

# **Garrett Metal Detectors**

**WT-1** FCC 2.1091:2016 2400-2483.5 MHz Transceiver

Report # GARR0027.1



(R) TESTING

NVLAP Lab Code: 201049-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.





# Last Date of Evaluation: December 28, 2016 Garrett Metal Detectors Model: WT-1

# **Radio Equipment Evaluation**

| Standards       |                                                 |
|-----------------|-------------------------------------------------|
| Specification   | Method                                          |
| FCC 2.1091:2016 | FCC 447498 D01 General RF Exposure Guidance v06 |

# **Results**

| Method Clause | Evaluation Description       | Applied | Results | Comments |
|---------------|------------------------------|---------|---------|----------|
| 7.1           | Maximum Permissible Exposure | Yes     | Pass    |          |

# **Deviations From Evaluation Standards**

None

**Approved By:** 

Donald Facteau, IT Manager

Product compliance is the responsibility of the client; therefore, the Evaluations and equipment modes of operation represented in this report were agreed upon by the client, prior to Evaluationing. The results of this Evaluation pertain only to the sample(s) Evaluationed. The specific description is noted in each of the individual sections of the Evaluation report supporting this certificate of Evaluation. This report reflects only those Evaluations from the referenced standards shown in the certificate of Evaluation. It does not include inspection or verification of labels, identification, marking or user information.

# **REVISION HISTORY**



| Revision<br>Number | Description | Date | Page Number |
|--------------------|-------------|------|-------------|
| 00                 | None        |      |             |

# ACCREDITATIONS AND AUTHORIZATIONS



# **United States**

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

**A2LA** - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

## Canada

**ISED** - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

## **European Union**

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

## Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

#### Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

## Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

#### Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

### Singapore

**IDA** – Recognized by IDA as a CAB for the acceptance of test data.

## Israel

**MOC** – Recognized by MOC as a CAB for the acceptance of test data.

# Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

## Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

# SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

# FACILITIES





| California               | Minnesota                                           | New York                 | Oregon                   | Texas                   | Washington                     |  |  |  |  |  |  |  |  |
|--------------------------|-----------------------------------------------------|--------------------------|--------------------------|-------------------------|--------------------------------|--|--|--|--|--|--|--|--|
| Labs OC01-13             | Labs MN01-08, MN10                                  | Labs NY01-04             | Labs EV01-12             | Labs TX01-09            | Labs NC01-05                   |  |  |  |  |  |  |  |  |
| 41 Tesla                 | 9349 W Broadway Ave.                                | 4939 Jordan Rd.          | 22975 NW Evergreen Pkwy  | 3801 E Plano Pkwy       | 19201 120 <sup>th</sup> Ave NE |  |  |  |  |  |  |  |  |
| Irvine, CA 92618         | Brooklyn Park, MN 55445                             | Elbridge, NY 13060       | Hillsboro, OR 97124      | Plano, TX 75074         | Bothell, WA 98011              |  |  |  |  |  |  |  |  |
| (949) 861-8918           | (612)-638-5136                                      | (315) 554-8214           | (503) 844-4066           | (469) 304-5255          | (425)984-6600                  |  |  |  |  |  |  |  |  |
|                          | _                                                   |                          | _                        | _                       | _                              |  |  |  |  |  |  |  |  |
|                          | NVLAP                                               |                          |                          |                         |                                |  |  |  |  |  |  |  |  |
| NVLAP Lab Code: 200676-0 | NVLAP Lab Code: 200881-0                            | NVLAP Lab Code: 200761-0 | NVLAP Lab Code: 200630-0 | NVLAP Lab Code:201049-0 | NVLAP Lab Code: 200629-0       |  |  |  |  |  |  |  |  |
|                          | Innovation, Science and Economic Development Canada |                          |                          |                         |                                |  |  |  |  |  |  |  |  |
| 2834B-1, 2834B-3         | 2834E-1                                             | N/A                      | 2834D-1, 2834D-2         | 2834G-1                 | 2834F-1                        |  |  |  |  |  |  |  |  |
|                          |                                                     | BS                       | МІ                       |                         |                                |  |  |  |  |  |  |  |  |
| SL2-IN-E-1154R           | SL2-IN-E-1152R                                      | N/A                      | SL2-IN-E-1017            | SL2-IN-E-1158R          | SL2-IN-E-1153R                 |  |  |  |  |  |  |  |  |
|                          |                                                     | VC                       | CI                       |                         |                                |  |  |  |  |  |  |  |  |
| A-0029                   | A-0109                                              | N/A                      | A-0108                   | A-0201                  | A-0110                         |  |  |  |  |  |  |  |  |
|                          | Recognized Phase                                    | e I CAB for ACMA, BSM    | I, IDA, KCC/RRA, MIC, M  | OC, NCC, OFCA           |                                |  |  |  |  |  |  |  |  |
| US0158                   | US0175                                              | N/A                      | US0017                   | US0191                  | US0157                         |  |  |  |  |  |  |  |  |
|                          |                                                     |                          |                          |                         |                                |  |  |  |  |  |  |  |  |



# **PRODUCT DESCRIPTION**



# **Client and Equipment Under Evaluation Information**

| Company Name:            | Garrett Metal Detectors |
|--------------------------|-------------------------|
| Address:                 | 1881 W. State Street    |
| City, State, Zip:        | Garland, TX 75042       |
| Evaluation Requested By: | Weldon Sanders          |
| Model:                   | WT-1                    |
| Date of Evaluation:      | December 28, 2016       |

# Information Provided by the Party Requesting the Evaluation

## **Functional Description of the Equipment:**

The Garrett Z-LYNK Wireless Digital Transmission System consists of the Model WT-1 and Model WR-1 for use with Garret metal detectors to provide wireless audio functionality. The Model WT-1 and Model WR-1 use the identical radio chip and antenna.

The Model WT-1 is a part of the Garrett Z-LYNK Wireless Digital Transmission System operating in the 2.4GHz band. It is used with Garrett Metal Detectors hand-held hobby line of metal detectors and the Garrett Model WR-1. It is powered by a rechargeable 3.7 volt battery, receives audio from the detector via a short cable plugged into the headphone jack, and transmits that audio wirelessly to the WR-1 receiver. The WT-1 is mounted on the metal detector and used greater than 20 cm from the head or torso of a user.

The Model WR-1 is a part of the Garrett Z-LYNK Wireless Digital Transmission System operating in the 2.4GHz band. It is used with Garrett Metal Detectors hand-held hobby line of metal detectors and the Garrett Model WT-1. It is powered by a rechargeable 3.7 volt battery and receives audio from the detector via a wireless link from the Garrett Model WT-1. The user plugs his headphones into the WR-1. The WR-1 transmits handshake information back to the WT-1. The WR-1 has a belt clip and used within 20 cm of the torso of a user.

## **Objective:**

To demonstrate compliance of WT-1 with FCC RF exposure requirements for 2.1091 mobile devices.



Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

| Description                  | Manufacturer       | Model      | ID  | Last Cal.  | Cal. Due   |
|------------------------------|--------------------|------------|-----|------------|------------|
| Probe - Near Field Set       | ETS Lindgren       | 7405       | IPS | NCR        | NCR        |
| Cable                        | Fairview Microwave | SCK0963-60 | TXF | 10/24/2016 | 10/24/2017 |
| Block - DC                   | Fairview Microwave | SD3379     | AMM | 2/25/2016  | 2/25/2017  |
| Attenuator                   | Fairview Microwave | SA4018-20  | TQY | 2/25/2016  | 2/25/2017  |
| Analyzer - Spectrum Analyzer | Agilent            | N9010A     | AFL | 10/4/2016  | 10/4/2017  |
| Generator - Signal           | Agilent            | E4422B     | TGS | 3/27/2015  | 3/27/2018  |

#### **TEST DESCRIPTION**

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. The Duty Cycle (x) of the single channel operation of the radio as controlled by the provided test software was measured for each of the EUT operating modes.

There is no compliance requirement to be met by this test, so therefore no Pass / Fail criteria.

The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum when operating in it's typical audio transmit/receive mode.

The reference design manufacturer of the radio technology could not confirm an actual maximum duty cycle therefore an alternative method had to be used to measure the duty cycle used by the customer. A description of the test modes used are as follows: *The WT-1 and WR-1 modules function as a pair to wirelessly communicate audio from the metal detector to the headphones. Unless already paired, the audio transmitter (WT-1) module has to be triggered to look for available receiver (WR-1) modules. The WT-1 module then pairs with the WR-1 module with the strongest signal. Once paired, the WT-1 remembers its WR-1 partner even after power cycle. A previously paired WT-1 will automatically establish connection with the same WR-1 on power up as long as the WR-1 is available for connection.* 

Once paired, the WT-1 digitizes the metal detector audio and transmits it over the radio link to the WR-1. This is the typical usage of the system and the radio.

If not paired or if the WR-1 is not available, the WT-1 radio does nothing until pairing is initiated or the WR-1 in memory becomes available.

If not paired or if the WT-1 is not available, the WR-1 radio sends a "pairing signal" that lets potential WT-1 modules know about availability in the WR-1 module's network.

Pairing is a one-time occurrence in most cases and the typical radio operation is when both the WT-1 and WR-1 are communicating and audio is being transmitted.

Investigation was done all three described modes. The worse case duty cycle was having both the WT-1 and WR-1 paired together and transmitting audio. This data is included in the report. The duty cycle was measured on low, mid and high channels and pulse on time, pulse number, and period were all recorded.

This particular Low Energy protocol implimentation limits transmission to 18 channels. In order to determine the total duty cycle from all channels, the worse case pulse width, period length, and number of pulses in a period were used and extrapolated to determine the duty cycle across all 18 channels. The formulas used are highlighted below.

Total Period across all channels (ms) = Total Channels \* Worse case period per channel (ms) = 18 \* 104.9 = 1888

Total Pulse on Time across all channels (ms) = Total Channels \* Worse case # of pulses per channel \* Worse case pulse width (ms) =  $18 \times 10^{-8.844} = 151.9$ 

Duty Cycle % = (Total Pulse on Time across all channels / Total Period ) \* 100 = (151.9 / 1888)\*100 = 8%

The duty cycle correction factor is:  $20*\log(0.08) = -21.9 \text{ dB}.$ 



| EUT:                                                                                                                                                                                                              | WR-1                                                               |                                         |                                                                                |                                                               |                                                | Work Order:                                     | GARR0027                                        |                                     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------|--|--|--|--|--|
| Serial Number:                                                                                                                                                                                                    | None                                                               |                                         |                                                                                |                                                               |                                                | Date:                                           | 11/11/16                                        |                                     |  |  |  |  |  |
| Customer:                                                                                                                                                                                                         | Garrett Metal Detectors                                            |                                         |                                                                                |                                                               |                                                | Temperature:                                    | 23.5 °C                                         |                                     |  |  |  |  |  |
| Attendees:                                                                                                                                                                                                        | None                                                               |                                         |                                                                                |                                                               | Humidity: 41% RH                               |                                                 |                                                 |                                     |  |  |  |  |  |
| Project:                                                                                                                                                                                                          | None                                                               |                                         |                                                                                |                                                               | E                                              | Barometric Pres.:                               | 1026 mbar                                       |                                     |  |  |  |  |  |
| Tested by:                                                                                                                                                                                                        | Jonathan Kiefer                                                    |                                         | Power: Battery                                                                 |                                                               |                                                | Job Site:                                       | TX02                                            |                                     |  |  |  |  |  |
| TEST SPECIFICAT                                                                                                                                                                                                   | ATIONS Test Method                                                 |                                         |                                                                                |                                                               |                                                |                                                 |                                                 |                                     |  |  |  |  |  |
| FCC 2.1091:2016                                                                                                                                                                                                   |                                                                    |                                         | FCC 447498 D01 G                                                               | eneral RF Exposure                                            | Guidance v06                                   |                                                 |                                                 |                                     |  |  |  |  |  |
|                                                                                                                                                                                                                   |                                                                    |                                         |                                                                                |                                                               |                                                |                                                 |                                                 |                                     |  |  |  |  |  |
| COMMENTS                                                                                                                                                                                                          |                                                                    |                                         |                                                                                |                                                               |                                                |                                                 |                                                 |                                     |  |  |  |  |  |
| Transmitter and Re                                                                                                                                                                                                | ceiver paired together.                                            | The Transmitter and Receiver units uti  | ilize similar radio modules: therefore, t                                      | he measurements                                               | were taken on the R                            | eceiver Unit as th                              | e representative s                              | ample EUT. This                     |  |  |  |  |  |
| operating mode is                                                                                                                                                                                                 | the actual mode used to                                            | transmit and receive audio in a typical | operation. These results are used to a                                         | alculate the total o                                          | luty cycle across all                          | 18 channels Du                                  | ty cycle is 8%. See                             | e the previous                      |  |  |  |  |  |
| operating mode is the actual mode used to transmit and receive audio in a typical operation. I nese results are used to calculate the total duty cycle across all 18 channels. Duty cycle is 8%. See the previous |                                                                    |                                         |                                                                                |                                                               |                                                |                                                 |                                                 |                                     |  |  |  |  |  |
| nage for the comp                                                                                                                                                                                                 | lete calculation                                                   |                                         |                                                                                |                                                               | , .,                                           |                                                 | ., .,                                           |                                     |  |  |  |  |  |
| page for the comp<br>DEVIATIONS FROM                                                                                                                                                                              | lete calculation.<br>M TEST STANDARD                               |                                         |                                                                                |                                                               |                                                |                                                 | ., .,                                           |                                     |  |  |  |  |  |
| page for the comp<br>DEVIATIONS FROM                                                                                                                                                                              | lete calculation.<br>M TEST STANDARD                               |                                         |                                                                                |                                                               |                                                |                                                 | ., .,                                           | •                                   |  |  |  |  |  |
| DEVIATIONS FROM<br>None                                                                                                                                                                                           | ete calculation.<br>M TEST STANDARD<br>9                           |                                         | Jonathan Kiefer                                                                |                                                               |                                                |                                                 |                                                 |                                     |  |  |  |  |  |
| DEVIATIONS FROM<br>DEVIATIONS FROM<br>None                                                                                                                                                                        | 9                                                                  | Signature                               | Jonathan Kiefer                                                                |                                                               |                                                |                                                 |                                                 |                                     |  |  |  |  |  |
| Deviating the compl<br>DEVIATIONS FROM<br>None<br>Configuration #                                                                                                                                                 | M TEST STANDARD                                                    | Signature                               | Jonathan Niefe                                                                 |                                                               | Number of                                      | Value                                           | Limit                                           |                                     |  |  |  |  |  |
| Deviating the comp<br>DEVIATIONS FROM<br>None<br>Configuration #                                                                                                                                                  | ete calculation.<br>M TEST STANDARD<br>9                           | Signature                               | Jonsthan Kiefen<br>Pulse Width                                                 | Period                                                        | Number of<br>Pulses                            | Value<br>(%)                                    | Limit<br>(%)                                    | Results                             |  |  |  |  |  |
| Dage for the comp<br>DEVIATIONS FROM<br>None<br>Configuration #                                                                                                                                                   | MHz                                                                | Signature                               | Jonathan Kiefen<br>Pulse Width<br>174.8 us                                     | Period<br>209.732 ms                                          | Number of<br>Pulses<br>3                       | Value<br>(%)<br>N/A                             | Limit<br>(%)<br>N/A                             | Results<br>N/A                      |  |  |  |  |  |
| Deviating the compl<br>DEVIATIONS FROM<br>None<br>Configuration #<br>Low Channel, 2405<br>Low Channel, 2405                                                                                                       | ete calculation.<br>M TEST STANDARD<br>9<br>MHz<br>MHz<br>MHz      | Signature                               | Jonsthan Niefen<br>Pulse Width<br>174.8 us<br>NA                               | Period<br>209.732 ms<br>N/A                                   | Number of<br>Pulses<br>3<br>6                  | Value<br>(%)<br>N/A<br>N/A                      | Limit<br>(%)<br>N/A<br>N/A                      | Results<br>N/A<br>N/A               |  |  |  |  |  |
| Deviation of the compl<br>DEVIATIONS FROM<br>None<br>Configuration #<br>Low Channel, 2405<br>Mid Channel, 2405 I                                                                                                  | 9<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz                        | Signature                               | Jonsthan Kiefen<br>Pulse Width<br>174.8 us<br>N/A<br>835.4 us                  | Period<br>209.732 ms<br>N/A<br>104.97 ms                      | Number of<br>Pulses<br>3<br>6<br>10            | Value<br>(%)<br>N/A<br>N/A<br>N/A               | Limit<br>(%)<br>N/A<br>N/A<br>N/A               | Results<br>N/A<br>N/A<br>N/A        |  |  |  |  |  |
| Configuration #<br>Low Channel, 2405<br>Mid Channel, 2445<br>Mid Channel, 2445                                                                                                                                    | 9<br>MHZ<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz   | Signature                               | Sonothan Riefen<br>Pulse Width<br>174.8 us<br>N/A<br>835.4 us<br>N/A           | Period<br>209.732 ms<br>N/A<br>104.97 ms<br>N/A               | Number of<br>Pulses<br>3<br>6<br>10<br>43      | Value<br>(%)<br>N/A<br>N/A<br>N/A<br>N/A        | Limit<br>(%)<br>N/A<br>N/A<br>N/A<br>N/A        | Results<br>N/A<br>N/A<br>N/A<br>N/A |  |  |  |  |  |
| Date for the compl<br>DEVIATIONS FROM<br>None<br>Configuration #<br>Low Channel, 2405<br>Low Channel, 2405<br>Mid Channel, 2445 I<br>Mid Channel, 2445 I<br>High Channel, 2476                                    | MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz<br>MHz | Signature                               | Sonothan Niefen<br>Pulse Width<br>174.8 us<br>N/A<br>835.4 us<br>N/A<br>844 us | Period<br>209.732 ms<br>N/A<br>104.97 ms<br>N/A<br>210.034 ms | Number of<br>Pulses<br>3<br>6<br>10<br>43<br>4 | Value<br>(%)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Limit<br>(%)<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Results<br>N/A<br>N/A<br>N/A<br>N/A |  |  |  |  |  |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                          | l                          | w Channel                              | 2405 MI                   | 17                                       |                                                |                                                                                                                |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------|----------------------------|----------------------------------------|---------------------------|------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                          |                            | Numb                                   | er of                     | Value                                    | Limit                                          |                                                                                                                |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | Pulse Width                                              | Period                     | Puls                                   | es                        | (%)                                      | (%)                                            | Results                                                                                                        |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | 174.8 us                                                 | 209 732 ms                 | 3                                      |                           | N/A                                      | N/A                                            | N/A                                                                                                            | 1                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | 174.0 03                                                 | 200.702 113                | 0                                      |                           | 11/73                                    | N/A                                            | 19/73                                                                                                          |                      |
| Keysight Spectru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m Analyzei                        | - Northwest EMC Inc                                      |                            |                                        |                           |                                          |                                                |                                                                                                                | X                    |
| LXI RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RF                                | 50 Ω DC                                                  |                            | SENSE:INT                              |                           | ALIGN OFF                                |                                                | 01:46:53 PM Nov 11,                                                                                            | 2016                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | ·                                                        | PNO: Fast ↔→<br>IFGain:Low | Trig Delay<br>Trig: Vide<br>#Atten: 10 | -1.000 ms<br>o<br>dB      | #Avg Typ                                 | pe: Log-Pwr                                    | TRACE 123<br>TYPE WWW<br>DET PPP                                                                               | 456<br>//////<br>PPP |
| R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tef Offse                         | et 21.55 dB                                              |                            |                                        |                           |                                          |                                                | Mkr3 210.7                                                                                                     | ms                   |
| 10 dB/div                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lef 12.                           | 00 dBm                                                   |                            |                                        |                           |                                          |                                                | -56.40 at                                                                                                      | sm                   |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| -8.00 Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| -18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| -28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| -38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                          |                            |                                        |                           |                                          |                                                | TRK                                                                                                            | EVL.                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| -48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                          |                            |                                        |                           |                                          | <b>3</b>                                       |                                                                                                                |                      |
| -58.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | . A line of the line is write the analytic degree in the |                            |                                        |                           |                                          | tile 24 <sup>1</sup> anne 12e Alexandre dar is | et et el la set de la statistica de la seconda de la s |                      |
| -68.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| -78 በ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| Center 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500000                            | 00 GHz                                                   |                            |                                        | *//********************   |                                          |                                                | Span 0                                                                                                         | Hz                   |
| Res BW 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MHz                               |                                                          | #VB                        | N 30 kHz                               |                           |                                          | Sweep                                          | 300.3 ms (8192                                                                                                 | ots)                 |
| MKR MODE TRC S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SCL                               | х                                                        | Y                          | FUN                                    | CTION F                   | UNCTION WIDTH                            | FU                                             | NCTION VALUE                                                                                                   | -                    |
| 1 N 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t                                 | 975.2                                                    | us -8.45                   | dBm                                    |                           |                                          |                                                |                                                                                                                |                      |
| 2 N 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t l                               | <u>1.150 n</u>                                           | ns -55.57                  | dBm                                    |                           |                                          |                                                |                                                                                                                |                      |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                 | 210.71                                                   | 15 -50.40                  | ubili                                  |                           |                                          |                                                |                                                                                                                |                      |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                | =                    |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                | - 1                  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                | -                    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                                          |                            | III                                    |                           | an a |                                                |                                                                                                                | P.                   |
| PROFESSION DESCRIPTION OF THE PROPERTY OF THE |                                   |                                                          |                            |                                        |                           | STATUS                                   |                                                |                                                                                                                |                      |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AND DESCRIPTION OF TAXABLE PARTY. |                                                          |                            |                                        |                           |                                          |                                                |                                                                                                                |                      |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                          |                            | <u>.</u>                               | 040E MI                   | 17                                       |                                                |                                                                                                                |                      |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                          | Lo                         | ow Channel                             | , 2405 IVII               | 12                                       |                                                |                                                                                                                |                      |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                          | Lo                         | w Channel<br>Numb                      | , 2405 Mir<br>er of       | Value                                    | Limit                                          |                                                                                                                |                      |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | Pulse Width                                              | Lo<br>Period               | w Channel<br>Numb<br>Puls              | , 2405 IVI<br>er of<br>es | Value<br>(%)                             | Limit<br>(%)                                   | Results                                                                                                        | _                    |

|  |             | LOV    | V Ghannel, 2403 | IVITIZ |       |         |
|--|-------------|--------|-----------------|--------|-------|---------|
|  |             |        | Number of       | Value  | Limit |         |
|  | Pulse Width | Period | Pulses          | (%)    | (%)   | Results |
|  | N/A         | N/A    | 6               | N/A    | N/A   | N/A     |

| Keysight Sp | ectrum Ana            | alyzer - Northwe                  | st EMC, Inc    |                           |       |                           |                           |                      |         |      |      |            |                         |
|-------------|-----------------------|-----------------------------------|----------------|---------------------------|-------|---------------------------|---------------------------|----------------------|---------|------|------|------------|-------------------------|
| RL          | RF                    | 50 Ω D                            |                |                           | SEN   | ISE:INT                   |                           | LIGN OFF             |         |      |      | 01:47:0    | 7 PM Nov 11, 20         |
|             |                       |                                   |                | PNO: Fast +<br>IFGain:Low | ••    | Trig: Video<br>#Atten: 10 | dB                        | #Avg Type            | : Log-P | wr   |      |            | TYPE WWWWW<br>DET PPPPF |
| dB/div      | Ref O<br><b>Ref</b> 1 | ffset 21.55<br>I <b>2.00 dB</b> n | dB<br>N        |                           |       |                           |                           |                      |         |      |      |            |                         |
| g           |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
| 00          |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
|             |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
|             |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
| o           |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
|             |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
| 0           |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
| o           |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            | TRIG                    |
|             |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
| 0           |                       |                                   | 1              |                           |       |                           |                           |                      |         |      |      |            |                         |
|             | ala pilan by the      | ting di co di Splo                | in all and the |                           | an de | ai en en la la diretta    | a No de la la construción | ni)n diyantasija pri |         |      |      | Linipijapo |                         |
| 0           |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
| 0           |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
|             |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
|             |                       |                                   |                |                           |       |                           |                           |                      |         |      |      |            |                         |
| nter 2.     | 405000                | 0000 GHz                          |                |                           |       |                           |                           |                      |         |      |      |            | Span 01                 |
| s BW 3      | 3.0 MH                | Z                                 |                | #\                        | /BW   | 30 kHz                    |                           |                      |         | Swee | p 50 | 0.2 m      | s (8192 p               |
|             |                       |                                   |                |                           |       |                           |                           | STATUS               |         |      |      |            |                         |



| 📜 Key  | sight Spe | ctrum A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nalyzer - | Northwe | est EMO | C, Inc       |                 |               |             |          |      |              |                  |           |   |                    |     |       |       | 2    |       |         |       |      |               |     |             | 0     | ð       | X             |
|--------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|--------------|-----------------|---------------|-------------|----------|------|--------------|------------------|-----------|---|--------------------|-----|-------|-------|------|-------|---------|-------|------|---------------|-----|-------------|-------|---------|---------------|
| LXU RI | -         | RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5         | DΩ D    | C       |              |                 |               |             |          | SEN  | ISE:IN       | T                |           |   | 4                  | ALI | IGN ( | OFF   | ype: | Log   | -Pw     | r     |      |               | 01: | 50:09<br>TR | PM No | v 11, 2 | 2016<br>4 5 6 |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 | PNO:<br>FGair | Fast<br>Low | +        | •    | Trig<br>#Att | : Vide<br>en: 10 | o<br>) di | в |                    |     |       |       |      |       |         |       |      |               |     | 1           | DET   | P P I   | PPP           |
|        |           | Def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 065-14    | 04 EE   |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| 10 dE  | 3/div     | Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.5      | 5 dBr   | n<br>n  |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| Log    |           | HAGE CONSIGNABLE |           |         |         | 004004000000 | EXCLAGENCIENCIA |               |             |          |      | 000000000000 |                  |           |   | 641061000000064064 |     |       |       |      |       |         |       | Τ    | ADERDERDAADER |     |             |       |         |               |
| 11.6   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| 1.55   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         | _             |
| 0.45   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| -0.40  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| -18.5  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          | _    |              |                  |           |   |                    |     | _     |       |      |       |         |       |      |               |     |             |       |         |               |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| -28.5  |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         | ╈       |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         | _             |
| -38.5  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       | TRIC    | 3 LVL         |
| 00.0   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   | 1 1                |     |       |       |      |       |         |       |      |               | 1   |             |       |         |               |
| -48.5  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | +       |         |              | -               |               |             |          | -    |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     | _           |       |         |               |
|        | ال مورد   | l kur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | والبرا    |         | بداليهم | وللي         |                 |               | -           | d in the | u Lu |              |                  | ų.        |   |                    |     | dan.  | L. AL |      | New Y | la inte | ببيها | 4.44 | 1             |     | a lou       |       | ال بير  | ai,           |
| -58.5  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| -68.5  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
|        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       |      |               |     |             |       |         |               |
| Cent   | er 2.4    | 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000      | GHz     |         |              |                 |               |             |          |      |              |                  |           |   |                    |     |       |       |      |       |         |       | _    |               |     |             | Spa   | n 0     | H7            |
| Res    | BW 3      | .0 MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ηz        | - 111-  |         |              |                 |               |             | #VB      | W    | 30           | kHz              |           |   |                    |     |       |       |      |       | S       | wee   | ep   | 50            | 0.2 | ms          | (81   | 92      | ots)          |
| MSG    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         |         |              |                 |               |             |          |      |              |                  |           |   |                    |     | S     | TATU  | s    |       |         |       |      |               |     |             |       |         |               |



|                              |                                            | Lliab (         | Channel 0476                    |                |                            |                          |  |
|------------------------------|--------------------------------------------|-----------------|---------------------------------|----------------|----------------------------|--------------------------|--|
|                              |                                            | nigh C          | Number of                       | Value          | Limit                      |                          |  |
|                              | Pulse Width                                | Period          | Pulses                          | (%)            | (%)                        | Results                  |  |
|                              | 844 us 2                                   | 210.034 ms      | 4                               | N/A            | N/A                        | N/A                      |  |
| · · · · · ·                  |                                            |                 |                                 |                |                            |                          |  |
| 🎫 Keysight Spectrum Analyzer | - Northwest EMC, Inc                       |                 |                                 |                |                            |                          |  |
| LXU RL RF                    | 50 Ω DC                                    | SENSE           | INT                             | ALIGN OFF      |                            | 01:52:43 PM Nov 11, 2016 |  |
|                              | P                                          | NO: Fast +++ Ti | rig Delay-3.000 m<br>rig: Video | s #Avglype     | e: Log-Pwr                 | TYPE WWWWWW              |  |
|                              | IFO                                        | Gain:Low #/     | Atten: 10 dB                    |                |                            | DET PPPP                 |  |
| Bef Offse                    | t 21 55 dB                                 |                 |                                 |                |                            | Mkr3 212.8 ms            |  |
| 10 dB/div Ref 4.55           | dBm                                        |                 |                                 |                |                            | -56.22 dBm               |  |
| Log                          |                                            |                 |                                 |                |                            |                          |  |
| -5.45                        |                                            |                 |                                 |                |                            |                          |  |
| -15.5 -                      |                                            |                 |                                 |                |                            |                          |  |
| -25.5                        |                                            |                 |                                 |                |                            |                          |  |
| -35.5                        |                                            |                 |                                 |                |                            | TRICLVL                  |  |
| -45.5                        |                                            |                 |                                 |                | 3                          |                          |  |
| -55.5                        | en alle alle and and a strange and a later |                 |                                 |                | te Maata a marana ka ka ma |                          |  |
| -65.5                        |                                            |                 |                                 |                |                            |                          |  |
| -75.5                        |                                            |                 |                                 |                |                            |                          |  |
| -85.5                        |                                            |                 |                                 |                |                            |                          |  |
|                              |                                            |                 |                                 |                |                            |                          |  |
| Center 2.47600000            | 0 GHz                                      |                 | 0.1/11-                         |                | <b>0</b>                   | Span 0 Hz                |  |
| Res BW 3.0 MHz               |                                            | #VEVV 3         | U KHZ                           |                | Sweep 3                    | 00.3 ms (8192 pts)       |  |
| MKR MODE TRC SCL             | X 2 763 mg                                 | Y<br>56.00 dBm  | FUNCTION                        | FUNCTION WIDTH | FUNCT                      | ION VALUE                |  |
|                              | 3.607 ms                                   | -56.25 dBm      | 1                               |                |                            |                          |  |
| 3 N 1 t                      | 212.8 ms                                   | -56.22 dBm      | <u>ا</u>                        |                |                            |                          |  |
| 5                            |                                            |                 |                                 |                |                            | E                        |  |
| 6                            |                                            |                 |                                 |                |                            |                          |  |
| 8                            |                                            |                 |                                 |                |                            |                          |  |
| 10                           |                                            |                 |                                 |                |                            |                          |  |
| 11                           |                                            |                 |                                 |                |                            |                          |  |
| NSC .                        |                                            |                 |                                 | STATIS         |                            |                          |  |
| - Dem                        |                                            |                 |                                 | STATUS         |                            |                          |  |
|                              |                                            | High (          | Channel 2476                    | MHz            |                            |                          |  |
|                              |                                            | riighte         | Number of                       | Value          | Limit                      |                          |  |
|                              | Pulse Width                                | Period          | Pulses                          | (%)            | (%)                        | Results                  |  |
|                              | N/A                                        | N/A             | 15                              | N/A            | N/A                        | N/A                      |  |

| RI       |                                                            | DC                                        |                                                       | C C                                      |                 |                    |                         |                                |                  |                                                | 01-52-5 | 0 PM Nov 11 - 2(          |
|----------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------------------|-----------------|--------------------|-------------------------|--------------------------------|------------------|------------------------------------------------|---------|---------------------------|
| NC 1     |                                                            |                                           | PNO: Fast +++ Trig: Video<br>IFGain:Low #Atten: 10 dB |                                          | dB              | #Avg Type: Log-Pwr |                         |                                |                  | TRACE 1 2 3 4 5<br>TYPE WWWWW<br>DET P P P P P |         |                           |
| dB/div   | Ref Offset 21.55<br>Ref 4.55 dBr                           | 5 dB<br>n                                 |                                                       |                                          |                 |                    |                         |                                | 1                |                                                |         |                           |
|          |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| .45      |                                                            | 1                                         |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| 5.5      |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| 5.5      |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| .5       |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         | TRIG                      |
|          |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| .5       |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| 5 4.5    | alah manaka kana kana <mark>kana kana kana kana kan</mark> | ali se la <mark>la poste de la com</mark> | h ha sa na sa     | da ya kata kata kata kata kata kata kata | a daya katu ata |                    | li, the state of street | and the second second          | de estationer in | <b>e inden stande</b>                          |         | andra i se de la planaria |
| .5       |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| .5       |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| 5        |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
|          |                                                            |                                           |                                                       |                                          |                 |                    |                         |                                |                  |                                                |         |                           |
| enter 2. | 476000000 GH                                               | z                                         | 1                                                     | #\/B\/                                   | V 30 kHz        |                    |                         |                                |                  | voon                                           | 1 000   | Span 0                    |
| SDW3     | 50 WIN2                                                    |                                           |                                                       | #404                                     | V JU KHZ        |                    |                         | mont Commenced advances of the | 51               | weeh                                           | 1.000 5 | s to la th                |

# MAXIMUM PERMISSIBLE EXPOSURE (MPE)



### OVERVIEW

Human exposure to RF emissions from mobile devices (47 CFR §2.1091) may be evaluated based on the MPE limits adopted by the FCC for electric and magnetic field strength and/or power density, as appropriate, since exposures are assumed to occur at distances of 20 cm or more from persons. ANSI C95.1:2005 + Amd 1:2010 specifies a minimum separation distance of 20 cm for performing reliable field measurements to determine adherence to MPE limits. If the minimum separation distance between a transmitter and nearby persons is more than 20 cm under normal operating conditions, compliance with MPE limits may be determined at such distance from the transmitter. When applicable, operation instructions and prominent warning labels may be used to alert the exposed persons to maintain a specified distance from the transmitter or to limit their exposure durations and usage conditions to ensure compliance. If the use of warning labels on a transmitter is not effective or desirable, the alternative of performing SAR evaluation with the device at its closest range to persons under normal operating conditions may be used. The field strength and power density limits adopted by the FCC are based on whole-body averaged exposure and the assumption of RF field levels relate most accurately to estimating whole-body averaged SAR. This means some local values of exposures exceeding the stated field strength and power density limits may not necessarily imply non-compliance if the spatial average of spatially averaged RF fields over the exposed portions of a person's body does not exceed the limits.

## **COMPLIANCE WITH FCC 2.1091**

"Mobile devices that operate in the Cellular Radiotelephone Service, the Personal Communications Services, the Satellite Communications Services, the General Wireless Communications Service, the Wireless Communications Service, the Maritime Services and the Specialized Mobile Radio Service authorized under subpart H of part 22 of this chapter, parts 24, 25, 26 and 27 of this chapter, part 80 of this chapter (ship earth stations devices only) and part 90 of this chapter are subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if they operate at frequencies of 1.5 GHz or below and their effective radiated power (ERP) is 1.5 watts or more, or if they operate at frequencies above 1.5 GHz and their ERP is 3 watts or more. Unlicensed personal communications service devices, unlicensed millimeter wave devices and unlicensed NII devices authorized under §§15.253, 15.255, and 15.257, and subparts D and E of part 15 of this chapter are also subject to routine environmental evaluation for RF exposure prior to equipment authorization or use if their ERP is 3 watts or more or if they meet the definition of a portable device as specified in §2.1093(b) requiring evaluation under the provisions of that section. All other mobile and unlicensed transmitting devices are categorically excluded from routine environmental evaluation for RF exposure prior to equipment authorization or use, except as specified in §§1.1307(c) and 1.1307(d) of this chapter. Applications for equipment authorization of mobile and unlicensed transmitting devices subject to routine environmental evaluation must contain a statement confirming compliance with the limits specified in paragraph (d) of this section as part of their application."

The device will only be used with a separation distance between the antenna and the body of the user or nearby persons as shown in the table below and can therefore be considered a mobile transmitter per 47 CFR 2.1091(b).

## COMPLIANCE WITH FCC KDB 447498 D01 General RF Exposure Guidance v06

"KDB 447498 D01 General RF Exposure Guidance v06" provides the procedures, requirements, and authorization policies for mobile and portable devices.

Devices operating in standalone mobile device exposure conditions may contain a single transmitter or multiple transmitters that do not transmit simultaneously are covered in section 7.1.

Devices containing multiple transmitters capable of simultaneous transmissions are covered in section 7.2.



#### LIMITS

Limits for General Population /Uncontrolled Exposure: 47 CFR 1.1310

| Frequency Range | Electric Field<br>Strength | Magnetic Field<br>Strength | Power Density          | Averaging Time |
|-----------------|----------------------------|----------------------------|------------------------|----------------|
| (MHz)           | (V/m)                      | (A/m)                      | (mW/cm <sup>2</sup> )  | (minutes)      |
| 0.3 - 1.34      | 614                        | 1.63                       | *(100)                 | 30             |
| 1.34 - 30       | 824/f                      | 2.19/f                     | *(180/f <sup>2</sup> ) | 30             |
| 30 - 300        | 27.5                       | 0.073                      | 0.2                    | 30             |
| 300 - 1500      |                            |                            | f/1500                 | 30             |
| 1500 - 100000   |                            |                            | 1                      | 30             |

## f = frequency in MHz

\* = Plane-wave equivalent power density

## ASSESSMENT

The exposure level for the radio is evaluated at a 20 cm distance from the radio's transmitting antenna using the general equation:

$$S = \frac{P * G}{4 * \pi * R^2}$$

Where: S = power density (mW/cm<sup>2</sup>)

P = power input to the antenna (mW)

G = numeric power gain relative to an isotropic radiator

R = distance to the center of the radiation of the antenna (20 cm = limit for MPE estimates) P\*G = EIRP

Solving for S, the maximum power density 20 cm from the transmitting antenna is determined. This level is then compared to the applicable limit for the transmit frequency. If limits were not met at the 20 cm boundary the evaluation distance is increased until the limit is met as shown in the table below.

For co-located radios, the ratio of the calculated level to the limit is determined. The ratios for each co-located radio are summed. If the sum is less than or equal to one, then the device is excluded from testing and is deemed compliant.

The standalone MPE and summed MPE ratios are summarized in the following table:

| Radio                          | Transmit<br>Frequency<br>(MHz) | Measured Conducted<br>Output Power (mW) | Duty<br>Cycle | Highest<br>Antenna Gain<br>(dBi) | Minimum Antenna<br>Cable Loss (dB) | Minimum<br>Separation<br>Distance (cm) | Power Density<br>(mW/cm <sup>2</sup> ) | Limit<br>(mW/cm²) | Compliant |
|--------------------------------|--------------------------------|-----------------------------------------|---------------|----------------------------------|------------------------------------|----------------------------------------|----------------------------------------|-------------------|-----------|
| 2400-2483.5 MHz<br>Transceiver | 2445                           | 3.603                                   | 0.08          | 5.44                             | 0                                  | 20                                     | 0.00020                                | 1.0               | Yes       |