

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

FCC Rules and Regulations / Intentional Radiators Low Power Auxiliary Stations Part 74, Subpart H, Sections 74.801 - 74.882 Part 74.861 (d) Other Than TV Broadcasting

THE FOLLOWING "MEETS" THE ABOVE TEST SPECIFICATION

PSM400 Wireless Personal Monitor Formal Name:

Wireless Personal Monitor Transmitter Kind of Equipment:

Test Configuration: Through shielded audio frequency cables (Tested at 120 vac, 60 Hz)

Model Number(s): P4T-X1

Model(s) Tested: P4T-X1

NA Serial Number(s):

Date of Tests: June 25, 26, 29, 2007

Test Conducted For: Shure Inc. 5800 Touhy Avenue Niles, Illinois 60714

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report.

© Copyright 1983- 2006 D.L.S. Electronic Systems, Inc

COPYRIGHT NOTICE

This report or any portion their of, may not be reproduced or modified in any form without the expressed written consent of D.L.S. Electronic Systems, Inc.

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

SIGNATURE PAGE

Report By:

Anon C Rove

Arnom C. Rowe **Test Engineer** EMC-001375-NE

Reviewed By:

William MString

William Stumpf **OATS** Manager

Approved By:

Brian J. Mattoon

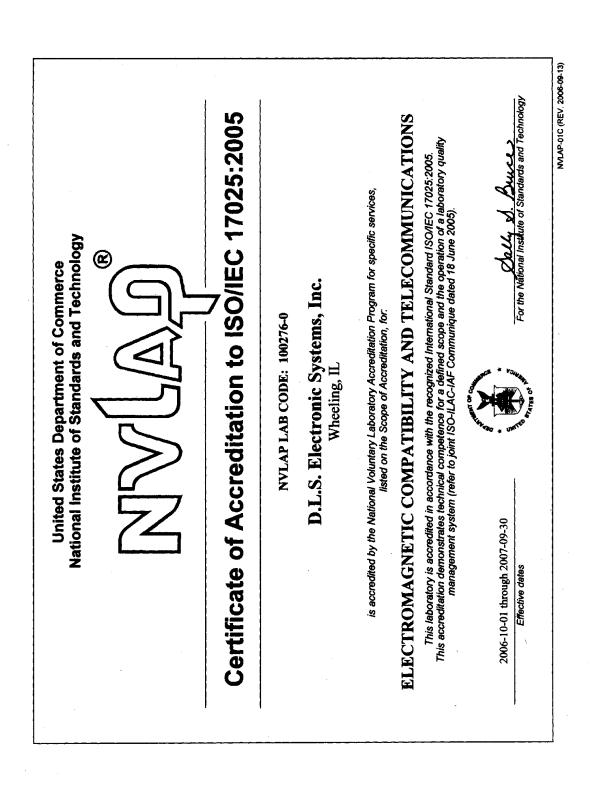
Brian Mattson General Manager

Company Official:

Shure Inc.

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090


TABLE OF CONTENTS

i.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents	
iv.	NVLAP Certificate of Accreditation	4
1.0	Summary of Test Report	5
2.0	Introduction	5
3.0	Object	5
4.0	Test Set-Up	6
5.0	Test Equipment	7
6.0	Ambient Measurements	
7.0	Conducted Emission Measurements	9
8.0	Description of Test Sample	
9.0	Additional Description of Test Sample	11
10.0	Photo Information and Test Set-Up	
11.0	Radiated Photos Taken During Testing	13
11.0	Conducted Photos Taken During Testing	16
12.0	Results of Tests	17
13.0	Conclusion	17
TAB	BLE 1 – EQUIPMENT LIST	
App	endix A – Electric Field Radiated Emissions Test	
1.0	Test Set-Up	
2.0	RF Power Output	
2.0	Graph(s) taken of the RF Power Output	
3.0	Modulation Characteristics	
3.0	Graph(s) taken of the Modulation Characteristics	
4.0	Occupied Bandwidth	
4.0	Graph(s) taken of the Occupied Bandwidth	
5.0	Spurious Emissions At Antenna Terminals	
5.0	Conducted Emission Data and Graphs made at the Antenna Terminals	
6.0	Field Strength of Spurious Emission Measurements	40
6.0	Radiated Data taken for Fundamental Emissions using the Substitution Method	
6.0	Radiated Data taken for Spurious Emissions using the Substitution Method	
6.0	Radiated Data and Graph(s) Taken During Testing for Spurious Emissions	
7.0	Frequency Stability Data Taken During Testing	
8.0	Frequency Stability (Temperature) Photos Taken During Testing	55

Shure Inc. P4T-X1 13409

1250 Peterson Dr., Wheeling, IL 60090

Shure Inc. P4T-X1 13409

1250 Peterson Dr., Wheeling, IL 60090

1.0 SUMMARY OF TEST REPORT

It was found that the PSM400 Wireless Personal Monitor, Model Number(s) P4T-X1, "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (d), for low power auxiliary stations.

2.0 **INTRODUCTION**

On June 25, 26, 29, 2007, a series of radio frequency interference measurements was performed on PSM400 Wireless Personal Monitor, Model Number(s) P4T-X1, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in Part 2 - Frequency Allocations and Radio Treaty Matters: General Rules and Regulations, Subpart J, Equipment Authorization Procedures of the Code of Federal Regulations 47. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO Guide 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI. All immunity tests were performed by personnel of D.L.S. Electronic Systems, Inc. at the following location(s):

> **Main Test Facility:** D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, Illinois 60090

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (d), for low power auxiliary stations.

Shure Inc. P4T-X1 13409

4.0TEST SET-UP

All tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-2003, Section 7, (Figures 10a, 10b, 10c and 10d). The conducted tests if required were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the American National Standards Institute, ANSI C63.4-2003, Section 4, (Figure 2).

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable, which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to ANSI C63.4-2003, Sections 6 and 8.

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/ESI 40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and or ESI 26/ESI 40 fixed tuned receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/ESI 40 Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the ESI 26/ESI 40 Fixed Tuned Receiver.

The bandwidths shown below are specified by ANSI C63.4-2003, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

Shure Inc. P4T-X1 13409

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables or are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emission that has the highest amplitude relative to the limit. These methods are performed to the specifications in ANSI C63.4: 2003.

7.0

Company: Model Tested: Report Number: 13409

Shure Inc. P4T-X1

CONDUCTED EMISSION MEASUREMENTS - Part 15.207

Conducted emissions were measured over the frequency range from 150 kHz to 30 MHz in accordance with the power line measurements as specified in FCC Part 15, Subpart C, Section 15.207 & ANSI C63.4-2003. Since the device is operated from the public utility lines, the 120 Vac, 60 Hz power leads, high (hot) and low (neutral) sides, were measured by connecting the measuring equipment to the appropriate meter terminal of the LISN. During the test, the cables were placed and items moved (when appropriate) to maximize emissions. All signals were then recorded. The allowed levels for Intentional Radiators which is designed to connected to the public utility (AC) power line cannot exceed the following:

Frequency of	Conducted Limits (dBuV)		
Emissions (MHz)	Quasi Peak	Average	
.15 to .5	66 to 56	56 to 46	
.5 to 5	56	46	
5 to 30	60	50	

NOTE:

All test measurements were made at a screen room temperature of 74°F at 52% relative humidity.

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

8.0 DESCRIPTION OF TEST SAMPLE: (See also Paragraph 9.0)

8.1 Description:

The PSM400 system, P4T Transmitter and P4R Receiver, is a frequency-agile, in-ear monitoring system for use in a wide variety of applications. Its many features help overcome the difficulties associated with stage monitoring.

The P4T Transmitter is another breakthrough design for in-ear monitoring. It allows the user to connect two line-level inputs directly into the transmitter. The P4T-X1 operates from 944 MHz to 952 MHz, using frequency modulation. It is powered by an external linear 120VAC to 15VDC power supply.

A Shure FP33 Microphone Mixer with its internal 1 kHz generator, will supply an audio signal to the two P4T input ports, 1/L and 2/R. The P4T LOOP OUT output ports will be connected to the Shure FP33 input ports, which provide proper loading. All audio cables are shielded.

8.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 220mm x Width: 137mm x Height: 44mm

8.3 LINE FILTER USED:

None

8.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

N/A

Clock Frequencies:

38 kHz and 4 MHz

8.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

- 1. Unpopulated PCB
- 2. Populated PCB

PN: 34A10587 PN: 90AC10586

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

ADDITIONAL DESCRIPTION OF TEST SAMPLE: 9.0 (See also Paragraph 8.0)

1: There were no additional descriptions noted at the time of test.

I certify that the above, combined with paragraph 8.0, describes the equipment tested and that the equipment will be manufactured as stated.

By:

Signature

Title

For:

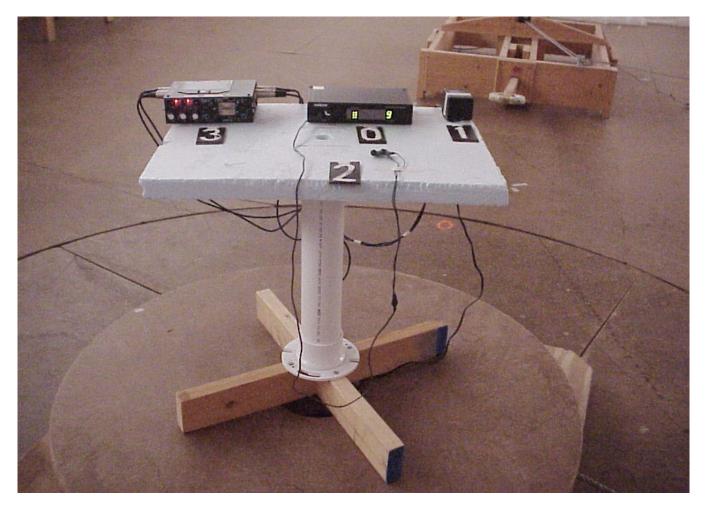
Company

Date

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

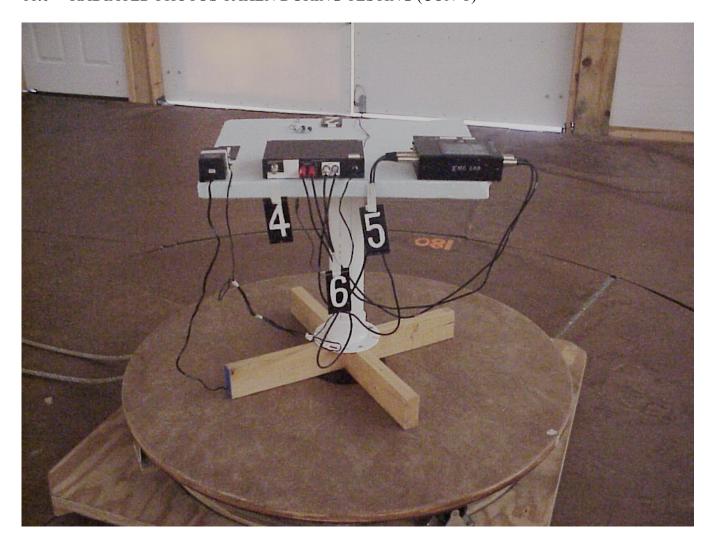
10.0 PHOTO INFORMATION AND TEST SET-UP


- Item 0 PSM400 Wireless Personal Monitor Model Number: P4T-X1 Serial Number: NA
- Item 1 Shure Power Supply Model Number: PS40
- Item 2 Shure Earphones Model Number: E3
- Item 3 Shure Mixer Model Number: FP33
- Item 4 50 Ohm termination
- Item 5 Two Shielded Input Cables with Metal Shells. 1.1m
- Item 6 Two Shielded Output Cables with Metal Shells. 1.1m

Company:SIModel Tested:P4Report Number:13

Shure Inc. P4T-X1 13409

11.0 RADIATED PHOTOS TAKEN DURING TESTING



Company:SModel Tested:PReport Number:1

Shure Inc. P4T-X1 13409

11.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)

Company:SModel Tested:FReport Number:1

Shure Inc. P4T-X1 13409

11.0 RADIATED PHOTOS TAKEN DURING TESTING (CON'T)

RF CONDUCTED SPURIOUS EMISSIONS AT THE ANTENNA TERMINALS

Shure Inc. P4T-X1 13409

1250 Peterson Dr., Wheeling, IL 60090

11.0 CONDUCTED PHOTOS TAKEN DURING TESTING

Shure Inc. P4T-X1

12.0 **RESULTS OF TESTS**

1250 Peterson Dr., Wheeling, IL 60090

The radio interference emission charts can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report.

13.0 CONCLUSION

It was found that the PSM400 Wireless Personal Monitor, Model Number(s) P4T-X1 "meets" the radio interference conducted and radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (d), for low power auxiliary stations.

Company:Shure Inc.Model Tested:P4T-X1Report Number:13409

TABLE 1 – EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
Receiver	Rohde & Schwarz	ESI 26	837491/010	20 Hz – 26 GHz	11/07
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	12/07
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	12/07
Antenna	ЕМСО	3104C	00054891	20 MHz – 200 MHz	2/08
Antenna	Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/08
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	3/08
Antenna	Electrometrics	3146	1205	200 MHz – 1 GHz	3/08
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	2/08
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	3/08
Antenna	EMCO	3115	2479	1 GHz – 18 GHz	5/08
Antenna	EMCO	3115	99035731	1 GHz – 18 GHz	6/08
Antenna	Rohde & Schwarz	HUF-Z1	829381001	20 MHz – 1 GHz	2/08
Antenna	Rohde & Schwarz	HUF-Z1	829381005	20 MHz – 1 GHz	8/07

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

1250 Peterson Dr., Wheeling, IL 60090

TABLE 1 – EQUIPMENT LIST

Test Equipment	Manufacturer	Model Number	Serial Number	Frequency Range	Cal Due Dates
				0	
LISN	Solar	8012-50-R-	8305116	10 MHz – 30 MHz	8/07
		24-BNC			
LISN	Solar	8012-50-R-	814548	10 MHz – 30 MHz	8/07
		24-BNC			
LISN	Solar	9252-50-R-	961019	10 MHz – 30 MHz	12/07
		24-BNC			
LISN	Solar	9252-50-R-	971612	10 MHz – 30 MHz	10/07
		24-BNC			
LISN	Solar	9252-50-R-	92710620	10 MHz – 30 MHz	7/07
		24-BNC			

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

TEST PROCEDURE

SUBPART H

LOW POWER AUXILIARY STATIONS

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

1.0 TEST SET-UP

All radiated emission tests were performed at D.L.S. Electronic Systems, Inc. The radiated tests were made with the test item placed on a non-conductive turntable located in the Test Room with the receive antenna placed three or one meter(s) from the device under test.

2.0 RF-POWER OUTPUT – PART 2.1046

As stated in PART 74.861 (d-1), the RF output power should not exceed 1 watt. The RF output power was measured with the transmitter unmodulated. The RF output power was measured using the substitution method because there is no antenna port for a direct connection. The RF output power was measured using the following test method:

Actual Measurements Taken:

16.56 dBm Measured output of the transmitter 16.56 dBm equals 0.0453 watts

LIMIT:

Manufacturer's rated output power = $15 \text{ dBm} \pm 2 \text{ dB} = 20 \text{ mW}$ min to 50 mW max

MARGIN:

1 - 0.0453 = .9547 watts

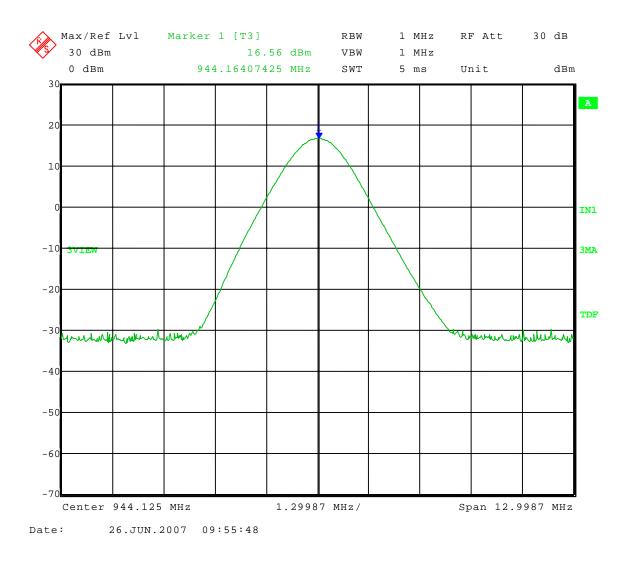
1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

GRAPH(S) TAKEN OF THE RF POWER

OUTPUT MEASUREMENT

PART 2.1046

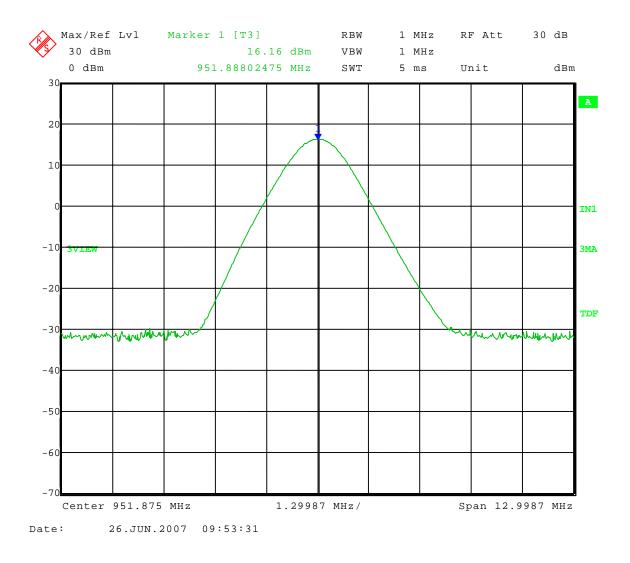


1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date: 06-26-2007	
Company: Shure, Inc.	
EUT: P4T	
Test: Peak Power Output - Cond	ucted
Rule part: FCC Part 74; FCC Part 2.1	046
Operator: Craig B	
Comment: Channel A: 944.125 MHz	

Peak Output Power = 16.56 dBm = 45.3 mW



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

06-26-2007
Shure, Inc.
P4T
Peak Power Output - Conducted
FCC Part 74; FCC Part 2.1046
Craig B
Channel 9: 951.875 MHz

Peak Output Power = 16.16 dBm = 41.3 mW

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

3.0 MODULATION CHARACTERISTICS – PART 2.1047

a. Voice modulated communication equipment.

A curve showing the frequency response of the audio modulating circuit over a range of 50 Hz - 12 kHz is submitted with this report.

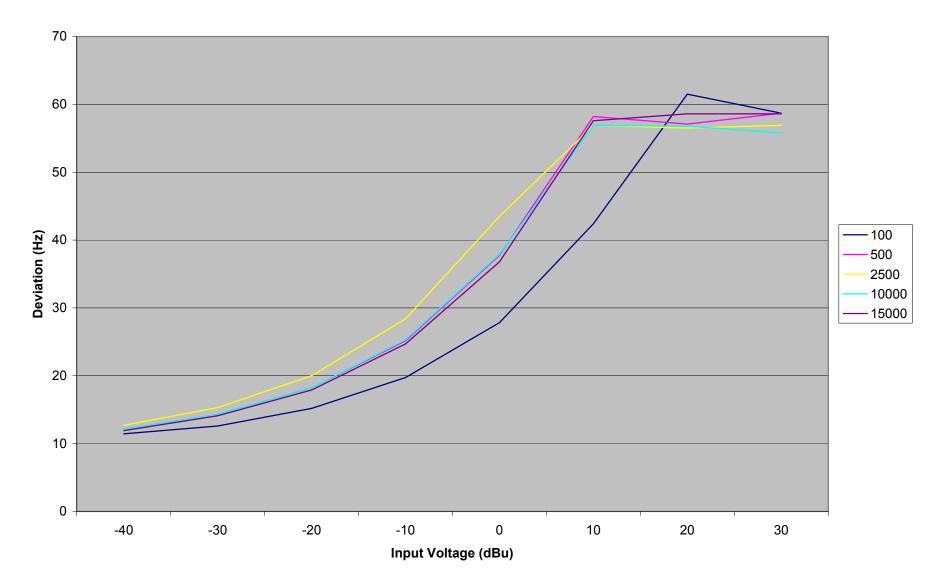
b. Equipment which employs modulation limiting

A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

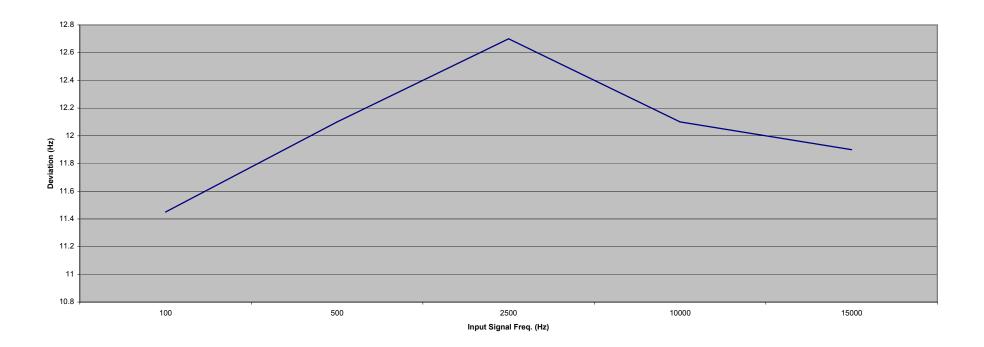
1001. 13409

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A


GRAPH(S) TAKEN SHOWING THE FREQUENCY

RESPONSE OF THE


AUDIO MODULATING CIRCUIT

PART 2.1047

P4T Deviation Vs. Input Voltage

P4T Deviation Vs. Frequency w/ -40 dBu Input

			P4T	#45 Raw D	Data		
		100	500	2500	10000	15000	(Hz)
	-40	11.45	12.1	12.7	12.1	11.9	
	-30	12.6	14.3	15.3	14.3	14.1	
	-20	15.18	18.2	20	18.2	17.9	
(dBu)	-10	19.73	25.17	28.4	25.3	24.7	
	0	27.84	37.75	43.5	37.9	36.8	
	10	42.4	58.2	56.9	56.9	57.6	
	20	61.5	57.1	56.5	56.8	58.6	
	30	58.7	58.7	56.9	55.8	58.6	

P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

4.0 **OCCUPIED BANDWIDTH - PART 2.1049**

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99.0% of the total mean power and measured under the following conditions:

For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated 43+10 log₁₀ (mean output power, in watts) dB below the mean output power of the transmitting unit (device under test).

For low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum of ± 75 kHz is permitted when frequency modulation is used. The operating bandwidth shall not exceed 200 kHz.

Carson's Rule⁻

Section 2.202 (g)

Bn = 2M + 2DK, K = 1	Bn = Bandwidth
M = 15 kHz,	M = Maximum Modulating Frequency

D = 45 kHz.D = Peak Deviation

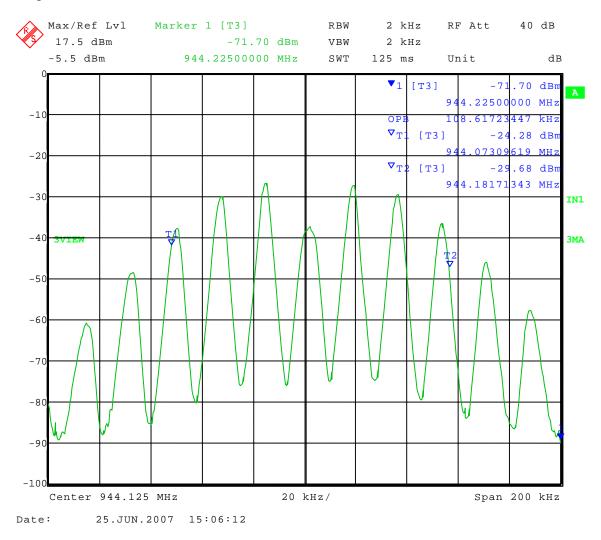
Bn = 2(15) + 2(45)(1) = 120 kHz

Company:Shure Inc.Model Tested:P4T-X1Report Number:13409

APPENDIX A

GRAPH(S) TAKEN OF THE OCCUPIED BANDWIDTH

PART 2.1049

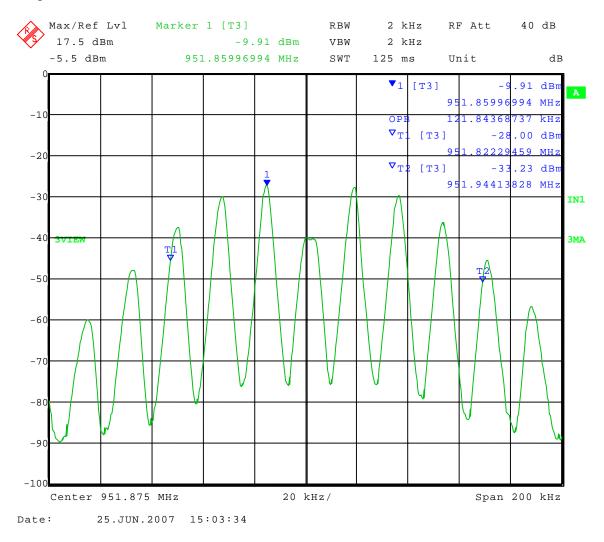

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date:	06-25-2007
Company:	Shure, Inc.
EUT:	P4T
Test:	Occupied Bandwidth; 99% bandwidth
Rule part:	FCC Part 74; FCC Part 2.1049
Operator:	Craig B

Frequency: 944.125 MHz

99% power bandwidth = 108.62 kHz

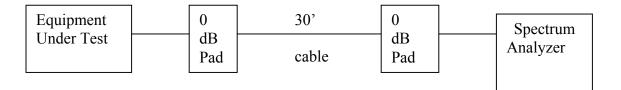

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date:	06-25-2007
Company:	Shure, Inc.
EUT:	P4T
Test:	Occupied Bandwidth; 99% bandwidth
Rule part:	FCC Part 74; FCC Part 2.1049
Operator:	Craig B

Frequency: 951.875 MHz

99% power bandwidth = 121.84 kHz


Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

5.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS - PART 2.1051

Spurious conducted emissions were measured at the antenna terminals using an artificial load. Plots were made showing the amplitude of each harmonic emission with the equipment operated as specified in 2.989. As shown by the radiated charts there was no reason to believe that there were any spurious emissions other than the harmonics that were than individually investigated when doing the conducted test at the antenna terminals. Measurements were made up to the 10th harmonic of the fundamental. The following setup was used showing placement of the attenuators:

The allowed emissions for transmitters operating in the 944 MHz - 952 MHz bands for PSM400 Wireless Personal Monitor equipment are found under Part 74, Section 74.861, Paragraph d-3 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

any discrete frequency outside the authorized band shall be attenuated, at least, 43+10Log¹⁰ (1)(mean output power, in watts) dB below the mean output power of the transmitting unit.

NOTE: See the following pages for the data ad graphs of the actual measurements made:

Company:Shure Inc.Model Tested:P4T-X1Report Number:13409

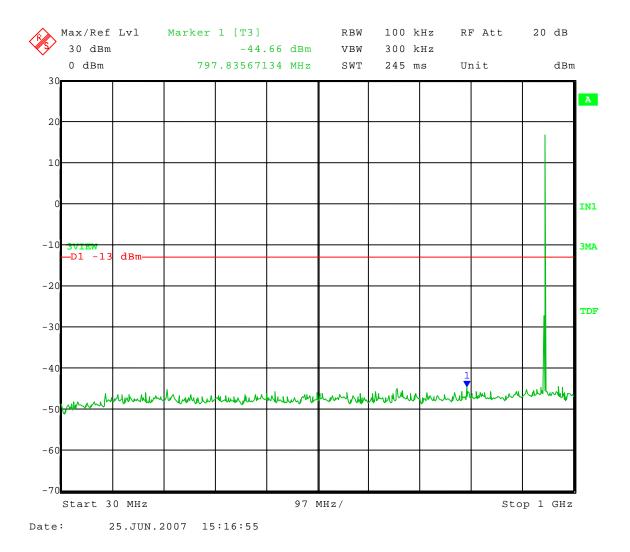
APPENDIX A

CONDUCTED EMISSION DATA AND GRAPHS

TAKEN FOR SPURIOUS EMISSION

MEASUREMENTS MADE AT THE

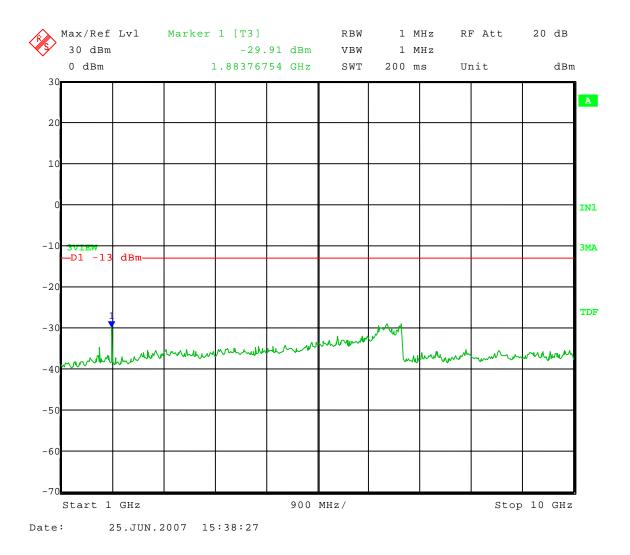
ANTENNA TERMINALS


PART 2.1051

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

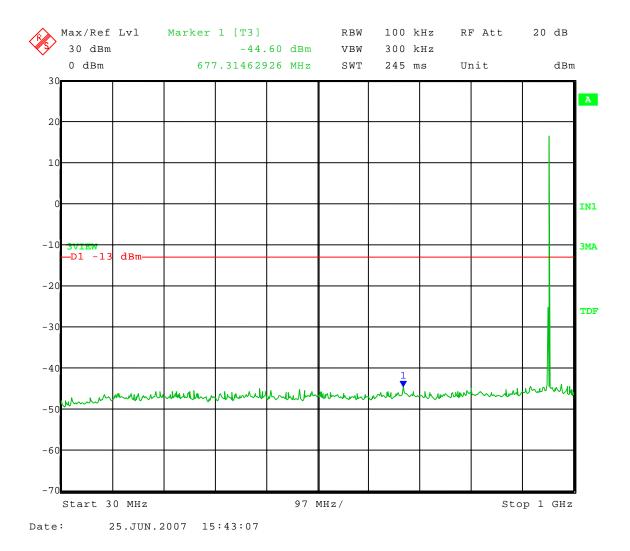
Test Date:	06-25-2007
Company:	Shure, Inc.
EUT:	P4T
Test:	Spurious Emissions - Conducted
Rule part:	FCC Part 74; FCC Part 2.1051
Operator:	Craig B
Comment:	Channel: 944.125 MHz
	Frequency Range: 30 to 1000 MHz
	Limit = -13 dBm



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date:	06-25-2007
Company:	Shure, Inc.
EUT:	P4T
Test:	Spurious Emissions - Conducted
Rule part:	FCC Part 74; FCC Part 2.1051
Operator:	Craig B
Comment:	Channel: 944.125 MHz
	Frequency Range: 1 to 10 GHz
	Limit = -13 dBm



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date:	06-25-2007
Company:	Shure, Inc.
EUT:	P4T
Test:	Spurious Emissions - Conducted
Rule part:	FCC Part 74; FCC Part 2.1051
Operator:	Craig B
Comment:	Channel: 951.875 MHz
	Frequency Range: 30 to 1000 MHz
	Limit = -13 dBm



1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

Test Date:	06-25-2007
Company:	Shure, Inc.
EUT:	P4T
Test:	Spurious Emissions - Conducted
Rule part:	FCC Part 74; FCC Part 2.1051
Operator:	Craig B
Comment:	Channel: 951.875 MHz
	Frequency Range: 1 to 10 GHz
	Limit = -13 dBm

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

6.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS – PART 2.1053

Radiated measurements were performed at a 1 or 3 meter test distance automatically scanning the frequency range from 200 MHz to 10000 MHz, depending upon the fundamental frequency.

For the PSM400 Wireless Personal Monitor, the highest fundamental frequency is 952 MHz so the scans were made up to 10000 MHz, to cover the tenth harmonic.

All signals in the frequency range of 30 MHz to 200 MHz were measured with a Biconical Antenna and from 200 MHz to 1000 MHz a Log Periodic Antenna was used as the pickup devices. From 1000 MHz to 10000 MHz, a Double Ridge Horn Antenna was used. The cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Tests were made in both the horizontal and vertical planes of polarization.

The allowed emissions for transmitters operating in the 944 MHz - 952 MHz bands for PSM400 Wireless Personal Monitor are found under Part 74, Section 74.861, Paragraph d-3 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

any discrete frequency outside the authorized band shall be attenuated, at least, 43+10Log¹⁰ (1)(mean output power, in watts) dB below the mean output power of the transmitting unit.

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED EMISSION DATA TAKEN

FOR FUNDAMENTAL EMISSIONS

USING THE SUBSTITUTION METHOD

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig B Date of test: 06-26-2007 Temperature: 72 deg. F Humidity: 59% R.H.

Rated Power = 50 mW = 17 dBm

Fundamental Emissions - ERP - Substitution Method

Model: P4T												
Channels: 944.125 MHz, and 951.875 MHz												
Frequency and Polarization (MHz)	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Signal Gen.	Gain of subst. antenna (dBi)	emission	Limit (dBm)	Margin (dB)	Strength of emission [ERP] (mW)				
944.125 vertical	113.1	26.4	11.0	2.15	15.4	24.0	8.6	34.83				
944.125 horizontal	115.5	28.6	11.0	2.15	17.6	24.0	6.4	57.81				
951.875 vertical	113.1	27.3	11.3	2.15	16.0	24.0	8.0	39.81				
951.875 horizontal	115.8	28.5	11.3	2.15	17.2	24.0	6.8	52.48				

EIRP = Signal generator output - cable loss + antenna gain

 $ERP_{(ref. to \frac{1}{2}\lambda dipole)} = Signal generator output - cable loss + antenna gain - 2.15$

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED EMISSION DATA TAKEN

FOR SPURIOUS EMISSIONS

USING THE SUBSTITUTION METHOD

ANSI/TIA/EIA-603-1992 SECTION 2.2.12

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig Brandt Date of test: 06-26-2007 Temperature: 72 deg. F. Humidity: 59% R.H.

Radiated Spurious Emissions (e.r.p. substitution method) FCC Part 74; FCC Part 2.1053									
Model: P4T Tra	ansmit Frequency: 94	<mark>4.125 MHz</mark>							
Frequency	Field Strength	Factor to	Power	Limit	Margin	Receive			
	Level	Convert to	ERP			Antenna			
MHz	dBuV/m	dBm	dBm	dBm	dB	Polarization			
1888.250	66.21	99.0	-32.74	-13	19.74	Vertical			
1888.250	64.15	99.9	-35.70	-13	22.70	Horizontal			
2832.375	64.13	100.8	-36.62	-13	23.62	Vertical			
2832.375	65.10	101.4	-36.25	-13	23.25	Horizontal			
3776.500	47.92	100.3	-52.33	-13	39.33	Vertical			
3776.500	46.19	100.7	-54.46	-13	41.46	Horizontal			

Shure Inc. P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig Brandt Date of test: 06-26-2007 Temperature: 72 deg. F. Humidity: 59% R.H.

Radiated Spurious Emissions (e.r.p. substitution method) FCC Part 74; FCC Part 2.1053									
Model: P4T Tra	ansmit Frequency: 95	51.875 MHz							
Frequency Field Strength Factor to Power Limit Margin									
	Level	Convert to	ERP			Antenna			
MHz	dBuV/m	dBm	dBm	dBm	dB	Polarization			
1903.750	66.81	99.6	-32.74	-13	19.74	Vertical			
1903.750	64.14	100.0	-35.81	-13	22.81	Horizontal			
2855.625	64.99	101.1	-36.06	-13	23.06	Vertical			
2855.625	63.15	100.8	-37.60	-13	24.60	Horizontal			
3807.500	52.14	100.1	-47.91	-13	34.91	Vertical			
3807.500	49.10	100.7	-51.55	-13	38.55	Horizontal			

P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

RADIATED EMISSION DATA AND GRAPH(S)

TAKEN FOR

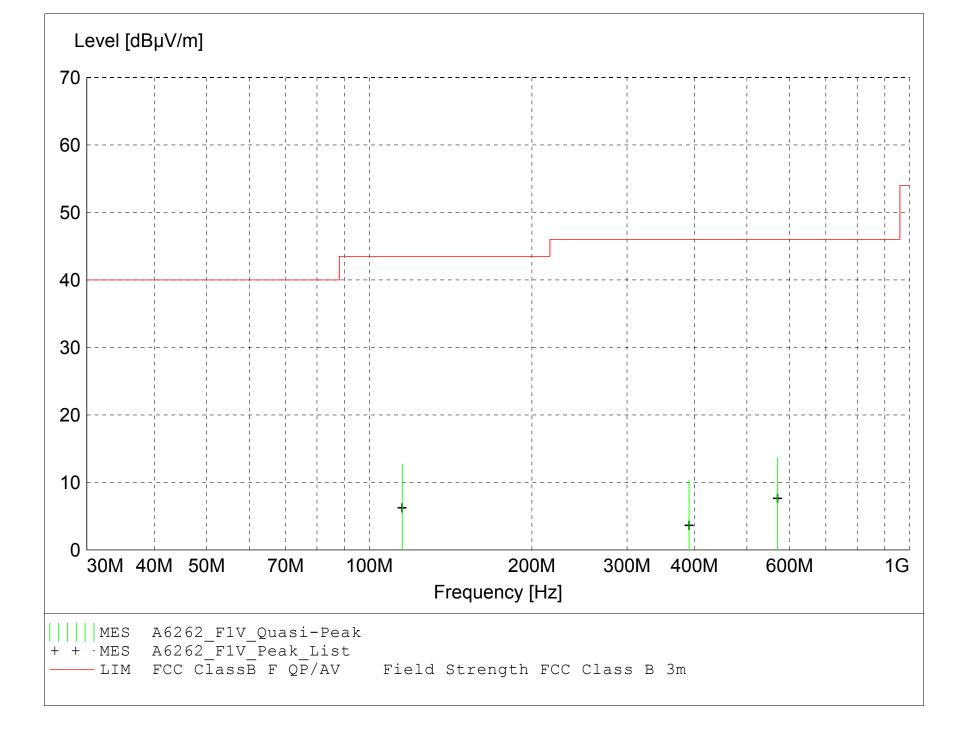
SPURIOUS EMISSION MEASUREMENTS

PART 2.1053

FCC Part 15 Class B

Electric Field Strength

EUT:	P4T (944 to 952 MHz)
Manufacturer:	Shure, Inc.
Operating Condition:	72 deg. F; 59% R.H.
Test Site:	DLS O.F. Site 3
Operator:	Craig B
Test Specification:	
Comment:	Low and High channels
	Date: 06-26-2007


TEXT: "Site 3 MidV 3M"

Short Description: Test Set-up Vert30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with VERTICAL Antenna Polarization

MEASUREMENT RESULT: "A6262_F1V_Final"

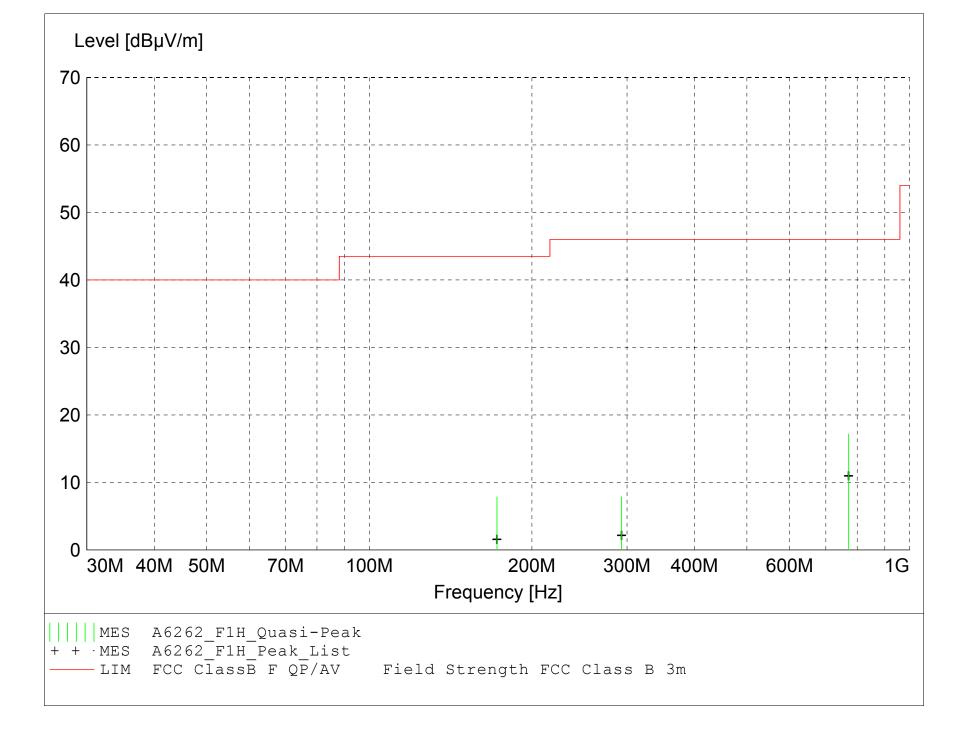
6/26/2007 1:10PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
115.080000	23.99	12.20	-23.4	12.7	43.5	30.8	1.00	0	QUASI-PEAK	Noise Floor
569.900000	15.80	18.41	-20.5	13.7	46.0	32.3	1.00	0	QUASI-PEAK	Noise Floor
390.740000	16.52	15.04	-21.3	10.3	46.0	35.7	1.00	0	QUASI-PEAK	Noise Floor

FCC Part 15 Class B

Electric Field Strength

EUT:	P4T (944 to 952 MHz)
Manufacturer:	Shure, Inc.
Operating Condition:	72 deg. F; 59% R.H.
Test Site:	DLS O.F. Site 3
Operator:	Craig B
Test Specification:	
Comment:	Low and High channels
	Date: 06-26-2007


TEXT: "Site 3 MidH 3M"

Short Description: Test Set-up Horz30-1000MHz TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

> Antennas ---Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 3 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "A6262_F1H_Final"

6/26/2007 1:12PM

Frequency	Level	Antenna	System	Total	Limit	Margin	Height	EuT	Final	Comment
		Factor	Loss	Level			Ant.	Angle	Detector	
MHz	dBµV	dBµV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
771.620000	15.89	20.75	-19.5	17.2	46.0	28.8	2.50	0	QUASI-PEAK	Noise Floor
172.320000	16.28	14.57	-23.0	7.9	43.5	35.6	2.50	0	QUASI-PEAK	Noise Floor
293.120000	16.19	13.35	-21.7	7.9	46.0	38.1	2.50	0	QUASI-PEAK	Noise Floor

P4T-X1

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

FREQUENCY STATIBILITY DATA

TAKEN DURING TESTING

PART 2.1053

1250 Peterson Dr., Wheeling, IL 60090

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig B Date of test: 06-29-2007

Limit = 47.2 kHz (0.005% of 944 MHz)

Frequency Stability FCC Part 2.1055

Model	Nominal					Measured	Frequency				
Widder	Frequency (MHz)	+50 deg. C	Error (kHz)	+40 deg. C	Error (kHz)	+30 deg. C	Error (kHz)	+20 deg. C	Error (kHz)	+10 deg. C	Error (kHz)
P4T	944.125	944.133742	8.742	944.129434	4.434	944.125726	0.726	944.124073	-0.927	944.123071	-1.929
P4T	951.875	951.883542	8.542	951.879935	4.935	951.875025	0.025	951.874574	-0.426	951.873021	-1.979

Frequency Stability FCC Part 2.1055

Model	Nominal					Measured	Frequency		
Widder	Frequency (MHz)	0 deg. C	Error (kHz)	-10 deg. C	Error (kHz)	-20 deg. C	Error (kHz)	-30 deg. C	Error (kHz)
P4T	944.125	944.118211	-6.789	944.112325	-12.675	944.105411	-19.589	944.096443	-28.557
P4T	951.875	951.867310	-7.690	951.861423	-13.577	951.854108	-20.892	951.845040	-29.960

Frequency Stability FCC Part 2.1055

Model	Nominal	Measured Frequency						
Widder	Frequency (MHz)	102 Volts	Error (kHz)	120 Volts	Error (kHz)	138 Volts	Error (kHz)	
P4T	944.125	944.122971	-2.029	944.124073	-0.927	944.124324	-0.676	
P4T	951.875	951.873973	-1.027	951.874574	-0.426	951.874624	-0.376	

1250 Peterson Dr., Wheeling, IL 60090

APPENDIX A

8.0 FREQUENCY STABILITY (TEMPERATURE) PHOTOS TAKEN DURING TESTING

