FCC PART 15.247 TEST REPORT For # Optex Co., Ltd. 5-8-12, Ogoto Otsu-Shiga-Ken, Japan FCC ID: DC9IVP-DU Report Type: **Product Type:** Door Camera Unit Original Report Allen Dious **Test Engineer:** Allen Qiao Report Number: R2DG131125016-00A **Report Date:** 2013-12-06 Ivan Cao han (av **Reviewed By:** EMC Engineer Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Tel: +86-769-8685888 Fax: +86-769-86858891 www.baclcorp.com.cn Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★" (Rev.2). This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. # **TABLE OF CONTENTS** | GENERAL INFORMATION | 4 | |---|----| | PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 4 | | Objective | | | RELATED SUBMITTAL(S)/GRANT(S) | | | TEST METHODOLOGY | | | TEST FACILITY | | | SYSTEM TEST CONFIGURATION | 6 | | DESCRIPTION OF TEST CONFIGURATION | | | EUT Exercise Software | | | EQUIPMENT MODIFICATIONS | | | Support Equipment List and Details
External Cable | | | BLOCK DIAGRAM OF TEST SETUP | | | SUMMARY OF TEST RESULTS | | | SUMMARY OF TEST RESULTS | 8 | | FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE) | 9 | | APPLICABLE STANDARD | | | FCC §15.203 - ANTENNA REQUIREMENT | 10 | | APPLICABLE STANDARD | | | APPLICABLE STANDARD ANTENNA CONNECTOR CONSTRUCTION | | | | | | FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS | | | APPLICABLE STANDARD | | | MEASUREMENT UNCERTAINTYEUT SETUP | | | EMI TEST RECEIVER SETUP. | | | TEST PROCEDURE | | | CORRECTED AMPLITUDE & MARGIN CALCULATION | | | TEST EQUIPMENT LIST AND DETAILS. | | | TEST RESULTS SUMMARY | | | TEST DATA | 13 | | FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS | 16 | | APPLICABLE STANDARD | 16 | | MEASUREMENT UNCERTAINTY | 16 | | EUT SETUP | | | EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP | | | TEST PROCEDURE | | | CORRECTED AMPLITUDE & MARGIN CALCULATION | | | TEST RESULTS SUMMARY | | | Test Data | | | FCC §15.247(a) (1) - CHANNEL SEPARATION TEST | 24 | | APPLICABLE STANDARD | | | TEST EQUIPMENT LIST AND DETAILS. | | | TEST PROCEDURE | | | Test Data | 24 | | FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING | 27 | |---|-----| | APPLICABLE STANDARD | 2.7 | | Test Procedure | | | TEST EQUIPMENT LIST AND DETAILS. | | | TEST DATA | | | FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST | 30 | | APPLICABLE STANDARD | | | Test Procedure | | | TEST EQUIPMENT LIST AND DETAILS. | | | TEST DATA | | | FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) | 32 | | APPLICABLE STANDARD | | | TEST PROCEDURE | | | TEST EQUIPMENT LIST AND DETAILS. | | | TEST DATA | | | FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT | 35 | | APPLICABLE STANDARD | | | Test Procedure | | | TEST EQUIPMENT LIST AND DETAILS. | | | TEST DATA | | | FCC §15.247(d) - BAND EDGES TESTING | 38 | | APPLICABLE STANDARD | | | TEST PROCEDURE | | | TEST FROCEDORE TEST EQUIPMENT LIST AND DETAILS. | | | TEST DATA | 38 | #### **GENERAL INFORMATION** #### **Product Description for Equipment under Test (EUT)** The *Optex Co., Ltd.*'s product, model number: *08873 IVP-DU (FCC ID: DC9IVP-DU) or* ("EUT") in this report is a *Door Camera Unit,* which was measured approximately: 31.0 cm (L) x18.0 cm (W) x 2.0 cm (H), rated input voltage: DC 4.5V from three series AA batteries or DC/AC 10-24V. Report No.: R2DG131125016-00A * All measurement and test data in this report was gathered from production sample serial number: 131125016 (Assigned by BACL.Dongguan). The EUT was received on 2013-11-26. #### **Objective** This report is prepared on behalf of *Optex Co., Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communications Commission rules. The tests were performed in order to determine the Bluetooth of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules. #### Related Submittal(s)/Grant(s) No related submittal(s). #### **Test Methodology** All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters. #### **Test Facility** The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industrial Zone, Tangxia, Dongguan, Guangdong, China Test site at Bay Area Compliance Laboratories Corp. (Dongguan) has been fully described in reports submitted to the Federal Communications Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 02, 2012. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003. The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710 and Industrial Canada registration test site No.: 3062D. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database. FCC Part 15.247 Page 4 of 39 Additionally, Bay Area Compliance Laboratories Corp. (Dongguan) is an ISO/IEC 17025 accredited laboratory, and is accredited by National Voluntary Laboratory Accredited Program (Lab Code 500069-0). The current scope of accreditations can be found at http://ts.nist.gov/standards/scopes/5000690.htm FCC Part 15.247 Page 5 of 39 #### **SYSTEM TEST CONFIGURATION** #### **Description of Test Configuration** The system was configured for testing in an engineering mode, which was provided by manufacturer. For the engineering mode, the maximum power was configured as default value and switched by the keys. Report No.: R2DG131125016-00A 16 channels were provided: | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | |---------|--------------------|---------|--------------------| | 1 | 2411 | 9 | 2438 | | 2 | 2414 | 10 | 2440 | | 3 | 2422 | 11 | 2442 | | 4 | 2424 | 12 | 2446 | | 5 | 2426 | 13 | 2452 | | 6 | 2429 | 14 | 2454 | | 7 | 2431 | 15 | 2458 | | 8 | 2436 | 16 | 2461 | EUT was tested with low channel: 2411 MHz, middle channel: 2436 MHz, and high channel: 2461 MHz. #### **EUT Exercise Software** No exercise software was used. #### **Equipment Modifications** No modification was made to the EUT tested. #### **Support Equipment List and Details** | Manufacturer | Description | Model | Serial Number | |----------------|-----------------|---------|---------------| | Pro instrument | DC Power Supply | pps3300 | N/A | #### **External Cable** | Cable Description | Shielding
Type | Ferrite Core | Length (m) | From Port | То | |-------------------|-------------------|--------------|------------|-----------------|-----| | DC Cable | No | No | 1.0 | DC Power Supply | EUT | FCC Part 15.247 Page 6 of 39 ## **Block Diagram of Test Setup** FCC Part 15.247 Page 7 of 39 | FCC Rules | Description of Test | Result | |------------------------------------|----------------------------------|------------| | §15.247 (i), §2.1093 | RF Exposure | Compliace | | §15.203 | Antenna Requirement | Compliance | | §15.207 (a) | Conducted Emissions | Compliance | | \$15.205, \$15.209,
\$15.247(d) | Radiated Emissions | Compliance | | §15.247 (a)(1) | 20 dB Bandwidth | Compliance | | §15.247(a)(1) | Channel Separation Test | Compliance | | §15.247(a)(1)(iii) | Time of Occupancy (Dwell Time) | Compliance | | §15.247(a)(1)(iii) | Quantity of hopping channel Test | Compliance | | §15.247(b)(1) | Peak Output Power Measurement | Compliance | | §15.247(d) | Band Edges | Compliance | FCC Part 15.247 Page 8 of 39 # FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE) #### **Applicable Standard** According to subpart 15.247(i) and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. Report No.: R2DG131125016-00A Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091) | (B) Limits for General Population/Uncontrolled Exposure | | | | | |---|----------------------------------|----------------------------------|------------------------|--------------------------| | Frequency Range (MHz) | Electric Field
Strength (V/m) | Magnetic Field
Strength (A/m) | Power Density (mW/cm²) | Averaging Time (minutes) | | 0.3–1.34 | 614 | 1.63 | *(100) | 30 | | 1.34–30 | 824/f | 2.19/f | *(180/f²) | 30 | | 30–300 | 27.5 | 0.073 | 0.2 | 30 | | 300–1500 | / | / | f/1500 | 30 | | 1500-100,000 | / | / | 1.0 | 30 | f = frequency in MHz; * = Plane-wave equivalent power density; According to §1.1310 and §2.1091 RF exposure is calculated. #### **Calculated Formulary:** Predication of MPE limit at a given distance $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$ P = power input to the antenna (in appropriate units, e.g., mW); G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain; R = distance to the center of radiation of the antenna (appropriate units, e.g., cm); #### **Calculated Data:** | Frequency | Antenna Gain | | Conducted
Power | | Evaluation
Distance | Power
Density | MPE
Limit | |-----------|--------------|-----------|--------------------|-------|------------------------|------------------|-----------------------| | (MHz) | (dBi) | (numeric) | (dBm) | (mW) | (cm) | (mW/cm^2) | (mW/cm ²) | | 2411 | 0 | 1.00 | 12.47 | 17.66 | 20.00 | 0.00352 | 1.0 | | 2436 | 0 | 1.00 | 12.05 | 16.03 | 20.00 | 0.00319 | 1.0 | | 2461 | 0 | 1.00 | 11.83 | 15.24 | 20.00 | 0.00303 | 1.0 | **Result:** The device meet FCC MPE at 20 cm distance FCC Part 15.247 Page 9 of 39 #### FCC §15.203 - ANTENNA REQUIREMENT #### **Applicable Standard** According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Report No.: R2DG131125016-00A #### **Antenna Connector Construction** The EUT has two monopole antennas permanently soldered on the printed circuit boards, one for transmitting and receiving, and other was not use, which complied with 15.203, the maximum gain is 0 dBi, please refer to the internal photos. Result: Compliance. FCC Part 15.247 Page 10 of 39 #### **Applicable Standard** FCC§15.207 #### **Measurement Uncertainty** Compliance or non- compliance with a disturbance limit shall be determined in the following manner: Report No.: R2DG131125016-00A If $U_{\rm lab}$ is less than or equal to $U_{\rm cispr}$ of Table 1, then: - compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit; - non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then: - compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit; - non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit. Based on CISPR 16-4-2: 2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Dongguan) is 3.46 dB (150 kHz to 30 MHz). Table 1 – Values of $$U_{\rm cispr}$$ | Measurement | $U_{ m cispr}$ | |---|----------------| | Conducted disturbance at mains port using AMN (150 kHz to 30 MHz) | 3.4 dB | #### **EUT Setup** Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units. FCC Part 15.247 Page 11 of 39 The setup of EUT is according with per ANSI C63.4-2003 measurement procedure. The specification used was with the FCC Part 15.207 limits. Report No.: R2DG131125016-00A The spacing between the peripherals was 10 cm. The DC Power Supply was connected to a 120 VAC/60 Hz power source. #### **EMI Test Receiver Setup** The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations: | Frequency Range | IF B/W | |------------------|--------| | 150 kHz – 30 MHz | 9 kHz | #### **Test Procedure** During the conducted emission test, the adapter was connected to the outlet of the first LISN and the other support equipments were connected to the outlet of the second LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode. #### **Corrected Amplitude & Margin Calculation** The basic equation is as follows: $$V_C = V_R + A_C + VDF$$ Herein, V_{C} : corrected voltage amplitude V_{R} : reading voltage amplitude A_{c} : attenuation caused by cable loss VDF: voltage division factor of AMN or ISN The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows: Margin = Limit – Corrected Amplitude FCC Part 15.247 Page 12 of 39 #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|----------------------|----------|------------------|---------------------|-------------------------| | R&S | EMI TEST
RECEIVER | ESCS 30 | 830245/006 | 2013-11-20 | 2014-11-19 | | R&S | Two-line V-network | ENV216 | 3560.6550.12 | 2013-2-18 | 2014-2-17 | | R&S | L.I.S.N | ESH3-Z5 | 100113 | N/A | N/A | | BACL | Test Software | BACL-EMC | V1.0-2010 | N/A | N/A | Report No.: R2DG131125016-00A #### **Test Results Summary** According to the recorded data in following table, the EUT complied with the FCC Part 15.207, with the worst margin reading of: #### 5.87dB at 0.380MHz in the Neutral conducted mode #### **Test Data** #### **Environmental Conditions** | Temperature: | 20.2 °C | |--------------------|-----------| | Relative Humidity: | 44 % | | ATM Pressure: | 101.5 kPa | The testing was performed by Allen Qiao on 2013-12-03. FCC Part 15.247 Page 13 of 39 ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). ### 120 V, 60 Hz, Line: Test Mode: Transmitting Report No.: R2DG131125016-00A | Frequency
(MHz) | Cord.
Reading
(dBµV) | Correction
Factor
(dB) | Limit
(dBµV) | Margin
(dB) | Detector
(PK/AV/QP) | |--------------------|----------------------------|------------------------------|-----------------|----------------|------------------------| | 0.380 | 46.01 | 0.33 | 58.28 | 12.27 | QP | | 0.380 | 39.38 | 0.33 | 48.28 | 8.90 | AV | | 0.850 | 38.96 | 0.32 | 56.00 | 17.04 | QP | | 0.850 | 34.42 | 0.32 | 46.00 | 11.58 | AV | | 1.400 | 38.42 | 0.33 | 56.00 | 17.58 | QP | | 1.390 | 33.51 | 0.33 | 46.00 | 12.49 | AV | | 2.070 | 38.10 | 0.36 | 56.00 | 17.90 | QP | | 2.080 | 31.26 | 0.36 | 46.00 | 14.74 | AV | | 3.240 | 39.35 | 0.40 | 56.00 | 16.65 | QP | | 3.230 | 31.96 | 0.40 | 46.00 | 14.04 | AV | | 4.270 | 40.01 | 0.44 | 56.00 | 15.99 | QP | | 4.270 | 32.42 | 0.44 | 46.00 | 13.58 | AV | FCC Part 15.247 Page 14 of 39 ## 120 V, 60 Hz, Neutral: | Frequency
(MHz) | Cord.
Reading
(dBµV) | Correction
Factor
(dB) | Limit
(dBµV) | Margin
(dB) | Detector
(PK/AV/QP) | |--------------------|----------------------------|------------------------------|-----------------|----------------|------------------------| | 0.380 | 50.15 | 0.22 | 58.28 | 8.13 | QP | | 0.380 | 42.41 | 0.22 | 48.28 | 5.87 | AV | | 0.700 | 42.23 | 0.22 | 56.00 | 13.77 | QP | | 0.700 | 34.97 | 0.22 | 46.00 | 11.03 | AV | | 1.290 | 41.55 | 0.24 | 56.00 | 14.45 | QP | | 1.290 | 33.54 | 0.24 | 46.00 | 12.46 | AV | | 2.730 | 42.58 | 0.30 | 56.00 | 13.42 | QP | | 2.730 | 36.64 | 0.30 | 46.00 | 9.36 | AV | | 3.700 | 44.14 | 0.34 | 56.00 | 11.86 | QP | | 3.700 | 36.44 | 0.34 | 46.00 | 9.56 | AV | | 5.360 | 44.72 | 0.42 | 60.00 | 15.28 | QP | | 5.360 | 37.69 | 0.42 | 50.00 | 12.31 | AV | FCC Part 15.247 Page 15 of 39 #### **Applicable Standard** FCC §15.247 (d); §15.209; §15.205; #### **Measurement Uncertainty** Compliance or non- compliance with a disturbance limit shall be determined in the following manner: Report No.: R2DG131125016-00A If U_{lab} is less than or equal to U_{cispr} of Table 1, then: - compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit; - non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then: - compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit; - non compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} U_{\text{cispr}})$, exceeds the disturbance limit. Based on CISPR 16-4-2: 2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Dongguan) is: 30M~200MHz: 5.0 dB 200M~1GHz: 6.2 dB 1G~6GHz: 4.45 dB 6G~18GHz: 5.23 dB Table 1 – Values of $U_{\rm cispr}$ | Measurement | | | | | | |--|--------|--|--|--|--| | Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz) | 6.3 dB | | | | | | Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz) | 5.2 dB | | | | | | Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz) | 5.5 dB | | | | | #### **EUT Setup** #### **Below 1GHz:** FCC Part 15.247 Page 16 of 39 #### **Above 1GHz:** The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.4-2003. The specification used was the FCC 15.209, and FCC 15.247 limits. The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle. #### **EMI Test Receiver & Spectrum Analyzer Setup** The system was investigated from 30 MHz to 25 GHz. During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations: | Frequency Range | RBW | Video B/W | IF B/W | Detector | |------------------|---------|-----------|--------|----------| | 30MHz – 1000 MHz | 120 kHz | 300 kHz | 120kHz | QP | | Above 1 GHz | 1MHz | 3 MHz | / | PK | #### **Test Procedure** Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations. Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak detection mode for frequencies above 1 GHz. The average value was Calculated based on Duty Cycle Correction Factor. FCC Part 15.247 Page 17 of 39 #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------------------|----------------------|-------------|--------------------|---------------------|-------------------------| | R&S | EMI TEST
RECEIVER | ESCI | 100224 | 2013-5-6 | 2014-5-5 | | Sunol
Sciences | Antenna | ЈВ3 | A060611-1 | 2012-9-6 | 2015-9-5 | | HP | HP AMPLIFIER | 8447E | 2434A02181 | N/A | N/A | | R&S | Spectrum analyzer | FSEM | DE31388 | 2013-5-7 | 2014-5-6 | | ETS LINDGREN | horn antenna | 3115 | 000 527 35 | 2012-9-6 | 2015-9-5 | | Mini-Circuit | Amplifier | ZVA-213-S+ | 054201245 | N/A | N/A | | R&S | Spectrum analyzer | FSP 38 | 100478 | 2013-6-16 | 2014-6-15 | | Ducommun
Technolagies | horn antenna | ARH-4223-02 | 1007726-01
1304 | 2013-6-16 | 2014-6-15 | Report No.: R2DG131125016-00A #### **Corrected Amplitude & Margin Calculation** The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows: Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows: Margin = Limit – Corrected Amplitude #### **Test Results Summary** According to the recorded data in following table, the EUT complied with the <u>FCC Title 47, Part 15, Subpart C</u>, and section 15.205, 15.209 and 15.247, with the worst margin reading of: #### 3.05 dB at 454.86 MHz in the Vertical polarization #### **Test Data** #### **Environmental Conditions** | Temperature: | 24.2°C | | | |--------------------|----------|--|--| | Relative Humidity: | 54% | | | | ATM Pressure: | 101.6kPa | | | The testing was performed by Allen Qiao on 2013-12-02. FCC Part 15.247 Page 18 of 39 ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). Test Mode: Transmitting #### **Measured Results** Report No.: R2DG131125016-00A | Frequency | R | eceiver | Rx An | tenna | Cable | Amplifier | Corrected | T ::4 | Manain | |-----------|---------|------------|-------|-----------|-----------|-----------|---------------|-------------------|-------------| | (MIIa) | Reading | Detector | Polar | Factor | loss | Gain | Amplitude | Limit
(dBµV/m) | Margin (dB) | | (MHz) | (dBµV) | (PK/QP/AV) | (H/V) | (dB) | (dB) | (dB) | $(dB\mu V/m)$ | (ασμ ν/ιιι) | (ub) | | | | | | v Channel | : 2411M | Hz | | | | | 2411 | 71.31 | PK | Н | 25.67 | 4.42 | 0.00 | 101.40 | N/A | N/A | | 2411 | 73.08 | PK | V | 25.67 | 4.42 | 0.00 | 103.17 | N/A | N/A | | 2390 | 35.98 | PK | V | 25.61 | 4.39 | 0.00 | 65.98 | 74.00 | 8.02 | | 2390 | 14.08 | AV | V | 25.61 | 4.39 | 0.00 | 44.08 | 54.00 | 9.92 | | 4822 | 37.25 | PK | V | 30.64 | 6.02 | 27.26 | 46.65 | 74.00 | 27.35 | | 7233 | 32.51 | PK | V | 34.16 | 7.47 | 26.36 | 47.78 | 74.00 | 26.22 | | 9644 | 32.18 | PK | Н | 36.05 | 8.80 | 26.08 | 50.95 | 74.00 | 23.05 | | 1236.55 | 35.69 | PK | Н | 22.92 | 2.83 | 27.23 | 34.21 | 74.00 | 39.79 | | 1236.55 | 21.72 | AV | Н | 22.92 | 2.83 | 27.23 | 20.24 | 54.00 | 33.76 | | 454.86 | 44.9 | QP | V | 17.38 | 2.58 | 21.91 | 42.95 | 46.00 | 3.05* | | | | | Mido | lle Chann | el: 2436N | ИHz | | | | | 2436 | 70.13 | PK | Н | 25.73 | 4.41 | 0.00 | 100.27 | N/A | N/A | | 2436 | 73.2 | PK | V | 25.73 | 4.41 | 0.00 | 103.34 | N/A | N/A | | 4872 | 37.81 | PK | V | 30.77 | 6.09 | 27.26 | 47.41 | 74.00 | 26.59 | | 7308 | 32.13 | PK | V | 34.34 | 7.51 | 26.50 | 47.48 | 74.00 | 26.52 | | 9744 | 32.61 | PK | Н | 36.29 | 8.83 | 25.69 | 52.04 | 74.00 | 21.96 | | 1233.28 | 34.82 | PK | Н | 22.91 | 2.83 | 27.24 | 33.32 | 74.00 | 40.68 | | 1233.28 | 21.73 | AV | Н | 22.91 | 2.83 | 27.24 | 20.23 | 54.00 | 33.77 | | 2113.69 | 33.26 | PK | Н | 24.90 | 3.96 | 27.20 | 34.92 | 74.00 | 39.08 | | 2113.69 | 19.81 | AV | Н | 24.90 | 3.96 | 27.20 | 21.47 | 54.00 | 32.53 | | 453.99 | 44.3 | QP | V | 17.35 | 2.58 | 21.90 | 42.33 | 46.00 | 3.67* | | | | | Hig | h Channe | l: 2461M | Hz | | | | | 2461 | 70.19 | PK | Н | 25.80 | 4.43 | 0.00 | 100.42 | N/A | N/A | | 2461 | 72.3 | PK | V | 25.80 | 4.43 | 0.00 | 102.53 | N/A | N/A | | 2483.5 | 32.13 | PK | V | 25.86 | 4.49 | 0.00 | 62.48 | 74.00 | 11.52 | | 2483.5 | 13.67 | AV | V | 25.86 | 4.49 | 0.00 | 44.02 | 54.00 | 9.98 | | 4922 | 43.64 | PK | V | 30.90 | 5.98 | 27.27 | 53.25 | 74.00 | 20.75 | | 7383 | 31.84 | PK | V | 34.52 | 7.55 | 26.65 | 47.26 | 74.00 | 26.74 | | 9844 | 34.43 | PK | Н | 36.53 | 8.85 | 25.49 | 54.32 | 74.00 | 19.68 | | 1234.51 | 35.06 | PK | Н | 22.91 | 2.83 | 27.24 | 33.56 | 74.00 | 40.44 | | 1234.51 | 21.75 | AV | Н | 22.91 | 2.83 | 27.24 | 20.25 | 54.00 | 33.75 | | 453.26 | 44.5 | QP | V | 17.31 | 2.58 | 21.90 | 42.49 | 46.00 | 3.51* | ^{*}Within measurement uncertainty! FCC Part 15.247 Page 19 of 39 | Frequency | Peak
Measurement
@ 3m | Polar | Duty Cycle
Correction
Factor | Average
Amp. | Limit | Margin | |-----------|-----------------------------|-------|------------------------------------|-----------------|--------|--------| | MHz | dBμV/m | H/V | dB | dBμV/m | dBμV/m | dB | | | | fre | equency:2411MHz | _ | _ | - | | 2411.00 | 101.40 | Н | -20.26 | 81.14 | N/A | N/A | | 2411.00 | 103.17 | V | -20.26 | 82.91 | N/A | N/A | | 4822.00 | 46.65 | V | -20.26 | 26.39 | 54.00 | 27.61 | | 7233.00 | 47.78 | V | -20.26 | 27.52 | 54.00 | 26.48 | | 9644.00 | 50.95 | Н | -20.26 | 30.69 | 54.00 | 23.31 | | | | fre | equency:2436MHz | | | | | 2436.00 | 100.27 | Н | -20.26 | 80.01 | N/A | N/A | | 2436.00 | 103.34 | V | -20.26 | 83.08 | N/A | N/A | | 4872.00 | 47.41 | V | -20.26 | 27.15 | 54.00 | 26.85 | | 7308.00 | 47.48 | V | -20.26 | 27.22 | 54.00 | 26.78 | | 9744.00 | 52.04 | Н | -20.26 | 31.78 | 54.00 | 22.22 | | | | fre | equency:2461MHz | | | | | 2461.00 | 100.42 | Н | -20.26 | 80.16 | N/A | N/A | | 2461.00 | 102.53 | V | -20.26 | 82.27 | N/A | N/A | | 4922.00 | 53.25 | V | -20.26 | 32.99 | 54.00 | 21.01 | | 7383.00 | 47.26 | V | -20.26 | 27.00 | 54.00 | 27.00 | | 9844.00 | 54.32 | Н | -20.26 | 34.06 | 54.00 | 19.94 | Calculate Average value based on Duty Cycle Correction Factor: Duty cycle= T_{ON}/T_{on+off} =(0.2/2.06)ms =9.71% Duty cycle correction factor = 20*log (duty cycle) =20*log(9.71%) = -20.26 dB Please refer to following plot: FCC Part 15.247 Page 20 of 39 Date: 2.DEC.2013 10:05:58 FCC Part 15.247 Page 21 of 39 #### Low Channel Date: 2.DEC.2013 10:00:27 #### **Middle Channel** Date: 2.DEC.2013 09:57:58 FCC Part 15.247 Page 22 of 39 Date: 2.DEC.2013 09:54:42 FCC Part 15.247 Page 23 of 39 #### FCC §15.247(a) (1) - CHANNEL SEPARATION TEST #### **Applicable Standard** Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. Report No.: R2DG131125016-00A #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|-------------------|--------|------------------|---------------------|-------------------------| | R&S | Spectrum analyzer | FSP 38 | 100478 | 2013-6-16 | 2014-6-15 | ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). #### **Test Procedure** - 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 100 kHz, maxhold the channel. - 2. Set the adjacent channel of the EUT maxhold another truce - 3. Measure the channel separation. #### **Test Data** #### **Environmental Conditions** | Temperature: | 24.1 °C | | | |--------------------|----------|--|--| | Relative Humidity: | 44 % | | | | ATM Pressure: | 101.9kPa | | | ^{*} The testing was performed by Allen Qiao on 2013-11-28. Test Result: Compliance. Please refer to following tables and plots FCC Part 15.247 Page 24 of 39 | Channel | Frequency
(MHz) | Channel
Separation
(MHz) | Limit
(MHz) | Result | |----------|--------------------|--------------------------------|----------------|--------| | Low | 2411 | 3.012 | 1.427 | Pass | | Adjacent | 2414 | 5.012 | 1.72/ | 1 433 | | Middle | 2436 | 2.010 | 1.427 | Pass | | Adjacent | 2438 | 2.010 | 1.42/ | rass | | High | 2458 | 2 000 | 1.427 | Dogg | | Adjacent | 2461 | 3.000 | 1.42/ | Pass | #### **Low Channel** Date: 28.NOV.2013 16:11:58 FCC Part 15.247 Page 25 of 39 #### Middle Channel Report No.: R2DG131125016-00A Date: 28.NOV.2013 16:22:10 #### **High Channel** Date: 28.NOV.2013 16:15:34 FCC Part 15.247 Page 26 of 39 #### FCC $\S15.247(a)$ (1) – 20 dB BANDWIDTH TESTING #### **Applicable Standard** Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. Report No.: R2DG131125016-00A #### **Test Procedure** - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value. - 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. - 4. Repeat above procedures until all frequencies measured were complete. #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|-------------------|--------|------------------|---------------------|-------------------------| | R&S | Spectrum analyzer | FSP 38 | 100478 | 2013-6-16 | 2014-6-15 | ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). #### **Test Data** #### **Environmental Conditions** | Temperature: | 24.1 °C | | |--------------------|----------|--| | Relative Humidity: | 44 % | | | ATM Pressure: | 101.9kPa | | ^{*} The testing was performed by Allen Qiao on 2013-11-28. Test Result: Compliance. Please refer to following tables and plots FCC Part 15.247 Page 27 of 39 Test Mode: Transmitting | Channel | Frequency
(MHz) | 20 dB Bandwidth
(MHz) | |---------|--------------------|--------------------------| | Low | 2411 | 2.12 | | Middle | 2436 | 2.14 | | High | 2461 | 2.13 | Please refer to the following plots. #### Low Channel Date: 28.NOV.2013 15:30:14 FCC Part 15.247 Page 28 of 39 #### **Middle Channel** Report No.: R2DG131125016-00A Date: 28.NOV.2013 15:31:18 #### High Channel Date: 28.NOV.2013 15:29:01 FCC Part 15.247 Page 29 of 39 #### FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST Report No.: R2DG131125016-00A #### **Applicable Standard** Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. #### **Test Procedure** - 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator. - 2. Set the EUT in hopping mode from first channel to last. - 3. By using the Max-Hold function record the Quantity of the channel. #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|-------------------|--------|------------------|---------------------|-------------------------| | R&S | Spectrum analyzer | FSP 38 | 100478 | 2013-6-16 | 2014-6-15 | ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). #### **Test Data** #### **Environmental Conditions** | Temperature: | 24.1 °C | |--------------------|----------| | Relative Humidity: | 44 % | | ATM Pressure: | 101.9kPa | ^{*} The testing was performed by Allen Qiao on 2013-11-28. Test Result: Compliance. Please refer to following tables and plots FCC Part 15.247 Page 30 of 39 | Frequency Range
(MHz) | Number of
Hopping Channel | Limit | |--------------------------|------------------------------|-------| | 2400-2483.5 | 16 | ≥15 | #### **Number of Hopping Channels** Date: 28.NOV.2013 16:18:31 FCC Part 15.247 Page 31 of 39 #### FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME) #### **Applicable Standard** Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Report No.: R2DG131125016-00A #### **Test Procedure** The EUT was worked in channel hopping; Spectrum SPAN was set as 0. Sweep was set as 0.4 * channel no. (s), the quantity of pulse was get from single sweep. In addition, the time of single pulses was tested. Dwell Time= time slot length * hope rate/ number of hopping channels *hopping NO. * 0.4s #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|-------------------|--------|------------------|---------------------|-------------------------| | R&S | Spectrum analyzer | FSP 38 | 100478 | 2013-6-16 | 2014-6-15 | ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). #### **Test Data** #### **Environmental Conditions** | Temperature: | 24.1 °C | | |--------------------|----------|--| | Relative Humidity: | 44 % | | | ATM Pressure: | 101.9kPa | | ^{*} The testing was performed by Allen Qiao on 2013-11-28. Test Result: Compliance. Please refer to following tables and plots FCC Part 15.247 Page 32 of 39 Test Mode: Transmitting | Channel | Pulse
Width
(ms) | Dwell
Time
(s) | Limit
(s) | Result | | |--|------------------------|----------------------|--------------|--------|--| | Low | 1.140 | 0.223 | 0.4 | Pass | | | Middle | 1.135 | 0.222 | 0.4 | Pass | | | High | 1.135 | 0.222 | 0.4 | Pass | | | Dwell Time(s)= time slot length(s)* hopping rate /16*16* 0.4 | | | | | | Note: the hopping rate is 488/s, which was declared by the manufacture. #### Low Channel Date: 28.NOV.2013 16:27:21 FCC Part 15.247 Page 33 of 39 #### Middle Channel Report No.: R2DG131125016-00A Date: 28.NOV.2013 16:28:04 #### **High Channel** Date: 28.NOV.2013 16:28:21 FCC Part 15.247 Page 34 of 39 #### FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT #### **Applicable Standard** According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts Report No.: R2DG131125016-00A #### **Test Procedure** - 1. Place the EUT on a bench and set in transmitting mode. - 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to an EMI test receiver. - 3. Add a correction factor to the display. #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|-------------------|--------|------------------|---------------------|-------------------------| | R&S | Spectrum analyzer | FSP 38 | 100478 | 2013-6-16 | 2014-6-15 | ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). #### **Test Data** #### **Environmental Conditions** | Temperature: | 23.8 °C | | |--------------------|-----------|--| | Relative Humidity: | 42 % | | | ATM Pressure: | 101.6 kPa | | ^{*} The testing was performed by Allen Qiao on 2013-12-02. Test Result: Compliance. FCC Part 15.247 Page 35 of 39 | Channel | Frequency
(MHz) | Conducted
Output power
(dBm) | Limit
(dBm) | |---------|--------------------|------------------------------------|----------------| | Low | 2411 | 12.47 | 21 | | Middle | 2436 | 12.05 | 21 | | High | 2461 | 11.83 | 21 | Note: The antenna gain was 0dBi. #### **Output Power, Low** Date: 2.DEC.2013 09:52:14 FCC Part 15.247 Page 36 of 39 #### O 4 - 4 D - - - MC1.11 - Report No.: R2DG131125016-00A Date: 2.DEC.2013 09:52:35 #### **Output Power, High** Date: 2.DEC.2013 09:53:11 FCC Part 15.247 Page 37 of 39 #### **Applicable Standard** In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). Report No.: R2DG131125016-00A #### **Test Procedure** - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range. - 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge. - 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency. - 5. Repeat above procedures until all measured frequencies were complete. #### **Test Equipment List and Details** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration
Due Date | |--------------|-------------------|--------|------------------|---------------------|-------------------------| | R&S | Spectrum analyzer | FSP 38 | 100478 | 2013-6-16 | 2014-6-15 | ^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to National Primary Standards and International System of Units (SI). #### **Test Data** #### **Environmental Conditions** | Temperature: | 24.1 °C | |--------------------|----------| | Relative Humidity: | 44 % | | ATM Pressure: | 101.9kPa | ^{*} The testing was performed by Allen Qiao on 2013-11-28. FCC Part 15.247 Page 38 of 39 #### Band Edge, Left Side Report No.: R2DG131125016-00A Date: 28.NOV.2013 14:46:39 #### Band Edge, Right Side Date: 28.NOV.2013 14:48:04 ***** END OF REPORT ***** FCC Part 15.247 Page 39 of 39