

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

DECLARATION OF COMPLIANCE SAR RF EXPOSURE EVALUATION

Test Lab

CELLTECH LABS INC.

Testing and Engineering Services 1955 Moss Court Kelowna, B.C. Canada V1Y 9L3

Phone: 250-448-7047 250-448-7046 Fax:

e-mail: info@celltechlabs.com web site: www.celltechlabs.com

Applicant Information

LECTROSONICS, INC.

581 Laser Road Rio Rancho, NM 87124 **United States**

FCC IDENTIFIER: DBZSM SM Model(s):

Rule Part(s): FCC 47 CFR §2.1093: IC RSS-102. Issue 1 (Provisional) Test Procedure(s): FCC OET Bulletin 65, Supplement C (Edition 01-01) **FCC Device Classification:** Licensed Broadcast Transmitter Worn on Body (TBT) **Device Description:** Wireless Belt-Pack Body-Worn Audio Transmitter

Modulation Type: FΜ

742.4 - 767.9 MHz (Block 29) **Tx Frequency Range Tested:** Max. RF Output Power Tested: 0.106 Watts ERP (755 MHz) Fixed (Quarter-Wave) **Antenna Type(s) Tested:**

Battery Type(s) Tested: NiMH x1 (1.2 V AA), Lithium x1 (1.5 V AA), Alkaline x1 (1.5 V AA)

Alkaline Type 1: Rayovac 2600 mAh

Alkaline Type 2: Duracell Procell 2850 mAh

Body-Worn Accessories Tested: Belt-Clip Holster (P/N: 35903)

Electret Microphone (P/N: M-150)

Max. SAR Level(s) Evaluated: Body-worn: 0.511 W/kg (1g average)

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01) and Industry Canada RSS-102, Issue 1 (Provisional) for the General Population / Uncontrolled Exposure environment. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc. The results and statements contained in this report pertain only to the device(s) evaluated.

W. Pupe

Performed By:

Spencer Watson

Compliance Technologist Celltech Labs Inc.

Spenier Water

Reviewed By:

Russell W. Pipe

Senior Compliance Techno	logist
Celltech Labs Inc.	Ū

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS</u>	
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971	
2005 Celltech Labs	2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 1 of 38						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

TABLE OF CONTENTS	
1.0 INTRODUCTION	3
2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)	3
3.0 SAR MEASUREMENT SYSTEM	
4.0 SAR MEASUREMENT SUMMARY	
5.0 DETAILS OF SAR EVALUATION	6
6.0 EVALUATION PROCEDURES	
7.0 SYSTEM PERFORMANCE CHECK	
8.0 SIMULATED EQUIVALENT TISSUES	8
9.0 SAR SAFETY LIMITS	8
10.0 ROBOT SYSTEM SPECIFICATIONS	9
11.0 PROBE SPECIFICATION (ET3DV6)	10
12.0 SAM PHANTOM V4.0C	10
13.0 DEVICE HOLDER	10
14.0 TEST EQUIPMENT LIST	11
15.0 MEASUREMENT UNCERTAINTIES	12
MEASUREMENT UNCERTAINTIES (Cont.)	
16.0 REFERENCES	14
APPENDIX A - SAR MEASUREMENT DATA	15
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	27
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	29
APPENDIX E - SYSTEM VALIDATION	36
APPENDIX F - PROBE CALIBRATION	
APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY	38

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTRO	SONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Ran	ge Tested:		Professional Audio I	Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 2 of 38						2 of 38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

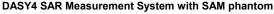
1.0 INTRODUCTION

This measurement report demonstrates that the Lectrosonics Model: SM Wireless Belt-Pack Body-Worn Audio Transmitter FCC ID: DBZSM complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]), and Health Canada's Safety Code 6 (see reference [2]) for the General Population / Uncontrolled Exposure environment. The test procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]) and IC RSS-102, Issue 1 (Provisional) (see reference [4]), were employed. A description of the device, operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 DESCRIPTION OF DEVICE UNDER TEST (DUT)

FCC Rule Part(s)	47 CFR §2.1093					
IC Rule Part(s)	RSS-102 Issue 1 (Provisional)					
Test Procedure(s)	FCC OET Bulletin 65, Supplement C (Edition 01-01)					
FCC Device Classification	Licensed Broadcast Transmitter Worn on Body (TBT)					
Device Description		Wireles	s Belt-Pack Body	-Worn Audi	o Transmitter	
Modulation Type			F	М		
FCC IDENTIFIER			DBZ	ZSM		
Model(s)	SM					
Serial No.(s)	P358			Production Unit		
Tx Frequency Range Tested	7	742.4 - 767.9 i	ИНz	Block 29		
Max. RF Output Power Measured	0.106	Watts	ERP		755	MHz
Antenna Type(s) Tested			Fixed (Qua	rter-Wave)		
	Batter	у Туре	Bran	d	Voltage (V)	mAh
	NiMH	AA (x1)	Olymp	us	1.2	1300
Battery Type(s) Tested	Lithium	AA (x1)	Energizer E-	Squared	1.5	3000
	Allegling	ΛΛ (ν1)	Rayovac		1.5	2600
	Alkaline AA (x1)		Duracell Procell		2850	
Body-worn Accessories Tested	E	lectret Microp	hone		P/N: M-150	
Body World Accessories Tested	Belt-Clip Holster				P/N: 35903	

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS'</u>
DUT Type:	DUT Type: Wireless Body-Worn Audio Transmitter			nge Tested:		Professional Audio Products Since 1971
2005 Califach Labe Inc. This document is not to be reproduced in whole or in part without the written permission of Califach Labe Inc. 3 of 38						



Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

3.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

DASY4 Measurement System with SAM Phantom

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS</u>
DUT Type:	Wireless Body-Worn Audio	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971	
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 4 of 38						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

4.0 SAR MEASUREMENT SUMMARY

				BODY-WC	RN SAR E	EVALUATION F	RESULTS				
Freq. (MHz)	Chan.	Test Mode	Antenna Type	Battery Type	DUT Position to Planar Phantom	Body-worn Accessories	Separation Distance to Planar Phantom (cm)	ERP Start Power (Watts)	SAR Drift During Test (dB)	Measured SAR 1g (W/kg	
755	Mid	CW	Fixed	Olympus NiMH	Back Side	Belt-Clip Holster and Microphone	1.5	0.106	0.0233	0.510	
755	Mid	CW	Fixed	Olympus NiMH	Front Side	Belt-Clip Holster and Microphone	1.5	0.106	0.0688	0.332	
755	Mid	CW	Fixed	Energizer Lithium	Back Side	Belt-Clip Holster and Microphone	1.5	0.106	0.0215	0.500	
755	Mid	CW	Fixed	Energizer Lithium	Front Side	Belt-Clip Holster and Microphone	1.5	0.106	0.0408	0.285	
755	Mid	CW	Fixed	Rayovac Alkaline	Back Side	Belt-Clip Holster and Microphone	1.5	0.106	0.0204	0.493	
755	Mid	CW	Fixed	Rayovac Alkaline	Front Side	Belt-Clip Holster and Microphone	1.5	0.106	0.0393	0.312	
755	Mid	CW	Fixed	Duracell Alkaline	Back Side	Belt-Clip Holster and Microphone	1.5	0.106	0.0156	0.511	
			Spa	BOD	Y: 1.6 W/kg (1999 - SAFETY L averaged over 1 g l Exposure / Gene	ıram)	n			
	Test D	ate		March 2,	2005	Relative Hu	midity		30	%	
Measured Fluid Type 755 MHz Body			Body	Atmospheric Pressure		102.0		kPa	а		
D	Dielectric Constant IEEE Target (Interpolated) Measured		Ambient Temperature		24.4		°C	÷			
	ε _r 55.5 ± 5% 55.0		Fluid Temperature		22.1		°C	;			
	Conduc	-		EEE Target nterpolated)	Measured	Fluid Depth		≥ 15		cm	1
σ (mho/m)			0.	96 <u>+</u> 5%	0.93	ρ (Kg /m	1 ³)		1000		

Note(s):

- 1. The measurement results were obtained with the DUT tested in the conditions described in this report. Detailed measurement data and plots showing the maximum SAR location of the DUT are reported in Appendix A.
- 2. If the measured SAR levels at the mid channel were ≥ 3 dB below the SAR limit, SAR evaluation for the low and high channels was optional per FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [3]).
- 3. The DUT was evaluated for SAR with a Rayovac alkaline battery. To report a SAR comparison between alternate alkaline battery types, the maximum SAR level configuration evaluated with the Rayovac alkaline battery was repeated using a Duracell Procell alkaline battery as shown in the above test data table.
- 4. The power drift of the DUT was measured during each test by the DASY4 system. The power drifts measured by the DASY4 system were <5% from the start power.</p>
- The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- The dielectric parameters of the simulated tissue mixture were measured prior to the evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
- 7. SAR measurements were performed within 24 hours of the daily system performance check.

Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	<u>ALECTROSONICS</u>		
DUT Type:	OUT Type: Wireless Body-Worn Audio Transmitter			ige Tested:		Professional Audio Products Since 1971		
2005 Calltach Labo	2005 Celltach Labe Inc. This document is not to be reproduced in whole or in part without the written permission of Celltach Labe Inc. 5 of 38							

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

5.0 DETAILS OF SAR EVALUATION

The Lectrosonics Model: SM Wireless Belt-Pack Body-Worn Audio Transmitter FCC ID: DBZSM was compliant for localized Specific Absorption Rate (General Population / Uncontrolled Exposure) based on the test provisions and conditions described below. Detailed photographs of the test setup are shown in Appendix D.

- 1. The DUT was tested in a body-worn configuration placed inside the belt-clip holster. The back side of the DUT was placed facing parallel to the outer surface of the SAM phantom (planar section) with the attached belt-clip accessory touching the phantom surface. The belt-clip holster accessory provided a 1.5 cm separation distance between the back side of the DUT and the outer surface of the SAM phantom (planar section). The belt-clip is a plastic material, the holster a nylon material, and neither contains any metallic components. The DUT was evaluated with the Electret microphone connected to the audio input jack.
- 2. The DUT was tested in a body-worn configuration placed inside the belt-clip holster. The front side of the DUT (LCD side) was facing parallel to the outer surface of the SAM phantom (planar section) with the attached belt-clip accessory touching the phantom surface. The belt-clip holster accessory provided a 1.5 cm separation distance between the front side of the DUT (LCD side) and the outer surface of the SAM phantom (planar section). The belt-clip is a plastic material, the holster a nylon material, and neither contains any metallic components. The DUT was evaluated with the Electret microphone connected to the audio input jack.
- 3. The conducted output power of the DUT could not be measured for the SAR evaluation due to a non-detachable antenna. The DUT was evaluated for SAR at the maximum conducted power level preset by the manufacturer.
- 4. The DUT was evaluated for SAR at the maximum ERP level measured prior to the SAR evaluation on a 3-meter Open Area Test Site using the signal substitution method in accordance with ANSI/TIA-603-C-2004 (see reference [6]).
- 5. The power drift of the DUT was measured by the DASY4 system for the duration of each evaluation. The power drifts measured by the DASY4 system were <5% from the start power.
- 6. The DUT was tested in unmodulated continuous transmit operation.
- 7. The DUT was tested with a fully charged battery for all evaluations.
- 8. The ambient and fluid temperatures were measured prior to, and during, the fluid dielectric parameter check and the SAR evaluations. The temperatures reported were consistent for all measurement periods.
- 9. The dielectric parameters of the simulated tissue mixture were measured prior to the evaluations using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters).
- 10. The SAR evaluations were performed within 24 hours of the system performance check.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
 - (ii) For body-worn and face-held devices a planar phantom was used.
- b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm. An area scan was determined as follows:
- c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away form the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix D). The extrapolation was based on trivariate guadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5x5x7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7x7x7) to ensure complete capture of the peak spatial-average SAR.</p>

Applicant:	Lectrosonics, Inc.	Model: SM FC		FCC ID:	DBZSM	ALECTROS	ONICS
DUT Type:	Wireless Body-Worn Audio Transmitter		Freq. Range Tested: 742.4 - 7			Professional Audio Produc	cts Since 1971
2005 Celltech Labs	be reproduced in	n whole or in pa	art without the wr	itten permission of Celltech	Labs Inc.	6 of 38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

7.0 SYSTEM PERFORMANCE CHECK

Prior to the SAR evaluations a system check was performed at the planar section of the SAM phantom with an 835 MHz dipole (see Appendix E for system validation procedures). Prior to the system performance check the dielectric parameters of the simulated tissue mixture were measured using an HP 85070C Dielectric Probe Kit and an HP 8753E Network Analyzer (see Appendix C for printout of measured fluid dielectric parameters). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% (see Appendix B for system performance check test plot).

	SYSTEM PERFORMANCE CHECK													
Test	835MHz Equiv.	SAR 1g (W/kg)		Dielectric Constant Conductivity σ (mho/m)		ρ	Amb. Temp.	Fluid Temp.	Fluid Depth	Humid.	Barom. Press.			
Date	Tissue	Δ '	IEEE Target	Measured	IEEE Target	Measured	IEEE Target	Measured	(Kg/m³)	(°C)	(°C)	(cm)	(%)	(kPa)
03/02/05	Brain	2.38 (±10%)	2.57 (+8.0%)	41.5 ±5%	41.4	0.90 ±5%	0.92	1000	23.5	22.8	≥ 15	30	102.0	

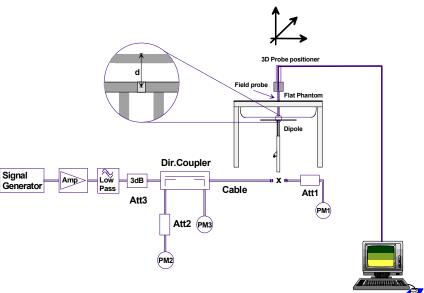


Figure 1. System Performance Check Setup Diagram

835MHz Dipole Setup

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS</u>	
DUT Type:	Wireless Body-Worn Audio	less Body-Worn Audio Transmitter		ige Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971	
2005 Celltech Labs	Inc. This document is not to	be reproduced in	n whole or in pa	art without the wr	itten permission of Celltech	Labs Inc. 7 of 38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

8.0 SIMULATED EQUIVALENT TISSUES

The simulated tissue mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution. Preservation with a bactericide is added and visual inspection is made to ensure air bubbles are not trapped during the mixing process. The fluid was prepared according to standardized procedures and measured for dielectric parameters (permittivity and conductivity).

	SIMULATED TISSUE MIXTURES								
INGREDIENT	835 MHz Brain	755 MHz Body							
INGKEDIENT	System Performance Check	DUT Evaluation							
Water	40.71 %	53.79 %							
Sugar	56.63 %	45.13 %							
Salt	1.48 %	0.98 %							
HEC	0.99 %	-							
Bactericide	0.19 %	0.10 %							

9.0 SAR SAFETY LIMITS

	SAR (W/kg)				
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)			
Spatial Average (averaged over the whole body)	0.08	0.4			
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0			
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0			

Notes:

- Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

	Applicant:	Lectrosonics, Inc.	Model:	lodel: SM FCC ID:		DBZSM	<u>ALECTROSONICS'</u>		
Ī	DUT Type:	Wireless Body-Worn Audio	Freq. Ran	ige Tested:		Professional Audio Products Since 1971			
ſ	2005 Colltoch Labo	2005 College Labeline This document is not to be reproduced in whole or in part without the written permission of College Labeline 2 of 29							

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

10.0 ROBOT SYSTEM SPECIFICATIONS

Specifications

POSITIONER: Stäubli Unimation Corp. Robot Model: RX60L

Repeatability: 0.02 mm

No. of axis: 6

Data Acquisition Electronic (DAE) System

Cell Controller

Processor: AMD Athlon XP 2400+

Clock Speed: 2.0 GHz

Operating System: Windows XP Professional

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter, and control logic

Software: DASY4 software

Connecting Lines: Optical downlink for data and status info.

Optical uplink for commands and clock

DASY4 Measurement Server

Function: Real-time data evaluation for field measurements and surface detection

PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM Hardware: **Connections:** COM1, COM2, DAE, Robot, Ethernet, Service Interface

E-Field Probe

Model: ET3DV6 Serial No.: 1590

Construction: Triangular core fiber optic detection system

10 MHz to 6 GHz Frequency:

Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Phantom(s)

Type: SAM V4.0C **Shell Material:** Fiberglass Thickness: 2.0 ±0.1 mm Volume: Approx. 25 liters

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

11.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g. glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy \pm 8%)

Frequency: 10 MHz to >6 GHz; Linearity: ±0.2 dB

(30 MHz to 3 GHz)

Directivity: ± 0.2 dB in brain tissue (rotation around probe axis)

 ± 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: 5 W/g to >100 mW/g; Linearity: ± 0.2 dB

Surface Detection: ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz


Compliance tests of mobile phone

ET3DV6 E-Field Probe

12.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by SCC34-SC2. The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM phantom V4.0C).

SAM Phantom

13.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSO</u>	NICS
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:		Professional Audio Products S	ince 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 10 of 38							

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

14.0 TEST EQUIPMENT LIST

TEST EQUIPMENT	SERIAL NO.	DATE CALIBRATED	CALIBRATION DUE DATE
Schmid & Partner DASY4 System	-	-	-
-DASY4 Measurement Server	1078	N/A	N/A
-Robot	599396-01	N/A	N/A
-DAE3	353	July 2004	July 2005
-DAE3	370	January 2005	January 2006
-ET3DV6 E-Field Probe	1387	March 2004	March 2005
-ET3DV6 E-Field Probe	1590	May 2004	May 2005
-EX3DV4 E-Field Probe	3547	January 2005	January 2006
-300MHz Validation Dipole	135	October 2004	October 2005
-450MHz Validation Dipole	136	November 2004	November 2005
925MH= Volidation Discle	444	March 2004	March 2005
-835MHz Validation Dipole	411	March 2005	March 2006
-900MHz Validation Dipole	054	June 2004	June 2005
-1800MHz Validation Dipole	247	June 2004	June 2005
-1900MHz Validation Dipole	151	June 2004	June 2005
-2450MHz Validation Dipole	150	September 2004	September 2005
-5000MHz Validation Dipole	1031	January 2005	January 2006
-SAM Phantom V4.0C	1033	N/A	N/A
-Barski Planar Phantom	03-01	N/A	N/A
-Plexiglas Planar Phantom	161	N/A	N/A
-Validation Planar Phantom	137	N/A	N/A
HP 85070C Dielectric Probe Kit	N/A	N/A	N/A
Gigatronics 8651A Power Meter	8650137	April 2004	April 2005
Gigatronics 8652A Power Meter	1835267	April 2004	April 2005
Gigatronics 80701A Power Sensor	1833535	April 2004	April 2005
Gigatronics 80701A Power Sensor	1833542	April 2004	April 2005
Gigatronics 80701A Power Sensor	1834350	April 2004	April 2005
HP 8594E Spectrum Analyzer	3543A02721	April 2004	April 2005
HP 8753E Network Analyzer	US38433013	April 2004	April 2005
HP 8753ET Network Analyzer	US39170292	February 2005	February 2006
HP 8648D Signal Generator	3847A00611	April 2004	April 2005
Amplifier Research 5S1G4 Power Amplifier	26235	N/A	N/A

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS</u>
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 11 of 38						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

15.0 MEASUREMENT UNCERTAINTIES

U	UNCERTAINTY BUDGET FOR DEVICE EVALUATION					
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	Vi Or Veff
Measurement System						
Probe calibration	± 5.95	Normal	1	1	± 5.95	8
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	8
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	8
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	8
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	8
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	8
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	8
Readout electronics	± 1.0	Normal	1	1	± 1.0	8
Response time	± 0.8	Rectangular	√3	1	± 0.5	8
Integration time	± 1.4	Rectangular	√3	1	± 0.8	8
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	8
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	8
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	8
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	8
Test Sample Related						
Device positioning	± 6.0	Normal	√3	1	± 6.7	12
Device holder uncertainty	± 5.0	Normal	√3	1	± 5.9	8
Power drift	± 5.0	Rectangular	√3		± 2.9	8
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	8
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	8
Combined Standard Uncertaint	ty				± 13.76	
Expanded Uncertainty (k=2)					± 27.51	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS</u>
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 12 of 38						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

MEASUREMENT UNCERTAINTIES (CONT.)

U	NCERTAINTY	BUDGET FOR S	YSTEM VA	LIDATIO	N	
Error Description	Uncertainty Value ±%	Probability Distribution	Divisor	c _i 1g	Standard Uncertainty ±% (1g)	v _i or v _{eff}
Measurement System						
Probe calibration	± 5.95	Normal	1	1	± 5.95	oc
Axial isotropy of the probe	± 4.7	Rectangular	√3	(1-c _p)	± 1.9	oc
Spherical isotropy of the probe	± 9.6	Rectangular	√3	(C _p)	± 3.9	∞
Spatial resolution	± 0.0	Rectangular	√3	1	± 0.0	∞
Boundary effects	± 5.5	Rectangular	√3	1	± 3.2	∞
Probe linearity	± 4.7	Rectangular	√3	1	± 2.7	∞
Detection limit	± 1.0	Rectangular	√3	1	± 0.6	∞
Readout electronics	± 1.0	Normal	1	1	± 1.0	∞
Response time	± 0.8	Rectangular	√3	1	± 0.5	∞
Integration time	± 1.4	Rectangular	√3	1	± 0.8	∞
RF ambient conditions	± 3.0	Rectangular	√3	1	± 1.7	∞
Mech. constraints of robot	± 0.4	Rectangular	√3	1	± 0.2	∞
Probe positioning	± 2.9	Rectangular	√3	1	± 1.7	∞
Extrapolation & integration	± 3.9	Rectangular	√3	1	± 2.3	∞
Dipole						
Dipole Axis to Liquid Distance	± 2.0	Rectangular	√3	1	± 1.2	× ×
Input Power	± 4.7	Rectangular	√3	1	± 2.7	∞
Phantom and Setup						
Phantom uncertainty	± 4.0	Rectangular	√3	1	± 2.3	∞
Liquid conductivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid conductivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (target)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Liquid permittivity (measured)	± 5.0	Rectangular	√3	0.6	± 1.7	∞
Combined Standard Uncertaint	y				± 10.54	
Expanded Uncertainty (k=2)					± 21.09	

Measurement Uncertainty Table in accordance with IEEE Standard 1528-2003 (see reference [5])

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS</u>
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 13 of 38						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

16.0 REFERENCES

- [1] Federal Communications Commission, "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093: 1999.
- [2] Health Canada, "Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz", Safety Code 6.
- [3] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [4] Industry Canada, "Evaluation Procedure for Mobile and Portable Radio Transmitters with respect to Health Canada's Safety Code 6 for Exposure of Humans to Radio Frequency Fields", Radio Standards Specification RSS-102 Issue 1 (Provisional): September 1999.
- [5] IEEE Standard 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [6] ANSI/TIA-603-C, "Land Mobile FM or PM Communications Equipment Measurement and Performance Standards": December 2004.

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS</u>
DUT Type:	: Wireless Body-Worn Audio Transmitter			ge Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971
2005 College Laberta This decrease is not to be reproduced in whole or in not without the written permission of College Laberta and 14 of 20						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	ALECTROS	ONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter	ansmitter Freq. Range Tested		ted: 742.4 - 767.9 MHz Profess		cts Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 15 of						15 of 38	

Test Report S/N	022405DBZ-T620-S74U
Test Date(s)	March 02, 2005
Test Type	FCC SAR Evaluation

Body-Worn SAR - NiMH Battery - Back Side of DUT

DUT: Lectrosonic Model: SM; Type: Wireless Belt-Pack Body-Worn Audio Transmitter; Serial: P358

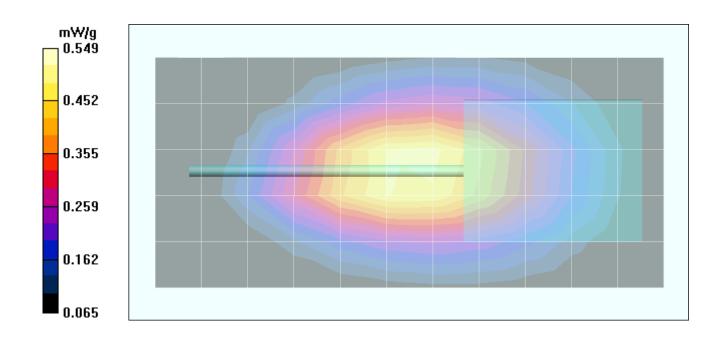
Body-Worn Accessories: Belt-Clip Holster (P/N: 35903), Electret Microphone (P/N: M-150)

Ambient Temp: 24.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM RF Output Power: 0.106 W (ERP) 1.2V 1300mAh NiMH AA Battery (x1) Frequency: 755 MHz; Duty Cycle: 1:1

Medium: M755 ($\sigma = 0.93$ mho/m; $\varepsilon_r = 55.0$; $\rho = 1000$ kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127


Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x12x1):

Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.9 V/m; Power Drift = 0.0233 dB Peak SAR (extrapolated) = 0.694 W/kg

SAR(1 g) = 0.510 mW/g; SAR(10 g) = 0.356 mW/g

	Applicant:	Lectrosonics, Inc.	rosonics, Inc. Model:		FCC ID:	DBZSM	ALECTRO	SONICS [®]
	DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio I	Products Since 1971
ĺ	2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 16 of 38							16 of 38

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Body-Worn SAR - NiMH Battery - Front Side of DUT

DUT: Lectrosonic Model: SM; Type: Wireless Belt-Pack Body-Worn Audio Transmitter; Serial: P358

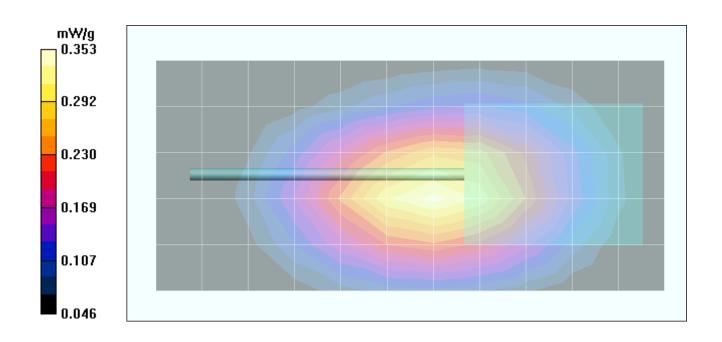
Body-Worn Accessories: Belt-Clip Holster (P/N: 35903), Electret Microphone (P/N: M-150)

Ambient Temp: 24.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM RF Output Power: 0.106 W (ERP) 1.2V 1300mAh NiMH AA Battery (x1) Frequency: 755 MHz; Duty Cycle: 1:1

Medium: M755 (σ = 0.93 mho/m; ε_r = 55.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127


Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x12x1):

Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 19.5 V/m; Power Drift = 0.0688 dB Peak SAR (extrapolated) = 0.446 W/kg

SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.234 mW/g

Applicant:	Lectrosonics, Inc.	ics, Inc. Model:		FCC ID:	DBZSM	ALECTR	OSONICS*
DUT Type:	Wireless Body-Worn Audio	Transmitter			Professional Aud	tio Products Since 1971	
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 17 of						17 of 38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Body-Worn SAR - Lithium Battery - Back Side of DUT

DUT: Lectrosonic Model: SM; Type: Wireless Belt-Pack Body-Worn Audio Transmitter; Serial: P358

Body-Worn Accessories: Belt-Clip Holster (P/N: 35903), Electret Microphone (P/N: M-150)

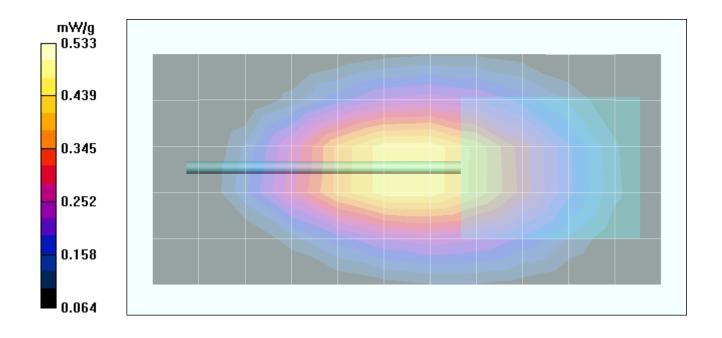
Ambient Temp: 24.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM RF Output Power: 0.106 W (ERP) Frequency: 755 MHz; Duty Cycle: 1:1

1.5V 3000mAh Energizer E-Squared Lithium AA Battery (x1) Medium: M755 (σ = 0.93 mho/m; ϵ_r = 55.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x12x1):


Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.6 V/m; Power Drift = 0.0215 dB

Peak SAR (extrapolated) = 0.693 W/kg

SAR(1 g) = 0.500 mW/g; SAR(10 g) = 0.348 mW/g

Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	ALECTRO	SONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter			Professional Audio F	Products Since 1971	
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 18 of 38						18 of 38	

Test Report S/N	022405DBZ-T620-S74U
Test Date(s)	March 02, 2005
Test Type	FCC SAR Evaluation

Body-Worn SAR - Lithium Battery - Front Side of DUT

DUT: Lectrosonic Model: SM; Type: Wireless Belt-Pack Body-Worn Audio Transmitter; Serial: P358

Body-Worn Accessories: Belt-Clip Holster (P/N: 35903), Electret Microphone (P/N: M-150)

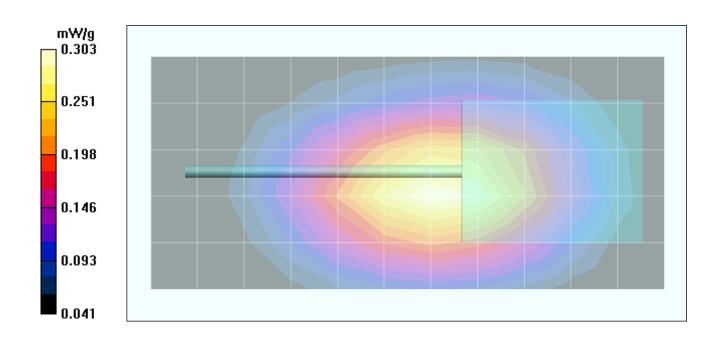
Ambient Temp: 24.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM RF Output Power: 0.106 W (ERP) Frequency: 755 MHz; Duty Cycle: 1:1

1.5V 3000mAh Energizer E-Squared Lithium AA Battery (x1) Medium: M755 (σ = 0.93 mho/m; ϵ_r = 55.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x12x1):


Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.2 V/m; Power Drift = 0.0408 dB

Peak SAR (extrapolated) = 0.379 W/kg

SAR(1 g) = 0.285 mW/g; SAR(10 g) = 0.203 mW/g

Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	ALECTRO	SONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter			Professional Audio P	Products Since 1971	
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 19 of 38						19 of 38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Body-Worn SAR - Alkaline Battery (Rayovac) - Back Side of DUT

DUT: Lectrosonic Model: SM; Type: Wireless Belt-Pack Body-Worn Audio Transmitter; Serial: P358

Body-Worn Accessories: Belt-Clip Holster (P/N: 35903), Electret Microphone (P/N: M-150)

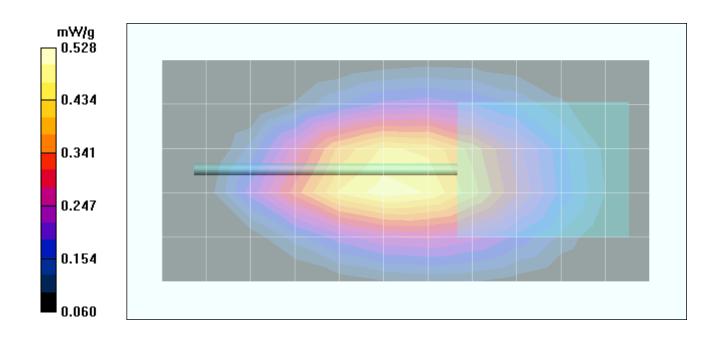
Ambient Temp: 24.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM RF Output Power: 0.106 W (ERP) Frequency: 755 MHz; Duty Cycle: 1:1

1.5V 2600mAh Rayovac Alkaline AA Battery (x1)

Medium: M755 (σ = 0.93 mho/m; ε_r = 55.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127


Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x12x1):

Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 22.6 V/m; Power Drift = 0.0204 dB Peak SAR (extrapolated) = 0.691 W/kg

SAR(1 g) = 0.493 mW/g; SAR(10 g) = 0.339 mW/g

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTR	OSONICS*
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Aud	tio Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 20 of 38							

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Body-Worn SAR - Alkaline Battery (Rayovac) - Front Side of DUT

DUT: Lectrosonic Model: SM; Type: Wireless Belt-Pack Body-Worn Audio Transmitter; Serial: P358

Body-Worn Accessories: Belt-Clip Holster (P/N: 35903), Electret Microphone (P/N: M-150)

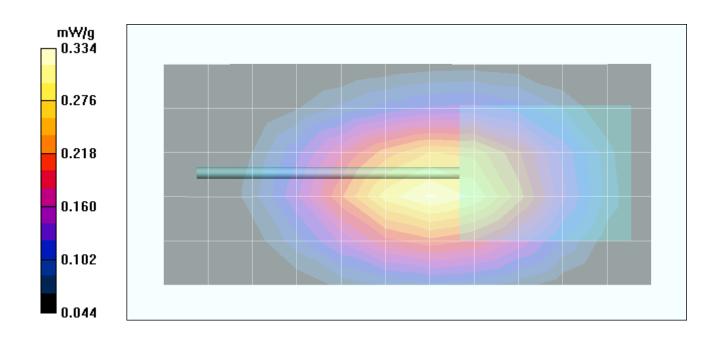
Ambient Temp: 24.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM RF Output Power: 0.106 W (ERP) Frequency: 755 MHz; Duty Cycle: 1:1

1.5V 2600mAh Rayovac Alkaline AA Battery (x1)

Medium: M755 (σ = 0.93 mho/m; ε_r = 55.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127


Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x12x1):

Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.8 V/m; Power Drift = 0.0393 dB Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.220 mW/g

Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	ALECTRO	SONICS [®]
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Ran	ige Tested:	742.4 - 767.9 MHz	Professional Audio	Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 21 of 38						21 of 38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Body-Worn SAR - Alkaline Battery (Duracell Procell) - Back Side of DUT

DUT: Lectrosonic Model: SM; Type: Wireless Belt-Pack Body-Worn Audio Transmitter; Serial: P358

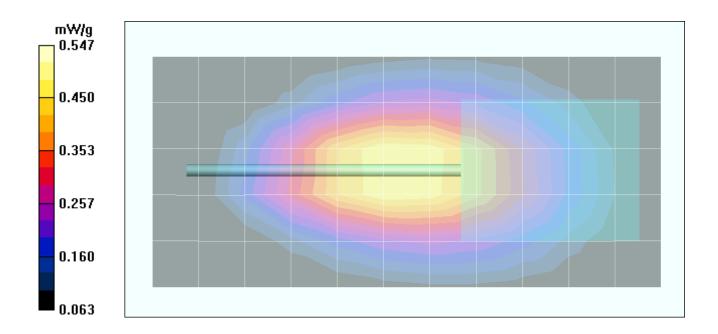
Body-Worn Accessories: Belt-Clip Holster (P/N: 35903), Electret Microphone (P/N: M-150)

Ambient Temp: 24.4 °C; Fluid Temp: 22.1 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: FM RF Output Power: 0.106 W (ERP) Frequency: 755 MHz; Duty Cycle: 1:1

1.5V 2850mAh Duracell Procell Alkaline AA Battery (x1) Medium: M755 (σ = 0.93 mho/m; ϵ_r = 55.0; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.54, 6.54, 6.54); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

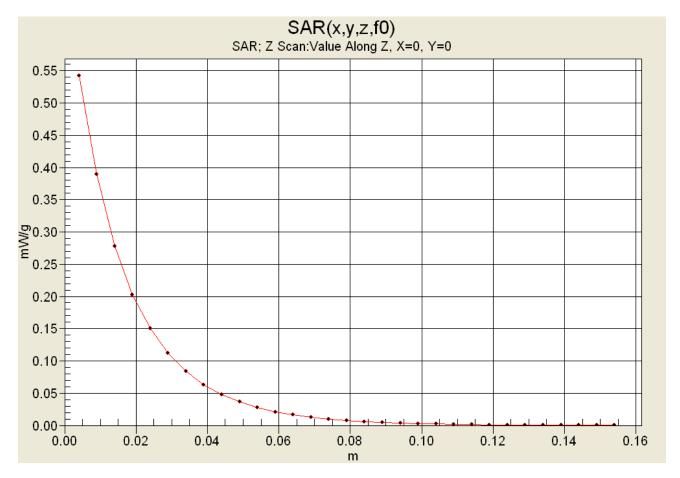

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Area Scan (6x12x1):

Measurement grid: dx=15mm, dy=15mm

Body-Worn - 1.5 cm Belt-Clip Separation Distance - Mid Channel/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 23.3 V/m; Power Drift = 0.0156 dB Peak SAR (extrapolated) = 0.705 W/kg

SAR(1 g) = 0.511 mW/g; SAR(10 g) = 0.353 mW/g



Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	<u>ALECTROSONIO</u>	CS°
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Ran	ige Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 19	771
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 22 of 38						38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Z-Axis Scan

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS'</u>
DUT Type:	Wireless Body-Worn Audio	Freq. Rar	ige Tested:		Professional Audio Products Since 1971	
2005 College Labe Inc. This document is not to be considered in whole or in part without the written permission of College Labe Inc. 23 of 38						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTR	DSONICS'
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio	Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the vices of the control of the con				itten permission of Celltech	Labs Inc.	24 of 38	

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

System Performance Check - 835 MHz Dipole

DUT: Dipole 835 MHz; Model: D835V2; Type: System Performance Check; Serial: 411; Calibrated: 03/16/2004

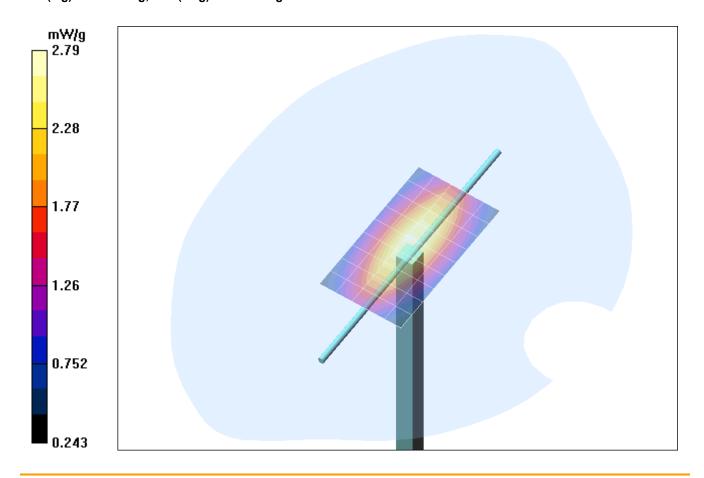
Ambient Temp: 23.5 °C; Fluid Temp: 22.8 °C; Barometric Pressure: 102.0 kPa; Humidity: 30%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 (σ = 0.92 mho/m; ε_r = 41.4; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(6.71, 6.71, 6.71); Calibrated: 24/05/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn370; Calibrated: 25/01/2005
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.3 Build 22; Postprocessing SW: SEMCAD, V1.8 Build 127

835 MHz Dipole - System Performance Check/Area Scan (6x10x1):

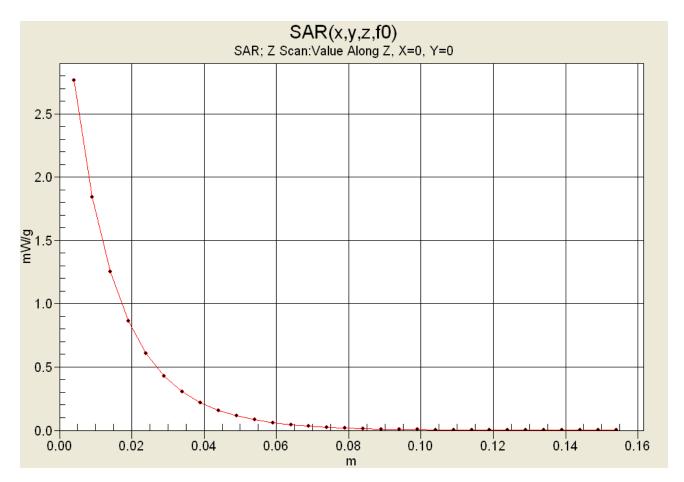

Measurement grid: dx=10mm, dy=10mm

835 MHz Dipole - System Performance Check/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.9 V/m; Power Drift = -0.0 dB

Peak SAR (extrapolated) = 3.86 W/kg

SAR(1 g) = 2.57 mW/g; SAR(10 g) = 1.67 mW/g



Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTROSONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Ran	ge Tested:	742.4 - 767.9 MHz	Professional Audio Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 25 of 38						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Z-Axis Scan

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	<u>ALECTROSONICS'</u>	
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:		Professional Audio Products Since 1971	
2005 College Labe Inc. This decument is not to be considered in whole or in nort without the written permission of College Labe Inc. 26 of 39							

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Lectrosonics, Inc.	ctrosonics, Inc. Model:		FCC ID:	DBZSM	<u>ALECTROSONIO</u>	CS°
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:		Professional Audio Products Since 197	71
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						Labs Inc. 27 of 3	38

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

755 MHz DUT Evaluation (Body)

Measured Fluid Dielectric Parameters (Muscle)

March 02, 2005

835 MHz System Performance Check

Measured Fluid Dielectric Parameters (Brain)

March 02, 2005

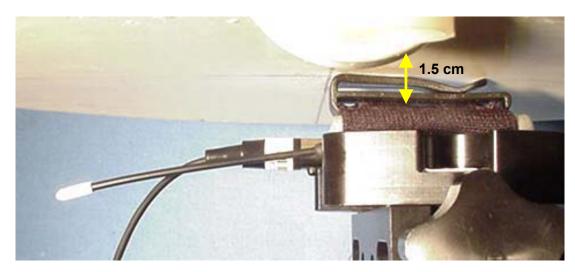
Frequency	e'	e"	Frequency	e'	e"
655.000000 MHz	56.1611	22.9593	735.000000 MHz	42.6245	20.1458
665.000000 MHz	56.0596	22.8917	745.000000 MHz	42.4537	20.1136
675.000000 MHz	55.9177	22.7594	755.000000 MHz	42.2935	20.0117
685.000000 MHz	55.8088	22.6334	765.000000 MHz	42.1066	19.9426
695.000000 MHz	55.5995	22.5799	775.000000 MHz	41.9939	19.8792
705.000000 MHz	55.4788	22.4632	785.000000 MHz	41.8968	19.8190
715.000000 MHz	55.4081	22.3708	795.000000 MHz	41.7643	19.7371
725.000000 MHz	55.2981	22.3359	805.000000 MHz	41.6411	19.7960
735.000000 MHz	55.1768	22.3056	815.000000 MHz	41.5721	19.7591
745.000000 MHz	55.0790	22.2382	825.000000 MHz	41.5088	19.7907
755.000000 MHz	55.0145	22.2030	835.000000 MHz	41.4293	19.7892
765.000000 MHz	54.9857	22.1381	845.000000 MHz	41.2794	19.7296
775.000000 MHz	54.8600	22.0894	855.000000 MHz	41.1296	19.6926
785.000000 MHz	54.7023	22.0011	865.000000 MHz	41.0268	19.6081
795.000000 MHz	54.5848	21.9472	875.000000 MHz	40.8282	19.5684
805.000000 MHz	54.5255	21.8515	885.000000 MHz	40.6967	19.4663
815.000000 MHz	54.3993	21.7812	895.000000 MHz	40.5507	19.4059
825.000000 MHz	54.2894	21.7125	905.000000 MHz	40.4474	19.3942
835.000000 MHz	54.1758	21.7132	915.000000 MHz	40.3186	19.3517
845.000000 MHz	54.0656	21.7242	925.000000 MHz	40.2636	19.4147
855.000000 MHz	53.9486	21.6890	935.000000 MHz	40.1927	19.4142

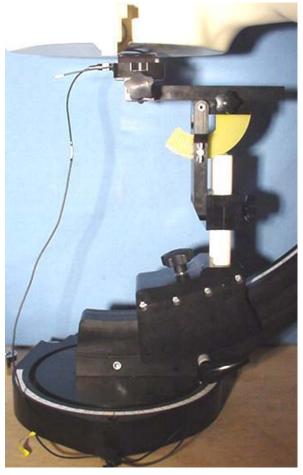
Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTROSONICS		
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Ran	ige Tested:		Professional Audio Products Since 1971		
2005 College Laberta This decreases is not to be considered in update or in part without the united promission of College Laberta and 20 of 20								

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

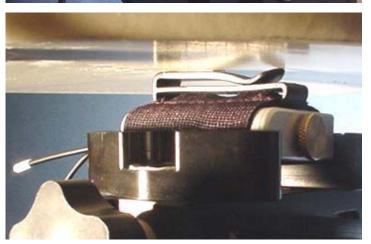
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Applicant:	Lectrosonics, Inc.	Lectrosonics, Inc. Model:		FCC ID:	DBZSM	ALECTROS	ONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio Produ	icts Since 1971
2005 Celltech Labs	2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					_abs Inc.	29 of 38



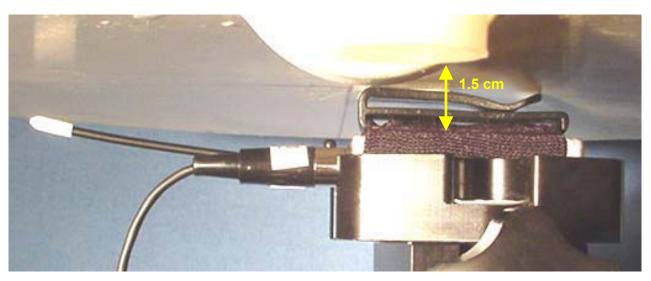

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation


BODY-WORN SAR TEST SETUP PHOTOGRAPHS


Front Side of DUT with Belt-Clip Holster Accessory

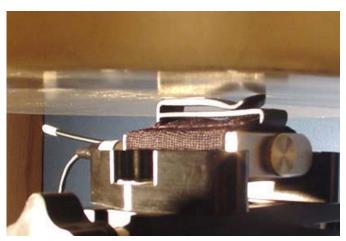
1.5 cm Belt-Clip Separation Distance to Planar Phantom

Applicant:	Lectrosonics, Inc.	Lectrosonics, Inc. Model:		FCC ID:	DBZSM	ALECTR	DSONICS*
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:		Professional Audio	Products Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					Labs Inc.	30 of 38	



Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

BODY-WORN SAR TEST SETUP PHOTOGRAPHS


Back Side of DUT with Belt-Clip Holster Accessory

1.5 cm Belt-Clip Separation Distance to Planar Phantom

Applicant:	Lectrosonics, Inc.	Lectrosonics, Inc. Model:		FCC ID:	DBZSM	ALECTRO	DSONICS*
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ge Tested:		Professional Audio	Products Since 1971
2005 Celltech Labs	2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech L					_abs Inc.	31 of 38

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Back of DUT

Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	ALECTR	OSONICS'	
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Aud	dio Products Since 1971	
2005 Celltech Labs	2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc. 32 of 38							

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Top of DUT

Bottom of DUT

Left Side of DUT

Right Side of DUT

Applicant:	Lectrosonics, Inc.	Lectrosonics, Inc. Model:		FCC ID:	DBZSM	ALECTROS	ONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Ran	ige Tested:	742.4 - 767.9 MHz	Professional Audio Produ	icts Since 1971
2005 Celltech Labs	ch Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						33 of 38

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

Front of Belt-Clip Holster with Microphone Back of DUT Facing Front of Holster

Front of Belt-Clip Holster with Microphone Front of DUT Facing Front of Holster

Back of Belt-Clip Holster with Microphone Back of DUT Facing Front of Holster

Back of Belt-Clip Holster with Microphone Front of DUT Facing Front of Holster

Applicant:	Lectrosonics, Inc.	ctrosonics, Inc. Model:		FCC ID:	DBZSM	ALECTROSONI	
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:		Professional Audio Products Since 1971	
2005 Celltech Labs	005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

DUT Battery Compartment

Rayovac Alkaline Battery

Duracell Procell Alkaline Battery

Olympus NiMH Battery

Energizer E-Squared Lithium Battery

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTRO	CTROSONICS	
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio	Products Since 1971	
2005 Celltech Labs	Inc. This document is not to	s document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					35 of 38	

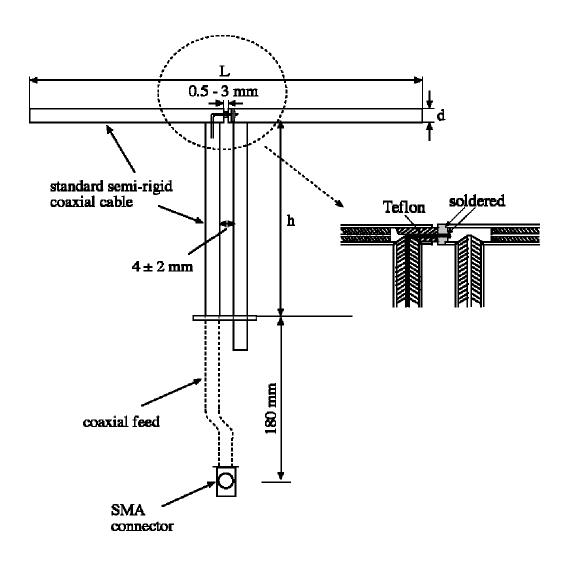
Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

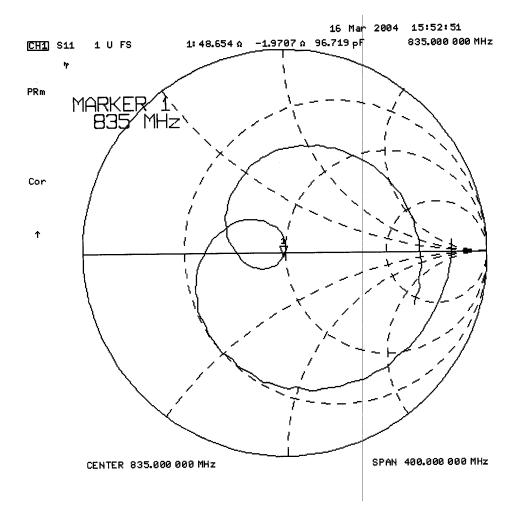
APPENDIX E - SYSTEM VALIDATION

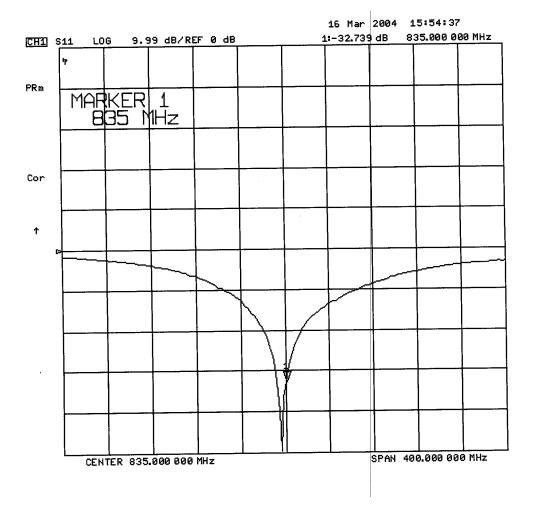
Applicant:	Lectrosonics, Inc.	Model:	SM FCC ID:		DBZSM	ALECTR	DSONICS
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	nge Tested:	742.4 - 767.9 MHz	Professional Audio	o Products Since 1971
2005 Celltech Labs	2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						36 of 38

835 MHz SYSTEM VALIDATION DIPOLE

Type:	835 MHz Validation Dipole
Serial Number:	411
Place of Calibration:	Celltech Labs Inc.
Date of Calibration:	March 16, 2004
Celltech Labs Inc. hereby certifies that this devi	ice has been calibrated on the date indicated above.
Calibrated by:	Spencer Watson
Approved by:	Russell W. Ripe


1. Dipole Construction & Electrical Characteristics


The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:


Feed point impedance at 835MHz Re{Z} = 48.654Ω

 $\text{Im}\{Z\} = -1.9707\Omega$

Return Loss at 835MHz -32.739dB

Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	2450 51.8 30.6		3.6
3000	41.5	25.0	3.6

2. Validation Phantom

The validation phantom is the SAM (Specific Anthropomorphic Mannequin) phantom manufactured by Schmid & Partner Engineering AG. The SAM phantom is a Fiberglass shell integrated in a wooden table. The shape of the shell corresponds to the phantom defined by SCC34-SC2. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 20 liters

Dimensions: 50 cm (W) x 100 cm (L)

835 MHz System Validation Setup

835 MHz System Validation Setup

3. Measurement Conditions

The SAM phantom was filled with 835 MHz brain simulating tissue.

Relative Permittivity: 42.6

Conductivity: 0.94 mho/m

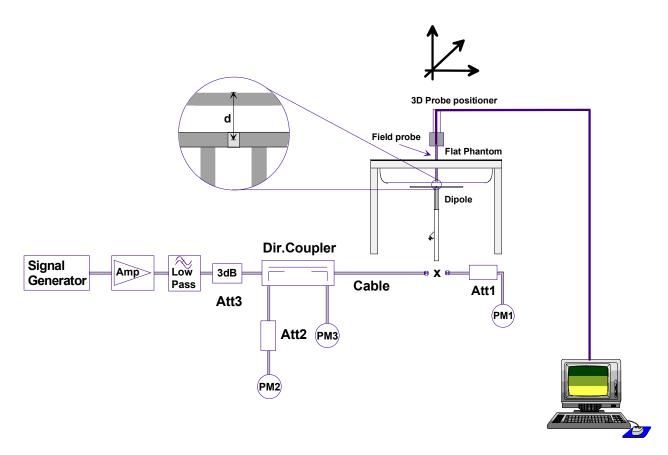
Ambient Temperature: 24.6 °C

Fluid Temperature: 21.9 °C

Fluid Depth: \geq 15.0 cm

Barometric Pressure: 101.6 kPa

Humidity: 31%


The 835 MHz simulating tissue consists of the following ingredients:

Ingredient	Percentage by weight		
Water	40.71%		
Sugar	56.63%		
Salt	1.48%		
HEC	0.99%		
Dowicil 75	0.19%		
Target Dielectric Parameters at 22 °C	$\varepsilon_{\rm r} = 41.5$ $\sigma = 0.90 \; {\rm S/m}$		

Measurements were taken in the flat section of the SAM phantom using a dosimetric E-field probe ET3DV6 (s/n: 1590, conversion factor 7.0).

4. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Dipole SAR Test Results

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	2.46	9.84	1.61	6.44	3.56
Test 2	2.45	9.80	1.60	6.40	3.56
Test 3	2.45	9.80	1.61	6.44	3.56
Test 4	2.44	9.76	1.60	6.40	3.55
Test 5	2.43	9.72	1.60	6.40	3.53
Test 6	2.44	9.76	1.60	6.40	3.53
Test 7	2.44	9.76	1.60	6.40	3.55
Test 8	2.44	9.76	1.60	6.40	3.54
Test 9	2.47	9.88	1.62	6.48	3.58
Test10	2.47	9.88	1.62	6.48	3.62
Average Value	2.45	9.80	1.61	6.42	3.56

The results have been normalized to 1W (forward power) into the dipole.

Averaged over 1cm (1g) of tissue: 9.80 mW/g

Averaged over 10cm (10g) of tissue: 6.42 mW/g

835 MHz System Validation - March 16, 2004

DUT: Dipole 835 MHz; Type: D835V2; Serial: 411

Ambient Temp: 24.6°C; Fluid Temp: 21.9°C; Barometric Pressure: 101.6 kPa; Humidity: 31%

Communication System: CW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835 (σ = 0.94 mho/m; ϵ_r = 42.6; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(7, 7, 7); Calibrated: 15/05/2003
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn353; Calibrated: 19/12/2003
- Phantom: SAM 4.0: Type: Fiberglas: Serial: 1033
- Measurement SW: DASY4, V4.2 Build 37; Postprocessing SW: SEMCAD, V1.8 Build 109

835 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

835 MHz System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.56 W/kg

SAR(1 g) = 2.45 mW/g; SAR(10 g) = 1.61 mW/g

835 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.43 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.55 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

835 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

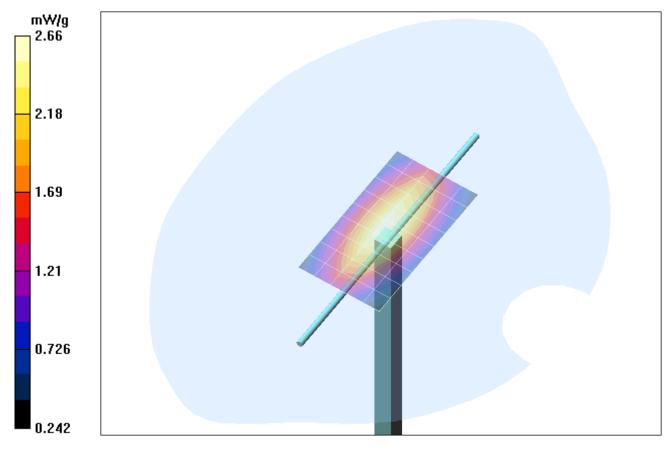
Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

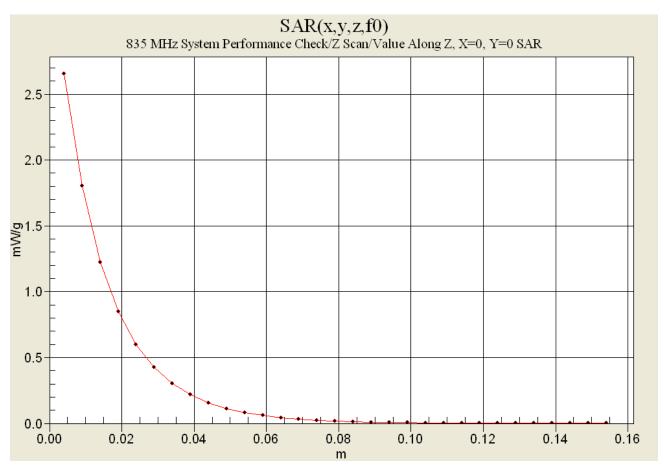
835 MHz System Validation/Zoom Scan 11 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.58 W/kg


SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

835 MHz System Validation/Zoom Scan 12 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 56.2 V/m; Power Drift = -0.1 dB

Peak SAR (extrapolated) = 3.62 W/kg

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.62 mW/g

1 g average of 10 measurements: 2.449 mW/g 10 g average of 10 measurements: 1.606 mW/g

835 MHz System Performance Check Measured Fluid Dielectric Parameters (Brain) March 16, 2004

Frequency	e'	e"
735.000000 MHz	43.8577	20.6938
745.000000 MHz	43.6899	20.6481
755.000000 MHz	43.5341	20.5840
765.000000 MHz	43.4161	20.5576
775.000000 MHz	43.3026	20.5312
785.000000 MHz	43.2065	20.5122
795.000000 MHz	43.1067	20.5061
805.000000 MHz	43.0154	20.4762
815.000000 MHz	42.8927	20.4182
825.000000 MHz	42.7420	20.3806
835.000000 MHz	42.6206	20.2993
845.000000 MHz	42.4357	20.2595
855.000000 MHz	42.2984	20.1872
865.000000 MHz	42.1422	20.1432
875.000000 MHz	42.0082	20.1253
885.000000 MHz	41.8996	20.1110
895.000000 MHz	41.8514	20.0192
905.000000 MHz	41.7550	20.0083
915.000000 MHz	41.6535	19.9701
925.000000 MHz	41.5521	19.9380
935.000000 MHz	41.4477	19.9175

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

APPENDIX F - PROBE CALIBRATION

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTRO	SONICS		
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Range Tested:		nitter Freq. Range Tested: 742.4 - 767.9		742.4 - 767.9 MHz	Professional Audio Pro	oducts Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.						_abs Inc.	37 of 38		

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Celltech Labs

CALIBRATION CERTIFICATE

Object(s)

ET3DV6 - SN:1590

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

May 24, 2004

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environ ment temperature 22 + L 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	5-May-04 (METAS, No 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No 251-00388)	May-05
Reference 20 dB Attenuator	SN: 5086 (20b)	3-May-04 (METAS, No 251-00389)	May-05
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Calibrated by:

Name Function
Nico Vetterli Technician

Approved by:

Katja Pokovic Laboratory Director

Date issued: May 24, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001

Last calibrated:

May 15, 2003

Recalibrated:

May 24, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space

Diode Compression^A

NormX	1.85 μV/(V/m) ²	DCP X	91	mV
NormY	2.01 $\mu V/(V/m)^2$	DCP Y	91	mV
NormZ	1.73 μV/(V/m) ²	DCP Z	91	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Plese see Page 7.

Boundary Effect

Head

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to	Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	8.0	4.4
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Head

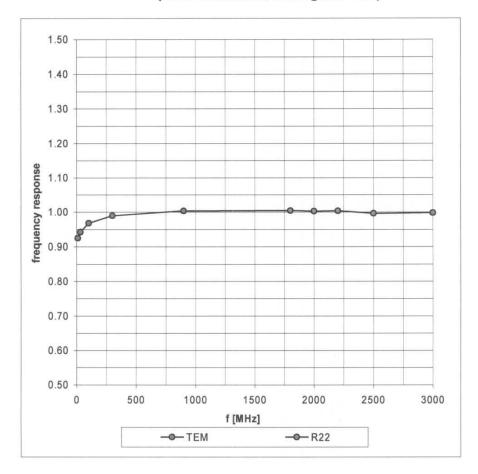
1800 MHz

Typical SAR gradient: 10 % per mm

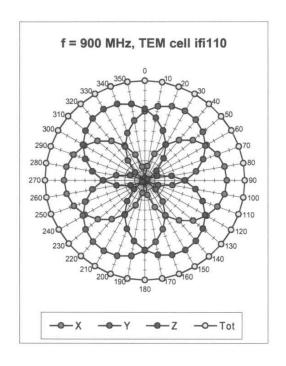
Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.2	8.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.1

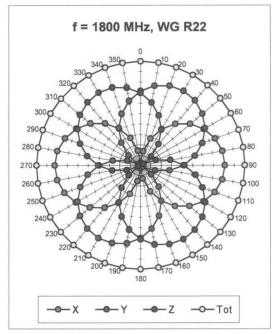
Sensor Offset

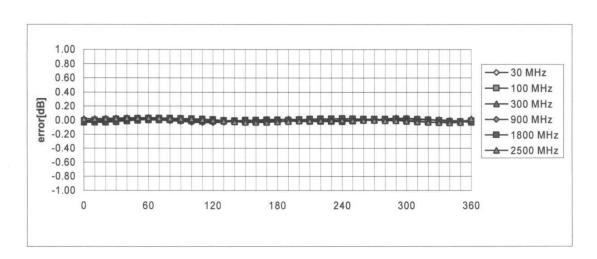
Probe Tip to Sensor Center 2.7 mm


Optical Surface Detection in tolerance

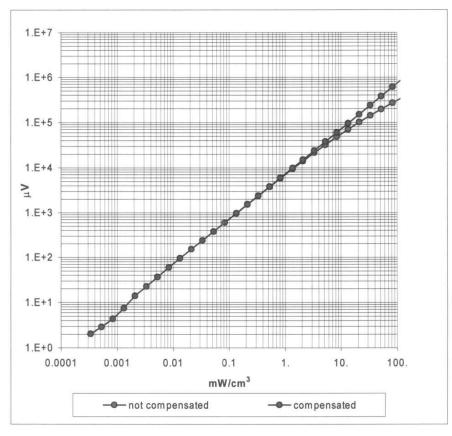
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

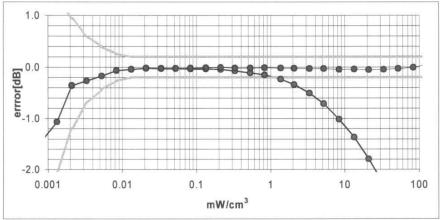

A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field


(TEM-Cell:ifi110, Waveguide R22)

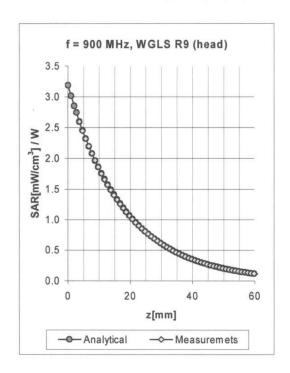
Receiving Pattern (ϕ), θ = 0°





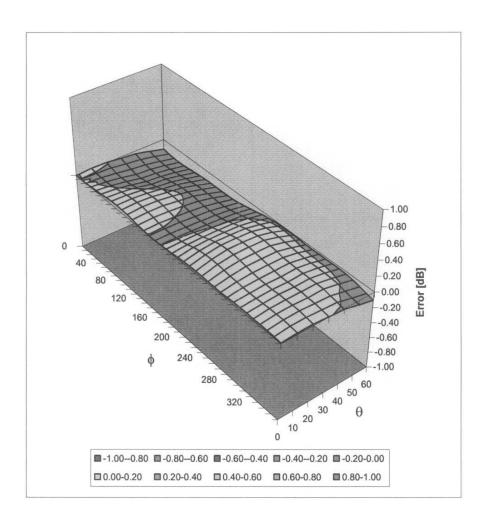
Axial Isotropy Error < ± 0.2 dB

Dynamic Range f(SAR_{head})


(Waveguide R22)

Probe Linearity Error < ± 0.2 dB

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	750-950	Head	41.5 ± 5%	0.90 ± 5%	0.68	1.64	6.71 ± 11.9% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.43	2.67	5.28 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.46	2.81	5.03 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.81	1.95	4.44 ± 9.7% (k=2)
835	750-950	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.49	1.99	6.54 ± 11.9% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.50	2.87	4.68 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.52	2.93	4.58 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	0.91	1.78	4.22 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ , ϕ), f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1590
Place of Assessment:	Zurich
Date of Assessment:	May 25, 2004
Probe Calibration Date:	May 24, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Mais late

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1590

Conversion factor (± standard deviation)

150 MHz	ConvF	$9.1\pm8\%$	$\varepsilon_r = 52.3 \pm 5\%$ $\sigma = 0.76 \pm 5\% \text{ mho/m}$
			(head tissue)
300 MHz	ConvF	$7.9 \pm 8\%$	$\varepsilon_r = 45.3 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
450 MHz	ConvF	$7.5 \pm 8\%$	$\varepsilon_r = 43.5 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
150 MHz	ConvF	$8.8 \pm 8\%$	$\varepsilon_r = 61.9 \pm 5\%$
IOU WILL	COIIVI	0.0 = 0 70	$\sigma = 0.80 \pm 5\% \text{ mho/m}$
			(body tissue)
450 MHz	ConvF	$7.7 \pm 8\%$	$\varepsilon_r = 56.7 \pm 5\%$
	Convi	= 0 //	$\sigma = 0.94 \pm 5\% \text{ mho/m}$
			(body tissue)
			-

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Test Report S/N:	022405DBZ-T620-S74U
Test Date(s):	March 02, 2005
Test Type:	FCC SAR Evaluation

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Lectrosonics, Inc.	Model:	SM	FCC ID:	DBZSM	ALECTROS	ONICS*
DUT Type:	Wireless Body-Worn Audio	Transmitter	Freq. Rar	ige Tested:	742.4 - 767.9 MHz	Professional Audio Product	ts Since 1971
2005 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the written permission of Celltech Labs Inc.					abs Inc. 3	38 of 38	

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Fin Boulott

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79