

Web: www.mrt-cert.com

MRT Technology (Suzhou) Co., LtdReportNo.:2004RSU052-U3Phone: +86-512-66308358ReportVersion:V01 Issue Date: 05-27-2020

MEASUREMENT REPORT

FCC PART 15.236 Wireless Microphone

FCC ID:	DD4AD3K54
APPLICANT:	Shure Incorporated
Application Type:	Certification
Product:	Digital Plug-on Transmitter
Model No.:	AD3 K54
Brand Name:	SHURE SHURE
FCC Classification:	Part 15 Wireless Microphone (DWM)
FCC Rule Part(s):	Part 15 Subpart C (Section 15.236)
Test Procedure(s):	ANSI C63.10-2013, KDB 206256 D01v02
	ETSI EN 300 422-1 V1.4.2 (2011-08)
Test Date:	April 24 ~ May 26, 2020

(Jame Yuan) **Reviewed By:** sbin Wu Approved By: TESTING LABORATORY (Robin Wu) CERTIFICATE #3628.01

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2004RSU052-U3 Rev. 01		Initial Report	05-27-2020	Valid

CONTENTS

Des	scriptio	n Page
CO	NTENT	S3
1.	INTRO	DDUCTION
	1.1.	Scope
	1.2.	MRT Test Location
2.	PROD	UCT INFORMATION
	2.1.	Equipment Description
	2.1.	Product Specification Subjective to this Report
	2.3.	Working Frequencies for this report
	2.4.	Test Software
	2.5.	EMI Suppression Device(s) / Modifications
	2.6.	Labeling Requirements
3.	DESC	RIPTION of TEST
	3.1.	Evaluation Procedure
	3.2.	AC Line Conducted Emissions
	3.3.	Radiated Emissions
		EQUIPMENT CALIBRATION DATE
4.		
5.	MEAS	SUREMENT UNCERTAINTY 13
6.	TEST	RESULT 14
	6.1.	Summary
	6.2.	99% Occupied Bandwidth Measurement 15
	6.2.1.	Test Limit 15
	6.2.2.	Test Procedure Used 15
	6.2.3.	Test Setting15
	6.2.4.	Test Setup15
	6.2.5.	Test Result
	6.3.	Frequency Tolerance Measurement 19
	6.3.1.	Test Limit 19
	6.3.2.	Test Procedure Used 19
	6.3.3.	Test Setting
	6.3.4.	Test Setup
	6.3.5.	Test Result
	6.4.	Necessary Bandwidth Measurement
	6.4.1.	Test Limit

	6.4.2.	Test Procedure Used 24	ŀ
	6.4.3.	Test Setting 24	ŀ
	6.4.4.	Test Setup25	5
	6.4.5.	Test Result	3
	6.5.	Output Power Measurement 46	3
	6.5.1.	Test Limit	3
	6.5.2.	Test Procedure Used 46	3
	6.5.3.	Test Setting 46	3
	6.5.4.	Test Setup 47	7
	6.5.5.	Test Result	3
	6.6.	Radiated Spurious Emission Measurement 50)
	6.6.1.	Test Limit)
	6.6.2.	Test Procedure Used 50)
	6.6.3.	Test Setting)
	6.6.4.	Test Setup51	
	6.6.5.	Test Result	2
	6.7.	AC Conducted Emissions Measurement	3
	6.7.1.	Test Limit	3
	6.7.2.	Test Setup	3
	6.7.3.	Test Result of Conducted Emissions57	7
7.	CONC	LUSION)
Арр	endix /	A - Test Setup Photograph 60)
Арр	endix E	3 - EUT Photograph61	

General Information

Applicant:	Shure Incorporated				
Applicant Address:	5800 West Touhy Avenue, Niles, IL 60714-4608, USA				
Manufacturer:	Shure Incorporated				
Manufacturer Address:	5800 West Touhy Avenue, Niles, IL 60714-4608, USA				
Test Site:	MRT Technology (Suzhou) Co., Ltd				
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic				
	Development Zone, Suzhou, China				
Test Device Serial No.:	N/A Production Pre-Production Engineering				

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC accredited (MRT Designation No. CN1166) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

lac	
Accre	dited Laboratory
	A2LA has occredited
	LOGY (SUZHOU) CO., LTD. ngsu, People's Republic of China
for th	echnical competence in the field of
E	Electrical Testing
General requirements for the competence technical competence for a defined so	ance with the recognized international Standard ISO/IEC 17025/2017 of festing and calibration laboratories. This accreditation demonstrate ope and the operation of a laboratory quality management system O-RAC-IAF Communique dated April 2017).
and the second second	Presented this 24th day of July 2018.
(C)	I le
	President and CEO
2 A2LA 5	For the Accreditation Council Certificate Number 3628.01
- minister	Volid to August 31, 2020
	secolary advances only in the Internation /s Plantice of Younge of Assessmentication

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	Digital Plug-on Transmitter	
Model No.	AD3 K54	
Frequency Range	606 ~ 663 MHz	
Power Type	Two AA batteries (3.0Vdc) or SB900A Li-ion battery	
Working Voltage	1.9 ~ 4.2 Vdc	
Working Mode	STD Mode and HD Mode (Note)	
Operating Temperature	-10 ~ 50°C	
Accessories		
Rechargeable	Model: SB900A	
Li-ion Battery	Output: 3.7Vdc, 1320mAh, 4.88Wh	

Note: STD means normal channel bandwidth mode, HD means high density channel bandwidth. End user can switch working modes through the digital wireless receiver.

2.2. Product Specification Subjective to this Report

Frequency Range	606 ~ 608 MHz & 614 ~ 616 MHz & 657 ~ 663 MHz			
Declared Power Level	STD: 2mW & 10mW & 35mW, HD: 2mW			
Type of Modulation	16QAM			
Channel Spacing	25kHz			

Note 1: For other features of this EUT, test report will be issued separately.

Note 2: Power level and transmit frequency can be selected using the front panel controls.

Note 3: 614 ~ 616 MHz & 657 ~ 663 MHz frequency band support max power level is 10mW.

2.3. Working Frequencies for this report

Bottom Channel (MHz)	Top Channel (MHz)				
606 ~ 608	MHz Band				
606.000 607.875					
614 ~ 616	614 ~ 616 MHz Band				
614.125 615.875					
657 ~ 663 MHz Band					
657.125	662.875				

Note 1: The frequency selection can be offset from the upper or lower band limits by 25 kHz. This upper or lower band means 470~616 MHz frequency range is defined in FCC Part 15.236 title. Note 2: Refer ANSI C63.10 clause 5.6.1 table 4, frequency range fall within 1 - 10 MHz, only two channels (Top and Bottom) shall be tested.

2.4. Test Software

The test utility software used during testing was "IPOP", and the version was V4.1, all test commands were provided by the manufacturer.

2.5. EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.6. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedure described in the document titled "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices" (ANSI C63.10-2013) was used in the measurement.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions were used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2021/01/18
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2020/06/13
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2020/06/13
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2020/08/08
Shielding Room	MIX-BEP	Chamber-SR2	MRTSUE06215	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2021/04/03
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2020/12/29
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	ток	Chamber-AC1	MRTSUE06212	1 year	2021/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2020/10/27
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2020/12/29
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2020/12/15
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2021/04/30

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2021/04/14
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06452	1 year	2020/07/11
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2021/04/14
Power Meter	Agilent	U2021XA	MRTSUE06030	1 year	2020/11/18
USB wideband power sensor	Keysight	U2021XA	MRTSUE06446	1 year	2020/06/30
USB wideband power sensor	Keysight	U2021XA	MRTSUE06447	1 year	2020/06/30
Bluetooth Test Set	Anritsu	MT8852B-042	MRTSUE06389	1 year	2020/06/13
Audio Analyzer	Agilent	U8903B	MRTSUE06143	1 year	2020/06/13
Modulation Analyzer	HP	8901A	MRTSUE06098	1 year	2020/10/10
Wideband Radio Communication Tester	R&S	CMW 500	MRTSUE06243	1 year	2020/11/07
DC Power Supply	GWINSTEK	DPS-3303C	MRTSUE06064	N/A	N/A
Temperature & Humidity Chamber	BAOYT	BYH-150CL	MRTSUE06051	1 year	2020/11/07
Thermohygrometer	testo	608-H1	MRTSUE06401	1 year	2020/08/08

Software	Version	Function
EMI Software	V3	EMI Test Software

5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Emis	Conducted Emission Measurement - SR2				
The maxim	The maximum measurement uncertainty is evaluated as:				
9kHz~150k	Hz: 3.84dB				
150kHz~30	MHz: 3.46dB				
Radiated Emiss	ion Measurement - AC1				
The maxim	um measurement uncertainty is evaluated as:				
Horizontal:	30MHz~300MHz: 4.07dB				
	300MHz~1GHz: 3.63dB				
	1GHz~18GHz: 4.16dB				
Vertical:	30MHz~300MHz: 4.18dB				
	300MHz~1GHz: 3.60dB				
	1GHz~18GHz: 4.76dB				
Radiated Emissi	ion Measurement - AC2				
The maxim	um measurement uncertainty is evaluated as:				
Horizontal:	30MHz~300MHz: 3.75dB				
	300MHz~1GHz: 3.53dB				
	1GHz~18GHz: 4.28dB				
Vertical:	30MHz~300MHz: 3.86dB				
	300MHz~1GHz: 3.53dB				
	1GHz~18GHz: 4.33dB				

6. TEST RESULT

6.1. Summary

FCC Part	Test Description	Test Limit	Test	Test	Reference
Section(s)			Condition	Result	
15.236(f)(2)	Occupied Bandwidth	< 200kHz		Pass	Section 6.2
15.236(f)(3)	Frequency Tolerance	± 0.005%	Conducted	Pass	Section 6.3
15.236(g)	Necessary Bandwidth	Refer to clause 6.4.1		Pass	Section 6.4
15.236(d)(1)	RF Output Power	Refer to clause 6.5.1		Pass	Section 6.5
15 006(a)	Radiated Spurious	Refer to clause 6.6.1	Radiated	Deee	Section 6.6
15.236(g)	Emission	Relef to clause 6.6.1		Pass	Section 6.6
	AC Conducted		Line		
15.207	Emissions	< FCC 15.207 limits	Line	Pass	Section 6.7
	150kHz - 30MHz		Conducted		

Notes:

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.
- 3) For STD mode, besides necessary bandwidth test item was assessed three power level, any others test items were only assessed max power level.

6.2. 99% Occupied Bandwidth Measurement

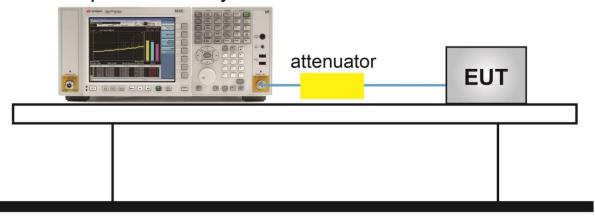
6.2.1.Test Limit

The operating bandwidth shall not exceed 200 kHz.

6.2.2.Test Procedure Used

ANSI C63.10-2013 - Section 6.9.3

6.2.3.Test Setting

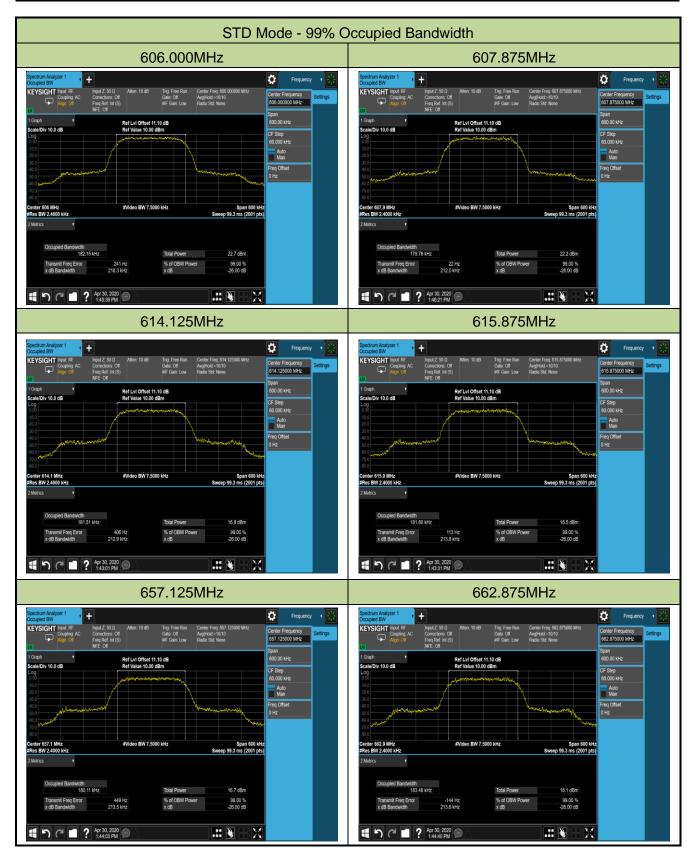

1. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the

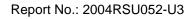
OBW.

- 2. Set RBW \geq 1% to 5% of the OBW
- 3. VBW = Approximately three times RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace to stabilize
- 8. Use the 99% power bandwidth function of the instrument and report the measured bandwidth.

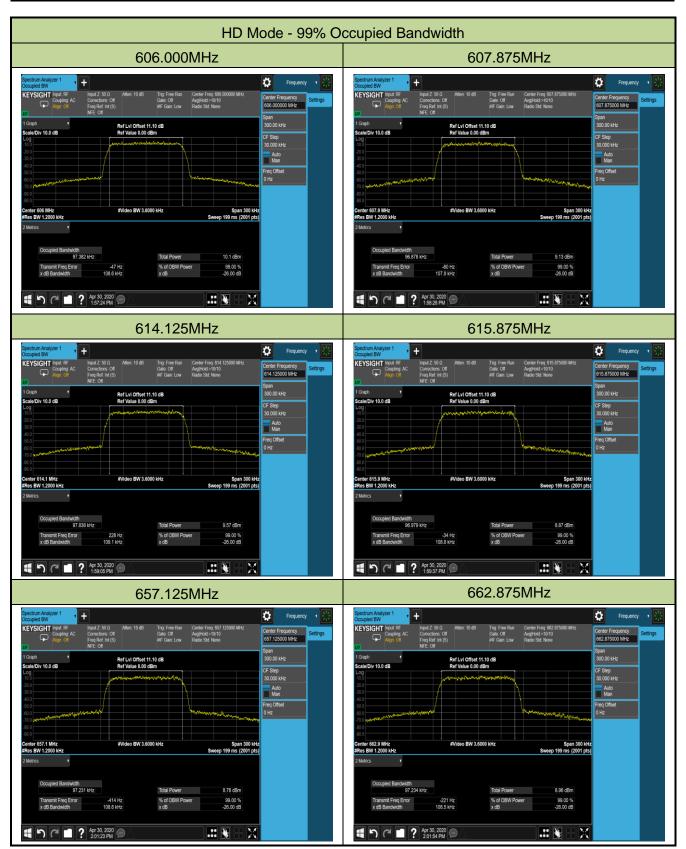
6.2.4.Test Setup

Spectrum Analyzer




6.2.5.Test Result

Test Engineer	Eric Xu	Temperature	25°C
Test Site	TR3	Relative Humidity	52%
Model No.	AD3 K54	Test Date	2020/04/30


Mode			Limit (kHz)	Result
STD	606.000	182.15	< 200	Pass
310	000.000	102.15	< 200	F 855
(35mW)	607.875	179.76	< 200	Pass
STD	614.125	181.51	< 200	Pass
(10mW)	615.875	181.80	< 200	Pass
STD	657.125	180.11	< 200	Pass
(10mW)	662.875	183.48	< 200	Pass
	606.000	97.38	< 200	Pass
	607.875	96.88	< 200	Pass
HD	614.125	97.84	< 200	Pass
(2mW)	615.875	96.98	< 200	Pass
	657.125	97.23	< 200	Pass
	662.875	97.23	< 200	Pass

6.3. Frequency Tolerance Measurement

6.3.1.Test Limit

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

6.3.2.Test Procedure Used

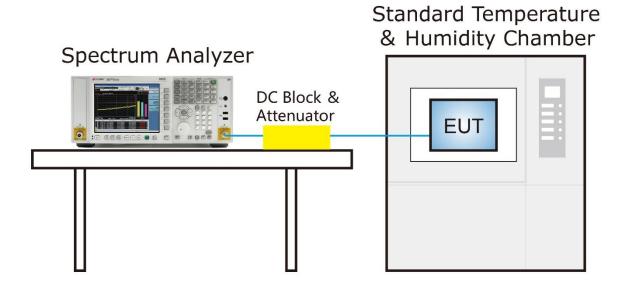
ANSI C63.10-2013 - Section 6.8

6.3.3.Test Setting

The EUT was programmed to transmit with an unmodulated carrier.

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.


Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

6.3.4.Test Setup

6.3.5.Test Result

Test Engineer	Eric Xu	Temperature	-20 ~ 50°C
Test Site	TR3	Relative Humidity	48 ~ 55%RH
Test Mode	Carrier Wave	Test Date	2020/05/06

Voltage (%)	Power (V _{DC})	Temp (°C)	Nominal Frequency (MHz)	Measured Frequency (MHz)	Deviation (%)	Limit (%)	Result	
		00	606.000	605.999974	-0.000004	-/+0.005	Pass	
		-20	607.875	607.874970	-0.000005	-/+0.005	Pass	
		-10	606.000	605.999975	-0.000004	-/+0.005	Pass	
		-10	607.875	607.874970	-0.000005	-/+0.005	Pass	
		0	606.000	605.999976	-0.000004	-/+0.005	Pass	
		0	607.875	607.874969	-0.000005	-/+0.005	Pass	
		+10	606.000	605.999976	-0.000004	-/+0.005	Pass	
100%	3.70	+10	607.875	607.874969	-0.000005	-/+0.005	Pass	
100%	3.70	+20	606.000	605.999975	-0.000004	-/+0.005	Pass	
			(Ref)	607.875	607.874969	-0.000005	-/+0.005	Pass
		+30	606.000	605.999976	-0.000004	-/+0.005	Pass	
		+30	607.875	607.874969	-0.000005	-/+0.005	Pass	
		+40	606.000	605.999977	-0.000004	-/+0.005	Pass	
		+40	607.875	607.874969	-0.000005	-/+0.005	Pass	
		+50	606.000	605.999977	-0.000004	-/+0.005	Pass	
		+50	607.875	607.874967	-0.000005	-/+0.005	Pass	
44 50/	4.0	+20	606.000	605.999977	-0.000004	-/+0.005	Pass	
115%	4.2	+20	607.875	607.874968	-0.000005	-/+0.005	Pass	
050/	0.1	+20	606.000	605.999976	-0.000004	-/+0.005	Pass	
85%	3.1	720	607.875	607.874968	-0.000005	-/+0.005	Pass	

Note 1: Frequency Tolerance (%) = {[Measured Frequency (MHz) - Nominal Frequency (MHz)] / Nominal Frequency (MHz)} $*10^{2}$.

Note 2: Four measurements (0 & 2 & 5 & 10 minutes) test data was recorded and only show worst data in report.

Test Engineer	Eric Xu	Temperature	-20 ~ 50°C
Test Site	TR3	Relative Humidity	48 ~ 55%RH
Test Mode	Carrier Wave	Test Date	2020/05/06

Voltage (%)	Power (V _{DC})	Temp (°C)	Nominal Frequency (MHz)	Measured Frequency (MHz)	Deviation (%)	Limit (%)	Result
			614.125	614.124785	-0.000035	-/+0.005	Pass
		-20	615.875	615.874778	-0.000036	-/+0.005	Pass
		10	614.125	614.124784	-0.000035	-/+0.005	Pass
		-10	615.875	615.874777	-0.000036	-/+0.005	Pass
		0	614.125	614.124784	-0.000035	-/+0.005	Pass
		0	615.875	615.874777	-0.000036	-/+0.005	Pass
		.10	614.125	614.124783	-0.000035	-/+0.005	Pass
100%	3.7	+10	615.875	615.874778	-0.000036	-/+0.005	Pass
100%	3.7	+20	614.125	614.124783	-0.000035	-/+0.005	Pass
		(Ref)	615.875	615.874777	-0.000036	-/+0.005	Pass
		+30	614.125	614.124783	-0.000035	-/+0.005	Pass
		+30	615.875	615.874776	-0.000036	-/+0.005	Pass
		+40	614.125	614.124782	-0.000035	-/+0.005	Pass
		+40	615.875	615.874776	-0.000036	-/+0.005	Pass
		+50	614.125	614.124782	-0.000035	-/+0.005	Pass
		+50	615.875	615.874776	-0.000036	-/+0.005	Pass
44.50/	1.0	+20	614.125	614.124781	-0.000036	-/+0.005	Pass
115%	4.2	+20	615.875	615.874776	-0.000036	-/+0.005	Pass
050/		+20	614.125	614.124781	-0.000036	-/+0.005	Pass
85%	3.1	+20	615.875	615.874776	-0.000036	-/+0.005	Pass

Note 1: Frequency Tolerance (%) = {[Measured Frequency (MHz) - Nominal Frequency (MHz)] / Nominal Frequency (MHz)} $*10^{2}$.

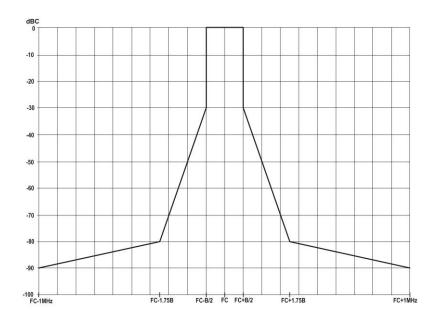
Note 2: Four measurements (0 & 2 & 5 & 10 minutes) test data was recorded and only show worst data in report.

Test Engineer	Eric Xu	Temperature	-20 ~ 50°C
Test Site	TR3	Relative Humidity	48 ~ 55%RH
Test Mode	Carrier Wave	Test Date	2020/05/06

Voltage (%)	Power (V _{DC})	Temp (°C)	Nominal Frequency (MHz)	Measured Frequency (MHz)	Deviation (%)	Limit (%)	Result
			657.125	657.124761	-0.000036	-/+0.005	Pass
		-20	662.875	662.874758	-0.000037	-/+0.005	Pass
		10	657.125	657.124761	-0.000036	-/+0.005	Pass
		-10	662.875	662.874759	-0.000036	-/+0.005	Pass
		0	657.125	657.124761	-0.000036	-/+0.005	Pass
		0	662.875	662.874759	-0.000036	-/+0.005	Pass
		. 10	657.125	657.124760	-0.000037	-/+0.005	Pass
100%	3.70	+10	662.875	662.874759	-0.000036	-/+0.005	Pass
100%	3.70	+20	657.125	657.124760	-0.000037	-/+0.005	Pass
		(Ref)	662.875	662.874759	-0.000036	-/+0.005	Pass
		. 20	657.125	657.124760	-0.000037	-/+0.005	Pass
		+30	662.875	662.874759	-0.000036	-/+0.005	Pass
		+40	657.125	657.124760	-0.000037	-/+0.005	Pass
		+40	662.875	662.874759	-0.000036	-/+0.005	Pass
		+50	657.125	657.124761	-0.000036	-/+0.005	Pass
		+50	662.875	662.874759	-0.000036	-/+0.005	Pass
44.50/	10	+20	657.125	657.124761	-0.000036	-/+0.005	Pass
115%	4.2	+20	662.875	662.874759	-0.000036	(%) -/+0.005	Pass
0.5%	0.4	120	657.125	657.124760	-0.000037	-/+0.005	Pass
85%	3.1	+20	662.875	662.874758	-0.000037	-/+0.005	Pass

Note 1: Frequency Tolerance (%) = {[Measured Frequency (MHz) - Nominal Frequency (MHz)] / Nominal Frequency (MHz)} *10².

Note 2: Four measurements (0 & 2 & 5 & 10 minutes) test data was recorded and only show worst data in report.



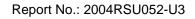
6.4. Necessary Bandwidth Measurement

6.4.1.Test Limit

According to EN 300 422-1 V1.4.2 clause 8.3.2.2, the transmitter output spectrum shall be within the

mask defined as below figure.

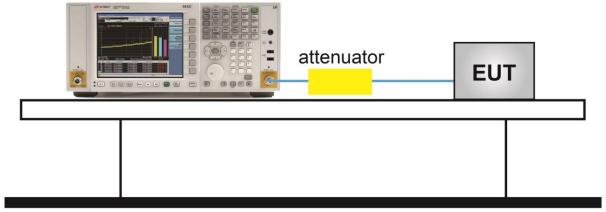
6.4.2.Test Procedure Used


ETSI EN 300 422-1 V1.4.2 clause 8.3.2.1.

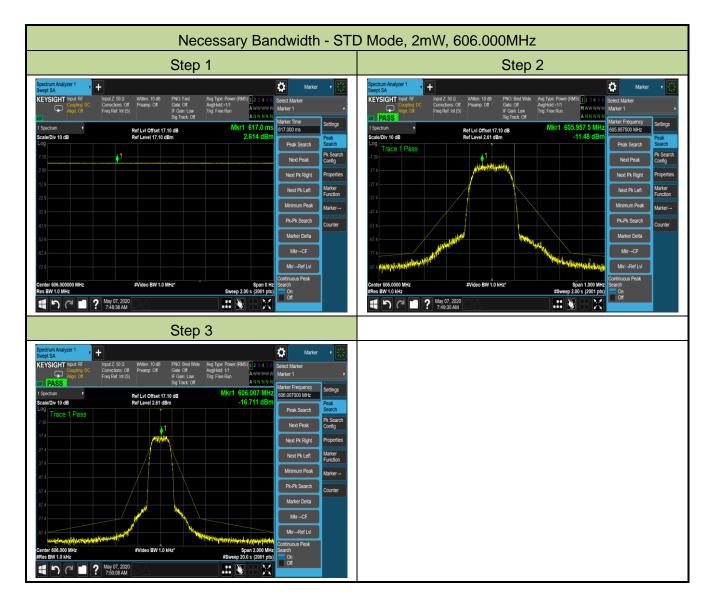
6.4.3.Test Setting

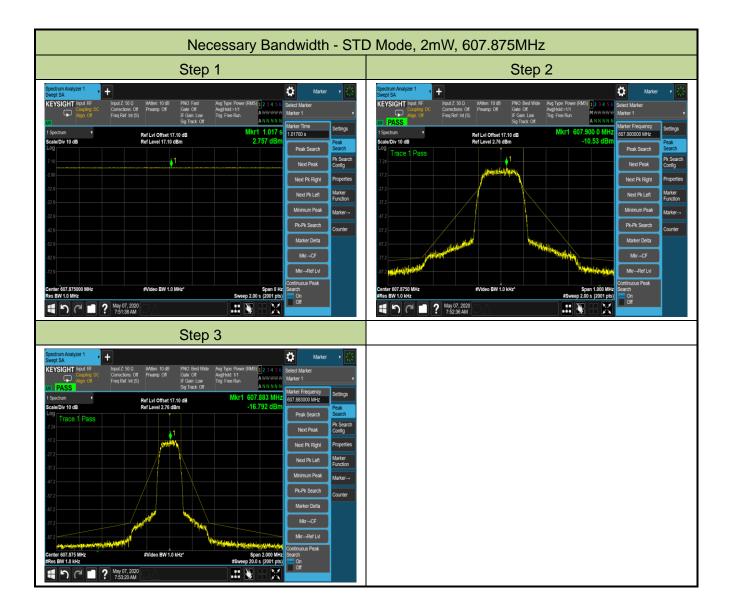
The EUT was powered up and the transmit frequency & power output of the EUT were selected.

The spectrum analyzer center frequency is set to the nominal EUT channel center frequency.


Only bottom and top channel is required, at an output power level of 2mW & 10mW & 35mW.

6.4.4.Test Setup


Spectrum Analyzer


6.4.5.Test Result

Test Site	TR3	Temperature	25 ℃
Test Engineer	Eric Xu	Relative Humidity	52%
Model No.	AD3 K54	Test Date	2020/05/06 ~ 2020/05/07

