

SAR EVALUATION REPORT

For

Lectrosonics, Inc.

581 Laser Road NE Rio Rancho, NM 87124, USA

FCC ID: DBZWM23A

Report Type:		Product Type:
Original	Report	Wireless Microphone Transmitter
Prepared By:	Vincent Licata	Vioto
Report Number:		
Report Date:	2018-09-17	
Reviewed By:	Jin Yang RF Lead	myny
Test Laboratory:	Bay Area Compliance Laboratories Corp. 1274 Anvilwood Ave. Sunnyvale, CA 94089, USA Tel: (408) 732-9162 Fax: (408) 732 9164	

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA* or any agency of the Federal Government. * This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*" (Rec1)

Summary of Test Results					
	EUT Description	Wireless Microphone Transmitter			
	Tested Model	WM-23			
EUT	FCC ID	DBZWM23A			
Information	Serial Number	WM-23: 2393			
	Test Date	2018-08-03			
	Accessories	WMBCSL spring loaded belt clip, WMBCWIR	E wire belt clip		
Frequency	SAR Type	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)		
588.8-607.95 MHz	1g Body SAR	1.42	1.6		
	FCC 47 CFR Part Radiofrequency rad	2.1093 liation exposure evaluation: portable devices			
	ANSI/IEEE C95.1: 2005 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fileds,3 kHz to 300 GHz.				
	ANSI/IEEE C95.3: 2002 IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to SuchFields, 100 kHz-300 GHz.				
Applicable Standards	IEEE 1528: 2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques				
	IEC 62209-2: 2010 Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices-Human models, instrumentation, and procedures-Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)				
KDB proceduresKDB 447498 D01 General RF Exposure Guidance v06KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04KDB 865664 D02 RF Exposure Reporting v01r02					
Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.					
The results and statements contained in this report pertain only to the device(s) evaluated.					

TABLE OF CONTENTS

1	GE	NERAL DESCRIPTION	6
	1.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
	1.2	TEST EUT TECHNICAL SPECIFICATION	
2	тг	ST FACILITY	7
3		FERENCE AND GUIDELINES	
	3.1	SAR LIMITS	10
4	EQ	UIPMENT LIST AND CALIBRATION	11
	4.1	Equipment List & Calibration Info	11
5	SA	R MEASUREMENT SYSTEM VERIFICATION	12
U	5.1	System Accuracy Verification	
	5.2	SYSTEM SETUP BLOCK DIAGRAM	
	5.3	LIQUID AND SYSTEM VALIDATION	
6	EU	T TEST STRATEGY AND METHODOLOGY	
v	6.1	TEST STRUCTURE OF THE THOUSE OF THE TRANSPORT OF THE TRAN	
	6.2	CHEEK/TOUCH POSITION	
	6.3	EAR/TILT POSITION	
	6.4	TEST POSITION FOR BODY-SUPPORT DEVICE AND OTHER CONFIGURATIONS	
	6.5	TEST POSITIONS FOR BODY-WORN AND OTHER CONFIGURATIONS	
	6.6	SAR EVALUATION PROCEDURE	
	6.7	TEST METHODOLOGY	19
7	DA	SY52 SAR EVALUATION PROCEDURE	20
	7.1	POWER REFERENCE MEASUREMENT	
	7.2	Area Scan	
	7.3	ZOOM SCAN	
	7.4	POWER DRIFT MEASUREMENT	
	7.5	Z-Scan	21
8	DE	SCRIPTION OF TEST SYSTEM	22
	8.1	IEEE 1528-2013 Recommended Tissue Dielectric Parameters	
	8.2	MEASUREMENT SYSTEM DIAGRAM	
	8.3	SYSTEM COMPONENTS	
	8.4	DASY6 MEASUREMENT SERVER	
	8.5	DATA ACQUISITION ELECTRONICS	
	8.6 8.7	PROBES ET3DV6 PROBE SPECIFICATION	
	8.8	E-FIELD PROBE CALIBRATION PROCESS	
	8.9	DATA EVALUATION	
	8.10	LIGHT BEAM UNIT	
	8.11	TISSUE SIMULATING LIQUIDS	
	8.12	SAM TWIN PHANTOM	
	8.13	ELI PHANTOM	
	8.14	SYSTEM VALIDATION KITS	
	8.15	Robot	29
9	SA	R MEASUREMENT CONSIDERATION	
	9.1	SAR CONSIDERATION	
10	SA	R MEASUREMENT RESULTS	
- 0	~ 1		

SAR Evaluation Report

10 10).1).2	Environmental Conditions Standalone SAR Results	31 31
11	APF	PENDIX A – MEASUREMENT UNCERTAINTY	32
12	APF	PENDIX B – PROBE CALIBRATION CERTIFICATES	33
13	APF	PENDIX C – DIPOLE CALIBRATION CERTIFICATES	71
14	APF	PENDIX D - TEST SYSTEM CHECK SCANS	79
15	APF	PENDIX E – EUT SCAN RESULTS	80
16	APF	PENDIX F – RF OUTPUT POWER MEASUREMENT	83
17	APF	PENDIX G- EUT PHOTOGRAPHS	84
18	APF	PENDIX H - INFORMATIVE REFERENCES	85
19	APF	PENDIX I (INFORMATIVE) - A2LA ELECTRICAL TESTING CERTIFICATE	86

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	R18073014-SAR	Original Report	2018-09-17	

1 General Description

1.1 Product Description for Equipment Under Test (EUT)

This test and measurement report has been compiled on behalf of *Lectrosonics, Inc.* and their product models: WM-23, *FCC ID: DBZWM23A* which henceforth is referred to as the EUT (Equipment Under Test). The EUT is a Wireless Microphone Transmitter. The EUT operates in the frequency range: 588.8-607.95 MHz.

1.2 Test EUT Technical Specification

Item	Desc	ription
Modulation Type	FM	
Frequency Range	588.8-607.95 MHz	
	23.78 dBm	588.8 MHz
Maximum Conducted Power Tested WM-23	23.89 dBm	598.375 MHz
	23.76 dBm	607.95 MHz
Power Source	WM-23: 2 DC 1.5V batteries.	
Normal Operation	Body-worn	

The test data gathered are from typical production sample, product WM-23 S/N 2393 provided by the client.

Test Facility 2

Bay Area Compliance Laboratories Corp. (BACL) is:

A- An independent, 3rd-Party, Commercial Test Laboratory accredited to ISO/IEC 17025:2005 by A2LA (Test Laboratory Accreditation Certificate Number 3279.02), in the fields of: Electromagnetic Compatibility and Telecommunications. Unless noted by an Asterisk (*) in the Compliance Matrix (See Section 3 of this Test Report), BACL's ISO/IEC 17025:2005 Scope of Accreditation includes all of the Test Method Standards and/or the Product Family Standards detailed in this Test Report.

BACL's ISO/IEC 17025:2005 Scope of Accreditation includes a comprehensive suite of EMC Emissions, EMC Immunity, Radio, RF Exposure, Safety and wireline Telecommunications test methods applicable to a wide range of product categories. These product categories include Central Office Telecommunications Equipment [including NEBS - Network Equipment Building Systems], Unlicensed and Licensed Wireless and RF devices, Information Technology Equipment (ITE); Telecommunications Terminal Equipment (TTE); Medical Electrical Equipment; Industrial, Scientific and Medical Test Equipment; Professional Audio and Video Equipment; Industrial and Scientific Instruments and Laboratory Apparatus; Cable Distribution Systems, and Energy Efficient Lighting.

B- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification **Body**

- - For the USA (Federal Communications Commission):

- 1-All Unlicensed radio frequency devices within FCC Scopes A1, A2, A3, and A4;
- 2-All Licensed radio frequency devices within FCC Scopes B1, B2, B3, and B4;
- All Telephone Terminal Equipment within FCC Scope C. 3-

- For the Canada (Industry Canada):

- All Scope 1-Licence-Exempt Radio Frequency Devices; 1-
- All Scope 2-Licensed Personal Mobile Radio Services; 2-
- 3-All Scope 3-Licensed General Mobile & Fixed Radio Services;
- 4-All Scope 4-Licensed Maritime & Aviation Radio Services;
- 5-All Scope 5-Licensed Fixed Microwave Radio Services
- 6-All Broadcasting Technical Standards (BETS) in the Category I Equipment Standards List.

For Singapore (Info-Communications Development Authority (IDA)):

- All Line Terminal Equipment: All Technical Specifications for Line Terminal Equipment - Table 1 of IDA MRA Recognition Scheme: 2011, Annex 2
- 2. All Radio-Communication Equipment: All Technical Specifications for Radio-

Communication Equipment – Table 2 of IDA MRA Recognition Scheme: 2011, Annex 2 - For the Hong Kong Special Administrative Region:

- All Radio Equipment, per KHCA 10XX-series Specifications;
- All GMDSS Marine Radio Equipment, per HKCA 12XX-series Specifications; 2 3
 - All Fixed Network Equipment, per HKCA 20XX-series Specifications.

- For Japan:

I

2

- MIC Telecommunication Business Law (Terminal Equipment):
- All Scope A1 Terminal Equipment for the Purpose of Calls;
- All Scope A2 Other Terminal Equipment
- Radio Law (Radio Equipment):
 - All Scope B1 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 1 of the Radio Law
 - All Scope B2 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 2 of the Radio Law
 - All Scope B3 Specified Radio Equipment specified in Article 38-2-2, paragraph 1, item 3 of the Radio Law

C- A Product Certification Body accredited to ISO/IEC 17065:2012 by A2LA (Product Certification Body Accreditation Certificate Number 3279.01) to certify Products to USA's Environmental Protection Agency (EPA) ENERGY STAR Product Specifications for:

Report Number: R18073014-SAR

- 1 Electronics and Office Equipment:
 - for Telephony (ver. 3.0)
 - for Audio/Video (ver. 3.0)
 - for Battery Charging Systems (ver. 1.1)
 - for Set-top Boxes & Cable Boxes (ver. 4.1)
 - for Televisions (ver. 6.1)
 - for Computers (ver. 6.0)
 - for Displays (ver. 6.0)
 - for Imaging Equipment (ver. 2.0)
 - for Computer Servers (ver. 2.0)
- 2 Commercial Food Service Equipment
 - for Commercial Dishwashers (ver. 2.0)
 - for Commercial Ice Machines (ver. 2.0)
 - for Commercial Ovens (ver. 2.1)
 - for Commercial Refrigerators and Freezers
- 3 Lighting Products
 - For Decorative Light Strings (ver. 1.5)
 - For Luminaires (including sub-components) and Lamps (ver. 1.2)
 - For Compact Fluorescent Lamps (CFLs) (ver. 4.3)
 - For Integral LED Lamps (ver. 1.4)
- 4 Heating, Ventilation, and AC Products
 - for Residential Ceiling Fans (ver. 3.0)
 - for Residential Ventilating Fans (ver. 3.2)
- 5 Other
 - For Water Coolers (ver. 3.0)

D. A NIST Designated Phase-I and Phase-II Conformity Assessment Body (CAB) for the following economies and regulatory authorities under the terms of the stated MRAs/Treaties:

- Australia: ACMA (Australian Communication and Media Authority) APEC Tel MRA -Phase I;
- Canada: (Industry Canada IC) Foreign Certification Body FCB APEC Tel MRA -Phase I & Phase II;
- Chinese Taipei (Republic of China Taiwan):
 - o BSMI (Bureau of Standards, Metrology and Inspection) APEC Tel MRA -Phase I;
 - o NCC (National Communications Commission) APEC Tel MRA -Phase I;
- European Union:
 - EMC Directive 2014/30/EU US-EU EMC & Telecom MRA CAB (NB)
 - Radio Equipment (RE) Directive 2014/53/EU US-EU EMC & Telecom MRA CAB (NB)
 - o Low Voltage Directive (LVD) 2014/35/EU
- Hong Kong Special Administrative Region: (Office of the Telecommunications Authority OFTA)
 - APEC Tel MRA -Phase I & Phase II
- Israel US-Israel MRA Phase I
- Republic of Korea (Ministry of Communications Radio Research Laboratory) APEC Tel MRA Phase I
- Singapore: (Infocomm Development Authority IDA) APEC Tel MRA -Phase I & Phase II;
- Japan: VCCI Voluntary Control Council for Interference US-Japan Telecom Treaty VCCI Side Letter
- USA:
 - ENERGY STAR Recognized Test Laboratory US EPA
 - Telecommunications Certification Body (TCB) US FCC;
 - Nationally Recognized Test Laboratory (NRTL) US OSHA

Vietnam: APEC Tel MRA -Phase I;

3 Reference and Guidelines

FCC/ISED:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the FCC KDB 447498 D01 "RF Exposure Procedures and Equipment Authorization Polices for Mobile and Portable Devices", RF Exposure compliance must be determined at the maximum average power level according to source-based time-averaging requirements to determine compliance for general population exposure conditions.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation, and what is the extent of radiation with respect to safety limits if radiation is found. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The CE requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by the EN50360 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits? SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

Lectrosonics, Inc.

3.1 SAR Limits

SAR (W/kg) **EXPOSURE LIMITS** (General Population / (Occupational / Uncontrolled Exposure Controlled Exposure Environment) Environment) Spatial Average 0.08 0.4 (averaged over the whole body) Spatial Peak 1.60 8.0 (averaged over any 1 g of tissue) Spatial Peak (hands/wrists/feet/ankles 4.0 20.0 averaged over 10 g)

FCC/ISED Limit

CE Limit

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average (averaged over the whole body)	0.08	0.4		
Spatial Peak (averaged over any 10 g of tissue)	2.0	10		
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0		

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

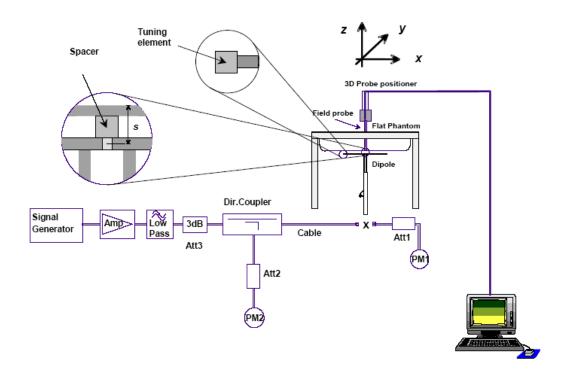
General Population/Uncontrolled environments Spatial Peak limit 1.6 W/kg (FCC/ISED) applied to the EUT.

4 Equipment List and Calibration

4.1 Equipment List & Calibration Info

Type/Model	Cal. Due Date	S/N
DASY6 Professional Dosimetric System	NCR	None
Robot TX90XL	NCR	F17/5DBKA1/A/01
Robot Controller CS8Cspeag-TX90	NCR	F17/5DBKA1/C/01
Pendant Control Box D21142607B	NCR	013151
Robot Remote Control Box SE UWS032 AA	NCR	None
HP Elitedesk 800 G3 TWR	NCR	CZC048171C
HP Elitedisplay E271i LED Backlit Monitor	NCR	3CM7208TJZ
SPEAG DAE4	2018-09-18	530
DASY6 Measurement Server SE UMS 028BB	NCR	1551
SPEAG E-Field Probe EX3DV4	2018-09-25	3619
Antenna, Dipole D600V3	2019-02-11	1010
SPEAG Twin SAM Phantom	NCR	TP-1032
SPEAG ELI Phantom V8.0	NCR	2074
Body Tissue Simulating Liquid MBBL600- 6000V6	Each Time	171031-2
Power Sensor Agilent E4419B EPM Series	2018-09-22	MY40510985
Power Sensor Agilent 8481A	2018-09-22	3318A94106
Power Sensor ETS-LINDGREN 7002-006	2018-12-05	160097
Dielectric Probe Kit SPEAG DAK-3.5 Probe	NCR	1252
HP Network Analyzer 8753D	2019-03-01	3410A04346
HEWLETT PACKARD 779D Directional Coupler	NCR	1144A05102
Keysight Technologies Vector Signal Generator N5182B	2019-01-06	MY51350070
Mini Circuits, AMPLIFIER 2VA-183-S+	NCR	576400946

Note: NCR=No Calibration Required


Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to NIST or to another internationally recognized National Metrology Institute (NMI), and were compliant with A2LA Policy P102 (dated 09 June 2016) "A2LA Policy on Metrological Traceability".

5 SAR Measurement System Verification

5.1 System Accuracy Verification

SAR system verification is required to confirm measurement accuracy. The system verification must be performed for each frequency band. System verification must be performed before each series of SAR measurements.

5.2 System Setup Block Diagram

Procedure:

1) The SAR system verification measurements were performed in the flat section of TWIN SAM or flat phantom with shell thickness of 2 ± 0.2 mm filled with head or body liquid.

2) The depth of liquid in phantom must be ≥ 15 cm for SAR measurement less than 3 GHz and ≥ 10 cm for SAR measurement above 3 GHz.

3) The dipole was mounted below the center of flat phantom, and oriented parallel to the Y-Axis. The standard measurement distance is 15mm (below 1 GHz) and 10mm (above 1 GHz) from dipole center to the liquid surface.

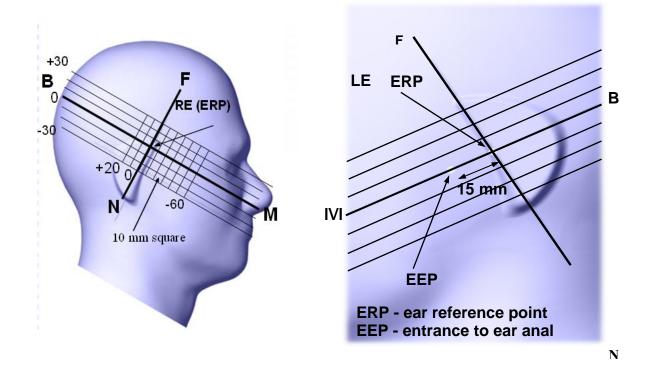
4) The dipole input power was 25 mW or 100 mW or 250 mW or 500 mW.

5) The SAR results are normalized to 1 Watt input power.

6) compared the normalized the SAR results to the dipole calibration results.

5.3 Liquid and System Validation

Date	Simulant	Freq. [MHz]	Parameters	Liquid Temp [°C]	Target Value	Measured Value	Deviation [%]	Limits [%]
			εr	22	56.12	54.813	-2.329	± 5
2018-08-03	Body	600	σ	22	0.95	0.921	-3.053	± 5
			1g SAR	22	6.66	6.56	-1.502	± 10

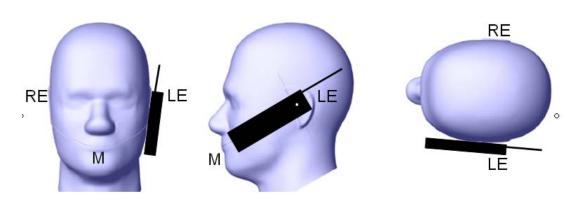

 ϵr = relative permittivity, σ = conductivity and ρ =1000 kg/m3

6 EUT Test Strategy and Methodology

6.1 Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ¹/₄ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. An "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:


6.2 Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.

This test position is established:

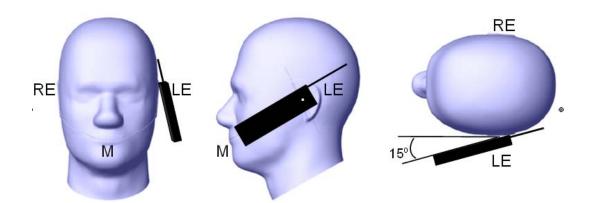
- When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.
- (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

6.3 Ear/Tilt Position

With the handset aligned in the "Cheek/Touch Position":


1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15 80° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tile/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

Report Number: R18073014-SAR

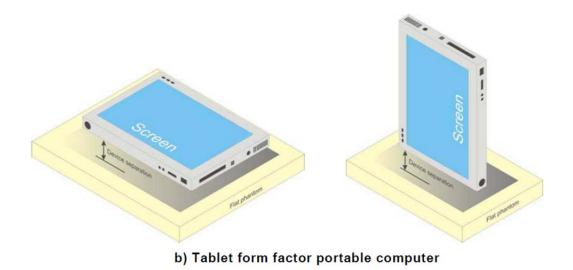
If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

6.4 Test position for body-support device and other configurations

A typical example of a body supported device is a wireless enabled laptop device that among other orientations may be supported on the thighs of a sitting use. To represent this orientation, the device shall be positioned with its base against the flat phantom. Other orientations may be specified by the manufactures in the user instructions. If the intended use is not specified, the device shall be tested directly against the flat phantom in all usable orientations.

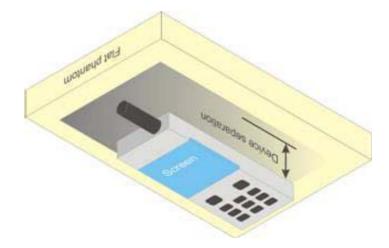
The screen portion of the device shall be in an open position at a 90° angle, or at an operating angle specified for intended use by the manufacturer in the operating instructions. Where a body supported device has an integral screen required for normal operation, then the screen-side will not need to be tested if it ordinarily remains 200 mm from the body. Where a screen mounted antenna is present, this position shall be repeated with the screen against the flat phantom, if this is consistent with the intended use.


Other devices that fall into this category include tablet type portable computers and credit card transaction authorization terminals, point-of-sale and/or inventory terminals. Where these devices may be torso or limb-supported, the same principles for body-supported devices are applied.

The example in Figure b) shows a tablet from factor portable computer for which SAR should be separately assessed with

- a) Each surface and
- b) The separation distances

Positioned against the flat phantom that correspond to the intended use as specified by the manufacturer. If the intended use is not specified in the user instructions, the device shall be tested directly against the flat phantom in all usable orientations.


Some body-supported devices may allow testing with an external power supply (e.g. a.c. adapter) supplemental to the battery, but it shall be verified and documented in the measurement report that SAR is still conservative

6.5 Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

6.6 SAR Evaluation Procedure

The evaluation was performed with the following procedure:

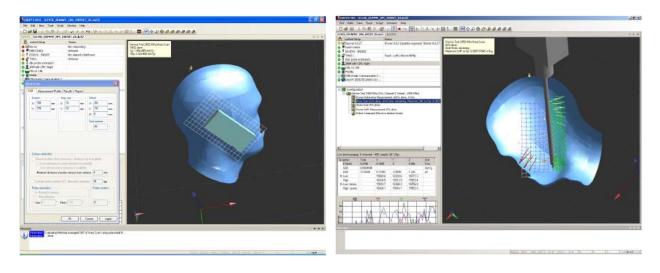
- **Step 1:** Measurement of the SAR value at a fixed location above central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.
- **Step 2:** The SAR distribution at the exposed side of body was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the body or EUT and the horizontal grid spacing was 50 mm x 110 mm. Based on these data, the area of the maximum absorption was determined by line interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.
- Step 3: Around this point, a volume of 30 mm x 30 mm x 21 mm was assessed by measuring 5 x 5 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
 - 1. The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
 - 2. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.
 - 3. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- **Step 4**: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.

6.7 Test Methodology

IEEE 1528: 2013 IEC 62209-2: 2010

7 DASY52 SAR Evaluation Procedure

7.1 Power Reference Measurement


The Power Reference Measurement and Power Drift Measurement jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. By default, the Minimum distance of probe sensors to surface of sensor calibration points to probe tip as defined in the probe properties.

7.2 Area Scan

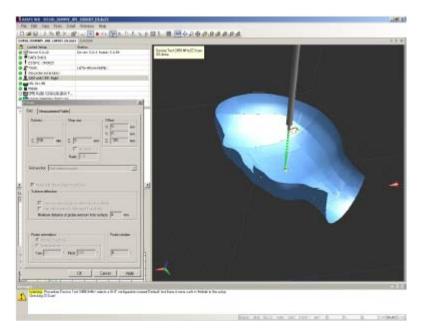
The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY52 software can find the maximum locations even in relatively coarse grids.

The scanning area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the Area Scan's property sheet is brought-up, grid settings can be edited by a user.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly (see Section 3.3.2.14 Zoom Scan for details). After measurement is completed, all maxima and their coordinates are listed in the Results property page. The maximum selected in the list is highlighted in the 3-D view. For the secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima returned from an Area Scan, the user can specify a lower limit is highlighted in the 3-D view. For the secondary maxima and their coordinates are listed in the 3-D view. For the secondary maxima within x dB condition. After measurement is completed, all maxima and their coordinates are listed in the 3-D view. For the secondary maxima within x dB condition. After measurement is completed, all maxima and their coordinates are listed in the 3-D view. For the secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima returned from an Area Scan, the user can specify a lower limit (peak SAR value), in addition to the Find secondary maxima within x dB condition. Only the primary maximum and any secondary maxima within x dB from the primary maximum and any secondary maxima within x dB from the primary maximum and any secondary maxima within x dB from the pri

Report Number: R18073014-SAR

7.3 Zoom Scan


Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan measures 5 x 5 x 7 points within a cube whose base faces are centered around the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

7.4 Power drift measurement

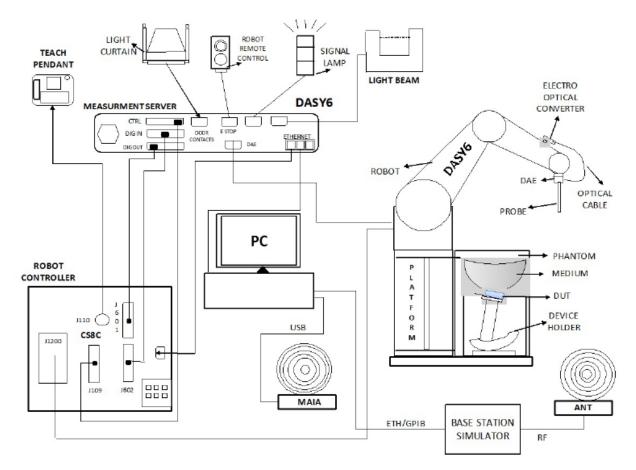
The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

7.5 Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z axis of a onedimensional grid. A user can anchor the grid to the section reference point, to any defined user point or to the current probe location. As with any other grids, the local Z axis of the anchor location establishes the Z axis of the grid.

8 Description of Test System

These measurements were performed with the automated near-field scanning system DASY6 from Schmid & Partner Engineering AG (SPEAG) which is the sixth generation of the system shown in the figure hereinafter:


The system is based on a high precision robot (working range greater than 1.45m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with the dosimetric probe EX3DV4 SN: 3619 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than $\pm 10\%$. The spherical isotropy was evaluated with the procedure and found to be better than ± 0.25 dB.

8.1	IEEE 1528-2013 Recommended Tissue Dielectric Parameters	

Frequency	Head	Head Tissue		⁷ Tissue
(MHz)	ε _r	o (S/m)	ε _r	o' (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

8.2 Measurement System Diagram

The DASY6 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot arm (Stäubli TX90XL) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE4) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.

• A computer operating Windows 2000 or Windows XP.

Report Number: R18073014-SAR

• DASY52 software.

- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The Twin SAM phantom enabling testing left-hand and right-hand usage.
- The ELI V8.0 phantom.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing system validation.

8.3 System Components

- DASY6 Measurement Server
- Data Acquisition Electronics
- Probes
- Light Beam Unit
- Medium
- SAM Twin Phantom
- ELI V8.0 Phantom
- Device Holder for SAM Twin Phantom
- System Validation Kits
- Robot

8.4 DASY6 Measurement Server

The DASY6 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server.

sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit ADconverter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

8.6 Probes

The DASY system can support many different probe types.

Dosimetric Probes: These probes are specially designed and calibrated for use in liquids with high permittivities. They should not be used in air, since the spherical isotropy in air is poor (± 2 dB). The dosimetric probes have special calibrations in various liquids at different frequencies.

Free Space Probes: These are electric and magnetic field probes specially designed for measurements in free space. The z-sensor is aligned to the probe axis and the rotation angle of the x-sensor is specified. This allows the DASY system to automatically align the probe to the measurement grid for field component measurement. The free space probes are generally not calibrated in liquid. (The H-field probes can be used in liquids without any change of parameters.)

Temperature Probes: Small and sensitive temperature probes for general use. They use a completely different parameter set and different evaluation procedures. Temperature rise features allow direct SAR evaluations with these probes.

8.7 ET3DV6 Probe Specification

Construction Symmetrical design with triangular core Built-in shielding against static charges Calibration In air from 4 MHz to 10 GHz In brain and muscle simulating tissue at frequencies of 450 MHz, 600 MHz, 750 MHz, 835 MHz, 1750 MHz, 1900 MHz, 2450 MHz, 2600 MHz, 5250 MHz, 5600 MHz, and 5800 MHz (accuracy \pm 13.3%). Frequency 4 MHz to 10 GHz; Linearity: \pm 0.2 dB (30 MHz to 10 GHz) Directivity \pm 0.1 dB in TSL (rotation around probe axis) \pm 0.3 dB in TSL (rotation normal probe axis) Dynamic Range: 10 μ W/g to > 100 mW/g; Dynamic Range Linearity: \pm 0.2 dB

Photograph of the probe Dimensions Overall length: 337 mm; Tip length: 20 mm; Body diameter: 12 mm; Tip diameter: 2.5 mm Typical distance from probe tip to dipole centers: 1 mm

Application: High precision dosimetric measurements in ant exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better than 30%.

FCC ID: DBZWM23A

8.5 Data Acquisition Electronics

8.8 E-Field Probe Calibration Process

Each probe is calibrated according to a dosimetric assessment procedure described in [6] with accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

8.9 Data Evaluation

The DASY6 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
- Diode compression point	dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z)

- Ui = input signal of channel i (i = x, y, z)
- cf = crest factor of exciting field (DASY parameter)
- dcp_i = diode compression point (DASY parameter)

Lectrosonics. Inc.

From the compensated input signals the primary field data for each channel can be evaluated:

$$\begin{array}{lll} {\rm E-field probes:} & E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ {\rm H-field probes:} & H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \end{array} \end{array}$$

With Vi = compensated signal of channel i (i = x, y, z) Norm_i = sensor sensitivity of channel i (i = x, y, z) $\mu V/(V/m)^2$ for E-field probes

- ConF = sensitivity enhancement in solution
- = sensor sensitivity factors for H-field probes
- a_{ij} f = carrier frequency [GHz]
- = electric field strenggy of channel i in V/m Ei
- Hi = diode compression point (DASY parameter)

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

With SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/meter] or [Siemens/meter] σ

= equivalent tissue density in g/cm^3 ρ

Note that the density is normally set to 1, to account for actual brain density rather than the density of the simulation liquid.

8.10 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, so that the robot coordinates are valid for the probe tip. The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

8.11 Tissue Simulating Liquids

Parameters

The parameters of the tissue simulating liquid strongly influence the SAR in the liquid. The parameters for the different frequencies are defined in the corresponding compliance standards (e.g., EN 50361, IEEE 1528-2003).

Parameter measurements

The following measurement system was applied for measuring the dielectric parameters of liquids:

• The open coax test method (e.g., HP85070 dielectric probe kit) is easy to use, but has only moderate accuracy. It is calibrated with open, short, and deionized water and the calibrations a critical process.

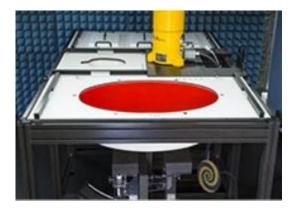
8.12 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left hand
- Right hand
- Flat phantom

The phantom table comes in two sizes: A 100 x 50 x 85 cm (L x W x H) table for use with free standing robots (DASY6 professional system option) or as a second phantom and a 100 x 75 x 85 cm(L x W x H) table with reinforcements for table mounted robots (DASY6 compact system option).

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids) A white cover is provided to tap the phantom during o_-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.


The phantom can be used with the following tissue simulating liquids:

- Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation.
- Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week).
- Do not use other organic solvents without previously testing the phantom's compatibility.

8.13 ELI Phantom

- The ELI phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has one measurement area: Flat Phantom
- Dimensions: Major Axis: 600mm, Minor Axis: 400mm
- Filling Volume: ≈ 30 Liters
- Support: DASY6: standard-size platform slot, DASY52 stand-alone: SPEAG standard phantom table
- The phantom can be used with the following tissue simulating liquids:

-Water-sugar based liquids can be left permanently in the phantom. Always cover the liquid if the system is not used, otherwise the parameters will change due to water evaporation.

-Glycol based liquids should be used with care. As glycol is a softener for most plastics, the liquid should be taken out of the phantom and the phantom should be dried when the system is not used (desirable at least once a week).

-Do not use other organic solvents without previously testing the phantom's compatibility.

8.14 System Validation Kits

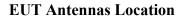
Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. For that purpose a well-defined SAR distribution in the flat section of the SAM twin phantom or ELI phantom is produced.

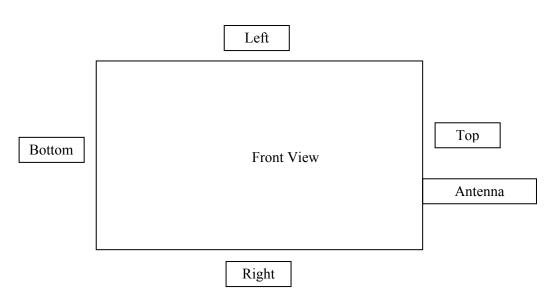
System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. Dipoles are available for the variety of frequencies between 300MHz and 6 GHz (dipoles for other frequencies or media and other calibration conditions are available upon request).

The dipoles are highly symmetric and matched at the center frequency for the specified liquid and distance to the flat phantom (or flat section of the SAM-twin phantom). The accurate distance between the liquid surface and the dipole center is achieved with a distance holder that snaps on the dipole.

8.15 Robot

BACL's DASY6 system uses the Stäubli TX90XL high precision industrial robots. This robot has many features:


- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance-free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchronous motors; no stepper motors)
- Low ELF interference (the closed metallic construction shields against motor control fields)


BACL's DASY6 system uses the SP1 controller with S/N D21142607B.

Lectrosonics, Inc.

9 SAR Measurement Consideration

9.1 SAR Consideration

- Note 1: One position was chosen for SAR testing, i.e. rear side touches to human body for normal operation.
- Note 2: EUT was tested without any accessories attached (0 mm distance between the phantom & EUT), which represents the worst case separation distance.

10 SAR Measurement Results

This page summarizes the results of the performed diametric evaluation. The plots with the corresponding SAR distributions, which reveal information about the location of the maximum SAR with respect to the device, could be found in Appendix E.

10.1 Environmental Conditions

Temperature:	22° C
Relative Humidity:	42 %
ATM Pressure:	102 kPa

Testing was performed by Vincent Licata in SAR chamber on 2018-08-03.

10.2 Standalone SAR Results

	588.8 – 607.95 MHz Band WM-23										
EUT Position	Frequency (MHz)	Test Type	Phantom	Output Power (mW)	Rated Power (mW)	Scaled	Measured SAR (W/kg) 1g Tissue	(0/	Limit (W/kg) 1g Tissue	Plot #	
Rear Side Touch (Mid CH)	598.375	Body	ELI	244.91	250	1.02	1.38	1.409	1.6	1	
Rear Side Touch (Low CH)	588.8	Body	ELI	238.78	250	1.05	1.36	1.424	1.6	2	
Rear Side Touch (High CH)	607.95	Body	ELI	237.68	250	1.05	1.16	1.220	1.6	3	

11 Appendix A – Measurement Uncertainty

The uncertainty budget has been determined for the DASY6 measurement system and is given in the following Table.

DASY6 Uncertainty Budget 30 MHz – 3 GHz								
Error Description	Uncertainty Value	Prob. Dist.	Div.	(c i) 1g	(c i) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(v i) veff
Measurement System								
Probe Calibration	± 6.65 %	N	1	1	1	± 6.65 %	± 6.65 %	œ
Axial Isotropy	± 0.25 %	R	$\sqrt{3}$	0.7	0.7	± 0.10 %	± 0.10 %	œ
Hemispherical Isotropy	± 1.3 %	R	$\sqrt{3}$	0.7	0.7	± 0.53 %	± 0.53 %	œ
Linearity	± 0.3 %	R	$\sqrt{3}$	1	1	± 0.17 %	± 0.17 %	œ
Modulation Response	± 4.8 %	R	$\sqrt{3}$	1	1	± 2.77 %	± 2.77 %	œ
System Detection Limits	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %	8
Boundary Effects	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.58 %	± 0.58 %	∞
Readout Electronics	± 0.3 %	Ν	1	1	1	± 0.3 %	± 0.3 %	\sim
Response Time	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.46 %	± 0.46 %	8
Integration Time	± 2.6 %	R	$\sqrt{3}$	1	1	± 1.5 %	± 1.5 %	~
RF Ambient Noise	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	8
RF Ambient Reflections	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %	~
Probe Positioner	$\pm \ 0.04 \ \%$	R	$\sqrt{3}$	1	1	± 0.0 %	± 0.0 %	8
Probe Positioning	± 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %	~
Post-processing	± 4.0 %	R	$\sqrt{3}$	1	1	± 2.3 %	± 2.3 %	8
		Test Sa	ample Re	lated				
Device Holder	± 3.6 %	Ν	1	1	1	± 3.6 %	± 3.6 %	5
Device Positioning	± 2.9 %	Ν	1	1	1	± 2.9 %	± 2.9 %	145
SAR Scaling	± 0.0 %	R	$\sqrt{3}$	1	1	± 0.0 %	± 0.0 %	∞
Power Drift	± 5.0 %	R	$\sqrt{3}$	1	1	± 2.9 %	± 2.9 %	œ
		Phante	om and S	etup				
Phantom Uncertainty	± 6.6 %	R	$\sqrt{3}$	1	1	± 3.8 %	± 3.8 %	œ
SAR Correction	± 1.9 %	Ν	1	1	0.84	± 1.9 %	± 1.6 %	∞
Liquid Conductivity (meas.) ^{DAK}	± 2.5 %	Ν	1	0.78	0.71	± 2.0 %	± 1.8 %	8
Liquid Permittivity (meas.) ^{DAK}	± 2.5 %	Ν	1	0.23	0.26	± 0.6 %	± 0.7 %	8
Temp. unc Conductivity (meas.) ^{BB}	± 3.4 %	R	$\sqrt{3}$	0.78	0.71	± 1.5 %	± 1.4 %	œ
Temp. unc Permittivity (meas.) ^{BB}	± 0.4 %	R	$\sqrt{3}$	0.23	0.26	± 0.1 %	± 0.1 %	œ
Combined Std. Uncertainty	-	-	-	-	-	± 10.9 %	± 10.7 %	414
Expanded STD Uncertainty	-	-	-	-	-	± 21.8 %	± 21.5 %	-

12 Appendix B – Probe Calibration Certificates

ccredited by the Swiss Accredit		A	creditation No.: SCS 0108
he Swiss Accreditation Servi			reditation No.: 505 0108
lultilateral Agreement for the			
lient BACL			EV2 2040 0
BACL		Certificate No:	EX3-3619_Sep17
CALIBRATION	CEDTIEICATE	•	
SALIBRATION	CERTIFICATE		
Object	EX3DV4 - SN:361	0	
object	EA3DV4 - 5N:301	9	
Calibration procedure(s)		A CAL-12.v9, QA CAL-14.v4, QA	CAL-23.v5,
	QA CAL-25.v6		
	Calibration proced	lure for dosimetric E-field probes	
			and the second second second second
Calibration date:	September 25, 20	17	
This calibration certificate docur	monte the treeshills to anti-		
The measurements and the unr	certainties with confidence pro	hal standards, which realize the physical units	of measurements (SI).
The measurements and the uno	certainties with confidence pro	hal standards, which realize the physical units bability are given on the following pages and	of measurements (SI). are part of the certificate.
The measurements and the unc	certainties with confidence pro	bability are given on the following pages and	are part of the certificate.
The measurements and the unc	certainties with confidence pro	al standards, which realize the physical units bability are given on the following pages and facility: environment temperature (22 ± 3)°C :	are part of the certificate.
The measurements and the und All calibrations have been cond	certainties with confidence pro lucted in the closed laboratory	bability are given on the following pages and	are part of the certificate.
The measurements and the uno	certainties with confidence pro lucted in the closed laboratory	bability are given on the following pages and	are part of the certificate.
The measurements and the uno	certainties with confidence pro lucted in the closed laboratory	bability are given on the following pages and	are part of the certificate.
The measurements and the unc All calibrations have been cond Calibration Equipment used (Ma Primary Standards	certainties with confidence pro lucted in the closed laboratory	bability are given on the following pages and	are part of the certificate.
The measurements and the uno All calibrations have been cond Calibration Equipment used (Ma Primary Standards Power meter NRP	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778	bability are given on the following pages and facility: environment temperature (22 ± 3)°C i	are part of the certificate. and humidity < 70%.
The measurements and the uno All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91	certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	are part of the certificate. and humidity < 70%. Scheduled Calibration
The measurements and the uno All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245	bability are given on the following pages and facility: environment temperature (22 ± 3)°C ; Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18
The measurements and the uno All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	Certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: SS277 (20x)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C ; Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2	ertainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013	bability are given on the following pages and facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2	Certainties with confidence pro lucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: SS277 (20x)	bability are given on the following pages and facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660	Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17
The measurements and the uncellibration Equipment used (Mi Calibration Equipment used (Mi Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 55277 (20x) SN: 3013 SN: 660 ID	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check
The measurements and the uno All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18
The measurements and the uncellifications have been cond Calibration Equipment used (Ma Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the uno All calibrations have been cond Calibration Equipment used (Ma Primary Standards Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the uncomposite of the measurements and the uncomposite of the measurement of the measu	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02526) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Apr-16 (in house check Jun-16) 04-Apr-16 (in house check Jun-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
The measurements and the unc All calibrations have been cond Calibration Equipment used (Mi Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	ID SN: 104778 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 660 ID SN: GB41293874 SN: 000110210 SN: US37390585	Cal Date (Certificate No.) Q4-Apr-17 (No. 217-02521/02522) Q4-Apr-17 (No. 217-02521/02522) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02525) Q7-Apr-17 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) Q6-Apr-16 (in house check Jun-16) Q6-Apr-10 (in house check Oct-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the uncelling of the measurements and the uncelling of the measurement of the measureme	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-16) Function	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18 In house check: Jun-18 In house check: Jun-18
The measurements and the uncomposite of the measurements and the uncomposite of the measurement of the measu	ID SN: 104778 SN: 103245 SN: 103245 SN: 55277 (20x) SN: 660 ID SN: GB41293874 SN: 000110210 SN: US37390585	Cal Date (Certificate No.) Q4-Apr-17 (No. 217-02521/02522) Q4-Apr-17 (No. 217-02521/02522) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02521) Q4-Apr-17 (No. 217-02525) Q7-Apr-17 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) Check Date (in house) Q6-Apr-16 (in house check Jun-16) Q6-Apr-10 (in house check Oct-16)	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the uncellibration Equipment used (Millibration Equipment used (Millibration Equipment used (Millibration Equipment NRP Power meter NRP Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer HP 8753E	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-16) Function	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the uncomposite of the measurements and the uncomposite of the measurement of the measu	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: 660 SN: 660 SN: 00110210 SN: WY41498087 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name Michael Weber	bability are given on the following pages and facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-16) 08-Apr-16 (in house check Jun-16) 04-Apr-17 (Inouse check Jun-16) De-Apr-16 (in house check Jun-16) Function Laboratory Technician	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Cot-17
The measurements and the uncomposite of the measurements and the uncomposite of the measurement of the measu	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 3013 SN: 660 ID SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name	bability are given on the following pages and facility: environment temperature (22 ± 3)°C : Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02528) 31-Dec-16 (No. DAE4-660_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 06-Apr-16 (in house check Jun-16) 04-Aug-99 (in house check Jun-16) 18-Oct-01 (in house check Oct-16) Function	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the uncellibrations have been cond Calibration Equipment used (Mi Primary Standards Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: 660 SN: 660 SN: 00110210 SN: WY41498087 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name Michael Weber	bability are given on the following pages and facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-16) 08-Apr-16 (in house check Jun-16) 04-Apr-17 (Inouse check Jun-16) De-Apr-16 (in house check Jun-16) Function Laboratory Technician	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18
The measurements and the uncomposite of the measurements and the uncomposite of the measurement of the measu	certainties with confidence pro ucted in the closed laboratory &TE critical for calibration) ID SN: 104778 SN: 103244 SN: 103245 SN: 3013 SN: 660 ID SN: 660 SN: 660 SN: 00110210 SN: WY41498087 SN: WY41498087 SN: 000110210 SN: US3642U01700 SN: US37390585 Name Michael Weber	bability are given on the following pages and facility: environment temperature (22 ± 3)°C i Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02525) 07-Apr-17 (No. 217-02528) 31-Dec-16 (No. ES3-3013_Dec16) 7-Dec-16 (No. DAE4-660_Dec16) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-16) 08-Apr-16 (in house check Jun-16) 04-Apr-17 (Inouse check Jun-16) De-Apr-16 (in house check Jun-16) Function Laboratory Technician	are part of the certificate. and humidity < 70%. Scheduled Calibration Apr-18 Apr-18 Apr-18 Dec-17 Dec-17 Dec-17 Scheduled Check In house check: Jun-18 In house check: Jun-18

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

S Servizio svizzero di taratura

Accreditation No.: SCS 0108

Swiss Calibration Service

С

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

Ciossary.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
A	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-
- held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
- used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom
 exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3619_Sep17

Page 2 of 38

FCC ID: DBZWM23A

EX3DV4 - SN:3619

September 25, 2017

Probe EX3DV4

SN:3619

Manufactured: Calibrated:

July 3, 2007 September 25, 2017

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3619_Sep17

Page 3 of 38

EX3DV4-SN:3619

September 25, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.46	0.37	0.39	± 10.1 %
DCP (mV) ^B	96.6	93.8	94.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	c	D dB	VR mV	Unc ^t (k=2)
0	CW	X	0.0	0.0	1.0	0.00	147.1	±3.0 %
		Y	0.0	0.0	1.0		147.9	
		Ż	0.0	0.0	1.0		137.9	

Note: For details on UID parameters see Appendix.

Sensor Model Parameters

	C1 fF	C2 fF	α V⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
X	52.91	392.8	37.02	18.86	0.60	5.10	0.102	0.556	1.009
Y	52.72	397.3	37.78	12.52	1.50	5.03	0.000	0.617	1.009
Z	_ 56.09	413.1	36.90	20.26	0.90	5.10	0.639	0.511	1.010

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁶ Numerical linearization parameter: uncertainty not required. ⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Post Repair/Re-Calibration Verification

Date Received Back 2017-9-28
Cal Cert/Sticker/Date OK? OK Date 2017-10-2
Functional Verification OK? OK Date 2017-10-2
Verifications By: Simon Ma

Certificate No: EX3-3619_Sep17

Page 4 of 38

September 25, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	9.43	9.43	9.43	0.13	1.20	± 13.3 %
500	42.7	0.88	9.18	9.18	9.18	0.10	1.20	± 13.3 %
750	41.9	0.89	9.25	9.25	9.25	0.41	0.86	± 12.0 %
835	41.5	0.90	8.90	8.90	8.90	0.41	0.85	± 12.0 %
1750	40.1	1.37	7.37	7.37	7.37	0.40	0.90	± 12.0 %
1900	40.0	1.40	6.99	6.99	6.99	0.35	0.99	± 12.0 %
2450	39.2	1.80	6.59	6.59	6.59	0.43	0.82	± 12.0 %
2600	39.0	1.96	6.55	6.55	6.55	0.41	0.86	± 12.0 %
5250	35.9	4.71	4.60	4.60	4.60	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.18	4.18	4.18	0.40	1.80	± 13 .1 %
. 5800	35.3	5.27	4.19	4.19	4.19	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
^c Af trequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.
^c Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3619_Sep17

Page 5 of 38

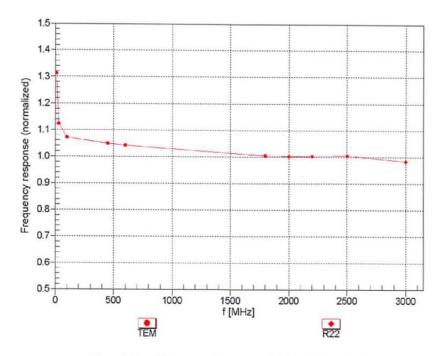
September 25, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

f (MHz) [¢]	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	<u>Alpha</u> ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	9.45	9.45	9.45	0.09	1.20	± 13.3 %
600	<u>56</u> .1	0.95	8.91	8.91	8.91	<u>0.</u> 08	1.20	± 13.3 %
750	55.5	0.96	8.67	8.67	8.67	0.52	0.88	± 12.0 %
835	55.2	0.97	8.30	8.30	8.30	0.43	0.85	± 12.0 %
1750	<u>53.4</u>	1.49	7.28	7.28	7.28	0.36	0.85	± 12.0 %
1900	53.3	1.52	7.02	7.02	7.02	0.41	0.80	± 12.0 %
2450	52.7	1.95	<u>6.73</u>	6.73	6.73	0.25	0.89	± 12.0 %
2600	52.5	2.16	6.52	6.52	6.52	0.29	0.95	± 12.0 %
5250	48.9	5.36	4.28	4.28	4.28	0.35	1.90	± 13.1 %
5600	48.5	5.77	3.61	3.61	3.61	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.00	4.00	4.00	0.40	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.
^C At proguenciss below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target lissue parameters.
^C Apple/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Page 6 of 38

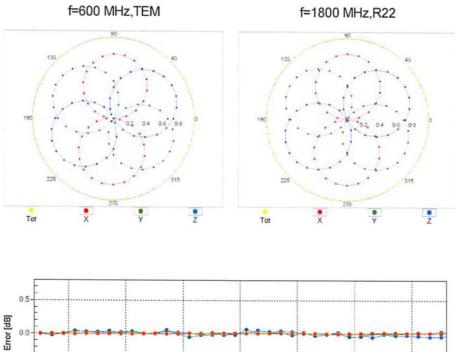
FCC ID: DBZWM23A

EX3DV4- SN:3619

September 25, 2017

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Certificate No: EX3-3619_Sep17

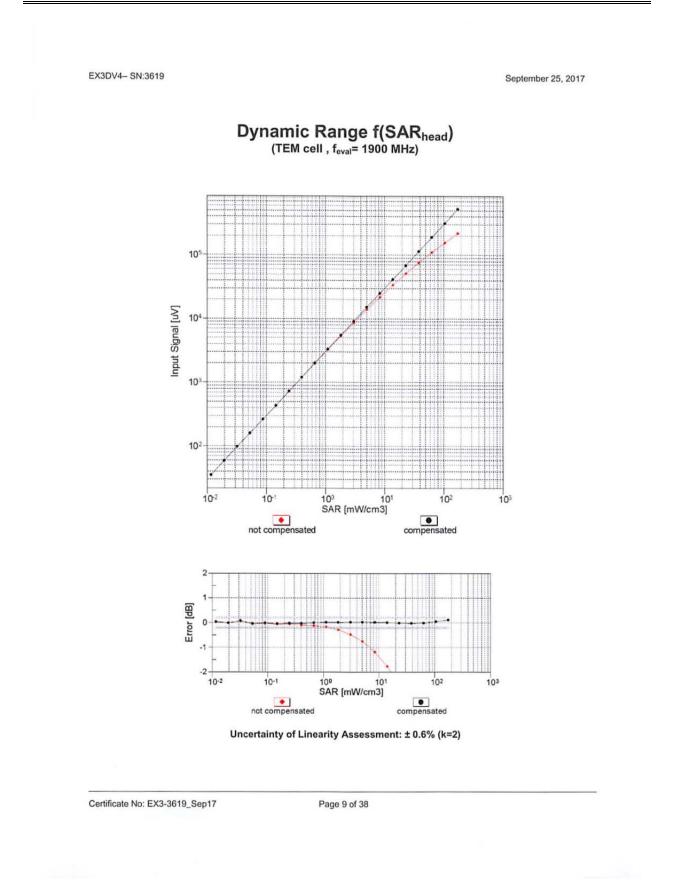

Page 7 of 38

FCC ID: DBZWM23A

EX3DV4- SN:3619

September 25, 2017

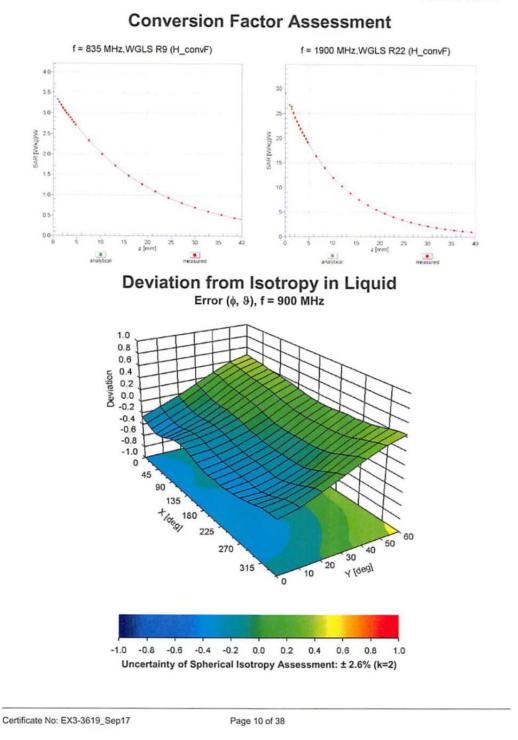
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


0.0 0.0 -0.5 -0

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3619_Sep17

Page 8 of 38


FCC ID: DBZWM23A

Report Number: R18073014-SAR

SAR Evaluation Report

September 25, 2017

Report Number: R18073014-SAR

SAR Evaluation Report

September 25, 2017

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619

Other Probe Parameters

Triangular
25.7
enabled
disabled
337 mm
10 mm
9 mm
2.5 mm
1 mm
1 mm
1 mm
1.4 mm

Certificate No: EX3-3619_Sep17

Page 11 of 38

EX3DV4- SN:3619

September 25, 2017

Appendix: Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max Unc ^E (k≖2)
0	CW	X	0.00	0.00	1.00	0.00	147.1	± 3.0 %
		Y	0.00	0.00	1.00		147.9	
		Z	0.00	0.00	1.00		137.9	
10010- <u>CA</u> A	SAR Validation (Square, 100ms, 10ms)	X	100.00	146.42	42.91	10.00	20.0	±9.6%
_		Y	100.00	136.02	38.82	_	_ 20.0	
		Z	100.00	156.09	48.32		20.0	
10011- CAB	UMTS-FDD (WCDMA)	×	100.00	186.20	59.83	0.00	150.0	±9.6%
-		Y	100.00	182.43	58.08		150.0	
10012-	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1	Z	100.00	192.66	63.54		150.0	
CAB	Mbps)	X	2.72	83.26	29.81	0.41	150.0	± 9.6 %
-		Ŷ	3.45	89.08	31.89		150.0	
10013-	IEEE 802.11g WiFi 2.4 GHz (DSSS-	Z	3.46	89.22	33.32		_150.0	
CAB	OFDM, 6 Mbps)	X	5.64	69.35	20.04	1.46	150.0	±9.6%
		Y Z	5.66	69.41	19.97		150.0	
10021- DAC	GSM-FDD (TDMA, GMSK)	X	<u>5.88</u> 100.00	69.99 154.52	20.69 47.69	9.39	150.0 50.0	± 9.6 %
		Y	100.00	142.43	42.67		50.0	
-		z	100.00	160.94	51.62		50.0	
10023- DAC	GPRS-FDD (TDMA, GMSK, TN 0)	x	100.00	153.25	47.14	9.57	50.0	± 9.6 %
	-	Y	100.00	141.37	42.24		50.0	
		Z	100.00	159.79	51.12		50.0	
10024- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	X	100.00	168.47	52.96	6.56	60.0	±9.6%
		Y	100.00	155.02	47.10		60.0	
		Z	100.00	174.57	56.75		60.0	
10025- DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	X	7.44	90.92	39.98	12.57	50.0	± 9.6 %
		Y	4.21	66.05	24,62		50.0	
		Z	6.81	85.51	37.44		50.0	
10026- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	×	19.44	118.66	46.05	9.56	60.0	± 9.6 %
		Y	9.82	93.79	35.46		60.0	
10027- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	Z X	18.03 100.00	115.62 187.31	45.44 60.49	4.80	60.0 80.0	± 9.6 %
UNU		Y-	100.00	172.56	53.96		80.0	
		Z	100.00	172.56	64.07		80.0	
10028- DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	X	100.00	211.94	70.46	3.55	100.0	± 9.6 %
		Y	100.00	195.60	63.17		100.0	
		Ż	100.00	215.90	73.53		100.0	
10029- DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	X	9.88	98.25	37.53	7.80	80.0	± 9.6 %
		Y	6.96	85.83	31.44		80.0	
10030- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Z X	10.21 100.00	98.48 174.93	38.05 55.31	5.30	80.0 70.0	± 9.6 %
UAA .		Y	100.00	161.43	49.33		70.0	
	1	Z	100.00	181.11	49.33 59.15		70.0	
10031- CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	X	100.00	275.49	95.87	1.88	100.0	±9.6%
CAA		Ŷ	100.00	251.73	85.35		100.0	

Certificate No: EX3-3619_Sep17

Page 12 of 38

September 25, 2017

10032- CAA	IEEE	802.15.1 Bluetooth (GFSK, DH5)	X	100.00	345.14	124.04	1. 1 7	100.0	± 9.6 %
			Y	100.00	308.97	108.28		100.0	
			Z	100.00	328.89	119.66		100.0	
10033- CAA	IEEE DH1)	802.15.1 Bluetooth (PI/4-DQPSK,	X	100.00	159.17	50.41	5.30	70.0	± 9.6 %
			Y	100.00	151.60	46.85		70.0	
			Z	100.00	163.46	53.13		70.0	
10034- CAA	DH3)	802.15.1 Bluetooth (PI/4-DQPSK,	X	100.00	166.80	52.19	1.88	100.0	± 9.6 %
			Ŷ	100.00	161.96	49.86		100.0	
		· · · ·	Z	100.00	172.84	55.71		100.0	
10035- CAA	IEEE DH5)	802.15.1 Bluetooth (PI/4-DQPSK,	X	100.00	170.30	53.30	1.17	100.0	± 9.6 %
	<u> </u>		Y	100.00	166.04	51.25		100.0	
			Ζ	100.00	176.79	57.04		100.0	
10036- CAA	IEEE	802.15.1 Bluetooth (8-DPSK, DH1)	×	100.00	159.83	50.73	5.30	70.0	± 9.6 %
			Y	100.00	152.24	47.17		70.0	
			Z	100.00	164.09	53.43		70.0	
10037- CAA	IEEE	802.15.1 Bluetooth (8-DPSK, DH3)	Х	100.00	167.32	52.38	1.88	100.0	± 9.6 %
	4		Y	100.00	162.33	49.98		100.0	
			Z	100.00	173.39	55.91		100.0	
10038- CAA	IEEE	802.15.1 Bluetooth (8-DPSK, DH5)	×	100.00	171.36	53.79	1.17	100.0	± 9.6 %
			Y	100.00	167.07	51.72		100.0	
			Z	100.00	177.80	57.50		100.0	
10039- CAB	CDM	A2000 (1xRTT, RC1)	X	100.00	167.09	51.53	0.00	150.0	± 9.6 %
			Y	100.00	165.71	50.86		150.0	
			Z	100.00	173.37	55.16		150.0	
10042- CAB	IS-54 DQP	/ IS-136 FDD (TDMA/FDM, PI/4- \$K, Halfrate)	x	100.00	159.05	48.89	7.78	50.0	± 9.6 %
			Y	100.00	147.06	43.80		50.0	
			Z	100.00	166.23	53.15		50.0	
10044- CAA	IS-91	EIA/TIA-553 FDD (FDMA, FM)	x	0.27	60.00	46.16	0.00	150.0	± 9.6 %
			Y	0.27	62.94	43.12		150.0	
			Z	0.39	65.86	45.75		150.0	
10048- CAA	DEC Slot,	T (TDD, TDMA/FDM, GFSK, Full	×	100.00	151.06	47.39	13.80	25.0	±9.6 %
			Y	100.00	134.38	40.73		25.0	— — —
			Z	100.00	157.65	51.51		25.0	<u> </u>
10049- CAA	DEC Slot,	(TDD, TDMA/FDM, GFSK, Double 12)	x	100.00	148.31	45.14	10.79	40.0	± 9.6 %
	+		Y	100.00	137.38	40.80		40.0	
1005-	1		Z	<u>100.00</u>	155.34	49.36		40.0	
10056- CAA		S-TDD (TD-SCDMA, 1.28 Mcps)	X	100.00	147.90	46.36	9.03	50.0	± 9.6 %
	+		Y	100.00	140.04	42.87		50.0	
	+		Z	<u>1</u> 00.00	151.85	48.94		50.0	
10058- DAC	EDG	E-FDD (TDMA, 8PSK, TN 0-1-2-3)	X	7.13	89.66	33.38	6.55	100.0	± 9.6 %
	<u> </u>		Y	5.69	81.90	29.26		100.0	
	+		Z	7.61	<u>90.75</u>	34.28		100.0	
10059- CAB	IEEE Mbps	802.11b WiFi 2.4 GHz (DSSS, 2)	X	3.43	90.16	32.89	0.61	110.0	± 9.6 %
_	+		Y.	4.46	96.33	34.75		110.0	
			Z	4.58	97.88	36.95		110.0	
10060- CAB	ILEEE	802.11b WiFi 2.4 GHz (DSSS, 5.5	X	100.00	203.28	67.14	1.30	110.0	± 9.6 %
CAB	Mops	·····							
	Mbps)	YZ	100.00	195.01	63.30		110.0	

Certificate No: EX3-3619_Sep17

Page 13 of 38

FCC ID: DBZWM23A

Lectrosonics, Inc.

EX3DV4- SN:3619

September 25, 2017

10061- CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	x	100.00	179.75	58.70	2.04	110.0	± 9.6 %
		Y	100.00	173.12	55.52	ł	110.0	i
	· · · · · · · · · · · · · · · · · · ·	Ż	100.00	183.86	61.31		110.0	_
10062- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	X	5.55	69.89	19.78	0.49	100.0	±9.6 %
		Y	5.60	70.07	19.83	-	100.0	
		Z	5.83	70.69	20.54		100.0	
10063- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	X	5.57	70.01	19.91	0.72	100.0	±9.6 %
		Y	5.61	70.17	19.93	t	100.0	-
_		Z	5.85	70.82	20.67		100.0	-
10064- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	X	5.85	70.06	19.96	0.86	100.0	± 9.6 %
		Y	5.89	70.17	19.94	i	100.0	
_		Z	6.13	70.81	20.66		100.0	
10065- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	X	5.70	69.99	20.12	1.21	100.0	± 9.6 %
		Y	5.74	70.07	20.07		100.0	
		Z	5.98	70.75	20.84		100.0	İ
10066- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	x	5.70	69.92	20.24	1.46	100.0	± 9.6 %
		Y	5.73	69.98	20.16		100.0	
		Z	5.98	70.65	20.94		100.0	
10067- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	X	5.92	69.63	20.39	2.04	100.0	± 9.6 %
		Υ	5.94	69.61	20.23		100.0	
		Z	<u>6.</u> 17	70.21	20.99		100.0	
10068- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	x	5.97	69.69	20.62	2.55	100.0	±9.6 %
		Y	5.99	69.65	20.43		100.0	Ĭ
		Z	6.23	70.30	21.23		100.0	ĺ
10069- CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	х	6.02	69.48	20.67	2.67	100.0	± 9.6 %
		Y	6.03	69.43	20.47	1	100.0	
_	· •	Z	6.26	70.01	21.24	1	100.0	
10071- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	X	5.70	69.28	20.25	1.99	100.0	± 9.6 %
		Y	5.73	69.30	20.13		100.0	
		Z	5.94	69.87	20.87		100.0	Ĭ
10072- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	X	5.73	69.83	20.63	2.30	100.0	± 9.6 %
		Y	5.75	69.82	20.47		100.0	Ī
		Z	5.98	70.48	21.28		100.0	
10073- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	X	5.77	69.89	20.91	2.83	100.0	± 9.6 %
		Y	5.79	69.84	20.70		100.0	
		Z	6.02	70.50	21.54		100.0	
10074- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	X	5.71	69.63	21.00	3.30	100.0	±9.6 %
	·	Y	5.73	69.59	20.77		100.0	
		Z	5.95	70.22	21.62		100.0	
10075- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	X	5.74	69.72	21.32	3.82	90.0	±9.6%
		Ŷ	5.77	69.66	21.03		90.0	
		Z	5.99	70.33	21.95		90.0	
10076- CA B	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	×	5.69	69.23	21.27	4.15	90.0	±9.6 %
		Y	5.73	69.18	20.99		90.0	ļ
		<u>Z</u>	5.92	69.76	21.86		90.0	
10077- CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	×	5.71	69.27	21.35	4.30	90.0	± 9.6 %
		Y	5.75	69.22	21.06		90.0	
		Z	5.94	69.79	21.93		90.0	

Certificate No: EX3-3619_Sep17

Page 14 of 38

FCC ID: DBZWM23A

Lectrosonics, Inc.

EX3DV4- SN:3619

September 25, 2017

10081- CAB	CDM	A2000 (1xRTT, RC3)	×	100.00	188.12	59.66	0.00	150.0	± 9.6 %
			Υ	100.00	184.82	58.14		150.0	
			Z	100.00	195.82	64.08		150.0	
10082- CAB		/ IS-136 FDD (TDMA/FDM, PI/4- \$K, Fullrate)	X	100.00	129.45	32.85	4.77	80.0	± 9.6 %
			Y	100.00	121.04	29.21		80.0	
			Z	100.00	145.24	40.72		80.0	
10090- DAC	GPR	S-FDD (TDMA, GMSK, TN 0-4)	X	100.00	168.10	52.81	6.56	60.0	± 9.6 %
			Y	100.00	154.72	46.98		60.0	
	<u> </u>		Z	100.00	174.19	56.59		60.0	
10097- CAB		S-FDD (HSDPA)	X	27.92	129.29	42.02	0.00	150.0	± 9.6 %
			Y	100.00	156.60	48.39		150.0	
			Z	99.33	162.54	51.76		150.0	
10098- CAB		S-FDD (HSUPA, Subtest 2)	×	31.92	132.96	43.08	0.00	150.0	± 9.6 %
	-		Y	100.00	157.25	48.62		150.0	
40000	+		Z	100.00	163.48	52.09		150.0	
10099- DAC	EDGI	E-FDD (TDMA, 8PSK, TN 0-4)	X	19.72	119.04	46.16	9.56	60.0	± 9.6 %
			Y	9.87	93.88	35.49		60.0	
40400	+		Z	18.23	_ 115.91	45.53		60.0	
10100- CAD		DD (SC-FDMA, 100% RB, 20 QPSK)	×	20.39	109.73	34.38	0.00	150.0	± 9.6 %
	-		Y	31.33	118.04	36.60		150.0	
	1		Z	51.38	<u>131.1</u> 6	41.28		150.0	
10101- CAD		DD (SC-FDMA, 100% RB, 20 16-QAM)	X	5.62	79.03	23.76	0.00	150.0	± 9.6 %
			Y	6.05	80.49	24.33		150.0	
			Z	6.66	82.76	25.90		150.0	
10102- CAD	LTE-I MHz,	DD (SC-FDMA, 100% RB, 20 64-QAM)	×	5.47	77.76	23.25	0.00	150.0	± 9.6 %
			Y	5.87	79.22	23.85		150.0	
			Z	6.35	81.00	25.20		150.0	
10103- CAD	LTE- MHz,	DD (SC-FDMA, 100% RB, 20 QPSK)	X	16.00	96.35	30.75	3.98	65.0	± 9.6 %
			Y	12.65	90.44	28.30		65.0	
			Z	20.49	101.78	33.05	-	65.0	
10104- CAD		TDD (SC-FDMA, 100% RB, 20 16-QAM)	X	9.77	83.89	26.84	3.98	65.0	± 9.6 %
			Y	8.44	79.95	24.88		65.0	
	L		Z	10.81	85.84	27.99		65.0	
10105- CAD		TDD (SC-FDMA, 100% RB, 20 64-QAM)	×	8.96	81.72	26.17	3.98	65.0	± 9.6 %
	+		Ŷ	7.66	77.58	24.09		65.0	
10108-			Z	9.58	82.82	26.96		65.0	
CAE		DD (SC-FDMA, 100% RB, 10 QPSK)	X	17.20	108.95	34.69	0.00	150.0	± 9.6 %
	<u> </u>		Y	28.44	118.98	37.41		150.0	
10109-	+		Z	40.01	129.01	41.36		150.0	
CAE		DD (SC-FDMA, 100% RB, 10 16-QAM)	X	5.68	81.51	25.04	0.00	150.0	± 9.6 %
	+		Y	6.40	83.99	25.99		150.0	
		DD (SC-FDMA, 100% RB, 5 MHz,	Z X	6.97 22.12	86.08 118.98	27.53 38.33	0.00	150.0 150.0	± 9.6 %
10110- CAE	QPSI	() (304 DMA, 100% RB, 510HZ,							
10110- CAE	LTE-I QPSI	()	+	50.16	135.78	12.54		150.0	
	LTE-I QPSI	S	Y	50.16	135.78	42.51		150.0	
	QPSI	()	Y Z X	50.16 64.73 8.02	135.78 145.48 92.35	42.51 46.49 29.54	0.00	150.0 150.0 150.0	± 9.6 %
CAE	QPSI	()	Z	64.73	145.48	46.49	0.00	150.0	± 9.6 %

Certificate No: EX3-3619_Sep17

Page 15 of 38

Report Number: R18073014-SAR

EX3DV4- SN:3619

Sept	ember	25	2017
Oupu	sinder	£0,	2017

10112- CAE	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	X	5.51	79.94	24.35	0.00	150.0	± 9.6 %
		Y	6.12	82.14	25.22		150.0	
		Z	6.58	83.83	26.58		150.0	
10113- CAE	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	×	7.42	89.53	28.43	0.00	150.0	± 9.6 %
		Y	10.25	96.39	30.81		150.0	
		Z	9.81	96.13	31.61		150.0	
10114- CAB	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	×	6.06	70.45	19.58	0.00	150.0	± 9.6 %
		Y	6.14	70.73	19.73		150.0	
		Z	<u>6.</u> 35	71.30	20.33		150.0	
10115- CAB	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	×	6.36	70.42	19.50	0.00	150.0	± 9.6 %
		Y	<u>6.4</u> 3	70.64	19.62		150.0	
-		Z	6.69	71.32	20.25		150.0	
10116- CAB	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	X	6.21	70.79	19.66	0.00	150.0	±9.6 %
_		Y	6.30	71.07	19.81		150.0	
		Z	6.53	71.70	20.44		150.0	-
10117- CAB	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	х	6.01	70.27	19.51	0.00	150.0	± 9.6 %
		Y	6.09	70.53	19.65		150.0	
		Z	6.32	71.18	20.29		150.0	
10118- CAB	IEEE 802.11n (HT Mixed, 81 Mbps, 16- QAM)	X	6.49	70.76	19.67	0.00	150.0	± 9.6 %
	<u> </u>	Y	6.58	71.02	19.80		150.0	
	· · · · · · · · · · · · · · · · · · ·	z	6.81	71.60	20.39		150.0	
10119- CAB	IEEE 802.11n (HT Mixed, 135 Mbps, 64- QAM)	x	6.18	70.72	19.64	0.00	150.0	± 9.6 %
		Y	6.27	71.00	19.79		150.0	
	· · · · · · · · · · · · · · · · · · ·	ż	6.50	71.62	20.42		150.0	· · ·- ·
10140- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	5.55	77.78	23.15	0.00	150.0	± 9.6 %
		Y	5.93	79.13	23.71		150.0	
	<u>.</u>	z	6.44	81.01	25.09		150.0	_
10141- CAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	x	5.51	77.00	22.86	0.00	150.0	±9.6 %
		Y	5.86	78.31	23.42		150.0	
		ż	6.29	79.85	24.64		150.0	
10142- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	100.00	154.67	47.53	0.00	150.0	±9.6 %
		Y	100.00	153.27	46.84		150.0	
		ż	100.00	158.83	50.01		150.0	
10143- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	×	36.85	126.19	39.50	0.00	150.0	±9.6 %
	· · · · · · · · · · · · · · · · · · ·	Y	100.00	146.43	44.33		150.0	
			99.99	150.96	46.99		150.0	
10144- CAD	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	15.31	105.50	32.82	0.00	150.0	±9.6 %
	,	Y	30.00	118.49	36.37		150.0	
	+	Ż	30.28	121.64	38.65		150.0	
10145- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	X	100.00	158.80	47.79	0.00	150.0	±9.6 %
	•	Y	100.00	157.59	47.20	_	150.0	
		Z	100.00	165.89	51.76		150.0	
10146- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	x	100.00	140.95	40.54	0.00	150.0	± 9.6 %
		Y	100.00	140.77	40.48		150.0	
		Z	100.00	146.42	43.73		150.0	
10147- CAE	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	×	100.00	142.11	41.17	0.00	150.0	± 9.6 %
		1	1.4.4	110.00			1 1 2 2 2	
		ΓŸ	100.00	142.29	41.27		150.0	

Certificate No: EX3-3619_Sep17

Page 16 of 38

EX3DV4- SN:3619

September 25, 2017

10149- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	x	5.72	81.66	25.12	0.00	150.0	±9.6 %
		Y	6.47	84.21	26.10		150.0	
		Z	7.02	86.25	27.62		150.0	
10150- CAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	×	5.54	80.05	24.41	0.00	150.0	±9.6 %
		Y	6.17	82.33	25.32		150.0	
		Z	6.61	83.97	26.65		150.0	
10151- CAD	LTE- [†] DD (SC-FDMA, 50% RB, 20 MHz, QPSK)	X	24.59	108.08	34.95	3.98	65.0	± 9.6 %
		Y	14.56	95.63	30.48		65.0	1
		Z	30.62	113.32	37.13		65.0	
10152- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	×	10.13	86.36	27.72	3.98	65.0	±9.6 %
		.Y	8.36	81.34	25.34	-	65.0	
		Z	11.39	88.69	29.05		65.0	
10153- CAD	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	×	10.41	86.79	28.21	3.98	65.0	±9.6%
		Y	8.78	82.25	26.05		65.0	
		Z	11.59	88.91	29.44		65.0	
10154- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	×	26.68	123.34	39.64	0.00	150.0	±9.6 %
		Y	81.73	146.71	45.30		150.0	
		Z	90.92	153.69	48.58		150.0	
10155- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	×	8.00	92.30	29.53	0.00	150.0	± 9.6 %
		Y	11.69	100.31	32.19		150.0	· · · ·
		Z	11.15	100.27	33.16		150.0	
10156- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	×	100.00	157.37	48.40	0.00	150.0	± 9.6 %
		Y	100.00	155.94	47.69		150.0	<u> </u>
_		Z	100.00	161.99	51.13		150.0	
10157- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	X	100.00	146.17	43.71	0.00	150.0	±9.6 %
		Ϋ́	100.00	145.19	43.22		150.0	
		Z	100.00	150.59	46.31	-	150.0	<u> </u>
10158- CAE	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	X	7.48	89.74	28.53	0.00	150.0	±9.6 %
		Ý	10.41	96.78	30.97		150.0	1
		Z	9.90	96.38	31.72		150.0	(<u> </u>
10159- CAE	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	x	100.00	145.77	43.63	0.00	150.0	± 9.6 %
		Y	100.00	144.96	43.21		150.0	
		Ż	100.00	150.11	46.19		150.0	
10160- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	x	8.98	94.02	29.93	0.00	150.0	±9.6 %
		Y	<u>1</u> 1.87	99.63	31.69		150.0	
		Z	13.37	103.46	33.93		150.0	
10161- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	x	5.58	80.92	24.82	0.00	150.0	±9.6%
	· · · · · · · · · · · · · · · · · · ·	Ŷ	6.34	83.62	25.88		150.0	
		Z	6.73	85.08	27.17		150.0	
10162- CAD	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	×	5.59	80.29	24.52	0.00	150.0	± 9.6 %
		Y	6.27	82.72	25.49		150.0	
		Z	6.63	84.05	26.71		150.0	
10166- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	x	5.01	76.82	25.04	3.01	150.0	± 9.6 %
		Y	5.30	78.12	25.63		150.0	
		Z	5.66	79.32	26.68		150.0	- ··
10167-	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz,	X	7.20	83.65	27.00	3.01	150.0	± 9.6 %
CAE	16-QAM)			•				
CAE		Y	7.75	85.12	27.56		150.0	

Certificate No: EX3-3619_Sep17

Page 17 of 38

EX3DV4- SN:3619

Se	ptembe	r 25.	2017
	pronioq		

		_						
10168- CAE	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	X	8.44	87.66	28.93	3.01	150.0	± 9.6 %
		Y	9.74	90.89	30.18		150.0	
		Z	10.89	93.45	31.66		150.0	
10169- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	X	4.51	78.23	26.11	3.01	150.0	±9.6 %
		Y	4.88	79.86	26.78		150.0	
		Z	5.61	83.18	28.83		150.0	-
10170- CAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	×	8.64	93.21	31.75	3.01	150.0	±9.6 %
		Y	10.74	98.02	33.43		150.0	
		Z	15.34	107.12	37.17		150.0	
10171- AAD	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	×	6.66	86.27	28.20	3.01	150.0	± 9.6 %
		Y	7.15	87.35	28.50		150.0	-
		Z	<u>10.53</u>	96.72	32.68		150.0	
10172- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	×	100.00	157.06	51.92	6.02	65.0	±9.6 %
		Y	29.58	122.92	41.84		65.0	
404=5		Z	100.00	157.86	52.85		65.0	
10173- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	X	100.00	147.04	46.72	6.02	65.0	± 9.6 %
		Y	100.00	143.66	45.07		65.0	
		Z	100.00	147.61	47.52	L	65.0	
10174- CAD	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	×	100.00	144.70	45.45	6.02	65.0	±9.6 %
		Y	100.00	141.89	44.08		65.0	
		Z	100.00	146.18	46.69		65.0	
10175- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	4.45	77.77	25.80	3.01	150.0	±9.6%
		Y	4.76	79.15	26.35	_	150.0	
		Z	5.51	82.58	28.47		150.0	
10176- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	8.66	93.26	31.77	3.01	150.0	±9.6 %
		Y	10.77	98.08	33.45		150.0	
		Z	15.39	107.20	37.19		150.0	
10177- CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	X	4.49	78.03	25.94	3.01	150.0	±9.6 %
		Y	4.84	79.55	26.56		150.0	
		Z	5.58	82.93	28.64		150.0	
10178- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	8.48	92.72	31.54	3.01	150.0	±9.6%
		Y	10.38	97.15	33.09		150.0	
		Z	14.83	106.24	36.85		150.0	
10179- CAE	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	×	7.76	90.19	30.08	3.01	150.0	± 9.6 %
		Y	8.90	92.90	31.00		150.0	
		Z	<u>1</u> 3.20	102.68	35.12		150.0	
10180- CAE	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	6.62	86.10	28.11	3.01	150.0	± 9.6 %
		Y	7.07	87.03	28.35		150.0	
		Z	10.41	96.42	32.55		150.0	
10181- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	X	4.49	78.00	25.93	3.01	150.0	± 9.6 %
		Ŷ	4.83	79.51	26.54		150.0	
		Z	5.57	82.89	28.63		150.0	
10182- CAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	×	8.46	92.68	31.53	3.01	150.0	± 9.6 %
		Y	10.35	97.10	33.07		150.0	
		Z	14.79	106.17	36.83		150.0	
10183- AAC	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	X	6.60	86.05	28.09	3.01	150.0	± 9.6 %
		Y	7.04	86.98	28.33	l	150.0	

Certificate No: EX3-3619_Sep17

Page 18 of 38

September 25, 2017

EX3DV4- SN:3619

10184- CAD	LTE-F	DD (SC-FDMA, 1 RB, 3 MHz,	X	4.50	78.07	25.95	3.01	150.0	± 9.6 %
			Y	4.85	79.60	26.58		150.0	
			Z	5.60	82.97	28.66		150.0	
10185- CAD	LTE-	DD (SC-FDMA, 1 RB, 3 MHz, 16-	X	8.51	92.81	31.58	3.01	150.0	± 9.6 %
			Y	10.44	97.27	33.14		150.0	
			Z	14.92	106.36	36.89		150.0	
10186- AAD	QAM)	DD (SC-FDMA, 1 RB, 3 MHz, 64-	X	6.65	86.19	28.15	3.01	150.0	± 9.6 %
			Y	7.10	87.13	28.39		150.0	
	-		Z	10.48	96.54	32.59		150.0	
10187- CAE	QPS	DD (SC-FDMA, 1 RB, 1.4 MHz, ()	x	4.51	78.08	25.99	3.01	150.0	± 9.6 %
	-		Y	4.85	79.59	26.61		150.0	
			Z	5.59	82.96	28.69		150.0	
10188- CAE	LTE-F	DD (SC-FDMA, 1 RB, 1.4 MHz, M)	x	8.97	94.14	32.16	3.01	150.0	± 9.6 %
	_		Y	11.36	99.44	34.00		150.0	
	-		Z	16.21	108.54	37.70		150.0	
10189- AAE	LTE-F	DD (SC-FDMA, 1 RB, 1.4 MHz, M)	x	6.88	87.02	28.55	3.01	150.0	± 9.6 %
			Y	7.46	88.34	28.95		150.0	
			Z	11.02	97.81	33.13		150.0	
10193- CAB	IEEE BPSK	802.11n (HT Greenfield, 6.5 Mbps,)	x	5.46	70.23	19.64	0.00	150.0	± 9.6 %
			Y	5.55	70.58	19.82		150.0	
			Z	5.77	71.17	20.48		150.0	
10194- CAB	IEEE 16-Q/	802.11n (HT Greenfield, 39 Mbps,	x	5.67	70.58	19.73	0.00	150.0	± 9.6 %
			Y	5.76	70.92	19.91		150.0	
	-		Z	6.00	71.55	20.57		150.0	1202
10195- CAB	IEEE 64-QA	802.11n (HT Greenfield, 65 Mbps,	X	5.71	70.56	19.71	0.00	150.0	± 9.6 %
			Y	5.80	70.89	19.89		150.0	10 10 to
			Z	6.03	71.51	20.54		150.0	
10196- CAB	IEEE BPSK	802.11n (HT Mixed, 6.5 Mbps,)	x	5,49	70.36	19.69	0.00	150.0	± 9.6 %
			Y	5.58	70.72	19.88		150.0	
			Z	5.80	71.33	20.55		150.0	
10197- CAB	IEEE QAM)	802.11n (HT Mixed, 39 Mbps, 16-	x	5.69	70.60	19.74	0.00	150.0	± 9.6 %
			Y	5.78	70.93	19.92		150.0	
			z	6.01	71.56	20.57		150.0	
10198- CAB	IEEE QAM)	802.11n (HT Mixed, 65 Mbps, 64-	x	5.72	70.59	19.73	0.00	150.0	± 9.6 %
			Y	5.80	70.91	19.90		150.0	
			Z	6.04	71.53	20.55		150.0	
10219- CAB	IEEE BPSK	802.11n (HT Mixed, 7.2 Mbps,)	x	5.46	70.52	19.75	0.00	150.0	± 9.6 %
	_		Y	5.55	70.90	19.95		150.0	
			Z	5.79	71.52	20.62		150.0	
10220- CAB	IEEE QAM)	802.11n (HT Mixed, 43.3 Mbps, 16-	x	5.68	70.56	19.72	0.00	150.0	±9.6 %
			Y	5.77	70.89	19.90		150.0	
			Z	6.01	71.53	20.56		150.0	
10221- CAB	IEEE QAM)	802.11n (HT Mixed, 72.2 Mbps, 64-	x	5.70	70.43	19.66	0.00	150.0	± 9.6 %
			Y	5.79	70.74	19.83		150.0	
			Z	6.02	71.35	20.47	1.000	150.0	
10222- CAB	IEEE BPSK	802.11n (HT Mixed, 15 Mbps,	x	6.00	70.33	19.54	0.00	150.0	±9.6 %
JAB			Y	6.07	70.50	40.00			
				0.07	70.59	19.68		150.0	

Certificate No: EX3-3619_Sep17

Page 19 of 38

Report Number: R18073014-SAR

EX3DV4- SN:3619

Se	ptem	ber	25.	2017

10223- CAB	IEEE 802.11n (HT Mixed, 90 Mbps, 16- QAM)	X	6.28	70.29	19.46	0.00	150.0	± 9.6 %
		Y	6.36	70.53	19.60		150.0	
		Z	6.60	71.17	20.21		150.0	
10224- CAB	IEEE 802.11n (HT Mixed, 150 Mbps, 64- QAM)	x	6.07	70.51	19.55	0.00	150.0	± 9.6 %
		Y	6.15	70.78	19.70		150.0	
		Z	6.38	71,44	20.34		150.0	
10225- CAB	UMTS-FDD (HSPA+)	X	4.59	76.23	22.87	0.00	150.0	±9.6 %
		Y	5.00	78.11	23.67		150.0	
		Z	5.23	78.95	24.70		150.0	_
10226- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	×	100.00	147.19	46.83	6.02	65.0	± 9.6 %
		Y	100.00	143.86	45.20		65.0	
		Z	100.00	147.74	47.62		65.0	
10227- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	X	100.00	144.45	45.39	6.02	65.0	±9.6 %
_		Y	100.00	141.39	43.90		65.0	
		Z	100.00	145.20	46.27		65.0	
10228- CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	X	100.00	157.69	52.21	6.02	65.0	± 9.6 %
		Y_	80.09	147.90	48.69		65.0	
		Z	100.00	157.91	52.87		65.0	
10229- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16- QAM)	X	100.00	146.98	46.70	6.02	65.0	± 9.6 %
		Y	100.00	143.62	45.06		65.0	
		Z	100.00	147.55	47.50		65.0	
10230- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64- QAM)	X	100.00	144.35	45.31	6.02	65.0	± 9.6 %
		Y	100.00	141.25	43.80		65.0	
		Z	100.00	145.12	46.20		65.0	
10231- CAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	X	100.00	157.58	52.11	6.02	65.0	± 9.6 %
		Y	69.62	144.30	47.71		65.0	
		Z	100.00	157.82	52.79		65.0	
10232- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	X	100.00	147.01	46.71	6.02	65.0	± 9.6 %
		Y	100.00	143.64	45.06		65.0	
		Z	100.00	147.58	47.51		65.0	
10233- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64- QAM)	X	100.00	144.39	45.32	6.02	65.0	± 9.6 %
		Y	100.00	141.28	43.81		65.0	
		Ż	100.00	145.15	46.21		65.0	
10234- CAD	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	x	100.00	157.28	51.93	6.02	65.0	± 9.6 %
	· · ·	Y	63.28	141.69	46.92		65.0	
		Z	100.00	157.55	52.62		65.0	•
10235- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	X	100.00	147.04	46.72	6.02	65.0	± 9.6 %
		Ŷ	100.00	143.66	45.07		65.0	
		Z	100.00	147.61	47.52		65.0	
10236- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	X	100.00	144.31	45.29	6.02	65.0	±9.6 %
		Y	100.00	141.21	43.78		65.0	
		Z	100.00	145.08	46.18		65.0	
10237- CAD	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	X	100.00	157.64	52.14	6.02	65.0	±9.6 %
		Y	70.63	144.71	47.82		65.0	
		Z	100.00	157.88	52.81		65.0	
10238- CAD	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	X	100.00	147.05	46.72	6.02	65.0	± 9.6 %
					+			
		Y	100.00	143.67	45.07		65.0	

Certificate No: EX3-3619_Sep17

Page 20 of 38

September 25, 2017

10239- CAD	LTE- 64-Q	TDD (SC-FDMA, 1 RB, 15 MHz, AM)	×	100.00	144.43	45.34	6.02	65.0	±9.6 %
			Y Z	100.00	141.32	43.82		65.0	
10240-	1.+			100.00	145.20	46.23		65.0	
CAD	QPS	TDD (SC-FDMA, 1 RB, 15 MHz, ()	x	100.00	157.67	52.15	6.02	65.0	± 9.6 %
	<u> </u>		Y	70.12	144.55	47.78		65.0	
			Z	100.00	157.91	52.82		65.0	
10241- CAA	LTE- <u>1</u> 6-Q	TDD (SC-FDMA, 50% RB, 1.4 MHz, AM)	x	13.46	94.53	33.13	6.98	65.0	± 9.6 %
			Y	11.24	88.73	30.36		65.0	
			Ż	15.92	98.41	34.98		65.0	
10242- CAA	LTE- 64-Q	DD (SC-FDMA, 50% RB, 1.4 MHz, AM)	X	12.60	92.77	32.35	6.98	65.0	± 9.6 %
-			Y	9.84	85.40	28.91		65.0	
			Z	13.89	94.76	33.51		65.0	
10243-	TTE-	TDD (SC-FDMA, 50% RB, 1.4 MHz.	x	8.84	85.65	30.56	6.98	65.0	± 9.6 %
10243- CAA	QPSI		Ŷ				0.90		19.0 %
				7.32	79.57	27.33		65.0	•
10044			Z	9.32	86.30	31.18	<u> </u>	65.0	<u> </u>
10244- CAB	16-Q	TDD (SC-FDMA, 50% RB, 3 MHz,	X	100.00	133.98	40.14	3.98	65.0	± 9.6 %
			Y	72.41	126.23	37.83		65.0	
	<u> </u>		Z	100.00	136.28	41.80		65.0	
10245- CAB	LTE-' 64-Q	TDD (SC-FDMA, 50% RB, 3 MHz, AM)	х	100.00	133.42	39.90	3.98	65.0	± 9.6 %
			Y	56.91	121.03	36.37		65.0	
			Z	100.00	135.73	41.55		65.0	
10246- CAB	LTE-	TDD (SC-FDMA, 50% RB, 3 MHz, K)	x	100.00	140.57	42.61	3.98	65.0	± 9.6 %
		ř <u> </u>	Y	100.00	138.09	41.35		65.0	
	+		z	100.00	143.02	44.35			
10247- CAD	LTE-	TDD (SC-FDMA, 50% RB, 5 MHz,	X	25.24	143.02	44.35 34.21	3.98	65.0 65.0	± 9.6 %
	10-02		Y	44.05	05.74			0.0.0	
	<u> </u>			14.35	95.74	29.69		65.0	<u> </u>
10248-	+ . 		Z	33.61	115.61	37.14		65.0	
10248- CAD	64-Q	TDD (SC-FDMA, 50% RB, 5 MHz, AM)	×	19.94	102.84	32.32	3.98	65.0	± 9.6 %
			Y	12.37	91.96	28.28		65.0	
			Z	25.65	108.84	34.98		65.0	
10249- CAD	LTE-	DD (SC-FDMA, 50% RB, 5 MHz, 4)	x	100.00	142.13	43.85	3.98	65.0	±9.6 %
			Y	100.00	139.80	42.66		65.0	<u> </u>
			Z	100.00	144.01	45.28		65.0	
10250- CAD	LTE- 16-Q	TDD (SC-FDMA, 50% RB, 10 MHz, AM)	x	14.16	96.66	31.79	3.98	65.0	± 9.6 %
			Ϋ́	10.60	89.28	28.74		65.0	
	<u> </u>		Z	16.50	100.10	33.53		65.0	
10251- CAD	LTE- 64-Q	TDD (SC-FDMA, 50% RB, 10 MHz, AM)	x	11.44	90.13	28.96	3.98	65.0	± 9.6 %
			Y	8.95	83.94	26.19		65.0	<u> </u>
	1		Ż	13.03	92.85	30.48		65.0	
10252- CAD	LTE-	TDD (SC-FDMA, 50% RB, 10 MHz, K)	x	86.73	139.25	43.94	3.98	65.0	± 9.6 %
	1	<u>۴</u>	Y	25.31	110.44	35.49		65.0	
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	z	100.00	143.74	45.83			ŀ
10253- CAD	LTE- 16-Q	TDD (SC-FDMA, 50% RB, 15 MHz, AM)	X	9.53	84.86	27.13	3.98	65.0 65.0	± 9.6 %
	· · · · · · · ·	F'	Ŷ	8.01	80.28	24.89		05.0	<u> </u>
	+		Z	10.62				65.0	
10254-		TDD (SC-FDMA, 50% RB, 15 MHz,			86.95	28.39		65.0	
CAD	64-Q		×	9.88	85.45	27.63	3.98	65.0	± 9.6 %
	1		Y	8.44	81.20	25.56		05.0	
	+	+	z	10.94	87.40	25.50		65.0	

Certificate No: EX3-3619_Sep17

Page 21 of 38

September 25, 2017

							copion	Dei 25, 201
10255- CAD	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	X	19.27	103.27	33.71	3.98	65.0	± 9.6 %
		Y	12.47	92.65	29.67		65.0	
40050		Z	23.07	107.47	35.61		65.0	
10256- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	X	100.00	131.21	38.25	3.98	65.0	± 9.6 %
		Y	100.00	129.71	37.50		65.0	-
		Z	100.00	134.15	40.24		65.0	-
10257- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	X	100.00	130.27	37.82	3.98	65.0	± 9.6 %
-		Y	100.00	128.83	37.10		65.0	
		Z	100.00	133.22	39.81		65.0	
10258- CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	x	100.00	138.46	41.20	3.98	65.0	± 9.6 %
		Y	100.00	135.86	39.90		65.0	
		Z	100.00	141.53	43.27		65.0	
10259- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	×	18.72	102.43	32.80	3.98	65.0	± 9.6 %
		Y	12.23	<u>92</u> .35	28.98		65.0	
		Z	23.11	107.46	35.11		65.0	
10260- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	X	16.99	99.86	31.91	3.98	65.0	± 9.6 %
		Y	<u>11.</u> 61	90.80	28.39		65.0	
		Z	20.73	104.52	34.13		65.0	
10261- CAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	X	100.00	142.40	44.29	3.98	65.0	± 9.6 %
		Y	40.47	120.92	38.14		65.0	
		Z	100.00	144.04	45.59		65.0	
10262- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	X	14.15	96.62	31.76	3.98	65.0	± 9.6 %
		Y	10.58	89.20	28.68		65.0	-
		Z	16.50	100.07	33.50		65.0	
10263- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	X	11.41	90.08	28.95	3.98	65.0	± 9.6 %
		Y	8.93	83.91	26.19		65.0	
		Z	13.00	92.81	30.47		65.0	
10264- CAD	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	X	83.61	138.36	43.69	3.98	65.0	±9.6 %
		Ý	24.73	109.90	35.30		65.0	
		Z	100.00	143.68	45.79		65.0	
10265- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	X	10.12	86.35	27.73	3.98	65.0	± 9.6 %
		Y	8.36	81.35	25.34		65.0	
		Z	11.38	88.68	29.05		65.0	
10266- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz,_64-QAM)	×	10.40	86.77	28.19	3.98	65.0	± 9.6 %
		Y	8.78	82.23	26.04		65.0	
		Z	11.58	88.89	29.43		65.0	
10267- CAD	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	X	24.37	107.88	34.88	3.98	65.0	± 9.6 %
		Y	14.48	95.50	30.43		65.0	
		Z	<u>30.3</u> 2	113.09	37.06		65.0	
10268- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	X	9.53	82.61	26.37	3.98	65.0	± 9.6 %
		Y	8.39	79.16	24.61		65.0	
		Z	10.43	84.30	27.42		65.0	
10269- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	X	9.19	81.42	25.91	3.98	65.0	±9.6 %
		Y	8.19	78.25	24.25	_	65.0	
		Z	10.01	82.98	26.91		65.0	
10270- CAD	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	×	13.08	91.53	29.30	3.98	65.0	± 9.6 %
		Y	10.34	85.71	26.80		65.0	
		Z	15.01	94.48	30.82		65.0	

Certificate No: EX3-3619_Sep17

Page 22 of 38

September 25, 2017

10274- CAB	UMTS Rel8.	S-FDD (HSUPA, Subtest 5, 3GPP 10)	X	5.17	80.96	24.89	0.00	150.0	± 9.6 %
			Y	5.90	83.68	25.92		150.0	
		· · · · · · · · · · · · · · · · · · ·	Z	6.22	85.10	27.31		150.0	
10275- CAB	UMTS Rel8.	S-FDD (HSUPA, Subtest 5, 3GPP 4)	×	100.00	162.88	50.73	0.00	150.0	± 9.6 %
	<u> </u>		Y	100.00	160.87	49.77		150.0	
			Z	100.00	167.87	53.61		150.0	
10277- CAA	PHS	(QPSK)	X	100.00	116.48	29.27	9.03	50.0	± 9.6 %
			Y	100.00	115.49	29.25		50.0	
	_		Ζ	100.00	125.32	34.15		50.0	
10278- CAA	PHS	QPSK, BW 884MHz, Rolloff 0.5)	x	100.00	138.54	41.23	9.03	50.0	± 9.6 %
			Y	100.00	132.53	38.69		50.0	
			Z	100.00	144.20	44.66		50.0	
1027 9 - CAA	PHS	QPSK, BW 884MHz, Rolloff 0.38)	X	100.00	138.20	41.13	9.03	50.0	± 9.6 %
			Y	100.00	132.31	38.64		50.0	
10290-	-		Z	100.00	143.71	44.48		50.0	
10290- AAB		A2000, RC1, SO55, Full Rate	×	100.00	165.50	50.69	0.00	150.0	± 9.6 %
			Y	<u>100.00</u>	163.79	49.87		150.0	
	+		Z	100.00	172.07	54.44		150.0	
10291- AAB	CDM	A2000, RC3, SO55, Full Rate	x	100.00	188.22	59.69	0.00	150.0	± 9.6 %
			Y	100.00	184.87	58.14		150.0	
			Z	100.00	195.98	64.13		150.0	
10292- AAB	CDM.	A2000, RC3, SO32, Full Rate	X	100.00	195.75	63.03	0.00	150.0	± 9.6 %
			Y	100.00	192.85	61.68		150.0	
			Z	100.00	202.96	67.27		150.0	
10293- AAB	CDM.	2000, RC3, SO3, Full Rate	X	100.00	197.41	64.00	0.00	150.0	± 9.6 %
			Y	_100.00	195.19	62.96		150.0	
			Z	100.00	204.14	68.03		150.0	
10295- AAB	CDM,	A2000, RC1, SO3, 1/8th Rate 25 fr.	X	100.00	146.51	46.82	9.03	50.0	± 9.6 %
			Y	38.46	118.92	38.14	-	50.0	
			Z	100.00	149.97	49.11		50.0	
10297- AAC	LTE-I QPSI	DD (SC-FDMA, 50% RB, 20 MHz, \$)	x	17.63	109.54	34.90	0.00	150.0	± 9.6 %
			Y	29.80	120.05	37.74		150.0	
	<u> </u>		Z	41.55	129.95	41.64	-	150.0	
10298- AAC	LTE-I	DD (SC-FDMA, 50% RB, 3 MHz, ()	X	100.00	158.51	48.24	0.00	150.0	± 9.6 %
	<u> </u>		Y	100.00	<u>157.15</u>	47.57		150.0	
4000-	+		Z	100.00	164.25	51.55		150.0	
10299- AAC	LTE-I 16-Q	DD (SC-FDMA, 50% RB, 3 MHz, M)	x	100.00	141.59	41.41	0.00	150.0	± 9.6 %
			Y	100.00	141.28	41.28		<u>15</u> 0.0	
10000	+		Z	100.00	145.88	44.01		150.0	
10300- AAC	LTE-I 64-Q	DD (SC-FDMA, 50% RB, 3 MHz, AM)	X	100.00	136.02	38.60	0.00	150.0	± 9.6 %
			Y	100.00	135.23	38.23		150.0	
10001	-	200.10.	Z	100.00	140.68	41.35		150.0	
10301- AAA		802.16e WIMAX (29:18, 5ms, z, QPSK, PUSC)	X	5.82	69.15	20.80	4.17	50.0	± 9.6 %
			Y	5.78	68.98	20.70		50.0	
40000	+		Z	6.08	69.60	21.33		50.0	
10302- AAA		802.16e WiMAX (29:18, 5ms, Iz, QPSK, PUSC, 3 CTRL symbols)	×	6.16	69.16	21.19	4.96	50.0	± 9.6 %
			Y	6.13	68.92	21.01	·	50.0	
			Z	6.45	69.79	21.82		00.0	

Certificate No: EX3-B619_Sep17

Page 23 of 38

Report Number: R18073014-SAR

September 25, 2017

							•	00: 20, 201
10303- AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	x	5.90	68.89	21.12	4.96	50.0	± 9.6 %
		Y	5.88	68.66	20.95		50.0	
	=	Ž	6.20	69.57	21.79		50.0	
10304- AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	х	5.77	69.07	20.80	4.17	50.0	± 9.6 %
		Υ	5.75	68.95	20.72		50.0	
		Z	6.07	69.80	21.51		50.0	
10305- AAA_	IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	X	5.50	72.11	23.82	6.02	35.0	± 9.6 %
		Y	5.73	72.68	23.85		35.0	
		Z	5.89	73.23	24.80		35.0	
10306- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	×	5.63	69.93	22.60	6.02	35.0	±9.6 %
		Y	5.75	70.15	22.54		35.0	
		Z	5.94	70.17	22.89		35.0	
10307- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	x	5.59	70.46	22.80	6.02	35.0	± 9.6 %
		Y	5.74	70.80	22.78		35.0	
40000		Z	5.94	71.40	23.65		35.0	
10308- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	X	5.58	70.77	23.01	6.02	35.0	± 9.6 %
		Y	5.74	71.11	22.99		35.0	
		Z	5.93	71.71	23.87		35.0	
10309- AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)	×	5.72	70.28	22.80	6.02	35.0	± 9.6 %
_		Y	5.83	70.43	22.70		35.0	
		Z	6.04	70.51	23.09		35.0	
10310- AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	x	5.60	70.13	22.66	6.02	35.0	± 9.6 %
		Y	5.73	70.40	22.63		35.0	
		Z	5.93	70.97	23.46		35.0	
10311- AAC	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	x	16.49	103.18	32.21	0.00	150.0	±9.6%
		Y	26.96	112.65	34.87		150.0	
		Z	36.51	121.10	38.28		150.0	
10313- AAA	iDEN 1:3	x	100.00	147.23	44.36	6.99	70.0	±9.6 %
		Y	100.00	144.16	42.97		70.0	
		Z	100.00	152.82	47.63		70.0	
10314- AAA	IDEN 1:6	х	100.00	162.69	52.78	10.00	30.0	±9.6 %
		Y	100.00	153.59	48.78		30.0	
	·	Z	100.00	167.17	55.64		30.0	
10315- AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	х	2.81	86.18	31.37	0.17	150.0	± 9.6 %
		Y	4.00	95.24	34.63		150.0	
		Z	3.73	93.57	35.46		150.0	
10316- AAB	IEEE 802.11g WiFi 2.4 GHz (ERP- OFDM, 6 Mbps, 96pc duty cycle)	x	5.50	70.18	19.72	0.17	150.0	± 9.6 %
		Y	5.56	70.39	19.80		150.0	
		Z	5.80	71.08	20.53		150.0	
10317- AAB	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	x	5.50	70.18	19.72	0.17	150.0	± 9.6 %
		Y	5.56	70.39	19.80		150.0	
		Z	5.80	71.08	20.53		150.0	
10400- AAC	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	x	5.69	70.71	19.77	0.00	150.0	± 9.6 %
		Y	5.77	70.99	19.90		150.0	
		Z	6.02	71.68	20.60		150.0	
10401- AAC	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	X	6.27	70.08	19.32	0.00	150.0	± 9.6 %
					1			
		YZ	6.34	70.27	19.41		150.0	

Certificate No: EX3-3619_Sep17

Page 24 of 38

...

September 25, 2017

10402- AAC	IEEE 99pc	802.11ac WiFi (80MHz, 64-QAM, duty cycle)	X	6.56	70.41	19.31	0.00	150.0	±9.6 %
			Υ	6.62	70.59	19.41		150.0	
			Z	6.87	71.27	20.05		150.0	
10403- AAB	CDM,	A2000 (1xEV-DO, Rev. 0)	X	100.00	165.50	50.69	0.00	115.0	±9.6 %
			Y	100.00	163.79	49.87		115.0	
			Z	100.00	172.07	54.44		115.0	
10404- AAB	CDM.	A2000 (1xEV-DO, Rev. A)	X	100.00	165.50	50.69	0.00	115.0	± 9.6 %
			Y	100.00	163.79	49.87		115.0	
			Z	100.00	172.07	54.44		115.0	
10406- AAB	CDM Rate	A2000, RC3, SO32, SCH0, Full	X	100.00	153.07	46.52	0.00	100.0	± 9.6 %
]	ΙY	100.00	152.22	46.23		100.0	
			Z	100.00	154.92	48.01		100.0	-
10 41 0- AAC		DD (SC-FDMA, 1 RB, 10 MHz, (, UL Subframe=2,3,4,7,8,9)	X	100.00	156.31	48.07	3.23	80.0	±9.6 %
			Y	100.00	152.74	46.39		80.0	
			Z	100.00	158.54	49.86		80.0	1
10 41 5- AAA		802.11b WiFi 2.4 GHz (DSSS, 1 99pc duty cycle)	X	2.52	83.98	30.40	0.00	150.0	± 9.6 %
			Y	3.64	93.54	34.03		150.0	
			Z	3.33	91.09	34.47		150.0	
10416- AAA		802.11g WiFi 2.4 GHz (ERP- 4, 6 Mbps, 99pc duty cycle)	X	5.46	70.26	19.69	0.00	150.0	± 9.6 %
			Y	5.55	70.61	19.88		150.0	
			Z	5.77	71.20	20.52		150.0	
10417- AAA	IEEE Mbps	802.11a/h WiFi 5 GHz (OFDM, 6 ,99pc duty cycle)	X	5.46	70.26	19.69	0.00	150.0	±9.6 %
			Y	5.55	70.61	19.88	· · · · · · · · · · · · · · · · · · ·	150.0	
			Z	5.77	71.20	20.52		150.0	
10418- AAA	OFD	802.11g WiFi 2.4 GHz (DSSS- V, 6 Mbps, 99pc duty cycle, Long ribule)	x	5.50	70.62	19.83	0.00	150.0	± 9.6 %
			Y	5.59	70.99	20.02		150.0	_
			Z	5.82	71.61	20.69		150.0	
10419- AAA	OFDI	802.11g WiFi 2.4 GHz (DSSS- M, 6 Mbps, 99pc duty cycle, Short ribule)	X	5.50	70.47	19.77	0.00	150.0	± 9.6 %
			Υ	5.59	70.83	19.96		150.0	
			Z	5.81	71.43	20.61	F	150.0	-
10422- AAA	IEEE BPSH	802.11n (HT Greenfield, 7.2 Mbps,	X	5.59	70.26	19.64	0.00	150.0	± 9.6 %
			Y	5.67	70.59	19.81		150.0	
	L		Z	5.90	71.17	20.44		150.0	
10423- AAA		802.11n (HT Greenfield, 43.3 , 16-QAM)	X	5.80	70.64	19.75	0.00	150.0	±9.6%
			Υ	5.88	70.95	19.91		150.0	
			Z	6.12	71.57	20.56		150.0	
10424- AAA	IEEE Mbps	802.11n (HT Greenfield, 72.2 , 64-QAM)	X	5.73	70.67	19.78	0.00	150.0	± 9.6 %
			Y	5.81	71.00	19.96		150.0	
			Z	6.05	71.62	20.61		150.0	
	1	802.11n (HT Greenfield, 15 Mbps,	X	6.29	70.50	19.56	0.00	150.0	± 9.6 %
10425- AAA	BPSK		i						
			Y	6.37	70.76	19.70		150.0	
AAA	BPSk		YZ	6.37 6.59				150.0	
	BPSk	() 802.11n (HT Greenfield, 90 Mbps,			70.76 71.32 70.53	<u>19.70</u> 20.28 19.57	0.00	150.0 150.0 150.0	± 9.6 %
AAA 10426-	BPSK	() 802.11n (HT Greenfield, 90 Mbps,	Z	6.59	71.32	20.28	0.00	150.0	± 9.6 %

Certificate No: EX3-3619_Sep17

Page 25 of 38

Report Number: R18073014-SAR

SAR Evaluation Report

EX3DV4- SN:3619

September 25, 2017

10427- AAA	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	X	6.29	70.44	19.52	0.00	150.0	± 9.6 %
		Y	6.37	70.70	19.66		150.0	
		Z	6.59	71.26	20.24	1	150.0	
10430- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	X	7.16	82.33	25.64	0.00	150.0	± 9.6 %
		Ý	9.01	87.67	27.87		150.0	
		Z	8.06	84.95	27.30		150.0	
10431- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	X	5.45	72.35	20.62	0.00	150.0	± 9.6 %
		Y	5.59	72.91	20.89		150.0	
		Z	5.86	73.62	21.66		150.0	
10432- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	×	5.58	71.25	20.08	0.00	150.0	±9.6 %
		Y	5.68	71.65	20.29		150.0	
-		Ζ	5.94	72.32	20.99		150.0	
10433- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	X	5.74	70.72	19.81	0.00	150.0	± 9.6 %
		Ŷ	5.83	71.05	19.98		150.0	
		Z	6.07	71.68	20.64		150.0	
10434- AAA	W-CDMA (BS Test Model 1, 64 DPCH)	×	9.02	87.64	27.37	0.00	150.0	± 9.6 %
		Y	13.21	96.09	30.52		150.0	
		Z	10.54	91.28	29.41		150.0	
10435- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	100.00	156.08	47.97	3.23	80.0	± 9.6 %
		Y	100.00	152.48	46.27		80.0	
_		Ζ	100.00	158.33	49.76		80.0	
10447- AAB	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	X	5.56	76.55	22.29	0.00	150.0	± 9.6 %
		Y	5.93	77.90	22.86		150.0	
		Z	6.25	78.89	23.90		150.0	
10448- AAB	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	X	5.29	72.31	20.63	0.00	150.0	± 9.6 %
		Ŷ	5.44	72.91	20.92		150.0	
		z	5.70	73.65	21.71		150.0	-
10449- AAB	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)	×	5.41	71.31	20.16	0.00	150.0	± 9.6 %
		Y	5.52	71.77	20.39		150.0	-
		Z	5.77	72.46	21.12		150.0	
10450- AAB	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	x	5.51	70.71	19.85	0.00	150.0	± 9.6 %
		Y	5.61	71.08	20.04		150.0	
		ż	5.84	71.75	20.73	·	150.0	
10451- AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	X	6.34	79.90	23.36	0.00	150.0	± 9.6 %
		Y	7.00	81.90	24.14		150.0	
		Ζ	7.42	83.21	25.38	1	150.0	
10456- AAA	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	x	7.09	70.50	19.27	0.00	150.0	± 9.6 %
		Y	7.16	70.66	19.36		150.0	
		Ζ	7.38	71.23	19.92		150.0	
10457- AAA	UMTS-FDD (DC-HSDPA)	X	4.56	68.72	19.50	0.00	150.0	± 9.6 %
		Y	4.64	69.16	19.74		150.0	
		Ζ_	4.81	69.64	20.36		150.0	
10458- AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	x	9.06	88.62	27.60	0.00	150.0	± 9.6 %
		Y	13.52	97.28	30.73		150.0	
		Z	10.54	92.23	29.68		150.0	
		6	10.04					
10459- AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	X	6.53	73.36	22.10	0.00	150.0	± 9.6 %
						0.00		± 9.6 %

Certificate No: EX3-3619_Sep17

Page 26 of 38

September 25, 2017

								•	
10460- AAA	UMT	S-FDD (WCDMA, AMR)	x	100.00	201.40	66.12	0.00	150.0	± 9.6 %
			Y	100.00	196.70	63.96		150.0	
			Z	100.00	207.95	69.97		150.0	
10461- AAA	QPS	DD (SC-FDMA, 1 RB, 1.4 MHz, (, UL Subframe=2,3,4,7,8,9)	×	100.00	169.78	54.27	3.29	80.0	± 9.6 %
			Y	100.00	163.99	51.56		80.0	
			Z	100.00	172.57	56.37		80.0	
10462- AAA	LTE- 16-Q	DD (SC-FDMA, 1 RB, 1.4 MHz, AM, UL Subframe=2,3,4,7,8,9)	×	100.00	155.05	46.93	3.23	80.0	± 9.6 %
			Y	100.00	149.43	44.37		80.0	
			Z	100.00	159.74	49.87		80.0	
10463- AAA		TDD (SC-FDMA, 1 RB, 1.4 MHz, AM, UL Subframe=2,3,4,7,8,9)	×	100.00	151.90	45.34	3.23	80.0	± 9.6 %
			Y	100.00	146.25	42.78		80.0	
			Z	100.00	157.05	48.49		80.0	
10464- AAA		DD (SC-FDMA, 1 RB, 3 MHz, (, UL Subframe=2,3,4,7,8,9)	×	100.00	170.17	54.19	3.23	80.0	± 9.6 %
			Y	100.00	164.08	51.36		80.0	
			Z	100.00	173.16	56.41		80.0	
10465- AAA	LTE-	TDD (SC-FDMA, 1 RB, 3 MHz, 16- ,UL Subframe=2,3,4,7,8,9)	X	100.00	154.44	46.62	3.23	80.0	± 9.6 %
	+		Ý	100.00	148.65	43.98		80.0	
			Z	100.00	159.23	49.60		80.0	
10466- AAA	LTE- QAM	TDD (SC-FDMA, 1 RB, 3 MHz, 64- ,UL Subframe=2,3,4,7,8,9)	X	100.00	151.03	44.93	3.23	80.0	± 9.6 %
			Y	100.00	145.25	42.30		80.0	
			Z	100.00	156.28	48.12		80.0	_
10467- AAC	LTE-	DD (SC-FDMA, 1 RB, 5 MHz, ↓ UL Subframe=2,3,4,7,8,9)	X	100.00	170.52	54.35	3.23	80.0	± 9.6 %
			Y	100.00	164.43	51.53		80.0	
			Z	100.00	173.48	56.56		80.0	
10468- AAC		TDD (SC-FDMA, 1 RB, 5 MHz, 16- ,UL Subframe=2,3,4,7,8,9)	X	100.00	154.75	46.76	3.23	80.0	± 9.6 %
			Y	100.00	148.97	44.13		80.0	
			Z	100.00	159.51	49.73		80.0	
10469- AAC	LTE-	TDD (SC-FDMA, 1 RB, 5 MHz, 64- ,UL Subframe=2,3,4,7,8,9)	x	100.00	151.20	45.00	3.23	80.0	± 9.6 %
			Y	100.00	145.42	42.37	· · · ·	80.0	
			Ż	100.00	156.45	48.19		80.0	
10470- AAC	LTE-	TDD (SC-FDMA, 1 RB, 10 MHz, UL Subframe=2,3,4,7,8,9)	×	100.00	170.71	54.43	3.23	80.0	± 9.6 %
			Y	100.00	164.59	51.59		80.0	
	1		ż	100.00	173.66	56.63		80.0	
10471- AAC	LTE-	TDD (SC-FDMA, 1 RB, 10 MHz, 16- , UL Subframe=2,3,4,7,8,9)	x	100.00	154.79	46.77	3.23	80.0	± 9.6 %
			Y	100.00	148.99	44.13	<u> </u>	80.0	
			Ż	100.00	159.56	49.75		80.0	
10472- AAC	LTE-	TDD (SC-FDMA, 1 RB, 10 MHz, 64- , UL Subframe=2,3,4,7,8,9)	X	100.00	151.27	45.02	3.23	80.0	± 9.6 %
			Y	100.00	145.46	42.39	·	80.0	
			Z	100.00	156.53	48.22	1	80.0	
10473- AAC	LTE-	TDD (SC-FDMA, 1 RB, 15 MHz, (UL Subframe=2,3,4,7,8,9)	X	100.00	170.68	54.42	3.23	80.0	±9.6 %
			Y	100.00	164.56	51.58		80.0	
			Z	100.00	173.64	56.62	<u> </u>	80.0	
10474- AAC	LTE-	TDD (SC-FDMA, 1 RB, 15 MHz, 16- , UL Subframe=2,3,4,7,8,9)	x	100.00	154.85	46.80	3.23	80.0	± 9.6 %
			Y	100.00	149.04	44.15		80.0	
			Z	100.00	159.62	49.77	1	80.0	
10475-	LTE-1 OAM	TDD (SC-FDMA, 1 RB, 15 MHz, 64- , UL Subframe=2,3,4,7,8,9)	х	100.00	151.30	45.04	3.23	80.0	± 9.6 %
AAC									
			Y	100.00	145.49	42.40	·	80.0	

Certificate No: EX3-3619_Sep17

Page 27 of 38

Report Number: R18073014-SAR

September 25, 2017

							•	
10477- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	154.69	46.71	3.23	80.0	± 9.6 %
		Y	100.00	148.86	44.06		80.0	
		Z	100.00	159.48	49.70		80.0	
10478- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64- QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	151.24	45.01	3.23	80.0	± 9.6 %
		Y	100.00	145.41	42.36		80.0	
_		Z	100.00	156.51	48.21		80.0	
10479- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	150.16	46.79	3.23	80.0	± 9.6 %
		Y	100.00	147.19	45.33		80.0	
		Z	100.00	153.10	48.79		80.0	1
10480- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	138.44	41.18	3.23	80.0	± 9.6 %
		Y	100.00	136.02	40.01		80.0	
		Z	100.00	141.74	43.33		80.0	1 .
10481- AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	136.73	40.29	3.23	80.0	±9.6 %
		Y	100.00	134.35	39.14		80.0	
		Z	100.00	140.23	42.52		80.0	
10482- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	146.96	44.59	2.23	80.0	± 9.6 %
		Y	100.00	_ 143.32	42.79		80.0	
		Z	<u>10</u> 0.00	150.55	46.88		80.0	
10483- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	×	100.00	136.34	40.29	2.23	80.0	± 9.6 %
		Y	100.00	134.39	39.31		80.0	
		Z	100.00	140.00	42.59		80.0	
10484- AAA	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	135.57	39.98	2.23	80.0	±9.6 %
		Y	100.00	133.67	39.03		80.0	
		z	100.00	139.21	42.26		80.0	
10485- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	147.59	45.40	2.23	80.0	± 9.6 %
		Ŷ	100.00	144.14	43.68		80.0	
		z	100.00	150.47	47.31		80.0	
10486- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	137.83	41.30	2.23	80.0	± 9.6 %
		Y	100.00	135.37	40.05		80.0	
		Z	100.00	140.85	43.24		80.0	
10487- AAC	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	100.00	136.92	40.95	2.23	80.0	± 9.6 %
		Y	100.00	134.56	39.74		80.0	
		Z	100.00	139.91	42.87		80.0	
10488- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	100.00	143.94	44.47	2.23	80.0	± 9.6 %
		Y.	100.00	141.07	43.01		80.0	
		Z	100.00	146.15	45.98		80.0	
10489- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	16.63	101.71	32.59	2.23	80.0	± 9.6 %
		Y	16.09	99.98	31.61		80.0	
		Z	26.73	112.45	36.58	•	80.0	
10490- AAC	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	14.08	97.41	31.13	2.23	80.0	± 9.6 %
		Y	13.69	95.95	30.25		80.0	
		Z	20.83	106.16	34.60		80.0	L
10491- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	×	36.97	118.89	37.69	2.23	80.0	± 9.6 %
		Y	29.43	112.66	35.43		80.0	
		Z	93.18	139.88	43.90		80.0	
10492- AAC	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	X	9.04	86.25	27.30	2.23	80.0	± 9.6 %
		ΓY-	8.79	85.15	26.58	· · · · · ·	80.0	İ 👘
		1 1	0.10	100.10	20.00		00.0	1

Certificate No: EX3-3619_Sep17

Page 28 of 38

September 25, 2017

10493- AAC		DD (SC-FDMA, 50% RB, 15 MHz, AM, UL Subframe=2,3,4,7,8,9)	x	8.63	84.73	26.69	2.23	80.0	± 9.6 %
			Y	8.40	83.71	26.01		80.0	
			Z	10.75	89.36	28.94		80.0	
10494- AAC		DD (SC-FDMA, 50% RB, 20 MHz, (, UL Subframe=2,3,4,7,8,9)	X	100.00	139.08	42.62	2.23	80.0	± 9.6 %
		<u>_</u> .	Y	90.18	<u>134.</u> 73	40.94		80.0	
			Z	100.00	141.11	43.99		80.0	
10495- AAC		DD (SC-FDMA, 50% RB, 20 MHz, AM, UL Subframe=2,3,4,7,8,9)	x	9.80	88.23	28.06	2.23	80.0	± 9.6 %
			Ϋ́	9.48	86.97	27.29	_	80.0	
			Z	12.92	94.21	30.74		80.0	
10496- AAC		DD (SC-FDMA, 50% RB, 20 MHz, M, UL Subframe=2,3,4,7,8,9)	x	8.89	85.44	27.00	2.23	80.0	± 9.6 %
	_	· · · · · · · · · · · · · · · · · · ·	Y	8.65	84.39	26.31		80.0	
	_		Z	11.24	90.42	29.36		80.0	
10497- L AAA N	LTE- MHz,	DD (SC-FDMA, 100% RB, 1.4 QPSK, UL Subframe=2,3,4,7,8,9)	×	100.00	146.06	43.66	2.23	80.0	± 9.6 %
		<u> </u>	Y	100.00	142.19	41.77		80.0	
40.400	+		Z	100.00	150.68	46.47		80.0	
10498- AAA	MHz,	DD (SC-FDMA, 100% RB, 1.4 16-QAM, UL ame=2,3,4,7,8,9)	x	100.00	133.24	37.80	2.23	80.0	± 9.6 %
			Y	100.00	130.04	36.22		80.0	
			Z	100.00	138.55	40.89		80.0	İ
10499- AAA	MHz,	DD (SC-FDMA, 100% RB, 1.4 64-QAM, UL ame=2,3,4,7,8,9)	x	100.00	131.73	37.09	2.23	80.0	± 9.6 %
			Y	100.00	128.56	35.53		80.0	
		n	Z	100.00	137.13	40.21		80.0	-
10500- AAA	LTE-	DD (SC-FDMA, 100% RB, 3 MHz, (, UL Subframe=2,3,4,7,8,9)	x	100.00	145.75	44.88	2.23	80.0	± 9.6 %
			Y	100.00	142.57	43.28		80.0	
	<u> </u>		Z	100.00	148.34	46.62		80.0	
10501- AAA	LTE- 16-Q	DD (SC-FDMA, 100% RB, 3 MHz, AM, UL Subframe=2,3,4,7,8,9)	x	100.00	137.73	41.64	2.23	80.0	± 9.6 %
	<u> </u>		Y	100.00	135.40	40.44		80.0	
			Z	100.00	140.35	43.36		80.0	
10502- AAA	LTE- 64-Q	DD (SC-FDMA, 100% RB, 3 MHz, M, UL Subframe=2,3,4,7,8,9)	×	100.00	136.71	41.21	2.23	80.0	± 9.6 %
		· · · · · · · · · · · · · · · · · · ·	Y	100.00	134.48	40.06		80.0	
10505	+		Z	100.00	139.32	42.92		80.0	
10503- AAC		DD (SC-FDMA, 100% RB, 5 MHz, , UL Subframe=2,3,4,7,8,9)	×	100.00	143.91	44.44	2.23	80.0	± 9.6 %
			Y	100.00	141.02	42.98		80.0	
10501	1		Z	100.00	146.13	45.97		80.0	
10504- AAC	16-Q	DD (SC-FDMA, 100% RB, 5 MHz, AM, UL Subframe=2,3,4,7,8,9)	X	16.42	101.41	32.48	2.23	80.0	± 9.6 %
			Y	15.81	99.58	31.46		80.0	
10505	+		Z	26.33	112.08	36.45		80.0	
10505- AAC	64-Q/	DD (SC-FDMA, 100% RB, 5 MHz, M, UL Subframe=2,3,4,7,8,9)	X	13.91	97.15	31.03	2.23	80.0	± 9.6 %
			Ϋ́	13.47	95.60	30.12		80.0	
10500	+		Z	20.53	105.83	34.48		80.0	
10506- AAC	MHz,	DD (SC-FDMA, 100% RB, 10 QPSK, UL Subframe=2,3,4,7,8,9)	X	100.00	139.02	42.59	2.23	80.0	± 9.6 %
	1	+	Y	84.37	133.35	40.59		80.0	
10507-			Z	100.00	141.05	43.96		80.0	
10507- AAC	MHz,	DD (SC-FDMA, 100% RB, 10 16-QAM, UL ame=2,3,4,7,8,9)	x	9.74	88.10	28.01	2.23	80.0	± 9.6 %
			Y	9.41	86.81	27.22		80.0	
			Z	12.83	94.06	30.68		80.0	
		1							

Certificate No: EX3-3619_Sep17

Page 29 of 38

Report Number: R18073014-SAR

EX3DV4-SN:3619

September 25, 2017

10508- AAC	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	8.83	85.28	26.92	2.23	80.0	± 9.6 %
		Y	8.58	84.19	26.23		80.0	
		Ż	11.15	90.24	29.28		80.0	
10509- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	X	25.33	107.10	33.69	2.23	80.0	± 9.6 %
		Y	21.45	102.77	32.01		80.0	
	+ -	Z	49.47	121.84	38.52		80.0 80.0	
10510-	LTE-TDD (SC-FDMA, 100% RB, 15	X	8.26	81.82	25.43	2.23	80.0	± 9.6 %
AAC	MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)		0.20	01.02	20.40	2.20	00.0	1 9.0 %
		Ý	7.99	80.77	24.78		80.0	
		Z	9.99	85.76	27.42		80.0	
10511- AAC	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	x	7.82	80.16	24.77	2.23	80.0	±9.6 %
		Y	7.60	79.23	24.18		80.0	
		Ż	9.26	83.60	26.58		80.0	
10512- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	x	95.34	134.45	40.90	2.23	80.0	± 9.6 %
		Y	60.52	123.74	37.72		80.0	
		Z	100.00	137.39	42.45		80.0	
10513- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	Х	8.83	84.11	26.39	2.23	80.0	± 9.6 %
		Y	8.50	82.89	25.66		80.0	
		Z	11.06	88.88	28.66		80.0	
10514- AAC	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	X	8.03	81.58	25.42	2.23	80.0	± 9.6 %
		Y	7.79	80.58	24.78		80.0	
		Z	9.72	85.56	27.43	_	80.0	
10515- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	X	2.74	87.56	32.13	0.00	150.0	± 9.6 %
		Y	4.33	99.49	36.43		150.0	
		Z	3.77	96.11	36.71		150.0	
10516- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	X	100.00	250.55	85.79	0.00	150.0	± 9.6 %
		Y	100.00	240.21	81.20		150.0	
		Z	100.00	255.68	89.44		150.0	
10517- AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	x	61.59	185.49	62.67	0.00	150.0	±9.6 %
		Y	100.00	194.72	63.60		150.0	
10510		Z	100.00	205.38	69.31		150.0	
10518- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	×	5.49	70.47	19.75	0.00	150.0	±9.6 %
		Y	5.58	70.83	19.94		150.0	
10540		Z	5.80	71.44	20.60	0.00	150.0	100%
10519- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	X	5.68	70.61	19.77	0.00	150.0	± 9.6 %
		Y	5.77	70.94	19.95		150.0	
10520-	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18	Z X	6.01	71.56	20.60	0.00	150.0	+06%
AAA	Mbps, 99pc duty cycle)	X Y	5.58	70.86	19.88	0.00	150.0	± 9.6 %
		Z	5.67 5.92	71.23	20.08	l	150.0 150.0	
10521- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	X	5.53	70.98	19.96	0.00	150.0	± 9.6 %
		Y	5.63	71.37	20.16	1	150.0	
		Ż	5.88	72.07	20.87		150.0	
10522- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	X	5.58	70.97	19.97	0.00	150.0	± 9.6 %
		Y	5.67	71.35	20.17		150.0	
		Z	5.91	71.97	20.84		150.0	

Certificate No: EX3-3619_Sep17

Page 30 of 38

/

EX3DV4- SN:3619

September 25, 2017

10523- AAA	IEEE Mbps	802.11a/h WiFi 5 GHz (OFDM, 48 , 99pc duty cycle)	X	5.48	71.03	19.96	0.00	150.0	± 9.6 %
	10000	(cope daty cycle)	Y	5.58	71.44	20.17		150.0	
			z	5.83	72.12	20.17			
10524-		802.11a/h WiFi 5 GHz (OFDM, 54	X	5.52			0.00	150.0	-
	Mbps	99pc duty cycle)			70.92	19.97	0.00	150.0	± 9.6 %
			Y	5.62	71.31	20.18		150.0	
	_		Z	5.86	71.95	20.85		150.0	-
10525- AAA		802.11ac WiFi (20MHz, MCS0, duty cycle)	X	5.53	69.99	19.53	0.00	150.0	± 9.6 %
			Y	5.65	70.46	19.78		150.0	
		· · · · · ·	Ż	5.87	71.05	20.42		150.0	
10526- AAA	IEEE 99nc	802.11ac WiFi (20MHz, MCS1, duty cycle)	x	5.75	70.45	19.68	0.00	150.0	±9.6 %
	0000		Y	5.88	70.91	19.93		150.0	<u> </u>
	1		z	6.12	71.54				<u> </u>
10527-	IFEE	B02.11ac WiFi (20MHz, MCS2,	x			20.57	0.00	150.0	
AAA		duty cycle)		5.70	70.57	19.73	0.00	150.0	± 9.6 %
			Y	5.83	71.06	19.99		150.0	
40500	+		Z	6.08	71.72	20.66		150.0	
10528- AAA	99pc	802.11ac WiFi (20MHz, MCS3, duty cycle)	X	5.71	70.55	19.74	0.00	150.0	±9.6 %
			Y	5.83	71.03	19.99		150.0	
			Z	6.08	71.68	20.65		150.0	
10529- AAA	IEEE 99pc	802.11ac WiFi (20MHz, MCS4, duty cycle)	х	5.71	70.55	19.74	0.00	150.0	± 9.6 %
			Y	5.83	71.03	19.99	_	150.0	
			Z	6.08	71.68	20.65		150.0	
10531- AAA	IEEE 99pc	802.11ac WiFi (20MHz, MCS6, duty cycle)	X	5.75	70.84	19.85	0.00	150.0	± 9.6 %
	0000		Y	5.88	71.34	20.11		450.0	
			z	6.14			<u> </u>	150.0	
10532-	IEEE	802.11ac WiFi (20MHz, MCS7.	x	<u> </u>	72.04	20.80	0.00	150.0	<u> </u>
AAA					70.83	19.89	0.00	150.0	± 9.6 %
		<u> </u>	Y	5.75	71.37	20.17		150.0	1
40500			Z	6.01	72.08	20.87		150.0	-
10533- AAA		802.11ac WiFi (20MHz, MCS8, duty cycle)	X	5.74	70.65	19.76	0.00	150.0	± 9.6 %
			Y	5.86	71.14	20.01		150.0	-
			Z	6.11	71.79	20.67		150.0	
10534- AAA	IEEE 99pc	802.11ac WiFi (40MHz, MCS0, duty cycle)	X	6.13	69.88	19.25	0.00	150.0	± 9.6 %
			Y	6.23	70.22	19,44		150.0	
			Ż	6.46	70.84	20.05	<u> </u>	150.0	├ ────
10535- AAA		802.11ac WiFi (40MHz, MCS1, duty cycle)	X	6.22	70.04	19.35	0.00	150.0	± 9.6 %
		<u> </u>	Y	6.33	70.46	19.55		150.0	
	1	· · · · · · · · · · · · · · · · · · ·	Ż	6.56	71.06	20.14	<u> </u>	150.0	
10536- AAA		802.11ac WiFi (40MHz, MCS2, duty cycle)	X	6.12	70.23	19.43	0.00	150.0	± 9.6 9
	<u> </u>		Y	6.22	70.60	19.63	<u> </u>	150.0	
	1		z	6.47	71.26	20.27			<u> </u>
10537- AAA	IEEE 99pc	802.11ac WiFi (40MHz, MCS3, duty cycle)	X	6.15	70.08	19.34	0.00	150.0 150.0	± 9.6 9
	1 2000		Y	6.00	70.44	10 5 (<u> </u>		L
	-	<u>+</u>		6.26	70.44	19.54	L	150.0	<u> </u>
10538-	IFFF	802.11ac WiFi (40MHz, MCS4,	ZX	6.50	71.09	20.16		150.0	
AAA		duty cycle)		6.22	69.96	19.29	0.00	150.0	±9.6 %
	──		Y	6.32	70.29	19.47		150.0	
10540-	1		Z	6.56	70.93	20.09		150.0	
10540-	IEEE	802.11ac WiFi (40MHz, MCS6,	X	6.17	70.08	19.38	0.00	150.0	± 9.6 %
AAA	99pc	duty cycle)							
	99pc	duty cycle)	Y	6.27	70.43	19.58		150.0	

Certificate No: EX3-3619_Sep17

Page 31 of 38

September 25, 2017

10541- AAA	IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)	X	6.11	69.86	19.27	0.00	150.0	± 9.6 %
_		_ Y	6.21	70.20	19.46		150.0	
_		_ Z	6.44	70.82	20.07		150.0	[
10542- AAA	IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)	X	6.24	69.76	19.20	0.00	150.0	± 9.6 %
-		Y	6.34	70.08	19.38		150.0	1
		Z	6.57	70.68	19.97		150.0	
105 4 3- AAA	IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)	×	6.32	69.73	19.18	0.00	150.0	±9.6 %
		Y	6.41	70.04	19.36		150.0	
_		Z	6.64	70.60	19.92		150.0	
10544- AAA	IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)	X	6.39	69.67	19.02	0.00	150.0	± 9.6 %
		Y	6.48	69.94	19.17		150.0	
		Z	6.71	70.57	19.77		150.0	
10545- AAA	IEEE 802.11ac WIFi (80MHz, MCS1, 99pc duty cycle)	X	6.67	70.26	19.24	0.00	150.0	± 9.6 %
		Y	6.77	70.56	19.40		150.0	
10510		Z	7.00	71.19	20.00		150.0	
10546- AAA	IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)	X	6.51	70.03	19.16	0.00	150.0	± 9.6 %
		Y	6.60	70.31	<u>1</u> 9.31		150.0	
		Z	6.85	70.99	19.94		150.0	
10547- AAA	IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)	X	6.58	70.04	19.14	0.00	150.0	± 9.6 %
-		Y	6.67	70.31	19.29		150.0	
		Z	6.94	71.02	19.93		150.0	
10548- AAA	IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)	×	7.14	71.81	19.97	0.00	150.0	± 9.6 %
		Y	7.29	72.19	20.15		150.0	
		Z	7.59	73.01	20.85		150.0	
10550- AAA	IEEE 802.11ac WiFi (80MHz, MCS6, 99pc duty cycle)	X	6.53	70.00	19.15	0.00	150.0	± 9.6 %
		Y	6.62	70.29	19.31		150.0	
		Z	6.86	70.91	19.90		150.0	
10551- AAA	IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)	X	6.54	70.05	19.14	0.00	150.0	± 9.6 %
		Ŷ	6.63	70.32	19.29		150.0	
		Z	6.88	71.00	19.91		150.0	
10552- AAA	IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)	X	6.42	69.80	19.03	0.00	150.0	± 9.6 %
		Y	6.51	70.06	19.18		150.0	
		Z	6.75	70.72	19.80		150.0	
10553- AAA	IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)	×	6.49	69.73	19.01	0.00	150.0	± 9.6 %
_		Y	6.57	69.98	19.15		150.0	
		Z	6.82	70.63	19.76		150.0	
10554- AAB	IEEE 802.11ac WIFi (160MHz, MCS0, 99pc duty cycle)	X	6.80	69.87	18.96	0.00	150.0	± 9.6 %
		Y	6.88	70.09	19.09		150.0	
		Z	7.12	70.74	19.69		150.0	
10555- AAB	IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)	X	6.99	70.30	19.14	0.00	150.0	± 9.6 %
		Y	7.07	70.53	19.27		150.0	
		Z	7.32	71.19	19.87		150.0	
10556- <u>A</u> AB	IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)	X	7.01	70.34	19.15	0.00	150.0	± 9.6 %
		Y	7.09	70.56	19.27		150.0	
		Z	7.34	71.22	19.88		150.0	
10557- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)	X	6.96	70.20	19.10	0.00	150.0	± 9.6 %
		Y	7.04	70.42	19.22		150.0	1
		Z	7.29	71.10	19.84		150.0	1

Certificate No: EX3-3619_Sep17

Page 32 of 38

EX3DV4- SN:3619

September 25, 2017

10558- AAB		802.11ac WiFi (160MHz, MCS4, duty cycle)	X	7.03	70.43	19.22	0.00	150.0	±9.6 %
	-		Y Z	7.11	70.65	19.35		150.0	
40500				7.38	71.35	19.97		150.0	
10560- AAB		802.11ac WiFi (160MHz, MCS6, duty cycle)	×	6.97	70.11	19.10	0.00	150.0	± 9.6 %
			Y	7.05	70.32	19.22		150.0	
			Z	7.30	70.98	19.81		150.0	
10561- AAB	IEEE 99pc	802.11ac WiFi (160MHz, MCS7, duty cycle)	x	6.91	70.15	19.16	0.00	150.0	± 9.6 %
			Y	6.99	70.37	19.29		150.0	
			Z	7.23	71.02	19.89		150.0	
10562- AAB		802.11ac WiFi (160MHz, MCS8, duty cycle)	x	7.11	70.74	19.45	0.00	150.0	± 9.6 %
			Y	7.20	70.97	19.57		150.0	
			Z	7.47	71.71	20.22		150.0	
10563-		802.11ac WiFi (160MHz, MCS9,	X	7.52	71.42	19.70	0.00	150.0	± 9.6 %
AAB		duty cycle)	Ŷ	7.61	71.64		0.00		1 9.0 %
						19.82		150.0	
10564-		800 11 - WEE 2.4 OL - (D000	Z	7.98	72.60	20.56	<u> </u>	150.0	
10564- AAA	OFD	802.11g WiFi 2.4 GHz (DSSS- V, 9 Mbps, 99pc duty cycle)	X	5.73	70.00	19.54	0.46	150.0	± 9.6 %
		<u> </u>	Y	5.79	70.20	19.62		150.0	
1000	+		Z	6.02	70.82	20.29		150.0	
10565- AAA		802.11g WiFi 2.4 GHz (DSSS- VI, 12 Mbps, 99pc duty cycle)	x	5.99	70.44	19.80	0.46	150.0	± 9.6 %
			Y	6.06	70.70	19.94		150.0	
			Z	6.29	71.26	20.55		150.0	
10566- AAA		802.11g WiFi 2.4 GHz (DSSS- 1, 18 Mbps, 99pc duty cycle)	X	5.85	70.47	19.76	0.46	150.0	±9.6 %
			Y	5.91	70.70	19.87		150.0	
			Ż	6.16	71.36	20.55		150.0	
10567- AAA		802.11g WiFi 2.4 GHz (DSSS- VI, 24 Mbps, 99pc duty cycle)	x	5.92	71.04	20.35	0.46	150.0	± 9.6 %
,	+		Y	6.02	71.47	20.45		450.0	
			Z					150.0	
10568-		802.11g WiFi 2.4 GHz (DSSS-		6.24	71.98	21.03		150.0	
AAA		VI, 36 Mbps, 99pc duty cycle)	X	5.75	70.23	19.54	0.46	150.0	± 9.6 %
	_		Y	5.79	70.33	19.55		150.0	
			Z	6.05	71.07	20.30		150.0	
10569- AAA	OFD	802.11g WiFi 2.4 GHz (DSSS- 4, 48 Mbps, 99pc duty cycle)	X	5.89	71.25	20.36	0.46	150.0	± 9.6 %
_			Y	6.01	71.74	20.62		150.0	
			Z	6.22	72.21	21.18		150.0	
10570- AAA		802.11g WiFi 2.4 GHz (DSSS- W, 54 Mbps, 99pc duty cycle)	x	5.89	70.90	20.16	0.46	150.0	± 9.6 %
	<u> </u>		Y	5.99	71.28	20.37		150.0	
	_		Z	6.20	71.78	20.95		150.0	
10571- AAA		802.11b WiFi 2.4 GHz (DSSS, 1 90pc duty cycle)	×	3.02	86.99	31.58	0.46	130.0	± 9.6 %
			Y	3.94	93.49	33.73		130.0	
			Z	3.96	94.04	35.47	<u> </u>	130.0	
10572- AAA	IEEE Mbps	802.11b WiFi 2.4 GHz (DSSS, 2 , 90pc duty cycle)	x	3.40	90.80	33.28	0.46	130.0	± 9.6 %
			Y	4.74	98.93	35.89		130.0	<u> </u>
			z	4.62	99.06	37.56	<u> </u>	130.0	<u> </u>
10573- AAA	IEEE Mbps	802.11b WiFi 2.4 GHz (DSSS, 5.5 ,90pc duty cycle)	x	100.00	227.39	76.80	0.46	130.0	± 9.6 %
			Y	100.00	218.85	72.90		130.0	
	1	·	z	100.00	232.98	80.45			-
10574-		802.11b WiFi 2.4 GHz (DSSS, 11	X				0.40	130.0	
AAA	Mbps	902.110 WIFI 2.4 GHZ (DSSS, 11		100.00	194.44	64.43	0.46	130.0	±9.6 %
			Y	100.00	189.82	62.23		130.0	
	1	1	Z	100.00	199.38	67.45		130.0	

Certificate No: EX3-8619_Sep17

Page 33 of 38

Report Number: R18073014-SAR

10575-	IEEE 802.11g WiFi 2.4 GHz (DSSS-		- F F0	60.05	40.00	0.10	102.2	
AAA	OFDM, 6 Mbps, 90pc duty cycle)	X	5.50	69.85	19.68	0.46	130.0	± 9.6 %
		Y	5.55	70.02	19.73		130.0	
			<u>5.78</u>	70.67	20.44		130.0	
10576- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 9 Mbps, 90pc duty cycle)	X	5.55	70.12	19.80	0.46	130.0	± 9.6 %
		Y	5.61	70.35	19.89		130.0	
		Z	5.84	70.98	20.59		130.0	
10577- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 12 Mbps, 90pc duty cycle)	X	5.77	70.35	19.89	0.46	130.0	±9.6 %
		Y	5.83	70.58	19.98		130.0	
		Z	6.07	71.19	20.65		130.0	
10578- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 18 Mbps, 90pc duty cycle)	X	5.72	70.79	20.18	0.46	130.0	± 9.6 %
		Y	5.80	71.12	20.33		130.0	
		Z	6.03	71.72	20.99		130.0	
10579- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 24 Mbps, 90pc duty cycle)	X	5.45	70.06	19.52	0.46	130.0	± 9.6 %
_		Y	5.48	70.08	19.46		130.0	
40502		Z	5.77	70.99	20.35		130.0	
10580- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 36 Mbps, 90pc duty cycle)	X	5.49	70.02	19.49	0.46	130.0	± 9.6 %
		Y	<u>5.51</u>	70.00	19.41		130.0	
40504		Z	5.80	70.89	20.28		130.0	
10581- <u>A</u> AA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 48 Mbps, 90pc duty cycle)	X	5.66	71.10	20.30	0.46	130.0	± 9.6 %
		Y	5.74	71.42	20.43		130.0	
		Z	5.99	72.11	21.16		130.0	
10582- AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS- OFDM, 54 Mbps, 90pc duty cycle)	X	5.38	69.73	19.27	0.46	130.0	± 9.6 %
		Y	5.38	69.65	19.14		130.0	
		Z	5.68	70.62	20.07		130.0	
10583- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	X	5.50	69.85	19.68	0.46	130.0	± 9.6 %
	<u> </u>	Y	5.55	70.02	19.73		_130.0	
		Z	5.78	70.67	20.44		130.0	
10584- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	X	5.55	70.12	19.80	0.46	130.0	± 9.6 %
		Y	5.61	70.35	19.89		130.0	
		Ż	5.84	70.98	20.59		130.0	
10585- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	X	5.77	70.35	19.89	0.46	130.0	± 9.6 %
		Y	5.83	70.58	19.98		130.0	
		Z	6.07	71.19	20.65		130.0	
10586- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	X	5.72	70.79	20.18	0.46	130.0	± 9.6 %
		Y	5.80	71.12	20.33		130.0	
40505		Z	6.03	71.72	20.99		130.0	
10587- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	X	5.45	70.06	19.52	0.46	130.0	± 9.6 %
		Y	5.48	70.08	19.46		130.0	
10500		Z	5.77	70.99	20.35		130.0	
10588- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	X	5.49	70.02	19.49	0.46	130.0	± 9.6 %
		Y	5.51	70.00	19.41		130.0	
40500		Z	5.80	70.89	20.28		130.0	
10589- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	X	5.66	71.10	20.30	0.46	130.0	± 9.6 %
		Y	5.74	71.42	20.43		130.0	
10500		Z	5.99	72.11	21.16		130.0	
10590- AAA	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	X	5.38	69.73	19.27	0.46	130.0	± 9.6 %
		Y	5.38	69.65	19.14		130.0	
		Z	5.68	70.62	20.07		130.0	

Certificate No: EX3-3619_Sep17

Page 34 of 38

September 25, 2017

10591- AAA	IEEE 80 MCS\$,	02.11n (HT Mixed, 20MHz, 90pc duty cycle)	X	5.62	69.71	19.63	0.46	130.0	± 9.6 %
		······································	Y	5.68	69.91	19.70		130.0	
			Z	5.90	70.49	20.36		130.0	
10592- AAA		02.11n (HT Mixed, 20MHz, 90pc duty cycle)	X	5.81	70.12	19.77	0.46	130.0	± 9.6 %
			Y	5.87	70.31	19.84		130.0	
			Z	6.11	70.91	20.50		130.0	
10593- AAA	IEEE 80 MCS2, 9	02.11n (HT Mixed, 20MHz, 90pc duty cycle)	X	5.75	70.12	19.72	0.46	130.0	± 9.6 %
			Y	5.80	70.28	19.77		130.0	
			Z	6.05	70.95	20.47		130.0	
10594- AAA		02.11n (HT Mixed, 20MHz, 90pc duty cycle)	x	5.81	70.29	19.87	0.46	130.0	± 9.6 %
	+		Y	5.87	70.50	19.95		130.0	
10595-	1555 04		Z	6.11	71.11	20.62		130.0	
10595- AAA		02.11n (HT Mixed, 20MHz, 90pc duty cycle)	X	5.79	70.30	19.81	0.46	130.0	± 9.6 %
			Y	5.84	70.49	19.87		130.0	
10596-	tieret	0.44- /1 17 Mine 1. 0.05 11 1	<u>Z</u> X	6.09	71.15	20.57		130.0	L
AAA		02.11n (HT Mixed, 20MHz, 90pc duty cycle)		5.74	70.38	19.87	0.46	130.0	± 9.6 %
	+		_ <u>Y</u>	5.79	70.55	19.91		130.0	L
40507			Z	6.04	71.24	20.64		130.0	<u> </u>
10597- AAA		02.11n (HT Mixed, 20MHz, 90pc duty cycle)	X	5.69	70.34	19.79	0.46	130.0	± 9.6 %
			Y	5.74	70.49	19.82		130.0	
10500			Z	6.00	71.22	20.58		130.0	L
10598- AAA		02.11n (HT Mixed, 20MHz, 90pc duty cycle)	X	5.70	70.71	20.14	0.46	130.0	± 9.6 %
			Y	5.77	71.00	20.26		130.0	
			Z	6.02	71.65	20.96		130.0	
10599- AAA		02.11n (HT Mixed, 40MHz, 90pc duty cycle)	X	6.29	69.92	19.51	0.46	130.0	± 9.6 %
			Y	6.34	70.06	19.56		130.0	
			Z	6.57	70.65	20.18		130.0	
10600- AAA	IEEE 80	02.11n (HT Mixed, 40MHz, 90pc duty cycle)	X	6.55	70.72	19.87	0.46	130.0	± 9.6 %
			Y	6.61	70.88	19.91		130.0	
			Z	6.87	71.57	20.59		130.0	
10601- AAA		2.11n (HT Mixed, 40MHz, 90pc duty cycle)	X	6.37	70.29	19.69	0.46	130.0	± 9.6 %
			Y	6.43	70.44	19.73		130.0	
			Z	6.67	71.07	20.38		130.0	-
10602- AAA	IEEE 80 MCS3	02.11n (HT Mixed, 40MHz, 90pc duty cycle)	X	6.46	70.23	19.56	0.46	130.0	± 9.6 %
			Y	6.50	70.33	19.56	<u> </u>	130.0	
	+		Z	6.73	70.94	20.21		130.0	
10603- AAA	MCS4	02.11n (HT Mixed, 40MHz, 90pc duty cycle)	X	6.54	70.54	19.83	0.46	130.0	± 9.6 %
			_ Y	6.60	70.70	19.89		130.0	
10001	+		Z	6.83	71.28	20.50		130.0	
10604- AAA	MCS5	2.11n (HT Mixed, 40MHz, 90pc duty cycle)	x	6.28	69.83	19.48	0.46	130.0	± 9.6 %
	┿╌╌┥		Y	6.33	69.96	19.53	<u> </u>	130.0	
40005	+		Z	6.56	70.56	20.15		130.0	
10605- AAA		2.11n (HT Mixed, 40MHz, 90pc duty cycle)	X	6.46	70.37	19.75	0.46	130.0	± 9.6 %
	-		Y	6.51	70.49	19.76		130.0	
1004-	1		Z	6.73	71.07	20.39		130.0	
10606- AAA	MCS7	2.11n (HT Mixed, 40MHz, 90pc duty cycle)	X	6.16	69.63	19.27	0.46	130.0	± 9.6 %
			_ Y	6.19	69.65	19.23		130.0	<u> </u>
	1 T		Z	6.43	70.33	19.92		130.0	<u> </u>

Certificate No: EX3-3619_Sep17

Page 35 of 38

Report Number: R18073014-SAR

FCC ID: DBZWM23A

Lectrosonics, Inc.

EX3DV4-- SN:3619

September	25.	2017
	,	

40607								
10607- AAA	IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)	×	5.58	69.53	19.53	0.46	130.0	± 9.6 %
		<u> </u>	5.66	<u>69.8</u> 4	19.67		130.0	
		Z	5.89	70.45	20.34		130.0	
10608- AAA	IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)	X	5.82	70.03	19.71	0.46	130.0	±9.6 %
		Y	5.90	70.33	19.84		130.0	
		Z	6.15	70.97	20.52		130.0	
10609- AAA	IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)	X	5.72	70.00	19.64	0.46	130.0	± 9.6 %
		Y	5.79	70.26	19.74		130.0	
		Z	6.06	70.98	20.48		130.0	
10610- AAA	IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)	×	5.77	70.16	19.79	0.46	130.0	± 9.6 %
		Y	5.86	70.48	19.93		130.0	
		Z	6.11	71.14	20.62		130.0	
10611- AAA	IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)	X	5.68	69.98	19.66	0.46	130.0	± 9.6 %
		Y	5.76	70.26	19.77		130.0	
		Z	6.02	70.97	20.50		130.0	
10612- AAA	IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)	X	5.73	70.29	19.79	0.46	130.0	± 9.6 %
		<u> </u>	5.81	70.54	19.88		130.0	
		Z	<u>6</u> .08	71.30	_ 20.64		130.0	
10613- AAA	IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)	X	5.73	70.11	19.64	0.46	130.0	±9.6 %
		Y	5.79	70.32	19.70		130.0	
		Z	6.07	71.13	20.49		130.0	A
10614- AAA	IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)	×	5.69	70.47	19.98	0.46	130.0	±9.6 %
		Y	5.79	70.86	20.15		130.0	
		Z	6.05	71.55	20.87		130.0	
10615- AAA	IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)	x	5.67	69.75	19.41	0.46	130.0	±9.6 %
		Y	5.72	69.89	19.43	_	130.0	
		Z	6.01	70.70	20.23		130.0	
10616- AAA	IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)	×	6.21	69.57	19.34	0.46	130.0	±9.6 %
		Y	6.27	69.79	19.44		130.0	
		Z	6.51	70.42	20.08		130.0	
10617- AAA	IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)	×	6.31	69.83	19.43	0.46	130.0	±9.6 %
		Y	6.38	70.05	19.52	İ	130.0	
_		Z	6.60	70.62	20.14		130.0	·
10618- AAA	IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)	x	6.21	69.98	19.56	0.46	130.0	± 9.6 %
		Y	6.29	70.23	19.67		130.0	
		Z	6.53	70.88	20.32		130.0	
10619- AAA	IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)		6.21	69.69	19.34	0.46	130.0	± 9.6 %
		Y	6.27	69.87	19.40		130.0	
		Z	6.52	70.54	20.07		130.0	
10620- AAA	IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)	X	6.28	69.60	19.31	0.46	130.0	± 9.6 %
		Y	6.34	69.77	19.38		130.0	
		Z	6.60	70.46	20.05		130.0	
10621- AAA	IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)	X	6.26	69.70	19.49	0.46	130.0	± 9.6 %
		Y	6.35	69.99	19.63		130.0	
		Z	6.57	70.54	20.21		130.0	
10622- AAA	IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)	X	6.33	70.04	19.65	0.46	130.0	± 9.6 %
		Y	6.42	70.34	19.79		130.0	
		Z	6.63	70.87	20.38		130.0	

Certificate No: EX3-3619_Sep17

Page 36 of 38

September 25, 2017

10623- AAA		802.11ac WiFi (40MHz, MCS7, duty cycle)	X	6.14	69.39	19.21	0.46	130.0	± 9.6 %
			TY	6.20	69.55	19.27		130.0	
			Z	6.44	70.21	19.94		130.0	
10624- AAA		802.11ac WiFi (40MHz, MCS8, duty cycle)	×	6.33	69.49	19.29	0.46	130.0	± 9.6 %
			Y	6.40	69.68	19.37		130.0	
			Z	6.63	70.29	19.99		130.0	
10625- AAA		802.11ac WiFi (40MHz, MCS9, duty cycle)	x	6.89	70.95	20.02	0.46	130.0	± 9.6 %
			Y	6.98	71.20	20.12		130.0	
			Z	7.25	71.89	20.77		130.0	
10626- AAA		802.11ac WiFi (80MHz, MCS0, duty cycle)	X	6.46	69.34	19.09	0.46	130.0	± 9.6 %
			Y	6.51	69.50	19.15		130.0	
			Z	6.74	70.13	19.78		130.0	
10627- AAA		802.11ac WiFi (80MHz, MCS1, duty cycle)	x	6.80	70.16	19.43	0.46	130.0	± 9.6 %
			Y	6.88	70.36	19.51		130.0	
			Z	7.11	70.98	20.13		130.0	
10628- AAA	IEEE 90pc	802.11ac WiFi (80MHz, MCS2, duty cycle)	x	6.54	69.58	19.10	0.46	130.0	± 9.6 %
			Y	6.59	69.68	19.13		130.0	
			Z	6.84	70.41	19.81		130.0	
10629- AAA	IEEE 90pc	802.11ac WiFi (80MHz, MCS3, duty cycle)	X	6.63	69.66	19.12	0.46	130.0	± 9.6 %
			Y	6.68	69.76	19.14		130.0	
			Z	6.92	70.40	19.78		130.0	
10630- AAA		802.11ac WiFi (80MHz, MCS4, duty cycle)	x	7.51	72.33	20.41	0.46	130.0	± 9.6 %
			Y	7.62	72.56	20.47		130.0	
			Z	7.96	73.47	21.25		130.0	
10631- AAA		802.11ac WiFi (80MHz, MCS5, duty cycle)	X	7.16	71.48	20.20	0.46	130.0	± 9.6 %
_			Y	7.28	71.83	20.36		130.0	
			Z	7.56	72.54	21.01		130.0	
10632- AAA	IEEE 90pc	802.11ac WiFi (80MHz, MCS6, duty cycle)	X	6.75	70.19	19.59	0.46	130.0	± 9.6 %
			Y	6.85	70.50	19.75		130.0	
			Z	7.06	71.01	20.29		130.0	
10633- AAA		802.11ac WiFi (80MHz, MCS7, duty cycle)	X	6.60	69.71	19.19	0.46	130.0	± 9.6 %
			Y	6.65	69.86	19.25	-	130.0	
			Z	6.92	70.59	19.92		130.0	
10634- AAA		802.11ac WiFi (80MHz, MCS8, duty cycle)	X	6.58	69.75	19.27	0.46	130.0	± 9.6 %
			Y	6.65	69.94	19.36		130.0	
			Z	6.90	70.60	19.99		130.0	
10635- AAA		802.11ac WiFi (80MHz, MCS9, duty cycle)	X	6.41	68.90	18.58	0.46	130.0	± 9.6 %
			Y	6.42	68.84	18.49		130.0	
			Z	6.71	69.69	19.26		130.0	
10636- AAB	IEEE 90pc	802.11ac WiFi (160MHz, MCS0, duty cycle)	X	6.89	69.61	19.05	0.46	130.0	± 9.6 %
			Y	6.94	69.73	19.10		130.0	
			Z	7.18	70.37	19.72		130.0	
10637- AAB	IEEE 90pc	802.11ac WiFi (160MHz, MCS1, duty cycle)	x	7.11	70.14	19.29	0.46	130.0	± 9.6 %
			Y	7.17	70.28	19.34		130.0	
1000-			Z	7.41	70.93	19.96		130.0	
10638- AAB		802.11ac WiFi (160MHz, MCS2, duty cycle)	×	7.11	70.11	19.25	0.46	130.0	± 9.6 %
			Y	7.17	70.24	19.30		130.0	
			Z	7.41	70.90	19.93		130.0	

Certificate No: EX3-3619_Sep17

Page 37 of 38

September 25, 2017

10639- AAB	IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)	X	7.06	69.99	19.24	0.46	130.0	± 9.6 %
		t y	7.11	70.12	19.28		130.0	
		Z	7.37	70.79	19.92		130.0	
10640- AAB	IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)	X	7.09	70.06	19.22	0.46	130.0	±9.6 %
		Y	7.13	70.13	19.22		130.0	
		Z	7.41	70.90	19.91		130.0	
10641- AAB	IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)	x	7.08	69.78	19.08	0.46	130.0	±9.6 %
		Y	7.12	69.84	19.08		130.0	
10010		Z	7.36	70.49	19.71		130.0	
10642- AAB	IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)	×	7.13	70.08	19.40	0.46	130.0	±9.6 %
		Y	7.20	70.27	19.49		130.0	
10010		Z	7.44	70.86	20.06		130.0	
10643- AAB	IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)	×	6.97	69.80	19.17	0.46	130.0	±9.6 %
		Y	7.01	69.89	19.19		130.0	
10644-	IEEE 802 11ac WIEI (160MUs MODA	Z	7.26	70.57	19.84	0.40	130.0	
AAB	IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)	X	7.22	70.56	19.56	0.46	130.0	±9.6 %
		Y	7.27	70.64	19.57		130.0	
10645-	IEEE 902 11cc WiEi (160MUz, MOSO	Z	7.57	71.46	20.29	0.40	130.0	
AAB	IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)	×	7.87	71.89	20.13	0.46	130.0	±9.6 %
		Y	7.95	72.00	20.15		130.0	
10646-	LTE-TDD (SC-FDMA, 1 RB, 5 MHz,	Z	8.27	72.83	20.86	0.00	130.0	
AAD	QPSK, UL Subframe=2,7)	Ļ		163.00	56.56	9.30	60.0	±9.6 %
		T Z	37.21 100.00	129.52 162.70	45.95 56.99		60.0	
10647- AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	×	100.00	164.52	57.26	9.30	60.0 60.0	± 9.6 %
		Y	32.59	127.04	45.45		60.0	
		Z	100.00	164.20	57.68		60.0	
10648- AAA	CDMA2000 (1x Advanced)	x	100.00	185.52	58.23	0.00	150.0	± 9.6 %
		Y	100.00	181.47	56.38		150.0	
		Z	100.00	193.94	62.97		150.0	
10652- AAB	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	×	6.86	79.93	24.78	2.23	80.0	±9.6 %
		Y	7.03	80.14	24.66		80.0	
10050		Z	8.09	83.31	26.67		80.0	
10653- AAB	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	×	5.97	73.58	22.16	2.23	80.0	± 9.6 %
		Y	5.98	73.46	21.97		80.0	
40054		Z	6.62	75.51	23.43	0.00	80.0	
10654- AAB	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	x	5.71	72.44	21.78	2.23	80.0	± 9.6 %
		Y	5.73	72.34	21.60		80.0	
10000	LTE TOD (OEDMA OO MULE E THAN I	Z	6.28	74.21	22.98	0.00	80.0	1000
10655- AAB	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	X	5.73	72.20	21.68	2.23	80.0	± 9.6 %
		Y	5.73	72.06	21.48		80.0	
		Z	6.29	73.95	22.87		80.0	

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3619_Sep17

Page 38 of 38

13 Appendix C – Dipole Calibration Certificates

	, Switzerland	Supported to the state S	Servizio svizzero di taratura Swiss Calibration Service
ccredited by the Swiss Accreditat the Swiss Accreditation Service	Second second second second second second second second second second second second second second second second	Latter and the second	ccreditation No.: SCS 0108
ultilateral Agreement for the re	cognition of calibration of	ertificates	
ient BACL		Certificate No	: D600V3-1010_Feb16
ALIBRATION C	EBTIFICATE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la
Dbject	D600V3 - SN: 101	10	
Calibration procedure(s)	QA CAL-15.v8		
	Calibration procee	lure for dipole validation kits bel	
		Post Repair	Re-Calibration Verification
		Date Received	Back 2/22/2016
Calibration date:	February 11, 2010	6	Date OK? VDale 2/24/2016
		Functional Verifi	cation 0K2 Dalla 2/24/2016
			. Rudy Sun
		Verifications By	
		anal standards, which realize the physical un	nits of measurements (SI).
			nits of measurements (SI).
The measurements and the unce	rtainties with confidence pr	anal standards, which realize the physical un	nits of measurements (SI). nd are part of the certificate.
The measurements and the unce All calibrations have been conduc	rtainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an	nits of measurements (SI). nd are part of the certificate.
The measurements and the unce All calibrations have been conduc	rtainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%.
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards	rtainties with confidence pr ted in the closed laborator I'E critical for calibration)	anal standards, which realize the physical un obability are given on the following pages a y facility: environment temperature (22 ± 3) ² Cal Date (Certificate No.)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter E4419B	rtainties with confidence pr ted in the closed laborator (E critical for calibration) ID # GB41293874	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter E4419B Power sensor E4412A	rtainties with confidence pr ted in the closed laborator (E critical for calibration) ID # GB41293874 MY41498087	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power moter E4419B Power sensor E4412A Reference 3 dB Attenuator	tainties with confidence pr ted in the closed laborator (E critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	tainties with confidence pr ted in the closed laborator (E critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power moter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination	tainties with confidence pr ted in the closed laborator (E critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power motor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6	tainties with confidence pr ted in the closed laborator (E critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5056 (20k)	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Mar-16 Mar-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5058 (20k) SN: S5047.2 / 06327 SN: 1507 SN: 654	onal standards, which realize the physical unobability are given on the following pages and page (Cal Date (Certificate No.)) OI-Apr-15 (No. 217-02128) OI-Apr-15 (No. 217-02131) OI-Apr-15 (No. 217-02131) OI-Apr-15 (No. 217-02134) 31-Dec-15 (No. ET3-1507_Dec15) 08-Jul-15 (No. DA.E4-654_Jul15)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16
The measurements and the unce All calibrations have been conduct Calibration Equipment used (M&1) Primary Standards Power motor E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 3 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards	rtainties with confidence pr ted in the closed laborator (E critical for calibration) (ID # (B841293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 (ID #	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-0213) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. ET3-1507_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter E44198 Power sensor E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	rtainties with confidence pr ted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # US3642U01700	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-0213) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. DAE4-654_Jul15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter E44198 Power sensor E44198 Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	rtainties with confidence pr ted in the closed laborator (E critical for calibration) (ID # (B841293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 (ID #	Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-0213) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. ET3-1507_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5058 (20k) SN: 50057 (20k) SN: 507 SN: 654 ID # US3642U01700 US37390585 S4206 Name	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. 217-02134) 31-Dec-15 (No. ET3-1507_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	In the closed laborator In the closed laborator IE critical for calibration) ID # GB41203874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5056 (20k) SN: 5047.2 / 06327 SN: 1507 SN: 654 ID # US3642U01700 US37390565 S4206	Cal Date (Certificate No.) Or-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02134) 31-Dec-15 (No. ET3-1507_Dec15) O8-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) O4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15)	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5058 (20k) SN: 50057 (20k) SN: 507 SN: 654 ID # US3642U01700 US37390585 S4206 Name	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. 217-02134) 31-Dec-15 (No. ET3-1507_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&1 Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C	rtainties with confidence pr cted in the closed laborator TE critical for calibration) ID # GB41293874 MY41498087 SN: S5054 (3c) SN: S5054 (3c) SN: S5058 (20k) SN: 50057 (20k) SN: 507 SN: 654 ID # US3642U01700 US37390585 S4206 Name	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02128) 01-Apr-15 (No. 217-02129) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. 217-02134) 31-Dec-15 (No. ET3-1507_Dec15) 08-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) 04-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-15) Function	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16
The measurements and the unce All calibrations have been conduc Calibration Equipment used (M&T Primary Standards Power meter E44198 Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	rtainties with confidence pr ted in the closed laborator (E critical for calibration) (ID #) (GB41293874 MY41498087 SN: 55054 (3c) SN: 55058 (20k) SN: 55058 (Cal Date (Certificate No.) Or-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02128) O1-Apr-15 (No. 217-02129) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02131) O1-Apr-15 (No. 217-02134) 31-Dec-15 (No. 217-02134) 31-Dec-15 (No. ET3-1507_Dec15) O8-Jul-15 (No. DAE4-654_Jul15) Check Date (in house) O4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) I8-Oct-01 (in house check Apr-13) Function Laboratory Technician	nits of measurements (SI). nd are part of the certificate. C and humidity < 70%. Scheduled Calibration Mar-16 Mar-16 Mar-16 Mar-16 Dec-16 Jul-16 Scheduled Check In house check: Apr-16 In house check: Oct-16

Certificate No: D600V3-1010_Feb16

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

C

S

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D600V3-1010_Feb16

Page 2 of 8

Report Number: R18073014-SAR

SAR Evaluation Report

Accreditation No.: SCS 0108

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	42.7	0.88 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.7 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.47 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.22 W/kg ± 17.6 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.1	0.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.8 ± 6 %	0.93 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.66 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.07 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.34 W/kg ± 17.6 % (k=2)

Certificate No: D600V3-1010_Feb16

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	56.9 Ω - 4.0 jΩ
Return Loss	- 22.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	52.5 Ω - 7.5 jΩ
Return Loss	- 22.3 dB

General Antenna Parameters and Design

Figure 1 Parts of the second sec	
Electrical Delay (one direction)	1.151 ns
	1.151115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

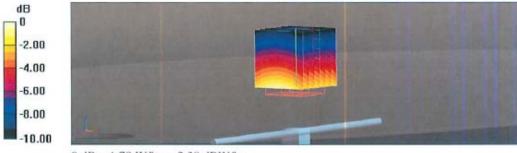
Manufactured by	SPEAG
Manufactured on	December 22, 2015

DASY5 Validation Report for Head TSL

Date: 11.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1010

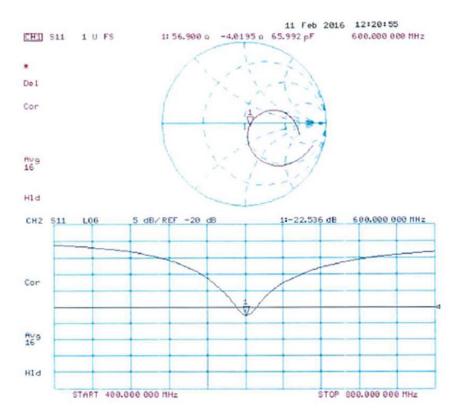

Communication System: UID 0 - CW; Frequency: 600 MHz Medium parameters used: f = 600 MHz; σ = 0.86 S/m; ϵ_r = 42.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.54, 6.54, 6.54); Calibrated: 31.12.2015;
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 45.65 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 2.53 W/kg SAR(1 g) = 1.59 W/kg; SAR(10 g) = 1.04 W/kg Maximum value of SAR (measured) = 1.70 W/kg



0 dB = 1.70 W/kg = 2.30 dBW/kg

Certificate No: D600V3-1010_Feb16

Page 5 of 8

Impedance Measurement Plot for Head TSL

Certificate No: D600V3-1010_Feb16

Page 6 of 8

Report Number: R18073014-SAR

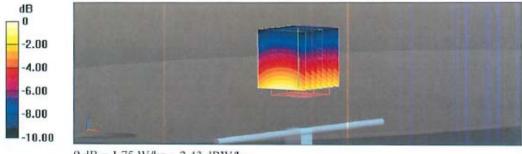
SAR Evaluation Report

DASY5 Validation Report for Body TSL

Date: 11.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1010

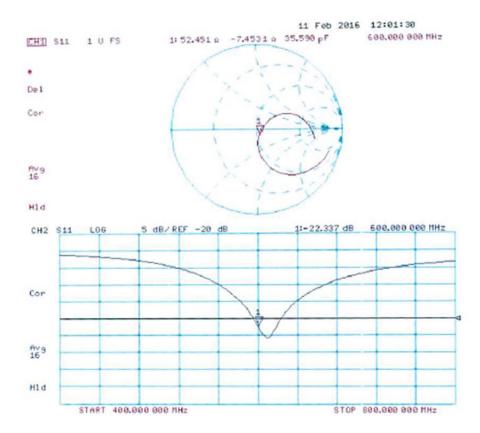

Communication System: UID 0 - CW; Frequency: 600 MHz Medium parameters used: f = 600 MHz; $\sigma = 0.93$ S/m; $\epsilon_r = 55.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.5, 6.5, 6.5); Calibrated: 31.12.2015;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 08.07.2015
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 44.43 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.61 W/kg SAR(1 g) = 1.64 W/kg; SAR(10 g) = 1.07 W/kg Maximum value of SAR (measured) = 1.75 W/kg



0 dB = 1.75 W/kg = 2.43 dBW/kg

Certificate No: D600V3-1010_Feb16

Page 7 of 8

edance Measurement Plot for Body TSL

ficate No: D600V3-1010_Feb16

Page 8 of 8

Report Number: R18073014-SAR

14 Appendix D - Test System Check Scans

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) 600 MHz Verification at 25 mW on 2018-08-03

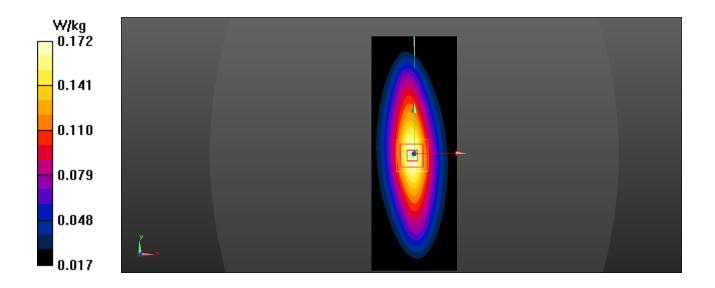
DUT: 600 MHz Dipole Antenna

Phantom: ELI V8.0 (20deg probe tilt)

Probe: EX3DV4 - SN3619

Electronics: DAE4 Sn530 Calibrated: 9/18/2017

Communication System Band: Generic


Frequency: 600 MHz

Medium: MBBL-600-6000v5 Medium parameters used: f = 600 MHz; $\sigma = 0.919 \text{ S/m}$; $\varepsilon_r = 54.782$; $\rho = 1000 \text{ kg/m}^3$

600 MHz Body System Check/Area Scan (81x221x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 13.62 V/m; Power Drift = 0.06 dB

600 MHz Body System Check/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 13.62 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.164 W/kg; SAR(10 g) = 0.108 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 0.172 W/kg

15 Appendix E – EUT Scan Results

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

Rear Side Touch WM-23 Mid 598.375 MHz

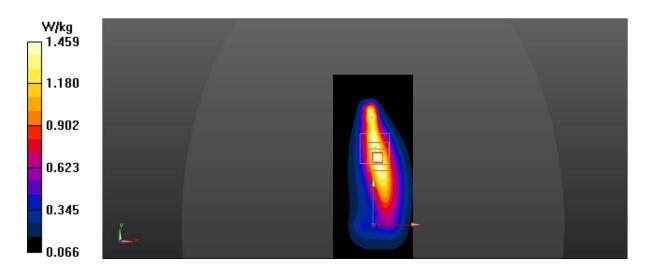
DUT: Lectrosonics; Type: Wireless Microphone Transmitter; Serial: 2393

Phantom: ELI V8.0 (20deg probe tilt)

Probe: EX3DV4 - SN3619

Electronics: DAE4 Sn530 Calibrated: 9/18/2017

Communication System Band: Generic


Frequency: 598.375 MHz

Medium: Lectrosonics 512-610 MHz Medium parameters used: f = 598.375 MHz; $\sigma = 0.915$ S/m; $\epsilon_r = 54.817$; $\rho = 1000$ kg/m³

Rear Side Touch Middle Channel/Area Scan (81x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 21.77 V/m; Power Drift = -0.31 dB

Rear Side Touch Middle Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.77 V/m; Power Drift = -0.31 dB Peak SAR = 2.50 W/kg

SAR(1 g) = 1.38 W/kg; SAR(10 g) = 0.786 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 1.46 W/kg

#1

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

Rear Side Touch WM-23 Low 588.8 MHz

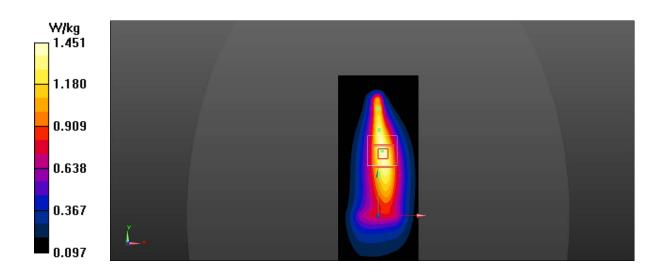
DUT: Lectrosonics; Type: Wireless Microphone Transmitter; Serial: 2393

Phantom: ELI V8.0 (20deg probe tilt)

Probe: EX3DV4 - SN3619

Electronics: DAE4 Sn530 Calibrated: 9/18/2017

Communication System Band: Generic


Frequency: 588.8 MHz

Medium: Lectrosonics 512-610 MHz Medium parameters used: f = 588.8 MHz; $\sigma = 0.912$ S/m; $\epsilon_r = 54.95$; $\rho = 1000$ kg/m³

Rear Side Touch Low Channel/Area Scan (81x221x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 28.66 V/m; Power Drift = 0.17 dB

Rear Side Touch Low Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.66 V/m; Power Drift = 0.17 dB Peak SAR = 2.38 W/kg

SAR(1 g) = 1.36 W/kg; SAR(10 g) = 0.817 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 1.45 W/kg

#2

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

Rear Side Touch WM-23 High 607.95 MHz

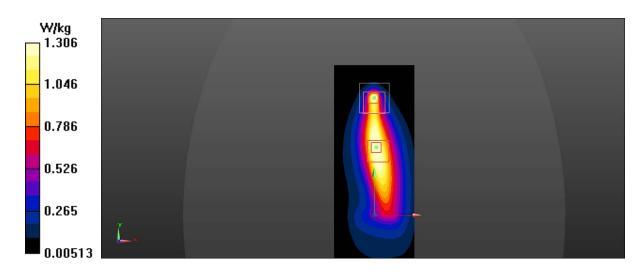
DUT: Lectrosonics; Type: Wireless Microphone Transmitter; Serial: 2393

Phantom: ELI V8.0 (20deg probe tilt)

Probe: EX3DV4 - SN3619

Electronics: DAE4 Sn530 Calibrated: 9/18/2017

Communication System Band: Generic


Frequency: 607.95 MHz

Medium: Lectrosonics 512-610 MHz Medium parameters used: f = 607.95 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 54.95$; $\rho = 1000$ kg/m³

Rear Side Touch High Channel/Area Scan (81x231x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 21.08 V/m; Power Drift = 0.22 dB

Rear Side Touch High Channel/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 21.08 V/m; Power Drift = 0.22 dB Peak SAR = 6.11 W/kg

SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.458 W/kg (SAR corrected for target medium) Maximum value of SAR (measured) = 1.31 W/kg

#3

16 Appendix F – RF OUTPUT POWER MEASUREMENT

WM-23

Channel	Frequency (MHz)	Conducted Output Power (dBm)
Low	588.8	23.78
Middle	598.375	23.89
High	607.95	23.76

Note: The Rated maximum output power is 250 mW (24 dBm).

17 Appendix G- EUT Photographs

Please refer to the following exhibits:

Exhibit- EUT Test Setup Photographs Exhibit- EUT External Photographs Exhibit- EUT Internal Photographs

18 Appendix H - Informative References

[1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.

[2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.

[3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.

[4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.

[5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.

[6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.

[7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24.

[8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.

[9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The depen-dence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.

[10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.

[11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9

[13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.

[14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.

19 Appendix I (Informative) - A2LA Electrical Testing Certificate

Accredited Laboratory

A2LA has accredited

BAY AREA COMPLIANCE LABORATORIES CORP.

Sunnyvale, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This laboratory also meets the requirements of any additional program requirements in the Electrical field. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Presented this 30th day of August 2016.

President and CEO For the Accreditation Council Certificate Number 3297.02 Valid to September 30, 2018 Revised November 14, 2016

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

--- END OF REPORT ---