .

To determine the **LIMIT** for Spurious Emissions the following method was used:

Mean output power in watts:

Manufacturer's rated wattage = .1 watt per signal (unity gain) Watts (See Paragraph 2.0, page 2 of this Appendix)

Free Space Formula

Convert to 3 meter test distance using the Free Space Formula

 $\frac{\sqrt{49.2 * rated wattage}}{\text{Distance}} = 0.7393691 \text{ volts/meter} = 739369.1 \text{ uV/m}$

 $20*Log(739369.1) = 117.3772 \, dBuV/m$

Therefore, the Fundamental at three meters equals 117.3772 dBuV,

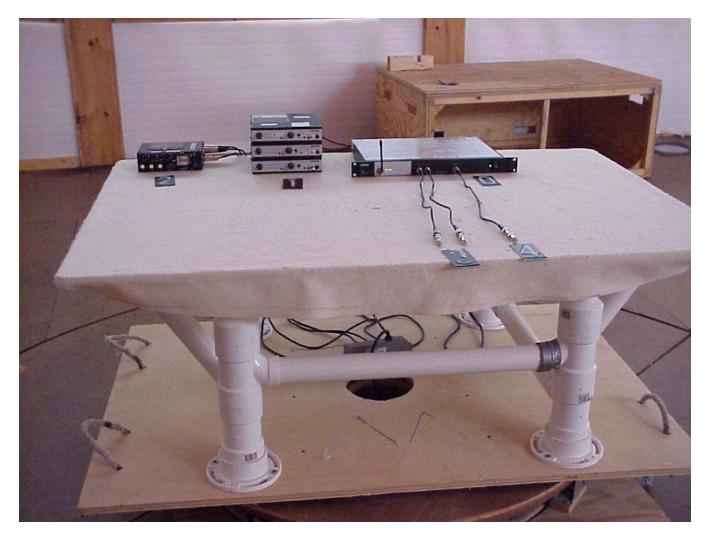
The emissions must be reduced by:

43 + 10*LOG100.1 watts) = 33 dB

Therefore, the **LIMIT** at three meters equals:

117.38 dBuV/m extrapolated level for 0.1 watts

<u>-33 00dB</u> required reduction below the unmodulated fundamental **84.38 dBuV/M** maximum spurious emissions allowed


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

7.0 RADIATED EMISSIONS PHOTOS TAKEN DURING TESTING

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

RADIATED EMISSION DATA TAKEN

FOR SPURIOUS EMISSIONS

USING THE SUBSTITUTION METHOD

ANSI/TIA/EIA-603-1992 SECTION 2.2.12

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

DLS Electronic Systems, Inc.

Company: Shure Inc. Operator: Craig Brandt Date of test: 5-6-03

Field Strength of Spurious	Radiation -	Substitution	Method
	Model: PA8	21 V	ertical

Limit = -13 dBm

		Model: PA821	Vertic	al		
Frequency (MHz) & Polarization	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and antenna (dB)	Gain of antenna (dBi)	Strength of emission [ERP] (dBm)	Margin (dB)
511.4	58,7	-36,9	1.0	2.1	-37,9	24.9
555.2	60,8	-32.4	1.0	2.1	-33,4	20.4
1066.6	67,2	-40,6	1.6	5,0	-39,3	26.3
1446.2	55.6	-51,4	1.8	6,5	-48.8	23.8
2234,9	61,5	-46,1	2.4	8,3	-42,3	29.3
2666.5	52,8	-53,7	2.5	9,0	-49,3	36,3
2979,9	61.7	-44,4	2.7	9,4	-39,8	26.8
3724,9	57.6	-48,5	3.1	9,5	-44,2	31,2
5959,8	55,5	-51.9	4.0	10,9	-47,1	34.1

EIRP = Signal generator output - cable loss + antenna gain

ERP(ref. to Vik.dipole) = Signal generator output - cable loss + antenna gain - 2.1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

DLS Electronic Systems, Inc.

Company: Shure Inc. Operator: Craig Brandt Date of test: 5-6-03

Field Strengt	Limit = -1	3 dBm										
Model: PA821 Horizontal												
Frequency (MHz) & Polarization	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and antenna (dB)	Gain of antenna (dBi)	Strength of emission [ERP] (dBm)	Margin (dB)						
511,4	58,6	-40,1	1.0	2,1	-41.1	28,1						
555.2	61.8	-34.9	1.0	2.1	-35,9	22.9						
912,9	60,9	-34,1	1.2	2,1	-35,3	22,3						
1066,6	58.7	-48.6	1.6	5,0	-47.3	34.3						
1446.2	54.8	-50,7	1.8	6,5	-48,1	35,1						
2235.0	58,6	-49,9	2.4	8,3	-46,1	33.1						
2979,9	58,1	-48.8	2.7	9,4	-44,2	31,2						
3724,9	58.9	-47.6	3.1	9,5	-43,3	30,3						
5959,8	53,6	-52.2	4.0	10,9	-47,4	34.4						

Field Steenath of Coursians Badiation - Substitution Mathed

Think is a - 12 JD....

EIRP = Signal generator output - cable loss + antenna gain

ERP_(ref. to 'til, dipole) = Signal generator output - cable loss + antenna gain - 2.1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

RADIATED EMISSION DATA AND <u>GRAPH(S)</u> TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS

PART 2.1053

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Electric Field Strength

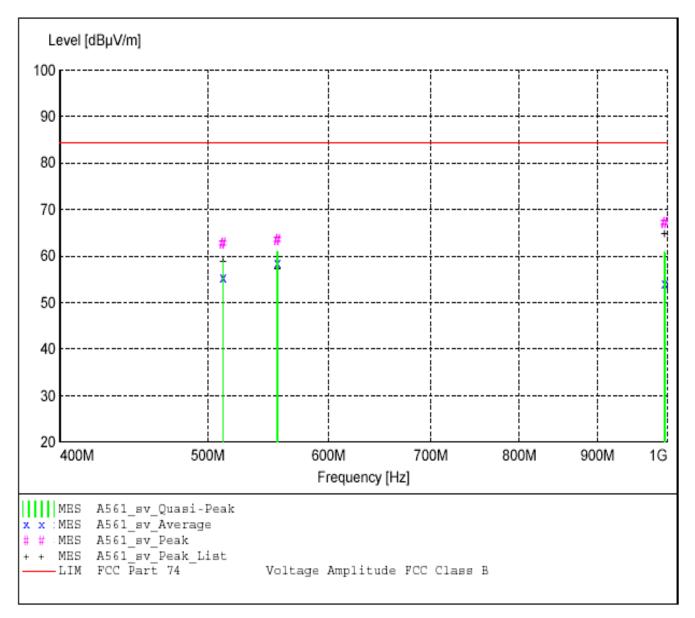
EUF:	PA821
Manufacturer:	Shure, Inc.
Operating Condition:	70 deg F; 41% R.H.
Test Site:	Site 3
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz
Conment:	724 MHz, 533 MHz, 746 MHz inputs, each 100 mW
	Date: 5/6/2003
	Date: S/6/2003

TEXT: "Site 3 MidV 3M"

Ehort Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 26 SN: 837491/010

	Antennas Biconical EMCO 3104C SN: 9701-4785 Log Periodic EMCO 3146 SN: 9702-4895
	Pre-Amp Rohde&Schwarz TS-PR10 SN: 032001/005
TEST SET-UP:	EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

Page 1/3 5/6/2003 10:57AM A561_sv_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

Page 2/3 5/6/2003 10:57AM A561_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A561 sv Final"

5/6/2003 10:4 Frequency	6AM Level	Antenna Factor	System Loss	Total Level	Limit	Margin			Final Detector	Comment
MHz	dBµV	dBµV/m	dB		$\mathrm{d} \mathbb{B} \mu \mathbb{V} / \pi$	dB	10	deg	Percetor	
995.770000	16.05	24.06	27.0	67.1	84.4	17.2	1.00	a	MAX PEAK	Noise Floor
								-		10120 11001
555.200000	20.25	18.21	25.1	63.6	84.4	20.8	1.10	90	MAX PEAK	
511.400000	19.57	18.30	24.8	62.7	84.4	21.7	1.40	90	MAX PEAK	
555.200000	17.48	18.21	25.1	60.8	84.4	23.6	1.10	90	QUASI-PEAK	
995.770000	9.68	24.06	27.0	60.8	84.4	23.6	1.00	0	QUASI-PEAK	Noise Floor
511.400000	15.58	18.30	24.8	5B.7	84.4	25.6	1.40	90	QUASI-PEAK	
555.200000	15.13	18.21	25.1	58.5	84.4	25.9	1.10	90	ÄVERAGE	
511.400000	12.30	18.30	24.8	55.4	84.4	28.9	1.40	90	AVERAGE	
995.770000	2.91	24.06	27.0	54.0	84.4	30.4	1.00	O	AVERAGE	Noise Floor
995.770000	2.91	24.06	27.0	54.0	84.4	30.4	1.00	0	AVERAGE	Noise Floo

Page 3/3 5/6/2003 10:57AM A561_sv_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Electric Field Strength

EUT: Manufacturer: Operating Condition:	PA821 Shure, Inc. 70 deg F: 41% R.H.
Test Site:	Site 3
	Craig Brandt
Test Specification:	
Comment:	724 MHz, 533 MHz, 746 MHz inputs, each 100 mW Date: 5/6/2003

TEXT: "Site 3 6204&184 V3M"

Short Description: Test Set-up Vert1GHz-TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

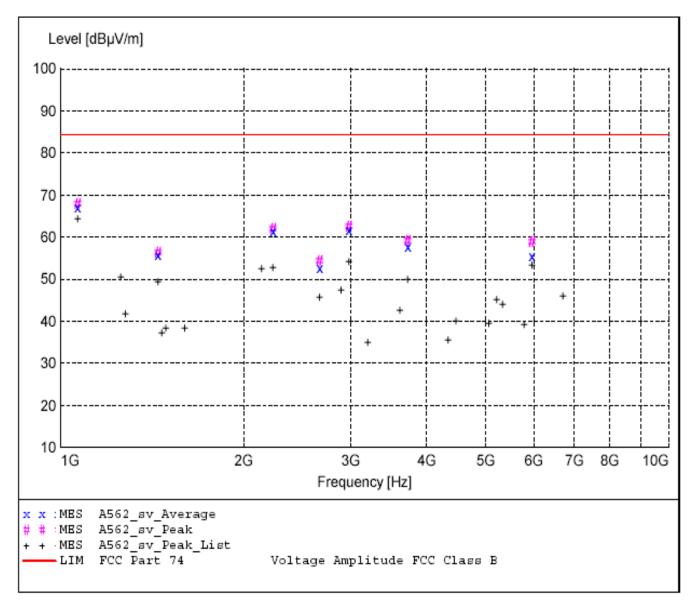
Horn Antenna --- ETS 3115 SN: 6204

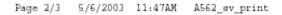
Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with VERTICAL Antenna Polarisation

Page 1/3 5/6/2003 11:47AM A562_sv_print




1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A562_sv_Final"

5/6/2003 11:4 Frequency MHz	17AM Level dBµV	Antenna Factor dBµV/m	System Loss dB	Total Level dBµV/m	Limit dBμV/π	Margin dB	Height Ant. n	EuT Angle deg	Final Detector	Comment
1066.600000	75.46	24.78	-32.2	68.0	84.4	16.3	1.10	135	MAX PEAK	None
1066.600000	74.62	24.7B	-32.2	67.2	84.4	17.2	1.10	135	AVERAGE	None
2979.900000	70.80	31.66	-40.0	62.5	84.4	21.9	2.20	180	MAX PEAK	None
2234.950000	72.19	29.70	-39.8	62.0	84.4	22.3	1.10	4.5	MAX PEAK	None
2979.900000	70.02	31.66	-40.0	61.7	84.4	22.7	2.20	180	AVERAGE	None
2234.950000	71.60	29.70	-39.8	61.5	84.4	22.9	1.10	45	AVERAGE	None
3724.950000	64.15	33.63	-3B.6	59.1	84.4	25.2	1.30	45	MAX PEAK	None
5959.800000	59.56	36.73	-37.4	58.8	84.4	25.5	1.10	45	MAX PEAK	None
3724.950000	62.62	33.63	-3B.6	57.6	84.4	26.8	1.30	45	AVERAGE	None
1446.200000	70.06	26.37	-40.1	56.3	84.4	28.1	1.20	180	MAX PEAK	None
1446.200000	69.39	26.37	-40.1	55.6	84.4	28.7	1.20	180	AVERAGE	None
5959.800000	56.18	36.73	-37.4	55.5	84.4	28.9	1.10	45	AVERAGE	None
2666.500000	63.49	30.97	-40.0	54.5	84.4	29.9	1.20	180	MAX PEAK	None
2666.500000	61.79	30.97	-40.0	52.8	84.4	31.6	1.20	180	AVERAGE	None

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

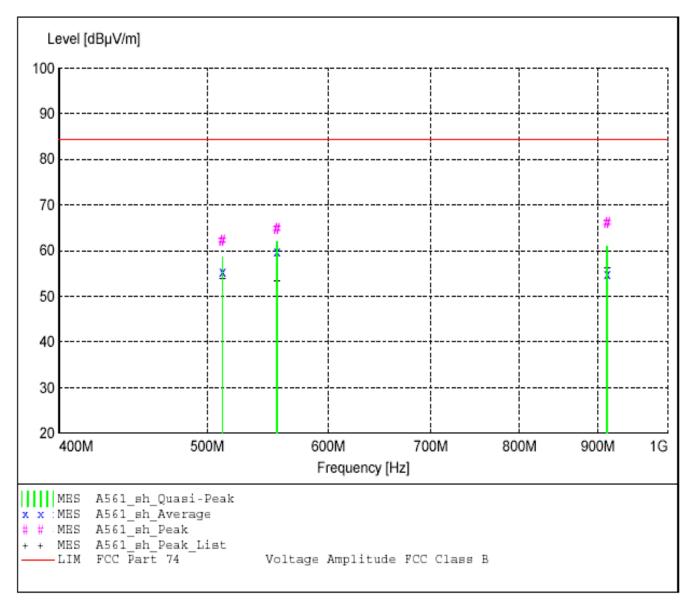
Electric Field Strength

EUT:	PA821
Manufacturer:	Shure, Inc.
Operating Condition: Test Site:	
Operator:	Craig Brandt
Test Specification:	120 V 60 Hz
Conment:	724 MHz, 533 MHz, 746 MHz inputs, each 100 mW Date: 5/6/2003

TEXT: "Site 3 MidH 3M"

Ehort Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006 Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895 Pre-Amp --- Rohde&Schwarz TE-PR10 SN: 032001/005 TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

Page 1/3 5/6/2003 10:56AM A561_sh_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Page 2/3 5/6/2003 10:56AM A561_sh_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT; "A561_sh_Final"

5/6/2003 10:5 Frequency MHz	4AM Level dBµV	Antenna Factor dBµV/m	System Loss dB	Total Level dBµV/m	Limit dBμV/π	Margin dB	Height Ant. n	EuT Angle deg	Final Detector	Comment
912.930000	16.98	22.34	26.8	66.1	84.4	18.3	1.00	315	MAX PEAK	None
555.160000	21.37	18.21	25.1	64.7	84.4	19.7	2.00	340	MAX PEAK	None
511.410000	19.09	18.30	24.8	62.2	84.4	22.1	1.00	225	MAX PEAK	None
555.160000	18.52	18.21	25.1	61.8	84.4	22.5	2.00	340	QUASI-PEAK	None
912.930000	11.82	22.34	26.8	60.9	84.4	23.5	1.00	315	QUASI-PEAK	None
555.160000	16.48	18.21	25.1	59.8	84.4	24.6	2.00	340	AVERAGE	None
511.410000	15.49	18.30	24.8	58.6	84.4	25.7	1.00	225	QUASI-PEAK	None
511.410000	12.25	18.30	24.8	55.4	84.4	29.0	1.00	225	AVERAGE	None
912.930000	5.80	22.34	26.8	54.9	84.4	29.5	1.00	315	AVERAGE	None

Page 3/3 5/6/2003 10:56AM A561_sh_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

FCC Part 74

Electric Field Strength

EUT: Manufacturer:	PA821 Shure, Inc.
Operating Condition:	
	Site 3
Operator: Test Specification:	Craig Brandt
Comment:	724 MHz, 533 MHz, 746 MHz inputs, each 100 mW Date: 5/6/2003

TEXT: "Site 3 6204&184 H3M"

Short Description: Test Set-up HorzlGHz-TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/006

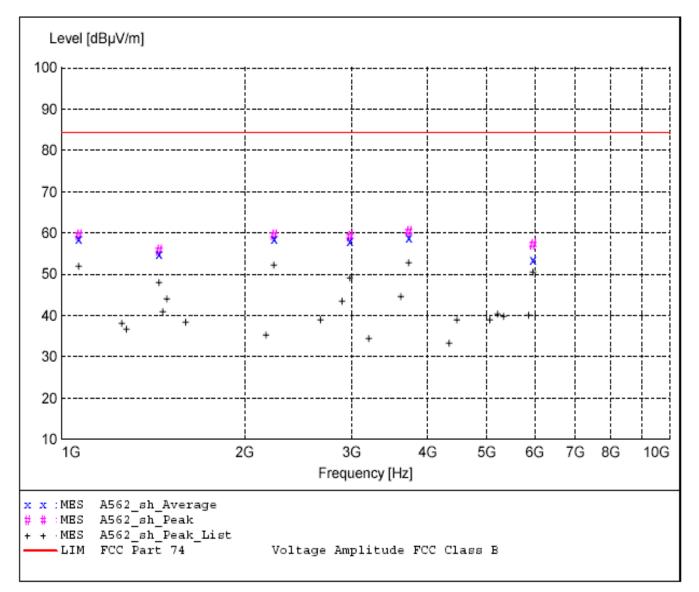
Horn Antenna --- ETS 3115 SN: 6204

Pre-Amps ---

1 - 10 GHz -- Miteq AMF-6D-010100-50 SN: 682425 10 - 18 GHz -- Miteq AMF-6F-100200-50-10P SN: 668382

TEST SET-UP: EuT Measured at 3 Meters with HORIZONTAL Antenna Polarisation

Page 1/3 5/6/2003 12:50PM A562_sh_print



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

Page 2/3 5/6/2003 12:50PM A562_sh_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

MEASUREMENT RESULT: "A562_sh_Final"

5/6/2003 12:5 Frequency MHz	OPM Level dBµV	Antenna Factor dBµV/m	System Loss dB	Total Level dBµV/m	Limit dBμV/π	Margin dB	Height Ant. n	EuT Angle deg	Final Detector	Comment
3724.900000	65.33	33.63	-3B.6	60.3	84.4	24.1	1.00	225	MAX PEAK	None
2235.000000	69.69	29.70	-39.8	59.5	84.4	24.8	1.30	225	MAX PEAK	None
1066.600000	66.98	24.7B	-32.2	59.5	84.4	24.8	1.00	45	MAX PEAK	None
2979.900000	67.59	31.66	-40.0	59.3	84.4	25.1	1.30	225	MAX PEAK	None
3724.900000	63.88	33.63	-3B.6	5B.9	84.4	25.5	1.00	225	AVERAGE	None
1066.600000	66.11	24.7B	-32.2	5B.7	84.4	25.7	1.00	45	AVERAGE	None
2235.000000	68.76	29.70	-39.8	5B.6	84.4	25.8	1.30	225	AVERAGE	None
2979.900000	66.46	31.66	-40.0	5B.1	84.4	26.2	1.30	225	AVERAGE	None
5959.850000	57.73	36.73	-37.4	57.0	84.4	27.4	1.30	270	MAX PEAK	None
1446.200000	69.44	26.37	-40.1	55.7	84.4	28.7	1.50	45	MAX PEAK	None
1446.200000	68.60	26.37	-40.1	54.8	84.4	29.5	1.50	45	AVERAGE	None
5959.850000	54.28	36.73	-37.4	53.6	84.4	30.8	1.30	270	AVERAGE	None

Page 3/3 5/6/2003 12:50PM A562_sh_print

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

8.0 FREQUENCY STABILITY (TEMPERATURE)– PART 2.1055(a1)

The frequency stability was measured from -30° to $+50^{\circ}$ centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the PSM Antenna Combiner oscillator circuitry to stabilize. The following information was taken:

FREQUENCY STABILITY FOR TEMPERATURE VARIATION IN MHz:

-30°	0
	0
-20°	0
-10°	0
0°	0
+10°	0
+20°	0
+30°	0
+40°	0
+50°	0

Worst Case Variance:

<u>0</u> Hz

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance:	=	<u>0</u>
Assigned Frequency:	=	<u>0</u> Hz
Limit = $0 * 0.005\%$ =		<u>0</u> Hz

NOTE:

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

<u>GRAPH(S)</u> TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE TEMPERATURE

PART 2.1055a

NOTE:

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

9.0 FREQUENCY STABILITY (VOLTAGE VARIATION)– PART 2.1055(d1)

The frequency stability of PSM Antenna Combiner was measured by varying the primary supply voltage from 85% to 115% of nominal value for all equipment **other than hand carried battery equipment.**

FREQUENCY STABILITY FOR VOLTAGE VARIATION:

85%	0
100%	0
115%	0

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

FREQUENCY STABILITY FOR HAND HELD DEVICES:

For **hand carried**, **battery powered equipment**, the supply voltage was reduced to the battery operating end point specified by the manufacturer. Readings were taken at the reduced end point and with a fresh battery:

Fresh Battery verses Battery end point:

Frequency #10Frequency #20Frequency #30

Worst Case Variance: = <u>0</u>

As stated in Part 74, Section 74.861 e-4 the Frequency Tolerance and Margin for this range are as follows:

Frequency Tolerance: = 0.005%Limit: = 0

NOTE: This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

ELECTRIC FIELD RADIATED EMISSIONS TEST

GRAPH(S) TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE

PRIMARY SUPPLY VOLTAGE

PART 2.1055d

This test is not required because the PSM Antenna Combiner is an amplifier which does not generate a fundamental frequency.