

Model Tested: MX690J3 Report Number: 13479

FCC Rules and Regulations / Intentional Radiators

Low Power Auxiliary Stations

Part 74, Subpart H, Sections 74.801 - 74.882

Part 74.861 (d) Other than TV Broadcasting

THE FOLLOWING "MEETS" THE ABOVE TEST SPECIFICATION

Formal Name: Wireless Boundary Microphone

Kind of Equipment: Wireless Microphone Transmitter

Test Configuration: Stand Alone (Tested at 3 vdc)

Model Number(s): MX690J3

Model(s) Tested: MX690J3

Serial Number(s): NA

Emission Designator: 120KF3E

Date of Tests: July 5, 12, & 13, 2007

Test Conducted For: Shure Incorporated

5800 West Touhy Ave. Niles, Illinois 60714-4608

NOTICE: "This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government". Please see the "Additional Description of Equipment Under Test" page listed inside of this report.

© Copyright 1983- 2006 D.L.S. Electronic Systems, Inc

COPYRIGHT NOTICE

This report or any portion their of, may not be reproduced or modified in any form without the expressed written consent of D.L.S. Electronic Systems, Inc.

Model Tested: MX690J3 Report Number: 13479

SIGNATURE PAGE

Report By:

Arnom C. Rowe

Anna C Rowe

Test Engineer EMC-001375-NE

Reviewed By:

William Stumpf OATS Manager

Approved By:

Brian Mattson General Manager

Brian J. Mattson

Company Official:

Shure Incorporated

Company: Shure Incorporated MX690J3

Report Number: 13479

TABLE OF CONTENTS

i.	Cover Page	1
ii.	Signature Page	2
iii.	Table of Contents	3
iv.	NVLAP Certificate of Accreditation	5
1.0	Summary of Test Report	6
2.0	Introduction	6
3.0	Object	6
4.0	Test Set-Up	7
5.0	Test Equipment	8
6.0	Ambient Measurements	9
7.0	AC Power Line Conducted Emission Measurements	9
8.0	Description of Test Sample	10
9.0	Photo Information and Test Set-Up	11
10.0	Radiated Photos Taken During Testing	12
10.0	RF Conducted Photos Taken During Testing	13
11.0	Results of Tests	14
12.0	Conclusion	14
TAF	BLE 1 – EQUIPMENT LIST	15

Company: Shure Incorporated MX690J3

Report Number: 13479

TABLE OF CONTENTS

Appen	dix A – Electric Field Radiated Emissions Test.	17
1.0	Test Set-Up	18
2.0	RF Power Output	18
2.0	Data taken of the RF Power Output	19
3.0	RF Power Output Photos Taken During Testing	23
4.0	Modulation Characteristics	24
4.0	Graph(s) taken of the Modulation Characteristics	25
5.0	Occupied Bandwidth	29
5.0	Graph(s) taken of the 99% Occupied Bandwidth	30
5.0	Data and Graph(s) taken of the Emission Mask	34
6.0	Spurious Emissions At Antenna Terminals	44
7.0	Field Strength of Spurious Emission Measurements	45
7.0	Radiated Data and Charts taken for Fundamental Emissions using the Substitution Method	47
7.0	Radiated Data and Graph(s) Taken During Testing for Spurious Emissions	49
8.0	Frequency Stability (Temperature)	59
9.0	Frequency Stability (Voltage Variation).	59
8.0 &	9.0 Data Taken During Testing for Frequency Stability Temperature & Voltage Variation	60
10.0	Frequency Stability Photos Taken During Testing	62

Company: Model Tested: Shure Incorporated

Report Number:

MX690J3 13479

1250 Peterson Dr., Wheeling, IL 60090

Certificate of Accreditation to ISO/IEC 1

NVLAP LAB CODE: 100276-0

D.L.S. Electronic Systems, Inc.

Wheeling, IL

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025.2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated 18 June 2005). 2006-10-01 through 2007-09-30

NVLAP-01C (REV. 2006-09-13)

Model Tested: MX690J3 Report Number: 13479

1250 Peterson Dr., Wheeling, IL 60090

1.0 SUMMARY OF TEST REPORT

It was found that the Wireless Boundary Microphone, Model Number(s) MX690J3, "meets" the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (d), for low power auxiliary stations. The <u>AC Power Line conducted</u> emissions test was not required because the Wireless Boundary Microphone is powered from a D.C. power source. It does not have a line cord to plug into the A.C. power line.

2.0 INTRODUCTION

On July 5, 12, & 13, 2007, a series of radio frequency interference measurements was performed on Wireless Boundary Microphone, Model Number(s) MX690H5, Serial Number: NA. The tests were performed according to the procedures of the FCC as stated in Part 2 - Frequency Allocations and Radio Treaty Matters: General Rules and Regulations, Subpart J, Equipment Authorization Procedures of the Code of Federal Regulations 47. Tests were performed by personnel of D.L.S. Electronic Systems, Inc. who are responsible to Donald L. Sweeney, Senior EMC Engineer.

D.L.S. Electronic Systems, Inc. is a full service EMC/Safety Testing Laboratory accredited to ISO Guide 17025. NVLAP Certificate and Scope can be viewed at http://www.dlsemc.com/certificate. Our facilities are registered with the FCC, Industry Canada, and VCCI. All immunity tests were performed by personnel of D.L.S. Electronic Systems, Inc. at the following location(s):

Main Test Facility:

D.L.S. Electronic Systems, Inc. 1250 Peterson Drive Wheeling, Illinois 60090

3.0 OBJECT

The purpose of this series of tests was to determine if the test sample could meet the radio frequency interference requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (d), for low power auxiliary stations.

Model Tested: MX690J3 Report Number: 13479

4.0 TEST SET-UP

All tests were performed at D.L.S. Electronic Systems, Inc. and set up according to the American National Standards Institute, ANSI C63.4-2003. The conducted tests if required were performed with the test item placed on a non-conductive table (table top equipment), located in the test room. Equipment normally operated on the floor was tested by placing it on the metal ground plane. The ground plane has an electrical isolation layer over its surface approximately 7mm thick. The power line supplied was connected to a dual line impedance stabilization network electrically bonded to the ground plane, located on the floor. The networks were constructed per the requirements of the American National Standards Institute, ANSI C63.4-2003.

All radiated emissions tests were performed with the test item placed on a 80 cm high rotating non-conductive table, located in the test room. Equipment normally operated on the floor was placed on a metal covered turntable, which is flush with the surrounding conducting ground plane. The ground plane has an electrical isolation layer over its surface approximately 7 mm thick. The EUT is separated from the turntable ground plane by a non-conductive layer. The equipment under test was set up according to TIA Standard, TIA-603-C:2004, Section 2.2.12.

Model Tested: MX690J3 Report Number: 13479

1250 Peterson Dr., Wheeling, IL 60090

5.0 TEST EQUIPMENT (Bandwidths and Detector Function)

All preliminary data below 1000 MHz was automatically plotted using the HP Spectrum Analyzer or ESI 26/ESI 40 Fixed Tuned Receiver. The data was taken using Peak, Quasi-Peak or the Average Detector Functions as required. This information was then used to determine the frequencies of maximum emissions. Above 1000 MHz, final data was taken using the Average Detector.

Below 1000 MHz, final data was taken using the HP Spectrum Analyzer and or ESI 26/ESI 40 fixed tuned receiver. These plots were made using the Peak or Quasi-Peak Detector functions, with manual measurements performed on the questionable frequencies using the Quasi-Peak or the Average Detector Function of the Analyzer or ESI 26/ESI 40 Receiver as required. Above 1000 MHz, final data was taken using the Average Detector on the ESI 26/ESI 40 Fixed Tuned Receiver.

The bandwidths shown below are specified by ANSI C63.4-2003, Section 4.2.

Frequency Range	Bandwidth (-6 dB)
10 to 150 kHz	200 Hz
150 kHz to 30 MHz	9 kHz
30 MHz to 1 GHz	120 kHz
Above 1 GHz	1 MHz

A list of the equipment used can be found in Table 1. All primary equipment was calibrated against known reference standards with a verified traceable path to NIST.

Model Tested: MX690J3 Report Number: 13479

6.0 AMBIENT MEASUREMENTS

For emissions measurements, broadband antennas and an EMI Test Receiver with a panoramic spectrum display are used. First the frequency range is scanned and displayed on the test receiver display. Next the scanned frequency range is divided into smaller ranges, and then it is manually tuned through to determine the emissions from the EUT. A headset or loudspeaker is connected to the test receiver's AM/FM demodulated output as an aid in detecting ambient signals and finding frequencies of significant emission from the EUT. If there is any doubt as to the source of the emission, it is further investigated by rotating the EUT, or by disconnecting the power from the EUT.

The EUT is set up in its typical configuration and operated in its various modes. For tabletop systems, cables are manipulated within the range of likely configurations. For floor-standing equipment, the cables or are located in the same manner as the user would install them and no further manipulation is made. If the manner of cable installation is not known, or if it changes with each installation, cables or wires for floor-standing equipment shall be manipulated to the extent possible to produce the maximum level of emissions. For each mode of operation, the frequency spectrum is monitored. Variations in antenna height, antenna polarization, EUT azimuth, and cable or wire placement (each variable within bounds specified elsewhere) are explored to produce the emission that has the highest amplitude relative to the limit. These methods are performed to the specifications in ANSI C63.4: 2003.

7.0 AC POWER LINE CONDUCTED EMISSION MEASUREMENTS – Part 15.207

The Wireless Boundary Microphone is powered from a D.C. power source and will not at any time be directly plugged into the public utility lines, therefore the AC Power Line conducted emissions test was not performed.

Model Tested: MX690J3 Report Number: 13479

8.0 DESCRIPTION OF TEST SAMPLE:

8.1 Description:

The Shure Model MX690 is a uP (microprocessor) controlled frequency agile UHF transmitter operating over the frequency range of 518 to 865 MHz (in nine different frequency bands). The products are identical, with the exception of the frequency components needed for each range. The User Interface includes "mode", "set" and "mute" buttons, and an LCD that displays battery status, group/channel, and transmitter/receiver frequency synchronization. This product is intended for corporate boardroom, educational facilities and fixed installations.

The unit will operate on two "AA" alkaline batteries which are placed in the battery compartment. The unit is turned on by holding the power button (on bottom of EUT) for 3 seconds, the LED around the Push button (on top of EUT) should turn Green.

8.2 PHYSICAL DIMENSIONS OF EQUIPMENT UNDER TEST

Length: 148 mm x 87mm Width: x 43 mm Height:

8.3 LINE FILTER USED:

NA

8.4 INTERNAL CLOCK FREQUENCIES:

Switching Power Supply Frequencies:

NA

Clock Frequencies:

0.32768 MHz & 16 MHz

8.5 DESCRIPTION OF ALL CIRCUIT BOARDS:

1. Printed Circuit Board 1 PN: 190-11080 Rev.01

2. Printed Circuit Board 2 PN: 190A11076 Rev.01

Company: Model Tested: Shure Incorporated

MX690J3 Report Number: 13479

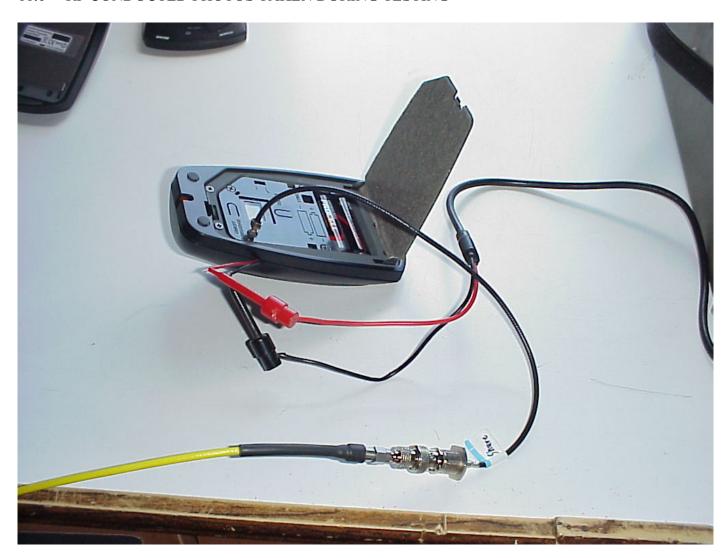
9.0 PHOTO INFORMATION AND TEST SET-UP

Item 0 Wireless Boundary Microphone Model Number: MX690J3, Serial Number: NA

Company: Shure Incorporated MX690J3

Model Tested: MX690 Report Number: 13479

10.0 RADIATED PHOTOS TAKEN DURING TESTING



1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated MX690J3

Report Number: 13479

11.0 RF CONDUCTED PHOTOS TAKEN DURING TESTING

Model Tested: MX690J3 Report Number: 13479

11.0 RESULTS OF TESTS

The radio interference emission charts can be seen on the pages at the end of this report. Data sheets indicating the test measurements taken during testing can also be found at the end of this report.

12.0 CONCLUSION

It was found that the Wireless Boundary Microphone, Model Number(s) MX690J3 "meets" the radio interference radiated emission requirements of the FCC "Rules and Regulations", Part 74, Subpart H, Section 74.861 (d), for low power auxiliary stations. The <u>conducted</u> emissions test was not required because the Wireless Boundary Microphone is powered from a D.C. power source. It does not have a line cord to plug into the A.C. power line.

Model Tested: MX690J3 Report Number: 13479

TABLE 1 – EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
Receiver	Rohde & Schwarz	ESI 26	837491/010	20 Hz – 26 GHz	11/07
Receiver	Rohde & Schwarz	ESI 40	837808/006	20 Hz – 40 GHz	12/07
Receiver	Rohde & Schwarz	ESI 40	837808/005	20 Hz – 40 GHz	12/07
Antenna	EMCO	3104C	00054891	20 MHz – 200 MHz	2/08
Antenna	Electrometrics	LPA-25	1114	200 MHz – 1 GHz	3/08
Antenna	EMCO	3104C	00054892	20 MHz – 200 MHz	3/08
Antenna	Electrometrics	3146	1205	200 MHz – 1 GHz	3/08
Antenna	EMCO	3104C	97014785	20 MHz – 200 MHz	2/08
Antenna	EMCO	3146	97024895	200 MHz – 1 GHz	3/08
Antenna	EMCO	3115	2479	1 GHz – 18 GHz	5/08
Antenna	EMCO	3115	99035731	1 GHz – 18 GHz	6/08
Antenna	Rohde & Schwarz	HUF-Z1	829381001	20 MHz – 1 GHz	2/08
Antenna	Rohde & Schwarz	HUF-Z1	829381005	20 MHz – 1 GHz	8/07

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Model Tested: MX690J3 Report Number: 13479

TABLE 1 – EQUIPMENT LIST

Test		Model	Serial	Frequency	Cal Due
Equipment	Manufacturer	Number	Number	Range	Dates
LISN	Solar	8012-50-R-	8305116	10 MHz – 30 MHz	8/07
		24-BNC			
LISN	Solar	8012-50-R-	814548	10 MHz – 30 MHz	8/07
		24-BNC			
LISN	Solar	9252-50-R-	961019	10 MHz – 30 MHz	12/07
		24-BNC			
LISN	Solar	9252-50-R-	971612	10 MHz – 30 MHz	10/07
		24-BNC			
LISN	Solar	9252-50-R-	92710620	10 MHz – 30 MHz	7/08
		24-BNC			

All primary equipment is calibrated against known reference standards with a verified traceable path to NIST.

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

TEST PROCEDURE

SUBPART H

LOW POWER AUXILIARY STATIONS

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

1.0 TEST SET-UP

All radiated emission tests were performed at D.L.S. Electronic Systems, Inc. The radiated tests were made with the test item placed on a non-conductive turntable located in the Test Room with the receive antenna placed three or one meter(s) from the device under test.

2.0 RF-POWER OUTPUT – PART 2.1046 and EIA /TIA-603-C:2004, SECTION 2.2.17

As stated in PART 74.861 (d)(1), the RF output power should not exceed 1 watt(s). The RF output of the Wireless Boundary Microphone was connected to a Spectrum Analyzer through suitable attenuation. All cables, connectors, and attenuators were calibrated prior to testing. The RF output power was measured using the following test method:

Actual Measurements Taken:

14.02 dBm Measured output of the transmitter

14.02 dBm equals 0.02523 watt(s)

LIMIT:

Manufacturer's rated output power = $14 \text{ dBm} \pm 2 \text{dB}$

MARGIN:

1 - 0.02523 = 0.9748 watt(s)

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DATA TAKEN OF THE RF POWER

OUTPUT MEASUREMENT

EIA /TIA-603-C:2004, SECTION 2.2.17

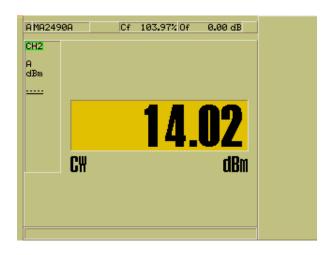
FCC Part 74.861(d)(1) & PART 2.1046

1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated

Model Tested: MX690J3 Report Number: 13479

APPENDIX A


Test Date: 07-12-2007 Company: Shure, Inc. EUT: MX690-J3

Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 572.2 MHz

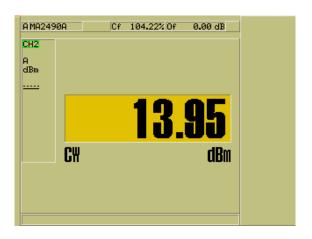
Peak Output Power = 14.02 dBm = 25.23 mW

1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated

Model Tested: MX690J3 Report Number: 13479

APPENDIX A


Test Date: 07-12-2007 Company: Shure, Inc. EUT: MX690-J3

Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

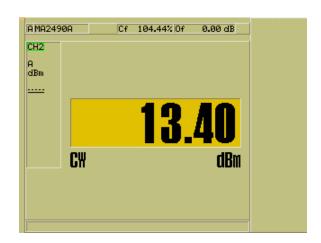
Operator: Craig B

Comment: Channel: 584.5 MHz

Peak Output Power = 13.95 dBm = 24.83 mW

Model Tested: MX690J3 Report Number: 13479

APPENDIX A


Test Date: 07-12-2007 Company: Shure, Inc. EUT: MX690-J3

Test: Peak Power Output - Conducted Rule part: FCC Part 74; FCC Part 2.1046

Operator: Craig B

Comment: Channel: 595.8 MHz

Peak Output Power = 13.40 dBm = 21.88 mW

Company: Shure Incorporated Model Tested: MX690J3

Report Number: 13479

APPENDIX A

3.0 RF POWER OUTPUT PHOTOS TAKEN DURING TESTING

CONDUCTED RF OUTPUT POWER

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

4.0 MODULATION CHARACTERISTICS – PART 2.1047 and EIA /TIA-603-C:2004, SECTION 2.2.3

a. Voice modulated communication equipment.

A curve showing the frequency response of the audio modulating circuit over a range of $50 \text{ Hz} - 20 \text{ kHz} \pm 3 \text{ dB Hz}$ is submitted with this report.

b. Equipment which employs modulation limiting

A family of curves showing the percentage of modulation versus the modulation input voltage with sufficient information showing the modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

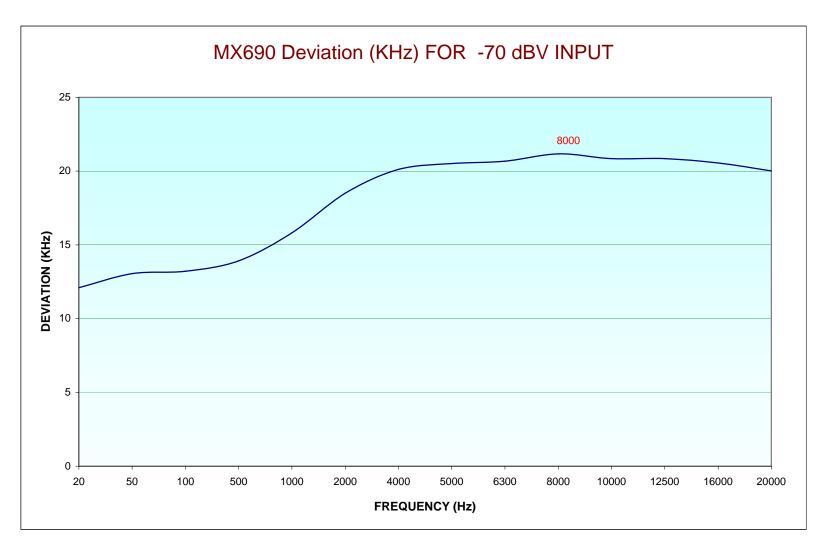
Model Tested: MX690J3 Report Number: 13479

APPENDIX A

GRAPH(S) TAKEN SHOWING THE FREQUENCY

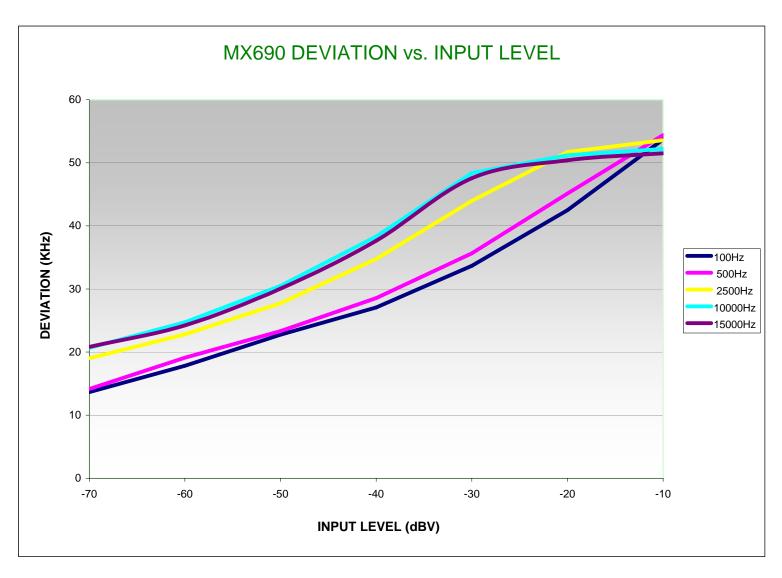
RESPONSE OF THE

AUDIO MODULATING CIRCUIT


EIA /TIA-603-C:2004, SECTION 2.2.3

PART 2.1047

Model Tested: MX690J3 Report Number: 13479


APPENDIX A

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

MX690-J3 #3

Note: Frequency response switch is set to full range setting for these measurements.

Audio Limiting

	DEVIATION (KHz) AT				
LEVEL INPUT					
dBV	100Hz	500Hz	2500Hz	10000Hz	15000Hz
-70	13.64	14.15	19.01	20.66	20.82
-60	17.84	19.1	22.81	24.72	24.22
-50	22.76	23.32	27.75	30.50	30.06
-40	27.07	28.54	34.75	38.32	37.65
-30	33.67	35.66	43.97	48.38	47.57
-20	42.49	45.14	51.70	51.20	50.40
-10	53.70	54.40	53.60	52.20	51.50

Audio Frequency Response

UR1	INPUT: -70dBV
FREQUENCY (Hz)	DEVIATION (KHz)
20	12.1
50	13.05
100	13.21
500	13.92
1000	15.82
2000	18.5
4000	20.12
5000	20.51
6300	20.67
8000	21.17
10000	20.85
12500	20.85
16000	20.55
20000	20.02

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

5.0 OCCUPIED BANDWIDTH - PART 2.1049

The occupied bandwidth is that between the lower and upper limits of the signal where the mean power is 99.0% of the total mean power and measured under the following conditions:

For low power auxiliary stations operating in the bands other than those allocated for TV broadcasting, the occupied bandwidth shall not be greater than that necessary for satisfactory transmission and emissions appearing on any discrete frequency outside the authorize band shall be attenuated 43+10 log¹⁰ (mean output power, in watts) dB below the mean output power of the transmitting unit (device under test).

For low power auxiliary stations operating in the bands allocated for TV broadcasting, any form of modulation may be used. A maximum of ± 75 kHz is permitted when frequency modulation is used. The operating bandwidth shall not exceed 200 kHz.

Carson's Rule:

Section 2.202 (g)

Bn = 2M+2DK, K=1 Bn = Bandwidth

M = 15 kHz, M = Maximum Modulating Frequency

D = 45 kHz. D = Peak Deviation

Bn = 2(15) + 2(45)(1) = 120 kHz

NOTE:

The emissions mask measurements results were verified by using 2 kHz resolution bandwidth and 2 kHz video bandwidth. The 1.2 kHz was determined by taking 1% of the worst case measurement of 121 kHz, which yields 1.2 kHz.

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DATA AND GRAPH(S) TAKEN OF THE

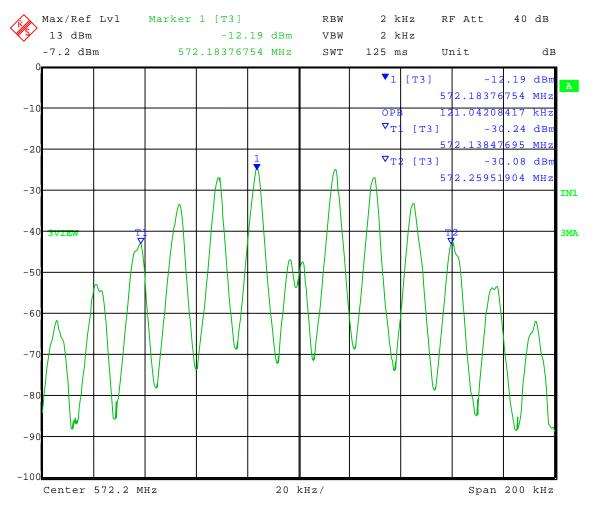
99% OCCUPIED BANDWIDTH

Part 74.861(d)(3) & PART 2.1049

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007 Company: Shure, Inc. EUT: MX690-J3


Test: Occupied Bandwidth; 99% bandwidth

Rule part: FCC Part 74; FCC Part 2.1049

Operator: Craig B

Frequency: 572.2 MHz

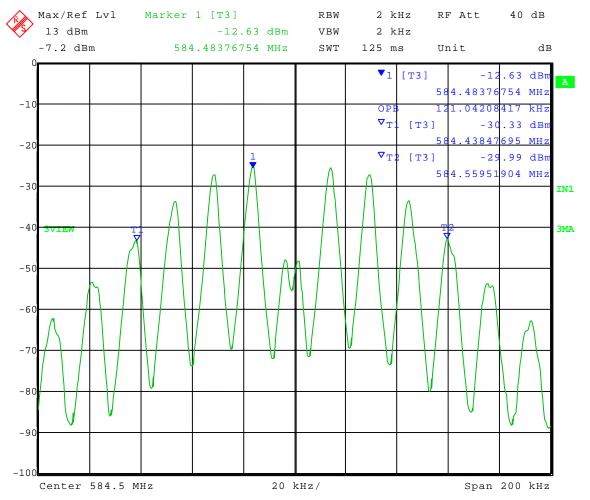
99% power bandwidth = 121.0 kHz

Date: 12.JUL.2007 13:42:54

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007 Company: Shure, Inc. EUT: MX690-J3


Test: Occupied Bandwidth; 99% bandwidth

Rule part: FCC Part 74; FCC Part 2.1049

Operator: Craig B

Frequency: 584.5 MHz

99% power bandwidth = 121.0 kHz

Date: 12.JUL.2007 13:44:34

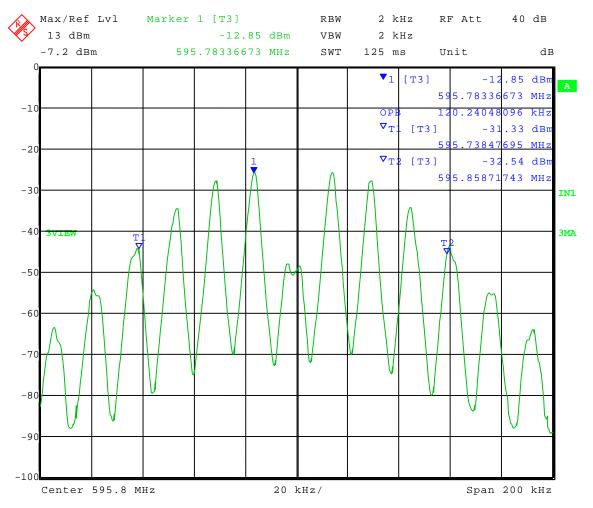
Company: Model Tested: MX690J3

Report Number: 13479

APPENDIX A

Shure Incorporated

Test Date: 07-12-2007 Company: Shure, Inc. EUT: MX690-J3


Occupied Bandwidth; 99% bandwidth Test:

Rule part: FCC Part 74; FCC Part 2.1049

Operator: Craig B

Frequency: 595.8 MHz

99% power bandwidth = 120.2 kHz

Date: 12.JUL.2007 13:46:20

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

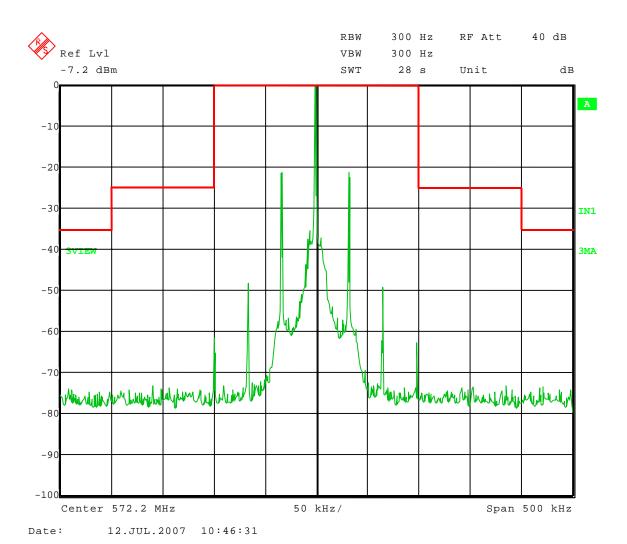
DATA AND GRAPH(S) TAKEN OF THE

EMISSION MASK

Part 74.861(d)(3) & PART 2.1049

1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated


Model Tested: MX690J3 Report Number: 13479

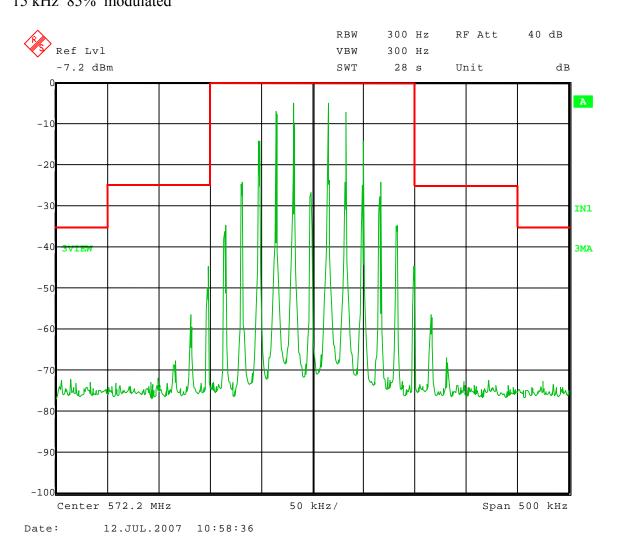
APPENDIX A

Test Date: 07-12-2007 Company: Shure, Inc. EUT: MX690-J3 Test: **Emission Mask** Rule part: FCC Part 74 Operator: Craig B

Nominal Frequency: 572.2 MHz

Unmodulated

1250 Peterson Dr., Wheeling, IL 60090


Company: Shure Incorporated

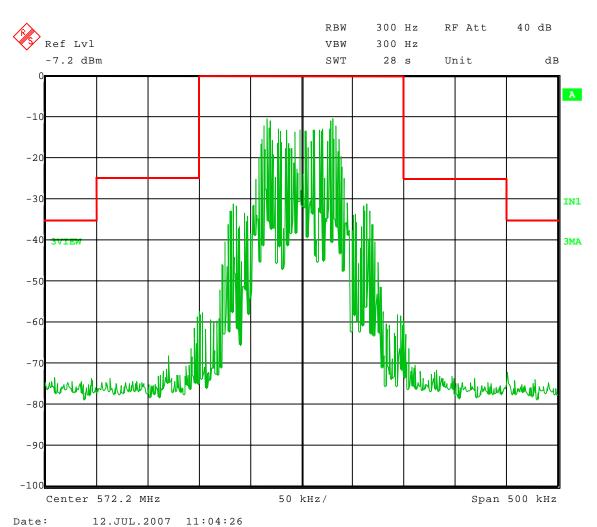
Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 572.2 MHz 15 kHz 85% modulated

1250 Peterson Dr., Wheeling, IL 60090


Company: Shure Incorporated

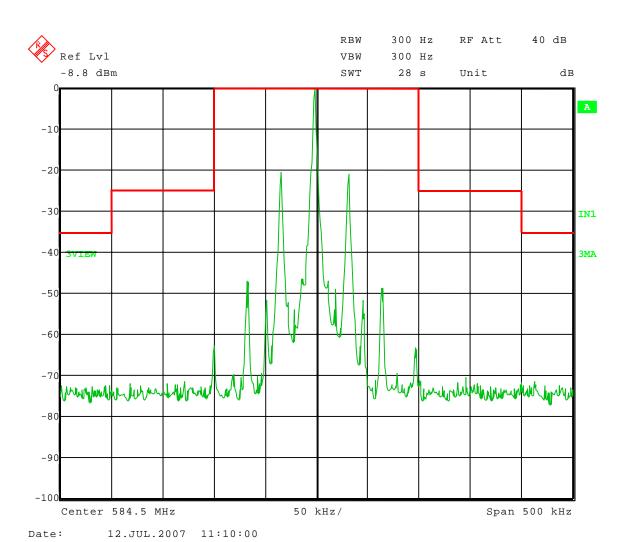
Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 572.2 MHz 2500 Hz 16 dB > 50% modulated

Page -37 of 62-


Model Tested: MX690J3 Report Number: 13479

APPENDIX A

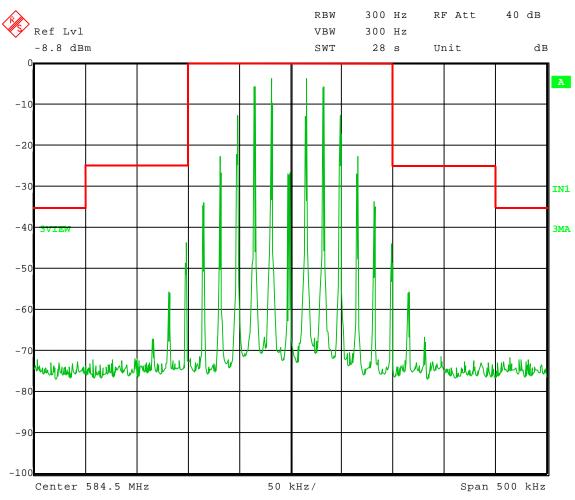
Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 584.5 MHz

Unmodulated

1250 Peterson Dr., Wheeling, IL 60090

Company: Shure Incorporated

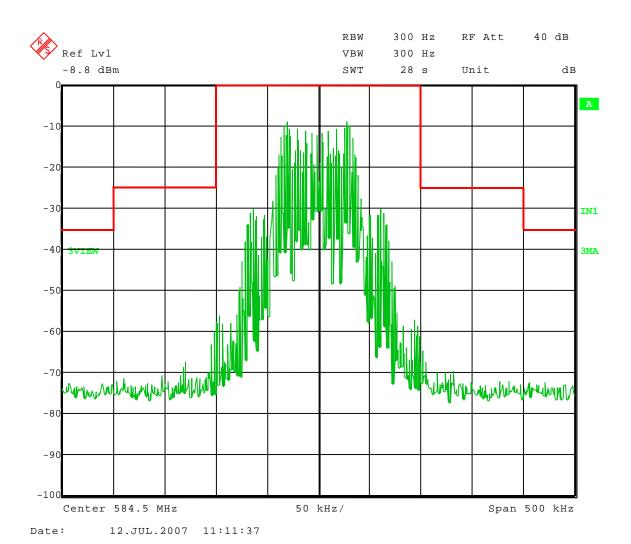

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 584.5 MHz

15 kHz 85% modulated

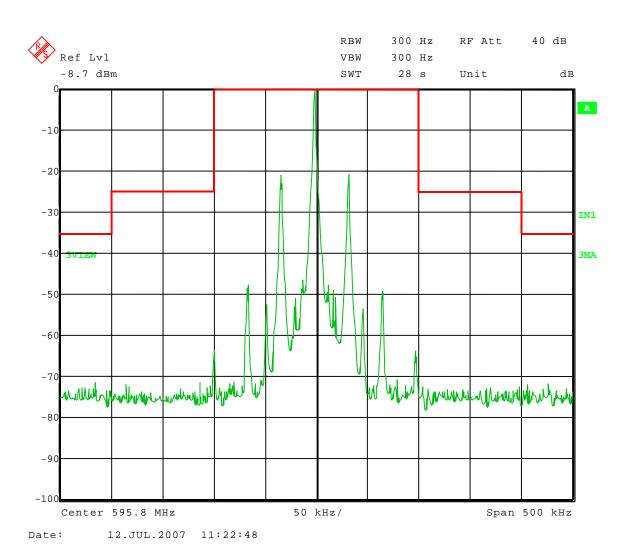


Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 584.5 MHz 2500 Hz 16 dB > 50% modulated

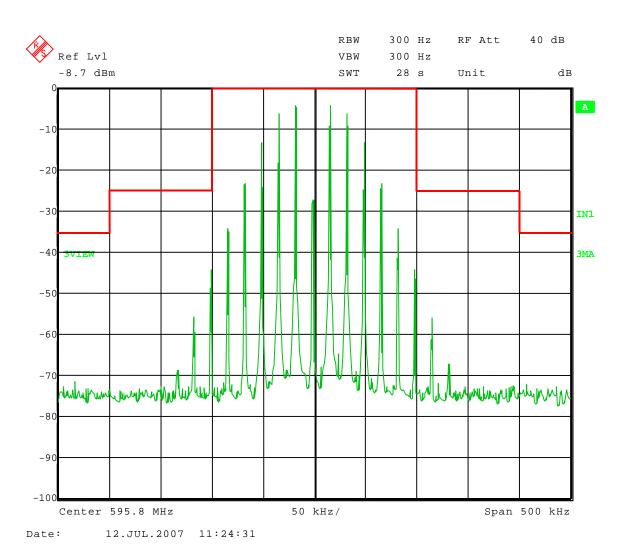

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 595.8 MHz

Unmodulated

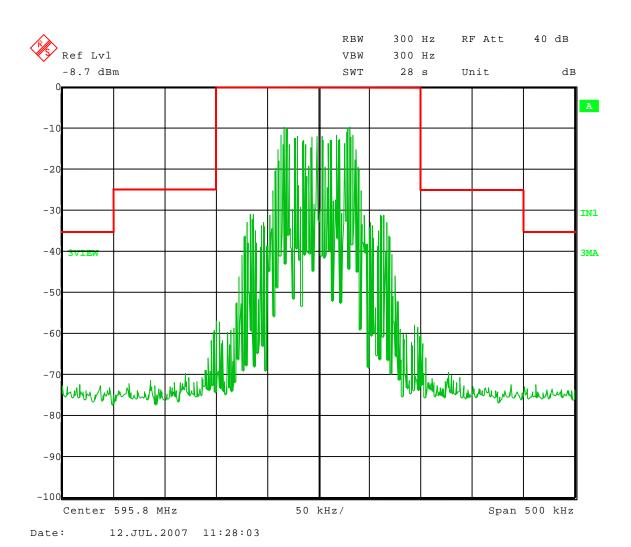


Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 595.8 MHz 15 kHz 85% modulated

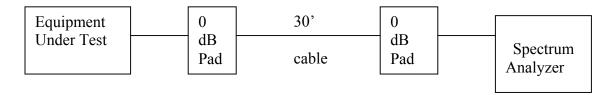


Model Tested: MX690J3 Report Number: 13479

APPENDIX A

Test Date: 07-12-2007
Company: Shure, Inc.
EUT: MX690-J3
Test: Emission Mask
Rule part: FCC Part 74
Operator: Craig B

Nominal Frequency: 595.8 MHz 2500 Hz 16 dB > 50% modulated



Model Tested: MX690J3 Report Number: 13479

APPENDIX A

6.0 SPURIOUS EMISSIONS AT ANTENNA TERMINALS – PART 2.1051 and EIA /TIA-603-C:2004, SECTION 2.2.13

Spurious conducted emissions were measured at the antenna terminals using an artificial load. Plots were made showing the amplitude of each harmonic emission with the equipment operated as specified in 2.989. Measurements were made up to the 10th harmonic of the fundamental. The following setup was used showing placement of the attenuators:

The allowed emissions for transmitters operating in the 572 MHz - 596 MHz bands for Wireless Boundary Microphone equipment are found under Part 74, Section 74.861, Paragraph d-3 for Low Power Auxiliary Stations. This paragraph states the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

(1) any discrete frequency outside the authorized band shall be attenuated, at least, 43+10Log¹⁰ (mean output power, in watts) dB below the mean output power of the transmitting unit.

NOTE:

The Wireless Boundary Microphone uses a bent Monopole permanently attached to the Flex PCB preventing any connection to the Antenna Port, therefore this test was not run.

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

7.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS – PART 2.1053 and EIA /TIA-603-C:2004, SECTION 2.2.12

Radiated measurements were performed scanning the frequency range from 200 MHz to at least the 10th harmonic of the fundamental frequency.

For the Wireless Boundary Microphone, the highest fundamental frequency is 704 MHz so the scans were made up to 10000 MHz, to cover the tenth harmonic.

All signals in the frequency range of 30 MHz to 200 MHz were measured with a Biconical Antenna and from 200 MHz to 1000 MHz a Log Periodic Antenna was used as the pickup devices. From 1000 MHz to 10000 MHz, a Double Ridge Horn Antenna was used. The cables and equipment were placed and moved within the range of positions likely to find their maximum emissions. Tests were made in both the horizontal and vertical planes of polarization.

The allowed emissions for transmitters operating in the 572 MHz - 596 MHzbands for Wireless Boundary Microphone are found under Part 74, Section 74.861, Paragraph d-3 for Low Power Auxiliary Stations. This paragraph states that the mean power of the emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

(1) any discrete frequency outside the authorized band shall be attenuated, at least, 43+10Log¹⁰ (mean output power, in watts) dB below the mean output power of the transmitting unit.

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

7.0 FIELD STRENGTH OF SPURIOUS EMISSION MEASUREMENTS (CON'T) – PART 2.1053 and EIA /TIA-603-C:2004, SECTION 2.2.12

As stated in Part 74, Section 74.861 (d-1) the limit is 1 Watt in the frequency range 572 MHz – 596 MHz.

To determine the **LIMIT** for Spurious Emissions the following method was used:

Mean output power in watts:

Manufacturer's rated wattage = 14 dBm ±2dB Watt(s)
(See Paragraph 2.0, page 2 of this Appendix)

Free Space Formula

Convert to 10 meter test distance using the Free Space Formula

$$\frac{\sqrt{49.2*rated\ wattage}}{\text{Distance}} = 0.1109054\ \text{volts/meter} = 110905.4\ \text{uV/m}$$

$$20*Log(110905.4) = 100.899 dBuV$$

Therefore, the Fundamental at three meters equals 100.899 dBuV,

The emissions must be reduced by:

$$43 + 10*LOG10(0.025 \text{ watts}) = 26.9794 \text{ dB}$$

Therefore, the **LIMIT** at ten meters equals:

100.899 dBuV extrapolated level for 0.025 watts -26.9794 dB required reduction below the unmodulated fundamental 73.91965 dBuV maximum spurious emissions allowed

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

RADIATED EMISSION DATA & CHARTS TAKEN

FOR <u>FUNDAMENTAL</u> EMISSIONS

USING THE SUBSTITUTION METHOD

EIA /TIA-603-C:2004, SECTION 2.2.12

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig B

Date of test: 07-05-2007 Temperature: 72 deg. F Humidity: 59% R.H.

Spurious Emissions - ERP - Substitution Method

	Spurious Emissions - ERP - Substitution Method										
Model: MX	690-J3										
Channels: 57	2.2 MHz,	584.5 MHz	and <mark>595.8</mark>	MHz							
Frequency and Polarization (MHz)	Max. Field Strength of EUT @ 3 meters (dBuV/m)	Output of Signal Generator when field strength equals that of EUT (dBm)	Correction factor for cable between Signal Gen. and subst. antenna (dB)	Gain of subst. antenna (dBi)	Strength of emission [ERP] (dBm)	Limit (dBm)	Margin (dB)	Strength of emission [ERP] (mW)			
572.2 vertical	91.2	-1.6	8.5	2.15	-10.1	24.0	34.1	0.10			
572.2 horizontal	96.3	5.4	8.5	2.15	-3.1	24.0	27.1	0.49			
584.5 vertical	91.2	-1.3	8.6	2.15	-9.9	24.0	33.9	0.10			
584.5 horizontal	98.1	6.4	8.6	2.15	-2.2	24.0	26.2	0.60			
595.8 vertical	94.7	2.7	8.8	2.15	-6.1	24.0	30.1	0.25			
595.8 horizontal	98.7	7.3	8.8	2.15	-1.5	24.0	25.5	0.71			

EIRP = Signal generator output - cable loss + antenna gain

 $ERP_{(ref. to \frac{1}{2} \lambda dipole)} = Signal generator output - cable loss + antenna gain - 2.15$

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

RADIATED EMISSION DATA AND GRAPH(S)

TAKEN FOR

SPURIOUS EMISSION MEASUREMENTS

EIA /TIA-603-C:2004, SECTION 2.2.12

PART 2.1053

FCC Part 15.109 Class B using CISPR 22

Electric Field Strength

EUT: MX 690 Manufacturer: Shure Inc

Operating Condition: 72 deg F; 63% R.H. Test Site: D.L.S. O.F. Site 3

Operator: Tim O

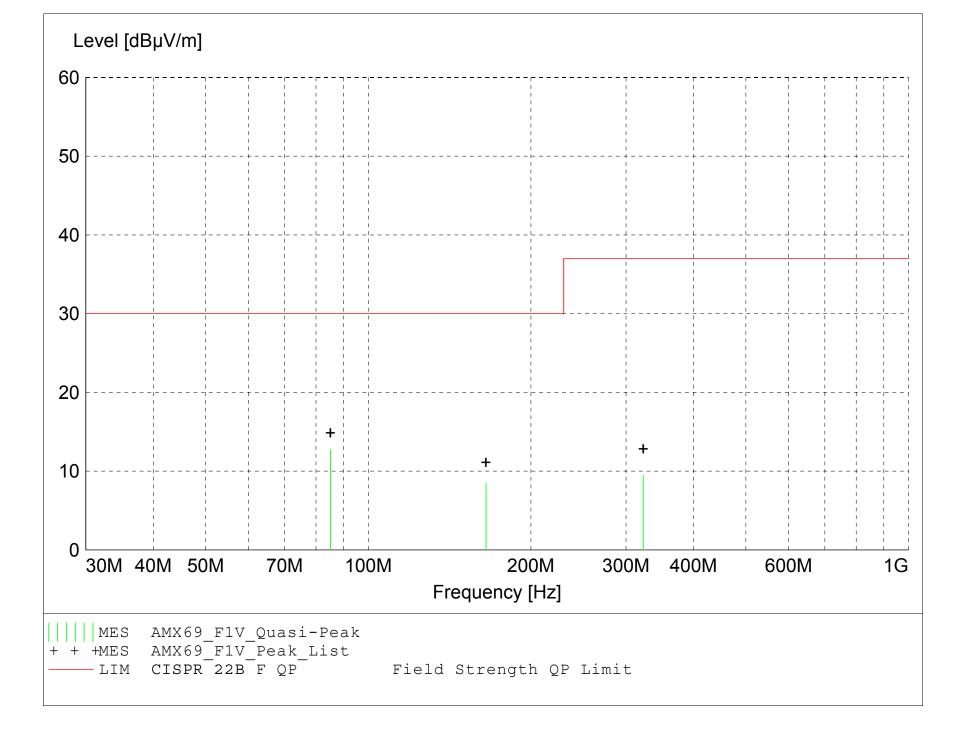
Test Specification:

Comment:

Date: 07-13-2007

TEXT: "Site 3 MidV 10M"

Short Description: Test Set-up Vert30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 10 Meters with VERTICAL Antenna Polarization

MEASUREMENT RESULT: "AMX69_F1V_Final"

7/13/2007 10	:56AM									
Frequency	Level	Antenna Factor	System Loss	Total Level		Margin	Height Ant.		Final Detector	Comment
MHz	dΒμV	dBμV/m	dB	dBµV/m		dB	m	deg		
85.080000	28.93	7.18	-23.4	12.7	30.0	17.3	1.00	0	QUASI-PEAK	Noise Floor
165.180000	17.06	14.12	-22.7	8.5	30.0	21.5	1.00	0	QUASI-PEAK	Noise Floor
322.880000	16.56	14.03	-21.1	9.5	37.0	27.5	1.00	0	QUASI-PEAK	Noise Floor

FCC Part 15.109 Class B using CISPR 22

Electric Field Strength

EUT: MX 690 Manufacturer: Shure Inc

Operating Condition: 72 deg F; 63% R.H. Test Site: D.L.S. O.F. Site 3

Operator: Tim O

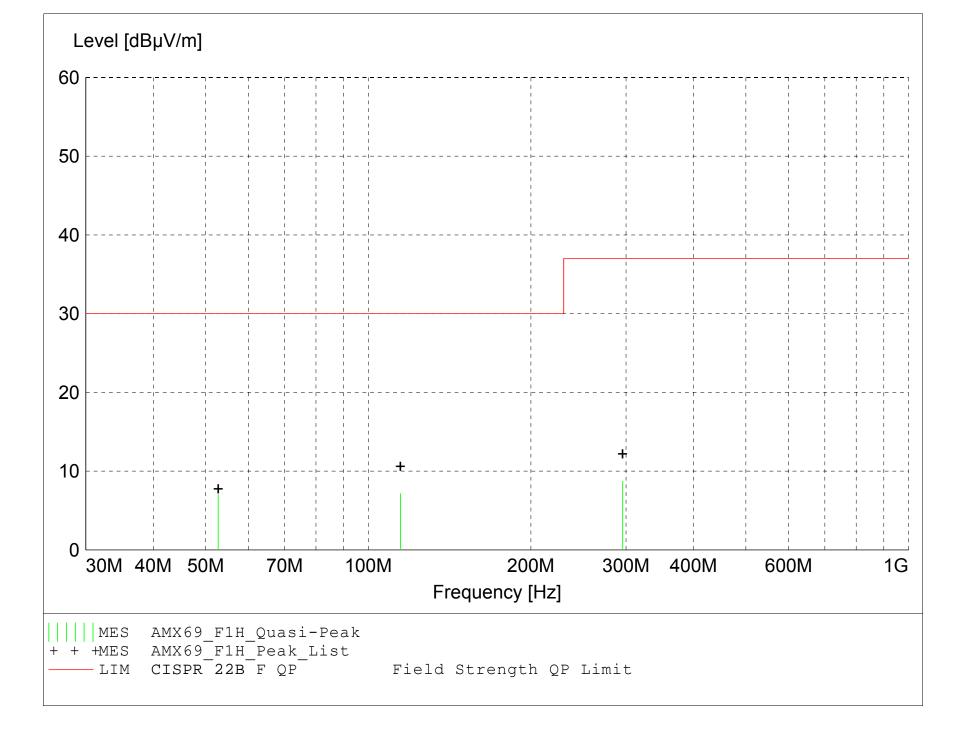
Test Specification:

Comment:

Date: 07-13-2007

TEXT: "Site 3 MidH 10M"

Short Description: Test Set-up Horz30-1000MHz


TEST EQUIPMENT: Receiver --- Rohde&Schwarz ESI 40 SN: 837808/005

Antennas ---

Biconical -- EMCO 3104C SN: 9701-4785 Log Periodic -- EMCO 3146 SN: 9702-4895

Pre-Amp --- Rohde&Schwarz TS-PR10 SN: 032001/005

TEST SET-UP: EUT Measured at 10 Meters with HORIZONTAL Antenna Polarization

MEASUREMENT RESULT: "AMX69_F1H_Final"

7/13/2007 10	0:56AM									
Frequency	Level	Antenna Factor	System Loss	Total Level		Margin	Height Ant.		Final Detector	Comment
MHz	dΒμV	dBμV/m	dB	dBµV/m	dBµV/m	dB	m	deg		
114.720000	18.10	12.18	-23.1	7.2	30.0	22.8	3.00	0	QUASI-PEAK	Noise Floor
52.740000	20.31	10.78	-24.1	7.0	30.0	23.0	3.00	0	QUASI-PEAK	Noise Floor
295.700000	16.52	13.36	-21.2	8.7	37.0	28.3	3.00	0	QUASI-PEAK	Noise Floor

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc.
Operator: Craig Brandt
Date of test: 07-05-2007
Temperature: 72 deg. F.
Humidity: 59% R.H.

	Radiated Spurious Emissions (e.r.p. substitution method) FCC Part 74; FCC Part 2.1053											
Model: MX690 -	•		_	tion me	iiou) i e e	orunt / 1, 1 cc rui	12.1033					
Frequency	Field Strength	Factor to	Power	Limit	Margin	Receive	EUT	Receive				
	Level	Convert to	ERP			Antenna	Antenna	Antenna				
GHz	dBuV/m	dBm	dBm	dBm	dB	Polarization	Orientation	Height (m)				
1.1444	30.19	99.7	-69.46	-13	56.46	Horizontal	190	1.1				
1.7166	51.42	99.5	-48.03	-13	35.03	Horizontal	30	1.1				
2.861	34.96	100.9	-65.89	-13	52.89	Horizontal	280	1.7				
3.4332	33.93	99.9	-65.92	-13	52.92	Horizontal	280	1.0				
4.0054	37.94	99.4	-61.41	-13	48.41	Horizontal	280	1.0				
4.5776	35.89	98.2	-62.26	-13	49.26	Horizontal	135	1.1				
5.1498	44.41	98.5	-54.04	-13	41.04	Horizontal	45	1.1				
1.1444	33.87	100.5	-66.58	-13	53.58	Vertical	135	1.0				
1.7166	51.36	100.0	-48.59	-13	35.59	Vertical	350	1.0				
2.2888	30.24	99.0	-68.71	-13	55.71	Vertical	0	1.2				
2.861	38.28	99.7	-61.37	-13	48.37	Vertical	75	1.1				
3.4332	35.12	98.6	-63.43	-13	50.43	Vertical	270	1.3				
4.0054	40.83	99.0	-58.12	-13	45.12	Vertical	100	1.8				
4.5776	44.89	99.8	-54.86	-13	41.86	Vertical	135	1.0				
5.1498	46.69	99.7	-52.96	-13	39.96	Vertical	100	1.0				
5.722	37.48	100.6	-63.07	-13	50.07	Vertical	135	1.1				

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc.
Operator: Craig Brandt
Date of test: 07-05-2007
Temperature: 72 deg. F.
Humidity: 59% R.H.

	Radiated Spurious I	Emissions (e.r.p	o. substitu	tion met	hod) FCC	Part 74; FCC Par	t 2.1053	
Model: MX690-	J3 Transmit Frequen	ncy: <mark>584.5 MH</mark> 2	Z					
Frequency	Field Strength	Factor to	Power	Limit	Margin	Receive	EUT	Receive
	Level	Convert to	ERP			Antenna	Antenna	Antenna
GHz	dBuV/m	dBm	dBm	dBm	dB	Polarization	Orientation	Height (m)
1.169	27.02	99.8	-72.78	-13	59.78	Horizontal	190	2.2
1.7535	51.92	98.4	-46.48	-13	33.48	Horizontal	45	1.0
2.338	34.88	100.1	-65.22	-13	52.22	Horizontal	80	1.0
2.9225	34.54	100.7	-66.16	-13	53.16	Horizontal	100	1.6
4.0915	34.71	99.9	-65.19	-13	52.19	Horizontal	280	1.5
4.676	38.61	98.6	-59.99	-13	46.99	Horizontal	200	1.1
5.2605	43.08	98.2	-55.12	-13	42.12	Horizontal	45	1.1
1.169	31.19	99.2	-68.01	-13	55.01	Vertical	115	1.0
1.7535	52.38	98.5	-46.12	-13	33.12	Vertical	0	1.6
2.338	38.47	98.7	-60.23	-13	47.23	Vertical	135	1.1
2.9225	38.27	99.2	-60.93	-13	47.93	Vertical	135	1.1
3.507	34.63	99.3	-64.67	-13	51.67	Vertical	135	1.0
4.0915	35.86	100.2	-64.34	-13	51.34	Vertical	180	1.2
4.676	47.10	99.6	-52.50	-13	39.50	Vertical	100	1.1
5.2605	45.84	99.7	-53.86	-13	40.86	Vertical	350	1.3
5.845	38.20	100.0	-61.80	-13	48.80	Vertical	135	1.1

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc.
Operator: Craig Brandt
Date of test: 07-05-2007
Temperature: 72 deg. F.
Humidity: 59% R.H.

	Radiated Spurious Emissions (e.r.p. substitution method) FCC Part 74; FCC Part 2.1053												
Model: MX690-	Model: MX690-J3 Transmit Frequency: 595.8 MHz												
Frequency	Field Strength	Factor to	Power	Limit	Margin	Receive	EUT	Receive					
	Level	Convert to	ERP			Antenna	Antenna	Antenna					
GHz	dBuV/m	dBm	dBm	dBm	dB	Polarization	Orientation	Height (m)					
1.7874	46.75	98.8	-52.05	-13	39.05	Horizontal	315	1.0					
2.3832	29.82	100.1	-70.28	-13	57.28	Horizontal	60	1.0					
2.979	39.63	100.1	-60.47	-13	47.47	Horizontal	270	1.4					
3.5748	37.64	100.2	-62.56	-13	49.56	Horizontal	270	1.4					
4.7664	36.01	98.3	-62.29	-13	49.29	Horizontal	200	1.0					
1.7874	49.55	99.3	-49.75	-13	36.75	Vertical	0	1.5					
2.3832	33.25	98.7	-65.45	-13	52.45	Vertical	100	1.1					
2.979	40.74	99.1	-58.36	-13	45.36	Vertical	100	1.1					
3.5748	39.71	99.9	-60.19	-13	47.19	Vertical	280	1.0					
4.1706	35.20	100.1	-64.90	-13	51.90	Vertical	225	1.0					
4.7664	42.62	99.4	-56.78	-13	43.78	Vertical	270	2.2					

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

8.0 FREQUENCY STABILITY (TEMPERATURE)—PART 2.1055(a1)

The frequency stability was measured from -30° to +50° centigrade at intervals of 10° centigrade throughout the range. Prior to each frequency measurement, the equipment was left alone for a sufficient period of time (approximately 30 minutes or more) to allow the components of the Wireless Boundary Microphone oscillator circuitry to stabilize.

See the following page for the data taken during testing.

9.0 FREQUENCY STABILITY (VOLTAGE VARIATION)– PART 2.1055(d2)

The frequency stability of Wireless Boundary Microphone was measured by reducing the primary supply voltage to the battery end point specified by the manufacturer.

See the following page for the data taken during testing.

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DATA TAKEN FOR FREQUENCY

STABILITY WHEN VARYING THE TEMPERATURE

AND

PRIMARY SUPPLY VOLTAGE VARIATION

PART 2.1055a(1) & PART 2.1055d(d2)

Model Tested: MX690J3 Report Number: 13479

APPENDIX A

DLS Electronic Systems, Inc.

Company: Shure, Inc. Operator: Craig B

Date of test: 07-13-2007

Limit = 28.6 kHz (0.005% of 572.2 MHz)

Frequency Stability FCC Part 74; FCC Part 2.1055

Model	Nominal		Measured Frequency										
Wiodei	Frequency (MHz)	+50 deg. C	Error (kHz)	+40 deg. C	Error (kHz)	+30 deg. C	Error (kHz)	+20 deg. C	Error (kHz)	+10 deg. C	Error (kHz)		
MX690-J3	572.200	572.196192	-3.808	572.196754	-3.246	572.197956	-2.044	572.198998	-1.002	572.200120	0.120		
MX690-J3	584.500	584.496192	-3.808	584.496593	-3.407	584.497715	-2.285	584.498998	-1.002	584.500040	0.040		
MX690-J3	595.800	595.796032	-3.968	595.796593	-3.407	595.797635	-2.365	595.799158	-0.842	595.800040	0.040		

Frequency Stability FCC Part 74; FCC Part 2.1055

Model	Nominal		Measured Frequency									
Model I MX690-J3 MX690-J3 MX690-J3	Frequency (MHz)	0 deg. C	Error (kHz)	-10 deg. C	Error (kHz)	-20 deg. C	Error (kHz)	-30 deg. C	Error (kHz)	2.1 Volts	Error (kHz)	
MX690-J3	572.200	572.200762	0.762	572.200601	0.601	572.198918	-1.082	572.200120	0.120	572.198597	-1.403	
MX690-J3	584.500	584.500681	0.681	584.500601	0.601	584.499479	-0.521	584.500120	0.120	584.498758	-1.242	
MX690-J3	595.800	595.800842	0.842	595.800601	0.601	595.799719	-0.281	595.800040	0.040	595.798677	-1.323	

Company: Shure Incorporated MX690J3

Report Number: 13479

APPENDIX A

10.0 FREQUENCY STABILITY PHOTOS TAKEN DURING TESTING

