

CETECOM ICT Services consulting - testing - certification >>>

TEST REPORT

Test Report No.: 1-4439/12-02-05

Testing Laboratory

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10 66117 Saarbrücken/Germany Phone: + 49 681 5 98 - 0 + 49 681 5 98 - 9075 Fax: Internet: http://www.cetecom.com e-mail: ict@cetecom.com

Accredited Test Laboratory:

The testing laboratory (FCC part 15 D) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS) The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Applicant

Shure 5800 Touhy Avenue Niles, IL USA 60714

Phone: + 1-847-600-2000 + 1-847-600-1212 Fax: Contact: Mr. Geoff Lange e-mail: Lange Geoff@shure.com Phone: + 1-847-600-8923

Manufacturer

Shure 5800 Touhy Avenue Niles, IL USA 60714

Test Standard/s

FCC Part 15, subpart D

Isochronous UPCS Device 1920 - 1930 MHz

Industry Canada

2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)

RSS-213, Issue 2

	Test Item	
Kind of test item: Model name: FCC ID:	DECT Portable Part MXW8 Z10 DD4MXW8	A
IC: S/N serial number:	616A-MXW8 4121370202	3
HW hardware status: SW software status:	01 0.1.0.0	
Frequency [MHz]:	1920 -1930	•
Type of Modulation:	Digital (Gaussian Frequency Shift Keying)	
Number of channels:	5 RF Channels, 5x12 = 60 TDMA Duplex Channels	
Antenna:	2 permanently attached chip antennas	
Power Supply:	3.7 V DC	and the second se
Temperature Range:	-20 ℃ to 50 ℃	

Test Report authorised:

2012-09-03

Lenjoint, Marco **Testing Manager**

cn=Marco Lenjoint,

o=CETECOM ICT Services

GmbH, ou=LEJ-100721,

email=marco.lenjoint@ceteco

Test performed:

2012-09-03

cn=Joachim Wolf, o=CETECOM ICT Services GmbH, ou=WOL-110131, email=Joachim.Wolf@cetecom.co m, c=DE 2012.10.01 13:22:37 +02'00'

Wolf, Joachim Senior Consultant

1 Table of contents

1	Table of contents	2
2	General information	4
	2.1 Notes and disclaimer	4
	2.2 Application details	4
3	Test standard/s:	4
4	Test Environment	5
5	Test Item	5
6	RSP100 Test report Cover Sheet/Performance Test Data	6
7	Summary of Measurement Results	7
8	Test Set-up	8
	8.1 Frequency Measurements	8
	8.2 Timing Measurements	
	8.3 Conducted Emission Test	
	8.4 Radiated Emission Test	
	8.5 Power Line Conducted Emissions Test	9
	8.6 Monitoring Tests	
	8.7 Radiated Output Power Test	
9	Detailed Test Results	11
	9.1 Power Line Conducted Emissions	11
	9.2 Coordination with fixed microwave	
	9.3 Digital Modulation Techniques	
	9.4 Labeling Requirements	
	9.5 Antenna Requirements	
	9.6 Channel Frequencies	
	9.7 Automatic Discontinuation of Transmission	
	9.8 Peak Power Output	
	9.9 Emission Bandwidth B	
	 9.10 Power Spectral Density 9.11 In-Band Unwanted Emissions, Conducted 	
	9.12 Out-of-Band Emissions, Conducted	
	9.12 Out-of-Band Emissions, Conducted	
	9.14 Frame Repetition Stability	
	9.15 Frame Period and Jitter	
	9.16 Monitoring Threshold, Least Interfered Channel	
	9.17 Threshold Monitoring Bandwidth	
	9.18 Reaction Time and Monitoring Interval	
	9.19 Time and Spectrum Window Access Procedure	43
	9.20 Acknowledgments and Transmission duration	44
	9.21 Dual Access Criteria Check	
	9.22 Alternative monitoring interval	47
	9.23 Spurious Emissions (Radiated)	
	9.24 Receiver Spurious Emissions	
10	Test equipment and ancillaries used for tests	53

11	Observations	54
Annex	A: Photographs of the Test Set-up	55
Annex I	B: External Photographs of the EUT	56
Annex	C: Internal Photographs of the EUT	59
Annex I	D: Document History	61
Annex I	E: Further Information	62
Annex I	-: Accreditation Certificate	63

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwriting signature. For verification of the electronical signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2012-05-30
Date of receipt of test item:	2012-08-17
Start of test:	2012-08-17
End of test:	2012-08-30
Person(s) present during the test:	/

3 Test standard/s:

Test Standard	Version	Test Standard Description
FCC Part 15, subpart D	2009-10	Isochronous UPCS Device 1920 – 1930 MHz
Industry Canada RSS-213, Issue 2	1999-04-24	2 GHz Licence-exempt Personal Communication Service Devices (LE-PCS)

4 Test Environment

Temperature:

Relative humidity content: Air pressure: Power supply: + 22 ℃ during room temperature tests
+ 50 ℃ during high temperature test
- 20 ℃ during low temperature test
38 %
not relevant for this kind of testing
3.7V DC, Li-ion battery

5 Test Item

Kind of test item :	UPCS Portable station
Type identification :	MXW8 Z10
S/N serial number :	4121370202
HW hardware status :	01
SW software status :	0.1.0.0
Power Supply :	3.7V DC, Li-ion battery
Temperature Range :	-20°C to 50°C

6 RSP100 Test report Cover Sheet/Performance Test Data

Test Report Number :	1-4439/12-02-05
Equipment Model Number :	MXW8 Z10
Certification Number :	616A-MXW8
Manufacturer :	Shure
Tested to Radio Standards Specification (RSS) No. :	RSS-213 Issue 2
Open Area Test Site Industry Canada Number :	IC 3462C-1
Frequency Range (or fixed frequency)	1921.536 – 1928.448 MHz
RF Power [W] (max)	Conducted: 20.4 dBm, 109.1 mW
	Rad. EIRP: 14.5 dBm, 27.9 mW
Occupied Bandwidth (99% BW) :	1.37MHz
Type of Modulation :	Digital (Gaussian Frequency Shift Keying)
Emission Designator (TRC-43)	1M37F1D
Antenna information :	2 permanently attached antennas, no ext. connector
Transmitter Spurious (worst case)	-28.8 dBm
Receiver Spurious (worst case) :	-58.1 dBm

ATTESTATION:

DECLARATION OF COMPLIANCE: I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Signature:

cn=Joachim Wolf, o=CETECOM ICT Services GmbH, ou=WOL-110131, email=Joachim.Wolf@cetecom.com, c=DE 2012.10.01 13:22:55 +02'00'

Date: 2012-09-03

Test engineer: Joachim Wolf

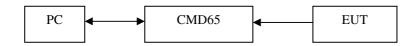
CETECOM ICT Services GmbH Untertürkheimerstr. 6-10 66117 Saarbrücken Germany

Summary of Measurement Results 7

\square	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

CFR 47 Part 15 UPCS

Name of test	FCC CFR 47 Paragraph	IC RSS-213 Paragraph	Verdict
Coordination with fixed microwave	15.307(b)	N/A	Complies
Digital Modulation Techniques	15.319(b)	6.1	Complies
Labeling requirements	15.19(a)(3)	RSS-GEN 5.2	Complies
Antenna requirements	15.317, 15.203	4.1(e)	Complies
Power Line Conducted Emission	15.107(a),	6.3	Complies
	15.207(a)	RSS GEN 7.2.2	Complies
Emission Bandwidth	15.323(a)	6.4	Complies
In-band Emission	15.323(d)	6.7.2	Complies
Out-of-band Emissions	15.323(d)	6.7.1	Complies
Peak Transmit Power	15.319(c)(e),	6.5	Complies
	15.31(e)		
Power Spectral Density	15.319(d)	4.3.2.1	Complies
Automatic discontinuation of transmission	15.319(f)	4.3.4(a)	Complies
Carrier frequency stability	15.323(f)	6.2	Complies
Frame repetition stability	15.323(e)	4.3.4(c)	Complies
Frame period and jitter	15.323(e)	4.3.4(c)	Complies
Monitoring threshold, Least interfered	15.323(c)(2);(5);	4.3.4(b)	Complies
channel	(9)		
Monitoring of intended transmit window and	15.323(c)(1)	4.3.4	Complies
maximum reaction time	15,000(a)(7)	4.0.4	Complian
Threshold monitoring bandwidth	15.323(c)(7)	4.3.4	Complies
Reaction time and monitoring interval	15.323(c)(1);(5); (7)	4.3.4	Complies
Access criteria test interval	15.323(c)(4);(6)	4.3.4	N/A ¹
Access criteria functional test	15.323(c)(4);(6)	4.3.4	N/A ¹
Acknowledgments	15.323(c)(4)	4.3.4	Complies
Transmission duration	15.323(c)(3)	4.3.4	Complies
Dual access criteria	15.323(c)(10)	4.3.4	N/A ⁵
Alternative monitoring interval	15.323(c)(10);(11)	4.3.4	N/A ²
Spurious Emissions (Antenna Conducted)	15.323(d)	6.7.1	Complies ³
Spurious Emissions (Radiated)	15.319(g),	4.3.3	Complies ⁴
	15.109(a),	RSS-GEN 7.2.3	
	15,209(a)		
Receiver Spurious Emissions	N/A	6.8	Complies


¹Only applicable for EUT that can initiate a communication link ² The client declares that the tested equipment does not implement this provision ³ The tested equipment has integrated antennas only ⁴ Only requirement FCC 15.109 for unintentional radiators was tested radiated ⁵Only applicable for EUT that supports duplex channels

8 Test Set-up

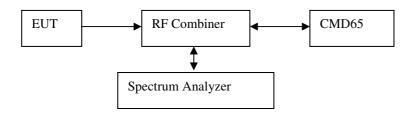
8.1 Frequency Measurements

Test Set-up 1:

This setup is used for measuring Carrier Frequency Stability at nominal and extreme temperatures.

For long term Frequency Stability, the EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to 01010101....

8.2 Timing Measurements


Test Set-up 2:

This setup is used for measuring Frame Repetition Stability, Frame Period and Jitter.

8.3 Conducted Emission Test

Test Set-up 3:

This setup is used for all conducted emission tests.

The EUT was in loopback-mode and was controlled with the CMD65, the modulation pattern was set to Pseudo-Random bit sequence to simulate normal speech.

8.4 Radiated Emission Test

Test Set-up 4:

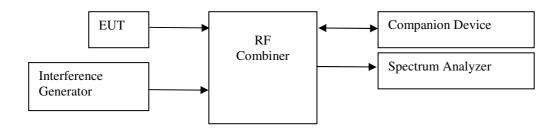
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 20 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1987 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

9 kHz - 150 MHz: Quasi Peak measurement, 200 Hz Bandwidth, passive loop antenna. 150 kHz - 30 MHz: Quasi Peak measurement, 9 kHz Bandwidth, passive loop antenna. 30 MHz - 200 MHz: Quasi Peak measurement, 120 KHz Bandwidth, bilog antenna 200MHz - 1GHz: Quasi Peak measurement, 120 KHz Bandwidth, bilog antenna 1GHz: Average, RBW 1MHz, VBW 10 MHz, waveguide horn

8.5 Power Line Conducted Emissions Test

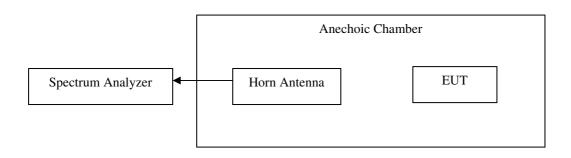
shielded chamber wooden desk 80 cm over ground FUT 80 cm 80 cm ÷ T - CDN V - CDN 50 Ω [] 40 cm teleph ac filter filter ÷ 120V AC FMI control unit receiver feeding bridge 01 teleph. sytem


Test Set-up 5:

principle set up: conducted emission at ac power line

8.6 Monitoring Tests

Test Set-up 6:



This test setup is used for all Monitoring and Time and Spectrum Access Procedure tests. The path loss from the signal generator to the EUT is measured with a power meter before the testing is started.

A clock signal is used to synchronize the Interference Generator to the start of the DECT frame, this signal always comes from the base station. If the EUT is a DECT Portable Part (i.e. a handset) the clock signal will come from the Companion Device.

8.7 Radiated Output Power Test

Test Set-up 7:

This setup is used for measuring the radiated output power in a fully anechoic chamber with a measurement distance of 1m.

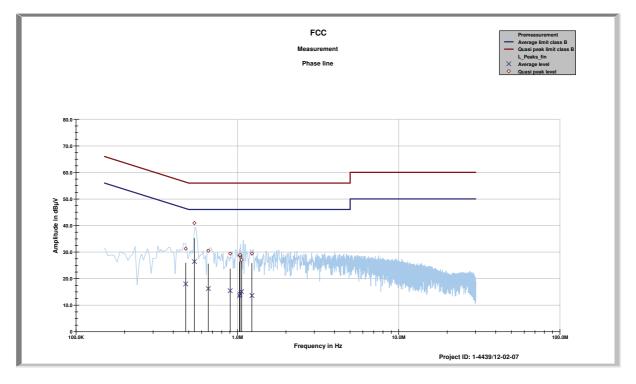
9 Detailed Test Results

9.1 Power Line Conducted Emissions

Measurement Procedure:

ANSI C63.4-2003 using 50µH/50 ohms LISN.

Test Result:


Measurement Data: See attached graph and tables.

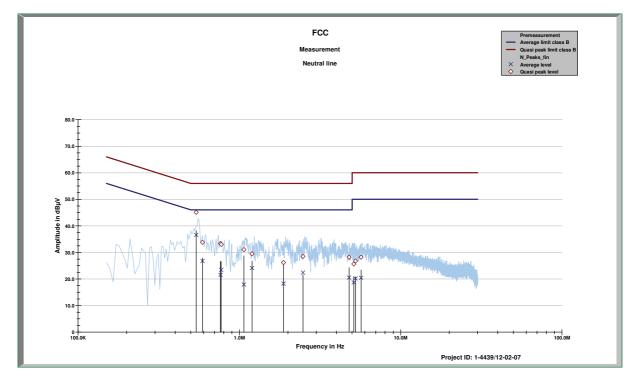
Pass

Requirement: FCC 15.207 (a)

Idle mode, phase line

FCC Phase line tbl

Project ID: 1-4439/12-02-07


03:19:27 PM, Monday, August 20, 2012

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.47827	31.28	25.09	18.00	28.62
0.54133	40.93	15.07	26.43	19.57
0.6607	30.52	25.48	16.25	29.75
0.90213	29.44	26.56	15.46	30.54
1.03183	28.70	27.30	13.60	32.40
1.03861	28.96	27.04	14.21	31.79
1.06149	27.07	28.93	15.16	30.84
1.23043	29.47	26.53	13.62	32.38

Project ID - 1-4439/12-02-07 EUT - Gooseneck base microphone Serial Number - sample 7 Operating mode - charging

Idle mode, neutral line

FCC Neutral line tbl

Project ID: 1-4439/12-02-07

03:19:27 PM, Monday, August 20, 2012

Frequency	Quasi peak level	Margin quasi peak	Average level	Margin average
MHz	dBµV	dBµV	dBµV	dBµV
0.54	45.10	10.90	36.60	9.40
0.59072	33.83	22.17	26.80	19.20
0.7632	33.37	22.63	21.56	24.44
0.77194	33.05	22.95	23.45	22.55
1.06589	31.05	24.95	17.94	28.06
1.19809	29.50	26.50	24.15	21.85
1.8776	26.18	29.82	18.25	27.75
2.4793	28.51	27.49	22.43	23.57
4.7872	28.19	27.81	20.53	25.47
5.1178	25.64	34.36	18.69	31.31
5.2482	26.79	33.21	20.21	29.79
5.6839	28.20	31.80	20.48	29.52

Project ID - 1-4439/12-02-07 EUT - Gooseneck base microphone Serial Number - sample 7 Operating mode - charging

9.2 Coordination with fixed microwave

The affidavit from UTAM, Inc. is included in the documentation supplied by the applicant:

Requirement: FCC 15.307 (b):

Each application for certification of equipment operating under the provisions of this Subpart must be accompanied by an affidavit from UTAM, Inc. certifying that the applicant is a participating member of UTAM, Inc. In the event a grantee fails to fulfill the obligations attendant to participation in UTAM, Inc., the commission may invoke administrative sanctions as necessary to preclude continued marketing and installation of devices covered by the grant of certification, including but not limited to revoking certification.

9.3 Digital Modulation Techniques

The tested equipment is based on DECT technology, the only difference is that the channel allocation is modified to operate in the 1920-1930 MHz band.

The EUT use Multi Carrier / Time Division Multiple Access / Time division duplex and Digital GFSK modulation.

For further details see the operational description provided by the applicant.

Requirement: FCC 15.319(b)

All transmissions must use only digital modulation techniques.

9.4 Labeling Requirements

See separate documents showing the label design and the placement of the label on the EUT.

Requirement: FCC 15.19

The FCC identifier shall be displayed on the label, and the device(s) shall bear the following statement in a conspicuous location on the device or in the user manual if the device is to small:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label itself shall be of a permanent type, not a paper label, and shall last the lifetime of the equipment.

9.5 Antenna Requirements

Does the EUT have detachable antenna(s)?	□Yes	🛛 No
If detachable, is the antenna connector(s) non-standard?	□Yes	🗌 No

The tested equipment has only integral antennas. The conducted tests were performed on a sample with a temporary antenna connector.

Requirements: FCC 15.203, 14.204. 15.317

9.6 Channel Frequencies

UPCS CHANNEL	FREQUENCY (MHz)			
Upper Band Edge	1930.000			
0 (Highest)	1928.448			
1	1926.720			
2	1924.992			
3	1923.264			
4 (Lowest)	1921.536			
Lower Band Edge 1920.000				

Requirement: FCC 15.303(d), (g)

Within 1920-1930 MHz band for isochronous devices.

9.7 Automatic Discontinuation of Transmission

Does the EUT transmit contro	□Yes	🛛 No	
Type of EUT:	⊠ Initiating device	Respon	ding device

The following tests simulate the reaction of the EUT in case of either absence of information to transmit or operational failure after a connection with the companion device is established.

Number	Test	EUT Reaction	Verdict
1	Power removed from EUT	С	Pass
2	EUT switched Off	С	Pass
3	Hook-On by companion device	N/A	N/A
4	Hook-On by EUT	С	Pass
5	Power removed from companion device	A	Pass
6	Companion device switched Off	N/A	N/A

- A Connection breakdown, Cease of all transmissions
- B Connection breakdown, EUT transmits control and signaling information
- C Connection breakdown, companion device transmits control and signaling information
- N/A Not applicable (the EUT does not have an on/off switch and can not perform Hook-On)

Requirement: FCC 15.319(f)

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. This provision is not intended to preclude transmission of control and signaling information or use or repetitive code used by certain digital modulation technologies to complete frame or burst intervals.

9.8 Peak Power Output

Measurement Procedure:

ANSI C63.17, clause 6.1.2.

Test Results: Pass

Measurement Data:

Maximum Conducted Output Power

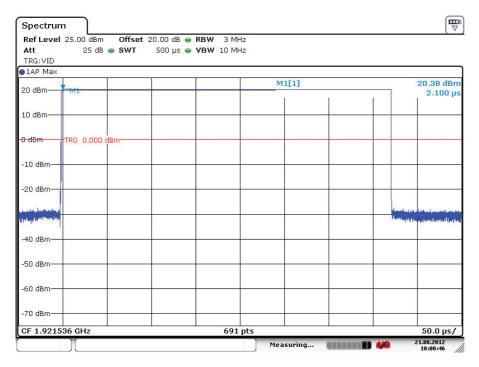
Channel No.	Frequency (MHz)	Maximum Conducted Output Power (dBm)	Maximum Radiated Output Power (dBm)	Maximum Antenna Gain (dBi)
4	1921.536	20.4	14.5	-5.9
2	1924.992	20.4	13.9	-6.5
0	1928.448	20.0	13.1	-6.9

¹ calculated on basis of the antenna gain

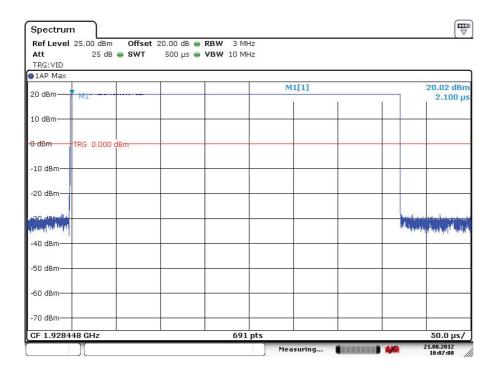
For this test it was also checked that the input voltage variation of 85 and 115% of nominal value did not have any effect on the measured output power, neither radiated nor conducted.

Limit:

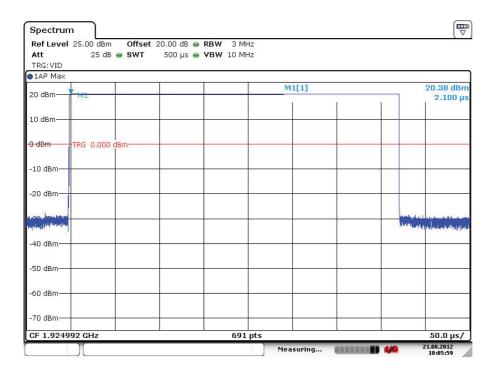
Conducted: 100 μW X SQRT(B)where B is the measured Emission Bandwidth in HzFCC 15.319(c)(e):20.8 dBm (121 mW)RSS-213, Issue 2:20.7 dBm (117 mW)The antenna gain is below 3 dBi.


Requirements: FCC 15.319(f). RSS-213, Issue 2

Peak transmit power shall not exceed 100 microwatts multiplied by the square root of the emission bandwidth in Hertz.

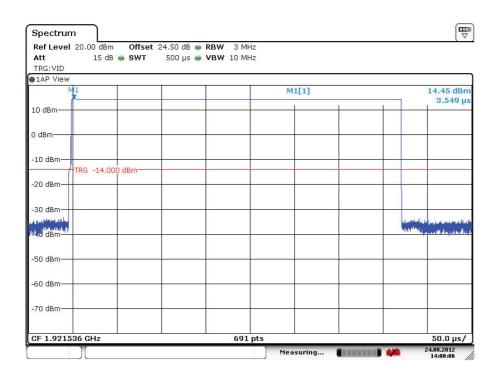

The peak transmit power shall be reduced by the amount in decibels that the maximum directional gain of the antenna exceeds 3 dBi.

Conducted Peak Output Power



Lower Channel

Upper Channel



Middle Channel

Radiated Peak Output Power

Lower Channel

Spectrum Ref Level 20.00 dBm Of	fset 24.50 dB 🖷 RBW	2 MU7		
Att 15 dB				
TRG: VID	n na standard to a standard and a st	* 24 - 14 - 17 CC * (18 - 14 - 1		
1AP View		M1[1]		13.07 dBi
10 dBm	-			2.100 µ
0 dBm				
-10 dBm				
-20 dBm				
-30 dBm				
Au dBm				
-50 dBm				
-60 dBm		2		
-70 dBm			_	
CF 1.928448 GHz		691 pts		50.0 µs,
2E 1'850440 CHS		parhe		24.08.2012

Upper Channel

Spectrum			
Ref Level 20.00 dBm Offset Att 15 dB SWT	24.50 dB RBW 3 MHz		
TRG:VID	500 µs 👄 VBW 10 MHz		
1AP View			
M1		M1[1]	13.91 dBn
10 dBm			2.100 µs
D dBm			
-10 dBm-			
-20 dBm			
-30 dBm			Mark Mary Jose Harrison Losses
40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
CF 1.924992 GHz	691 pts	;	50.0 μs/
Ĭ		Measuring	24.08.2012

Middle Channel

9.9 Emission Bandwidth B

Measurement Procedure:

ANSI C63.17, clause 6.1.3.

Test Results: Pass

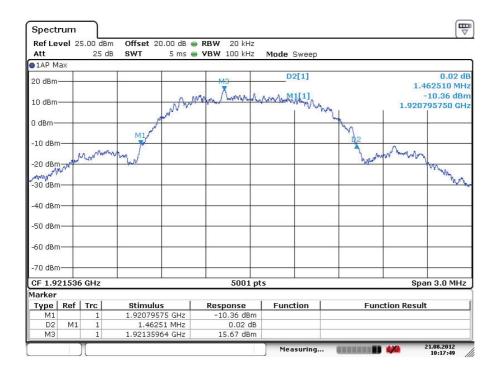
Measurement Data:

Channel No.	Frequency (MHz)	26 dB Bandwidth B (kHz)
4	1921.536	1463
0	1928.448	1455

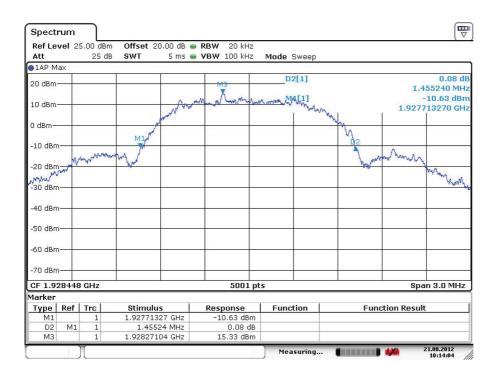
Channel No.	Frequency (MHz)	20 dB Bandwidth B (kHz)
2	1924.992	1365

Channel No.	Frequency (MHz)	6 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A
Channel No.	Frequency (MHz)	12 dB Bandwidth B (kHz)
4	1921.536	N/A
0	1928.448	N/A

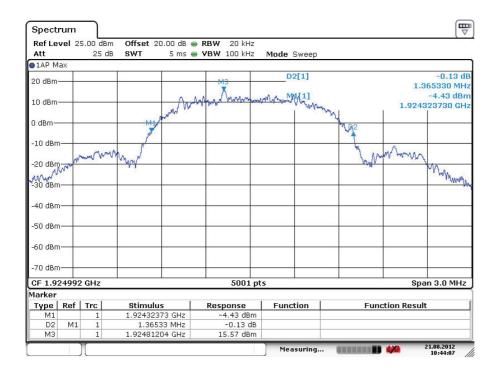
Requirement: FCC 15.323(a)


The 26 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

Requirement: RSS-213 Issue 2, clause 6.4


The 20 dB Bandwidth B shall be larger than 50 kHz and less than 2.5 MHz.

No requirement for 6 dB and 12 dB Bandwidth. These values are only used for testing Monitoring Bandwidth if the Simple Compliance test fails (ANSI C63.17, clause 7.4).



Emission Bandwidth B, Lower Channel

Emission Bandwidth B, Upper Channel

20 dB Bandwidth B, Middle Channel

9.10 Power Spectral Density

Measurement Procedure:

ANSI C63.17, clause 6.1.5.

Test Results: Pass

Measurement Data:

Channel No.	Frequency (MHz)	Power Spectral Density (mW/3kHz)
4	1921.35964	1.46
0	1928.27104	1.45

Averaged over 100 sweeps.

Requirement: FCC 15.319(d)

The Power Spectral Density shall be less than 3 mW (4.77 dBm) when averaged over at least 100 sweeps.

Power Spectral Density

Lower Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Spectrun	n								
Ref Level Att Count 100,		Offset 2 SWT G:VID		RBW 3 kH VBW 10 kH					
●1Sa View									
20 dBm					M	1[1]	ĩ	ī	1.63 dBm 269.500 µs
10 dBm			M1		177 17				
0 dBm		/	×		<u>u u</u>				
-10 dBm—									
-20 dBm—									
-30 dBm—		/	~						
-40 dBm	TRG -40.00) dBm							
-50 dBm			2		a a				
-60 dBm									
-70 dBm-						L			
CF 1.9213	5964 GHz			4001	pts	_	_		200.0 µs/
	Л				Mea	suring		444	21.08.2012 10:41:08

Averaged, 100 Sweeps

Pulse power [dBm]	1.63
Pulse power [mW]	1.46

Power Spectral Density

Upper Channel:

Frequency of the maximum level was recorded under chapter 5.9.

Spectrun	n								
Ref Level Att Count 100,		Offset 2 SWT G:VID		RBW 3 kH VBW 10 kH					0.54
●1Sa View									
20 dBm					M	1[1]	1	я.	1.60 dBm 277.500 µs
10 dBm			M1					-	
0 dBm		/	×		<u>.</u>				
-10 dBm—									
-20 dBm					\rightarrow				
-30 dBm—		/	~						
-40 dBm	TRG -40.00) dBm							
-50 dBm									
-60 dBm									
-70 dBm					-				
CF 1.9282	7104 GHz			4001	pts	1	1		200.0 µs/
					Mea	suring		444	21.08.2012 10:47:05

Averaged, 100 Sweeps

Pulse power [dBm]	1.60
Pulse power [mW]	1.45

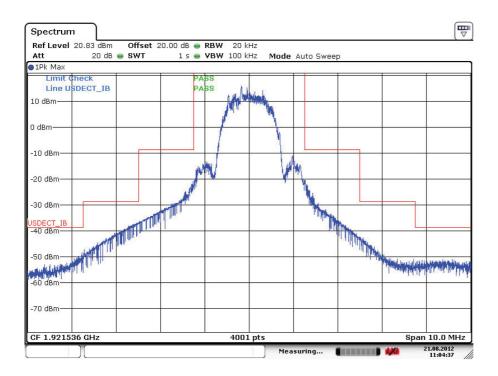
9.11 In-Band Unwanted Emissions, Conducted

Measurement Procedure:

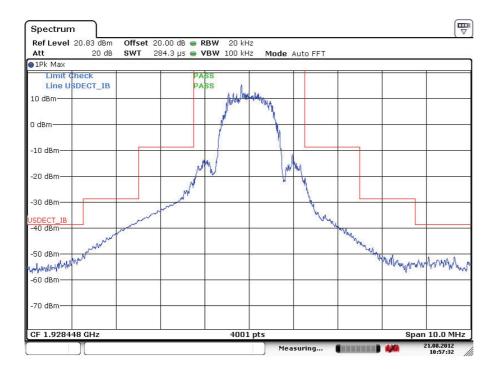
ANSI C63.17, clause 6.1.6.1.

Test Results: Pass

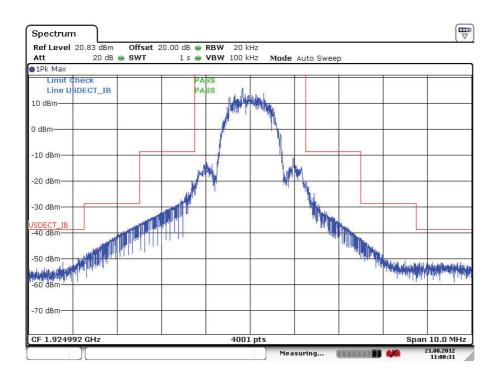
Measurement Data:


See plots.

Requirement: FCC 15.323(d)


 $B < f2 \le 2B$:less than or equal to 30 dB below max. permitted peak power level $2B < f2 \le 3B$:less than or equal to 50 dB below max. permitted peak power level $3B < f2 \le UPCS$ Band Edge:less than or equal to 60 dB below max. permitted peak power level

In-Band Unwanted Emissions, Conducted



Lower Channel

Upper Channel

Middle Channel

The BS spurious in-band transmission level is below the indicated limit.

9.12 Out-of-Band Emissions, Conducted

Measurement Procedure:

ANSI C63.17, clause 6.1.6.2.

Test Results: Pass

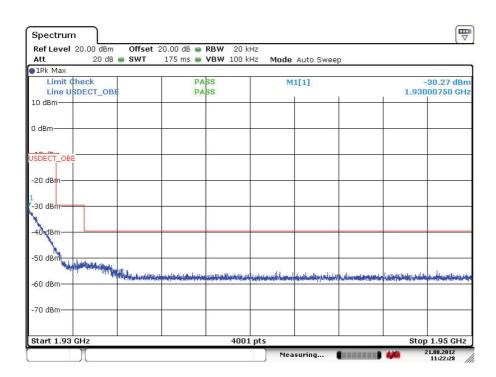
Measurement Data:

See plots.

Requirement: FCC 15.323(d)

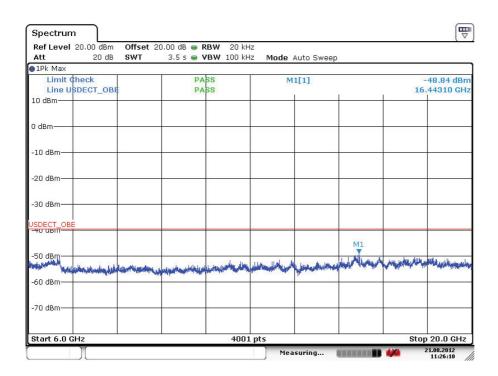
$f \leq 1.25$ MHz outside UPCS band:	≤ -9.5 dBm
1.25 MHz \leq f \leq 2.5 MHz outside UPCS band:	≤ -29.5 dBm
$f \ge 2.5$ MHz outside UPCS band:	≤ -39.5 dBm

Out-of-Band Unwanted Emissions, Conducted


Upper and Lower Channel:

Spectrum								
Ref Level 20.00 dBm	Offset 20.0	00 dB 🥃 RI	BW 20 kH	Z				<u> </u>
Att 20 dB	SWT 47	75 ms 😑 V	BW 100 k⊢	z Mode	Auto Sweep			
●1Pk Max								
Limit Check		PA	SS	M	1[1]		10	53.95 dBm
Line USDECT_OBE		PA	SS				1.8	90740 GH
10 dBm								
0 dBm								
o abiii								
-10 dBm								
-20 dBm								
-30 dBm								
-30 ubili				· · · · · ·				
JSDECT OBE								
-40 UBIT				19. 19.				
-50 dBm								
	and a state of the state of the	Martin Martine	and the party is a second	an in the provided and states	to a fel de la ple stande	القريد والمريد والمريد والمريد	in the laber of the	a the state of the
-sellabrin								
-70 dBm				21 22				
Start 100.0 kHz			4001				01-	. 1.0.011
Start 100.0 KHZ			4001	. prs				p 1.9 GHz
Д				Mea	suring	NA ANA ANA ANA ANA ANA ANA ANA	4/0 2	21.08.2012 11:09:19

Ref Level 20.00 dBm Att 20 dB		1.00 dB 🛑 R 74.2 μs 🛑 V		-	Auto FFT			62
●1Pk Max								
Limit Check Line USDECT_OBE		PA PA		м	1[1]			28.79 dBn 99250 GH:
0 dBm				1				
-10 dBm								
-20 dBm								
-30 dBm								
								and the second
-50 dBm								and the second second
-50 dBm	Allowing	the short whether the	Hallow and some	under and white	attanti da sa	- Antonia to a state of the	mudamy/4/11	
-60 dBm	a construction (Mar)	and the state of the second	···· 4 ··· Al totas etd. ;	diama cana a series a series a		the decide.		
-70 dBm								
Start 1.9 GHz			4001	nte			Pton	1.92 GHz


Out-of-Band Unwanted Emissions, Conducted

Spectrum								
Ref Level 20.00 dBm Att 20 dB	Offset 20 SWT	1.00 dB 👄 R 1 s 👄 V	BW 20 kH BW 100 kH	-	Auto Sweep	1		<u></u>
●1Pk Max								
Limit Check Line USDECT_OBE		PA PA		М	1[1]			-51.29 dBn .77730 GH:
0 dBm			0	2				
-10 dBm								
-20 dBm-								
-30 dBm								
JSDECT_OBE			5	2				
-50 dBm	1	T		erile in e	11.000 - 10.000 - 10.000	William Mary and Jakes	the start falled as a	M1
-50 dBm	n a li la si de la si				and the first of the second			
-70 dBm								
Start 1.94 GHz			4001	. pts			Sto	op 6.0 GHz
				Mea	suring		444	21.08.2012 11:24:24

Out-of-Band Unwanted Emissions, Conducted

The BS spurious out-of-band transmission level is below the indicated limit.

9.13 Carrier Frequency Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.1.

Test Results: Pass

Measurement Data:

The Frequency Stability is measured with the CMD65. The CMD65 was logged by a computer programmed to get the new readings as fast as possible (about 3 readings per second) over the noted time period or number of readings. The peak-to-peak difference was recorded and the mean value and deviation in ppm was calculated.

The Carrier Frequency Stability over power Supply Voltage and over Temperature is measured also with the CMD65.

Carrier Frequency Stability over Time at Nominal Temperature

Average Mean Carrier	Max. Diff.	Min. Diff.	Max Dev.	Limit
Frequency (MHz)	(kHz)	(kHz)	(ppm)	(ppm)
1924.995359	8.57	0.77	2.71	±10

Deviation ppm = ((Max.Diff. – Mean.Diff.) / Mean Carrier Freq.) x 10⁶

Deviation (ppm) is calculated from 3000 readings with the CMD65.

Carrier Frequency Stability over Power Supply at Nominal Temperature

Voltage	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
115 V AC	1924.992	N/A	N/A	
98 V AC	1924.992	N/A	N/A	±10
132 V AC	1924.992	N/A	N/A	

Deviation ppm = ((Mean – Measured frequency) / Mean) $\times 10^{6}$

Carrier Frequency Stability over Temperature

Temperature	Measured Carrier Frequency (MHz)	Difference (kHz)	Deviation (ppm)	Limit (ppm)
T = +20 °C	1924.992	Ref.	Ref.	
T = -20 ℃	1924.988	-4.0	-2.0	±10
T = +50 ℃	1924.995	+3.0	+1.5	

Deviation ppm = ((Mean – Measured frequency) / Mean) x 10^6

9.14 Frame Repetition Stability

Measurement Procedure:

ANSI C63.17, clause 6.2.2.

Test Results: Pass

Measurement Data:

The Frame Repetition Stability is measured with the CMD65. The Frame Repetition Stability is 3 times the standard deviation.

Carrier Frequency	Mean	Standard Deviation	Frame Repetition
(MHz)	(Hz)	(ppm)	Stability (ppm)
1924.992	100.0	0.302	0.907

Limit:

Frame Repetition Stability ±10 ppm (TDMA)

Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.2.

9.15 Frame Period and Jitter

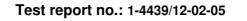
Measurement Procedure:

ANSI C63.17, clause 6.2.3.

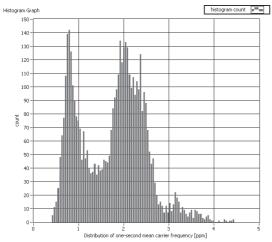
Test Results: Pass

Measurement Data:

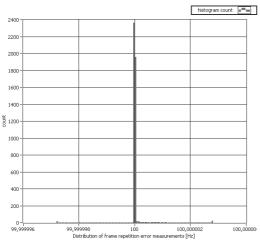
The Frame Repetition Stability is measured with the CMD65

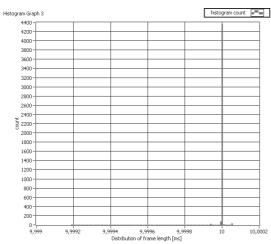

Carrier Frequency	Frame Period	Max Jitter	3xStandard Deviation of
(MHz)	(ms)	(μs)	Jitter (μs)
1924.992	10.000	0.06	

Max Jitter = (1/(Frame Period + Pk-Pk)/2) - (1/Frame Period), when Pk-Pk and Frame Period are in Hz. 3xSt.Dev.Jitter 3x(1/(Frame Period + St.Dev)) - (1/St.Dev)) x 10⁶


Limit:

Frame Period	20 or 10 ms
Max Jitter	25 μs
3 times St.Dev. of Jitter	12.5 μs


Ref. FCC 15.323(e). ANSI C63.17, clause 6.2.3.



Histogram of Carrier Frequency Stability

Histogram of Frame Repetition Stability

Histogram of Frame Period and Jitter

9.16 Monitoring Threshold, Least Interfered Channel

Monitoring Threshold limits:

Lower Threshold:

 $T_L = 15 \log B - 184 + 30 - P_{EUT}$ (dBm)

Upper Threshold:

 $T_U = 15 \log B - 184 + 50 - P_{EUT}$ (dBm)

B is measured Emission Bandwidth in Hz $$P_{\text{EUT}}$$ is measured Transmitter Power in dBm

Calculated values:

Lower Threshold	-81.9 dBm
Upper Threshold	-61.9 dBm

The Lower Threshold is applicable for systems which have defined less than 40 duplex system access channels. The Upper Threshold is applicable for systems with more than 40 duplex systems access channels and that implements the Least Interfered Channel Procedure (LIC).

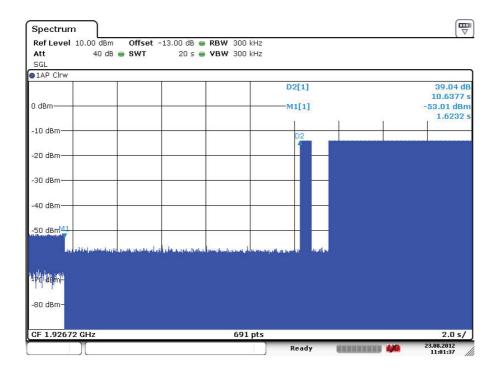
Measurement Procedure:

The Upper Threshold is found by the procedure defined in ANSI C63.17 clause 7.3.1 or 7.3.2.

Least Interfered Channel Procedure NOT used:		
Lower Threshold N/A		
Least Interfered Channel Procedure used:		
Upper Threshold -62.0 dBm		

Least Interfered Channel (LIC) Procedure Test, FCC 15.323(b), (c)(2) and (c)(5)

ANSI C63.17 clause 7.3.3 ref.	Observation	Verdict
b) $f_1 T_L + 13 \text{ dB}, f_2 T_L + 6 \text{ dB}$	Transmission always on f_2	Pass
c) $f_1 T_L + 6 dB$, $f_2 T_L + 13 dB$	Transmission always on f_1	Pass
d) $f_1 T_L + 7 dB$, $f_2 T_L$	Transmission always on f_2	Pass
e) <i>f</i> ₁ T _L , <i>f</i> ₂ at T _L + 7 dB	Transmission always on f_1	Pass



Selected Channel Confirmation, FCC 15.323(c)(1) and (5)

ANSI C63.17 clause 7.3.4 ref.	Observation	Verdict
b) Shall not transmit on f_1	EUT transmits on f_2	Pass
d) Shall not transmit on f_2	EUT transmits on f_1	Pass

Limits:

Lower Threshold + 6 dB margin	-75.9 dBm
Upper Threshold + 6 dB margin	-55.9 dBm

7.3.4 Selected Channel Confirmation, connection 10.6 s after interferer removed

9.17 Threshold Monitoring Bandwidth

This test is only required if a dedicated monitoring receiver is used. If the test is not carried out the manufacturer shall declare and provide evidence that the monitoring is made through the radio receiver used for communication.

Measurement Procedure:

Simple Compliance Test, ANSI C63.17, clause 7.4.1

More Detailed Test, ANSI C63.17, clause 7.4.2

The test is passed if **either** the Simple Compliance Test or the More Detailed Test is passed.

During this test the spectrum analyzer is observed visually to see if the EUT transmits or not.

Test Results:

Test performed	Observation	Verdict
Simple Compliance Test, at ±30% of B	No transmissions	Pass
More Detailed Test, at -6 dB points	N/A	N/A
More Detailed Test, at -12 dB points	N/A	N/A

The More Detailed Test must be pass at both the -6dB and -12 dB points if the Simple Compliance Test fails.

Comment: The Simple Compliance Test was performed with the level $T_U + U_M + 10$ dB to check that the EUT did not transmit at all.

The tested EUT uses the same receiver for monitoring and communication, this test is therefore not required. However the test was performed nonetheless and the test is passed.

Limits: FCC 15.323(c)(7):

The monitoring system bandwidth must be equal to or greater than the emission bandwidth of the intended transmission.

9.18 Reaction Time and Monitoring Interval

Measurement Procedure:

ANSI C63.17, clause 7.5

Test Results:

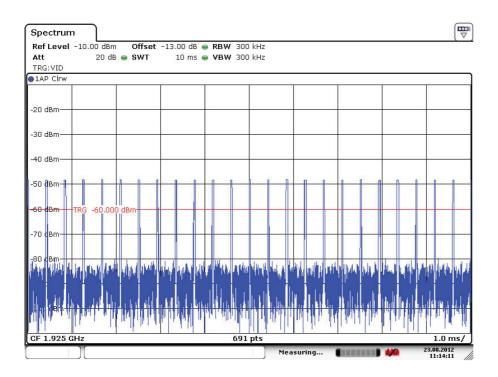
By administrative commands and out-of-operating region interference, the EUT is restricted to operate on a single carrier frequency.

Time-synchronized pulsed interference was then applied on the carrier at pulsed levels TU + UM to check that the EUT does not transmit. The level was raised 6 dB for part d) with 35 μ s pulses.

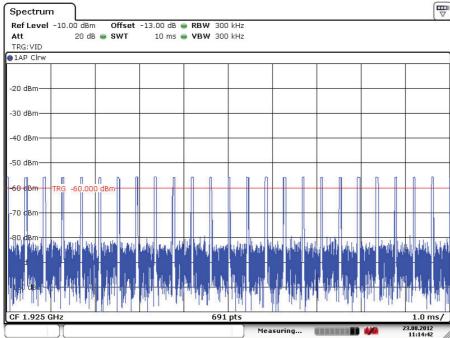
The pulses are synchronized with the EUT timeslots and applied cantered within all timeslots.

Pulse Width, ref. to ANSI C63.17 clause 7.5	Observation	Verdict
c) > largest of 50 μ s and 50*SQRT(1.25/B)	No transmission	Pass
d) > largest of 35 μ s and 35*SQRT(1.25/B)	No transmission	Pass
and with interference level raised 6 dB		Fa55

Comment: Since B is larger than 1.25 MHz, the test was performed with pulse lengths of 50 µs and 35 µs.


Limits: FCC 15.323(c)(1), (5) and (7)

The maximum reaction time must be less than 50xSQRT (1.25/emission bandwidth in MHz) microseconds for signals at the applicable threshold level but shall not be required to be less than 50 microseconds.


If a signal is detected that is 6 dB or more above the applicable threshold level, the maximum reaction time shall be 35xSQRT (1.25/emission bandwidth in MHz) microseconds but shall not be required to be less than 35 microseconds.

Comment: This test is only applicable for EUTs that can be an initiating device.

35 µs Pulses

50 µs Pulses

Test report no.: 1-4439/12-02-05

9.19 Time and Spectrum Window Access Procedure

This requirement is only for EUTs which transmit unacknowledged control and signaling information

Measurement Procedure:

Timing for EUTs using control and signaling channel type transmissions: ANSI C63.17, clause 8.1

Test results:

Access Criteria, ref. to ANSI C63.17 clause 8.1.1	Observation	Verdict
b) Check that the EUT transmits on the interference free time slot	N/A	N/A
b) The EUT must terminate or pause in its repetitive transmission of the control and signaling channel on the open channel to repeat the access criteria not less frequently than every 30 s	N/A	N/A

If FCC 15.323(c)(6) option Random Waiting Interval is NOT implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.2	Observation	Verdict
b) Check that the EUT changes to interference free time slot when interference is introduced on the time slot in use	N/A	N/A

If FCC 15.323(c)(6) option Random Waiting Interval is implemented

Access Criteria, ref. to ANSI C63.17 clause 8.1.3	Observation	Verdict
b-d) Check that the EUT uses random waiting interval before continuing transmission on an interfered time slot	N/A	N/A

Comment: The tested EUT does not transmit unacknowledged control and signaling information.

Limits:

FCC 15.323(c)(4):

Once access to specific combined time and spectrum windows is obtained an acknowledgement from a system participant must be received by the initiating transmitter within one second or transmission must cease. Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

FCC 15.323(c)(6):

If the selected combined time and spectrum windows are unavailable, the device may either monitor and select different windows or seek to use the same windows after waiting an amount of time, randomly chosen from a uniform random distribution between 10 and 150 milliseconds, commencing when the channel becomes available.

9.20 Acknowledgments and Transmission duration

Measurement Procedure:

Acknowledgments: ANSI C63.17, clause 8.2.1

Transmission Duration: ANSI C63.17, clause 8.2.2

During the test **Initial transmission without acknowledgments** the signal from the EUT to the companion device is blocked by circulators in addition to the tunable attenuator.

The test **Transmission time after loss of acknowledgments** is performed by cutting-off the signal from the companion device by a RF switch the time until the EUT stops transmitting.

The **Transmission Duration** test is performed by monitoring the slot in use and measuring the time until the EUT changes to a different slot.

Test Results:

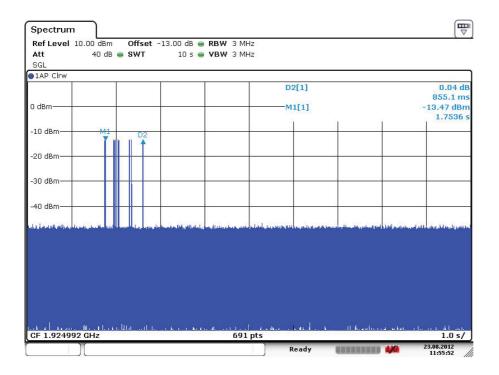
Acknowledgments

Test ref. to ANSI C63.17 clause 8.2.1	Observation	Verdict
a) Initial transmission without acknowledgments	0.86 s	Pass
c) Transmission time after loss of acknowledgments	2.7 s	Pass

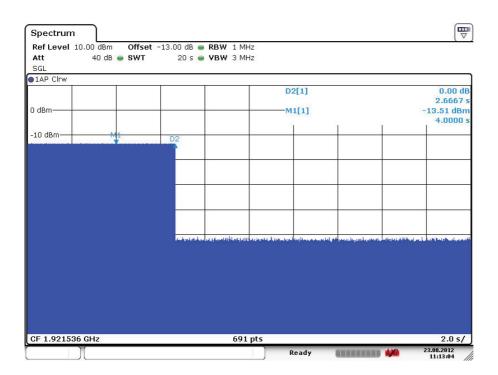
Transmission Duration

Test ref. to ANSI C63.17 clause 8.2.2	Observation	Verdict
b) Transmission duration on same time and	7.5 b	Bass
frequency window	7.5 h	Pass

Comment: /


Limits: FCC 15.323(c)(3) and (4)

Occupation of the same combined time and spectrum windows by a device or group of cooperating devices continuously over a period of time longer than 8 hours is not permitted without repeating the access criteria.


Once access to specific combined time and spectrum windows is obtained an acknowledgment from a system participant must be received by the initiating transmitter within one second or transmission must cease.

Periodic acknowledgments must be received at least every 30 seconds or transmission must cease. Channels used exclusively for control and signaling information may transmit continuously for 30 seconds without receiving an acknowledgement, at which the time access criteria must be repeated.

8.2.1a) Initial Transmission Time without Acknowledgments

8.2.1c) Transmission Time after Loss of Acknowledgments

9.21 Dual Access Criteria Check

Measurement Procedure:

EUTs that do not implement the Upper Threshold: ANSI C62.17, clause 8.3.1 EUTs that implement the Upper Threshold: ANSI C62.17, clause 8.3.2 This test is required for equipment that uses the access criteria in FCC 15.323(c)(10).

Test Results:

EUTs that do NOT implement the Upper Threshold:

Test ref. to ANSI C63.17 clause 8.3.1	Observation	Verdict
b) EUT is restricted to a single carrier f_1 for TDMA		
systems. The test is pass if the EUT can set up	N/A	N/A
a communication link.		
c) d) No transmission on interference-free receive	N/A	N/A
time/spectrum window. All transmit slots blocked	IN/A	IN/A
e) f) No transmission on interference-free transmit	N/A	N/A
time/spectrum window. All transmit slots blocked	IN/A	N/A

EUTs that implement the Upper Threshold:

Test ref. to ANSI C63.17 clause 8.3.2	Observation	Verdict	
b) EUT is restricted to a single carrier f_1 for TDMA			
systems. The test is pass if the EUT can set up	N/A	N/A	
a communication link.			
c) d) Transmission on interference-free receive	N/A	N/A	
time/spectrum window.	IN/A	N/A	
e) f) Transmission on interference-free transmit	N/A	N/A	
time/spectrum window.	IN/A	N/A	
g) Transmission not possible on any	N/A	N/A	
time/spectrum window.	IN/A	N/A	

Comment: This test is only applicable for EUTs that can be an initiating device for duplex connections.

Limits: FCC 15.323(c)(10)

An initiating device may attempt to establish a duplex connection by monitoring both, its intended transmit and receive time and spectrum windows. If both the intended transmit and receive time and spectrum windows meet the access criteria, then the initiating device can initiate a transmission in the intended transmit time and spectrum window. if the power detected by the responding device can be decoded as a duplex connection signal from the initiating device, then the responding device may immediately begin transmitting on the receive time and spectrum window monitored by the initiating device.

9.22 Alternative monitoring interval

Test procedure described in ANSI C63.17, clause 8.4.

This test is required if the EUT implements the provision of FCC 15.323(c)(11).

Test Result:

Not tested. The tested EUT does not implement this provision. See manufacturer's declaration.

9.23 Spurious Emissions (Radiated)

Measurement Procedure:

FCC 15.209, FCC 15.109

Test Result:

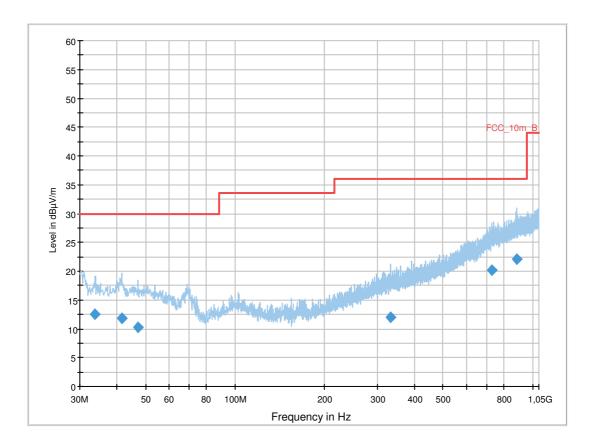
Tests for intentional radiators according to FCC 15.209 are not required when Out-of-Band Emission was tested conducted with a pass result.

Measurement Data:

See plots.

Requirement: FCC 15.109(b)

30 –	88 MHz:	90 μV/m
88 –	216 MHz:	150 μV/m
216 –	960 MHz:	210 µV/m
960 –	1000 MHz:	300 µV/m



Common Information

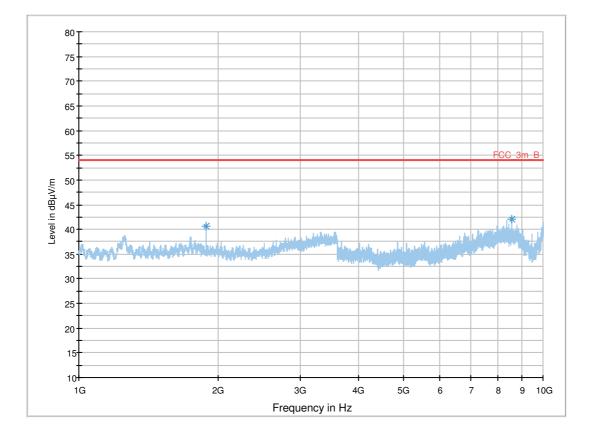
EUT:	microphone gooseneck + charger
Serial Number:	
Test Description:	FCC part 15 class B
Operating Conditions:	idle + charging
Operator Name:	Wolsdorfer
Comment:	AC: 115 V / 60 Hz

Scan Setup: STAN_Fin [EMI radiated]

Hardware Setup: Receiver: Level Unit:	Electr [ESCI dBuV				
Subrange	Step Size	Detectors	IF BW	Meas. Time	Preamp
30 MHz - 2 GHz	60 kHz	QPK	120 kHz	1 s	20 dB

Final Result 1

Frequency (MHz)	QuasiPe ak (dBµV/m)	Meas. Time (ms)	Bandwid th (kHz)	Height (cm)	Po lari zat ion	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)	Comment
33.615300	12.5	1000.0	120.000	200.0	V	272.0	12.9	17.5	30.0	
41.487300	11.8	1000.0	120.000	100.0	V	33.0	13.4	18.2	30.0	
46.939200	10.3	1000.0	120.000	200.0	V	13.0	13.3	19.7	30.0	
332.011650	11.9	1000.0	120.000	106.0	V	314.0	15.5	24.1	36.0	
730.418100	20.2	1000.0	120.000	400.0	V	310.0	23.2	15.8	36.0	
886.935450	22.1	1000.0	120.000	189.0	Н	283.0	25.0	13.9	36.0	



Common Information

microphone gooseneck + charger

EUT: Serial Number: Test Description: Operating Conditions: Operator Name: Comment:

FCC part 15 class B idle + charging Wolsdorfer AC: 115 V / 60 Hz

Data Reduction Result 1 [1]

Frequency (MHz)	MaxPeak-MaxHold (dBµV/m)	Height (cm)	Polarizatio n	Azimut h	Corr. (dB)	Comment
1882.900000	40.6	100.0	V	146.0	-4.2	
8559.100000	42.0	100.0	V	295.0	4.2	

The radiated spurious emission of the unintentional radiator is below the indicated limit.

9.24 Receiver Spurious Emissions

Measurement Procedure:

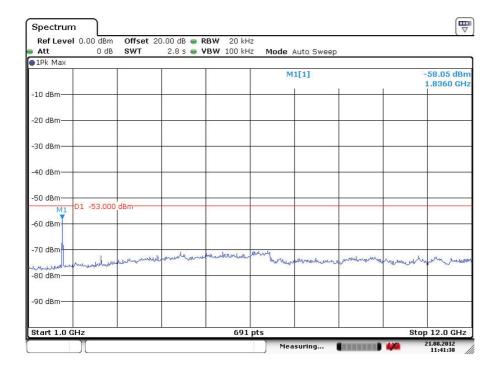
Industry Canada RSS-213 paragraph 6.8 and RSS-GEN paragraphs 4.8 and 6.

Test results:

Frequency MHz	Carrier No.	Measured Value Conducted dBm		
30 - 1000	all	-77.2	-57	20.2
> 1000	all	-58.1	-53	5.1

Requirements: RSS-GEN Issue 2, clause 6

The measurement can be performed either radiated or conducted.


When measured conducted: No spurious signals appearing at the antenna terminals shall exceed 2 nW per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nW above 1 GHz.

When measured radiated: See table 1 in RSS-GEN Issue2, clause 6.

Att 0 c		20.00 dB 👄 R 250 ms 👄 V			Auto Sweep			
1Pk Max	-	-						
				M	1[1]		-	-77.21 dBr 8.720 MH
10 dBm				· · · ·				
20 dBm	_			×				
30 dBm		-						
40 dBm	_							
50 dBm								
60 dBm	00 dBm							
70 dBm		-						
BU dBm		a desta a la sete de la	a telling a terret late barr	under for the part of the	and a lay stale by	an a fi had sid bi had si a sa s	which the hall of the starting	al la subsection de la sub
90 dBm								
Jo adm								

Receiver Spurious Emissions, Conducted, 100 kHz – 1 GHz

Receiver Spurious Emissions, Conducted, 1 GHz – 12 GHz

RefLevel 0.00 dBr		0.00 dB 👄 R 2 s 👄 V			\uto Sweep			
1Pk Max	5 0111		D 11 100 km	- mode /	Kato Sweep			
				М	1[1]			69.44 dBn 5.3240 GH
-10 dBm								
-20 dBm								
-30 dBm				0				
-40 dBm								
-50 dBm)0_dBm							
-60 dBm				1				
-70 dBm				M1	1 (0)51	data shak	L. ATRANING CO.	
-70 dBm www.www.huulundw -80 dBm	www.www.	- wohner with	-bol-reversion	we and a	hore a dana	and and a second a s	yerro antendere	nauther
-90 dBm								
Start 12.0 GHz			691	pts			Stop	20.0 GHz

Receiver Spurious Emissions, Conducted, 12 GHz – 20 GHz

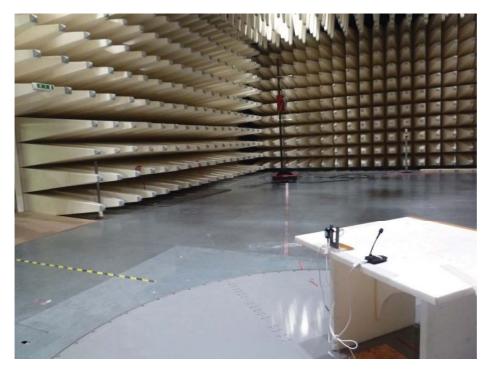
10 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

No.	Instrument/Ancillary	Manufacturer	Туре	Serial-No.	Internal identification
	Radiated Emission	·			
F-1	Control Computer	F+W		FW0502032	300003303
F-2	Trilog antenna	Schwarzbeck	VULB 9163	9163-295	- / -
F-3a	Amplifier	Veritech Microwave Inc.	0518C-138	- / -	- / -
F-4b	Switch	HP	3488A	- / -	300000368
F-5	EMI Test receiver	R&S	ESCI	100083	300003312
F-6	Turntable Controller	EMCO	1061 3M	1218	300000661
F-7	Tower Controller	EMCO	1051 Controller	1262	300000625
F-8	Tower	EMCO	1051 Tower	1262	300000625
F-9	EMI Test receiver	R&S	ESU	- / -	300003555
	Power Line Conducted E	mission			
G-1	EMI Receiver	Hewlett Packard	8542 E	3617A0017 0	300000568
G-2	V-ISN	Rohde & Schwarz	ESH 3-Z5	892475/017	300002209
G-2a	V-ISN	Rohde & Schwarz	ESH 2-Z5	892602/024	300000587
G-3	2-Wire ISN	Schaffner	ISN T200	19075	300003422
G-4	4-Wire ISN	Schaffner	ISN T400	22325	300003423
G-5	Shielded wire ISN	Schaffner	ISN ST08	22583	300003433
G-6	Unshielded 8 wire ISN	Teseq	ISN T800	26113	300003833
G-7	Unshielded 8 wire ISN	Teseq	ISN T8-Cat. 6	26374	300003851
G-8	RF Current probe	FCC	F-33-4	46	300003257
G-9	V-ISN	Schaffner	ISN PLC-150	21579	300003318
G-10	V-ISN	Schaffner	ISN PLC-25-30	21584	300003319
G 10a	PLC Filter	TESEQ	Filter PLC	23436	300003598
G 10b	Coupling unit 75 Ohm	Fiedler	AC	- / -	300003272.0 4
	Conducted				
L-1	Spectrum Analyzer	R&S	FSV30	100763	300003950
L-2	Signal Generator	R&S	SMU200A	101633	300003496
L-3	Oscilloscope	Tektronix	DPO 7254	B022702	300003573
L-4	Signaling Unit	R&S	CMD 65	847527/005	300003611
L-5	Combiner	R&S	1025.3400.02	- / -	- / -
L-6	Combiner	Suhner	4901.19A	- / -	- / -
L-7	Combiner	Weinschel	1515	KW438	- / -
L-8	Detector	Hewlett Packard	HP 8473C	03690	- / -
L-9	Attenuator	Narda	4779-50	9101	- / -
L-10	Attenuator	Narda	4779-30	9305	- / -
L-11	Attenuator	Narda	4779-20	9310	- / -
L-12	Control PC	F+W	- / -	FW0712052	300003735

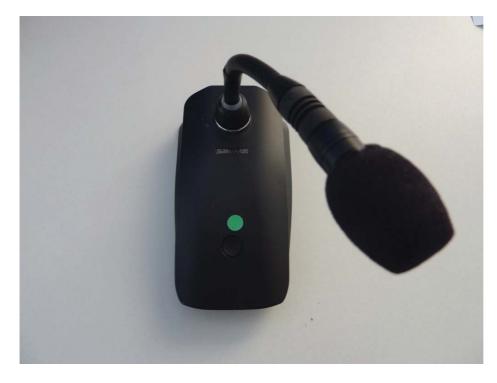
11 Observations

No observations exceeding those reported with the single test cases have been made.



Annex A: Photographs of the Test Set-up

Photo 1: Power Line Conducted Emission Test


Photo 2: Radiated Emission

Annex B: External Photographs of the EUT

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Photo 5:

Photo 6:

Annex C: Internal Photographs of the EUT

Photo 1:

Photo 2:

Photo 3:

Photo 4:

Annex D: Document History

Version	Applied Changes	Date of Release
	Initial Release	2012-09-03

Annex E: Further Information

<u>Glossary</u>

DUT	-	Device under Test
EMC	-	Electromagnetic Compatibility
EUT	-	Equipment under Test
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	not applicable
S/N	-	Serial Number
SW	-	Software

Annex F: Accreditation Certificate

Dakks	
Dricks	
Akkreditierungsstelle	
Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
German Accreditation Body	
Entrusted according to Section 8 subsection1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV	all a fin to describe a fill a sector of the formation
Signatory to the Multilateral Agreements of	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Gartenstraße 6 Bundesallee 100
EA, ILAC and IAF for Mutual Recognition	10117 Berlin 60594 Frankfurt am Main 38116 Braunschweig
Accreditation	
Accreation	

The Deutsche Akkreditierungsstelle GmbH (German Accreditation Body) attests that the	
testing laboratory	
CETECOM ICT Services GmbH	
Untertürkheimer Straße 6-10	
66117 Saarbrücken	
is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields:	
Wired communications and DECT	
Acoustic	
Radio Shirt Range Devices (SRD)	The publication of extracts of the accreditation certificate is subject to the prior written approval by
RFID	Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate
WiMax and Richtfunk Mobile radio (GSM / DCS), Over the Air (OTA) Performance	disseminations of the cover sheet by the conformity assessment body mentioned overleaf.
Electromagnetic Compatibility (EMC) Incl. Automotive	No impression shall be made that the accreditation also extends to fields beyond the scope of
Product safety	accreditation attested by DAkkS.
SAR and Hearing Ald Compatibility (HAC) Environmental simulation	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) of 31 July 2009
Smart Card Terminals	(Federal Law Gazette I p. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating
Bluetooth Wi-Fi-Services	to the marketing of products (Official Journal of the European Union L 218 of 9 July 2008, p. 30). DAkkS is
	a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation
	Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations.
The accreditation certificate shall only apply in connection with the notice of accreditation of 13.04.2011	The up-to-date state of membership can be retrieved from the following websites:
with the accreditation number D-PL-12076-01 and is valid until 03.09.2014. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 82 pages.	EA: www.european-accreditation.org
	ILAC: www.ilac.org IAE: www.iaf.nu
Registration number of the certificate: D-PL-12076-01-01	INF, WWW.Ast.ING
1 -1	
A CI	
Trankfurt am Main, 13.04.3011 Decker Eriki Sefferer	
Head of Digition 2	
Frankfurt sm Main, 13.04.2011 Dice or Eining of Episor Head of Digitize 2 - Eining of Episor This document is a transition. The definitive version is the original German accreditation certificate.	

Front side of the certificate

Back side of the certificate

Note: The current certificate including annex is published on our website (link see below) or may be received from CETECOM ICT Services on request

http://www.cetecom.com/fileadmin/de/CETECOM_D_Saarbruecken/accreditations_Jan_2010/DAKKS_Akkre di_Urk_EN17025-En_incl_Annex.pdf