

Garrett Metal Detectors

Garrett Z-Lynk MS-3 Headphones

FCC 15.207:2017

FCC 15.247:2017

2400 - 2483.5 MHz DTS Transceiver

Report # GARR0032.1

NVLAP Lab Code: 201049-0

CERTIFICATE OF TEST

Last Date of Test: August 9, 2017
Garrett Metal Detectors
Model: Garrett Z-Lynk MS-3 Headphones

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2017	ANSI C63.10:2013, KDB 558074
FCC 15.247:2017	ANSI C03.10.2013, KDB 330074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
7.8.2	Carrier Frequency Separation	No	N/A	Not required for DTS devices.
7.8.3	Number of Hopping Frequencies	No	N/A	Not required for DTS devices.
7.8.4	Dwell Time	No	N/A	Not required for DTS devices.
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required for DTS devices.
11.6	Duty Cycle	Yes	N/A	Characterization of radio operation.
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. GARR0032.1

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

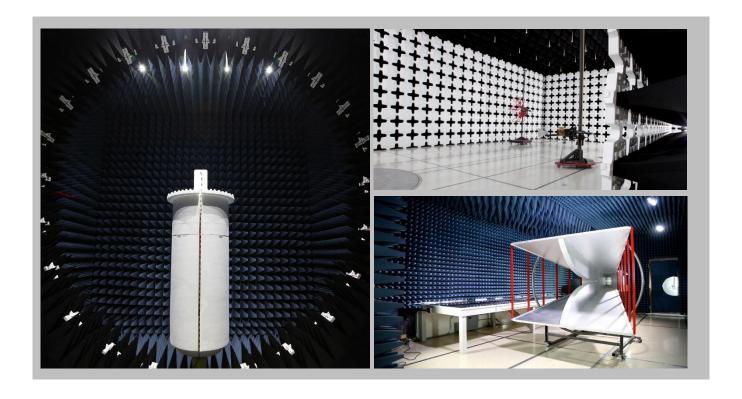
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.9 dB	-4.9 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

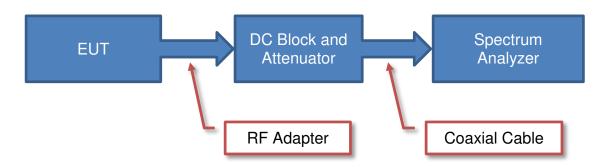
FACILITIES

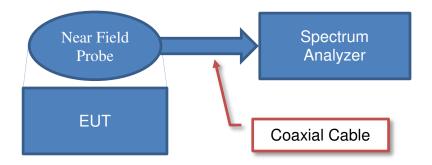


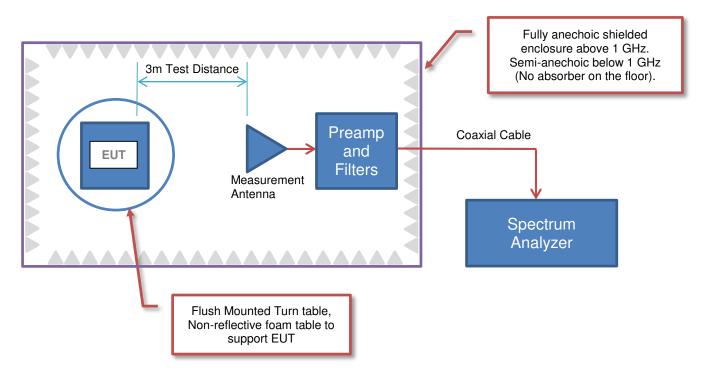
California
Labs OC01-13
41 Tesla
Irvine, CA 92618
(949) 861-8918

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600


Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600		
	NVLAP						
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innov	ation, Science and Eco	nomic Development Car	ada			
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
	BSMI						
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
	VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157		


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. GARR0032.1 7/49

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Garrett Metal Detectors
Address:	1881 W. State Street
City, State, Zip:	Garland, TX 75042
Test Requested By:	Weldon Sanders
Model:	Garrett Z-Lynk MS-3 Headphones
First Date of Test:	July 20, 2017
Last Date of Test:	August 9, 2017
Receipt Date of Samples:	July 19, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Wireless Headphones pack using 2.4 GHz Wideband Radio that allows a user to connect their own headphones to a Garrett Z-Lynk WT-1 wireless module or a Garrett metal detector with Z-Lynk. It is using the same radio under FCC ID: DBDZLYNKWR1000 / IC: 20318-ZLYNKWR1000, but the PCB has been modified (board shape is different, slight changes in component locations, longer antenna feed line to the same original Inverted F PCB antenna) and the enclosure is different. The software has not changed and the same basic functionality and intended usage has not changed.

Testing Objective:

To demonstrate compliance of the DTS radio under FCC 15.247 for operation in the 2400 - 2483.5 MHz Band

CONFIGURATIONS

Configuration GARR0032-1

Software/Firmware Running during test				
Description	Version			
PurePath Wireless Commander	1.0.0			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Headphone Board (Direct Connect)	Garrett Metal Detectors	Garrett Z-Lynk MS-3	None

Peripherals in test setup boundary								
Description	Manufacturer	Model/Part Number	Serial Number					
Laptop Computer	Acer	ZG5	LUS360B171909157F02547					
AC/DC Power Supply (Laptop)	Delta Electronics, Inc.	ADP-30JH B	202W91502BN					
Mouse	Microsoft	MSK-1113B	X821908-014					
CC Debugger	Texas Instruments	6380	None					

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	No	1.6m	No	AC Mains	AC/DC Power Supply (Laptop)
DC Cable	No	1.7m	No	AC/DC Power Supply (Laptop)	Laptop Computer
USB Cable	Yes	0.5m	No	CC Debugger	Laptop Computer
Ribbon Cable	No	0.2m	No	CC Debugger	Headphone Board (Direct Connect)
USB Cable	Yes	1.6m	Yes	Mouse	Laptop Computer

Report No. GARR0032.1

CONFIGURATIONS

Configuration GARR0032-2

Software/Firmware Running during test	
Description	Version
PurePath Wireless Commander	1.0.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Headphones	Garrett Metal Detectors	Garrett Z-Lynk MS-3	None

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Laptop Computer	Acer	ZG5	LUS360B171909157F02547				
AC/DC Power Supply (Laptop)	Delta Electronics, Inc.	ADP-30JH B	202W91502BN				
Mouse	Microsoft	MSK-1113B	X821908-014				
CC Debugger	Texas Instruments	6380	None				

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Cable	No	1.6m	No	AC Mains	AC/DC Power Supply (Laptop)
DC Cable	No	1.7m	No	AC/DC Power Supply (Laptop)	Laptop Computer
USB Cable	Yes	0.5m	No	CC Debugger	Laptop Computer
Ribbon Cable	No	0.2m	No	CC Debugger	Headphone Board (Direct Connect)
USB Cable	Yes	1.6m	Yes	Mouse	Laptop Computer

Report No. GARR0032.1 10/49

CONFIGURATIONS

Configuration GARR0032-3

Software/Firmware Running during test	
Description	Version
PurePath Wireless Commander	1.0.0

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Headphones	Garrett Metal Detectors	Garrett Z-Lynk MS-3	None

Peripherals in test setup boundary							
Description	Manufacturer	Model/Part Number	Serial Number				
Laptop Computer	Acer	ZG5	LUS360B171909157F02547				
AC/DC Power Supply (Laptop)	Delta Electronics, Inc.	ADP-30JH B	202W91502BN				
Mouse	Microsoft	MSK-1113B	X821908-014				
CC Debugger	Texas Instruments	6380	None				

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Cable	No	1.6m	No	AC Mains	AC/DC Power Supply (Laptop)	
DC Cable	No	1.7m	No	AC/DC Power Supply (Laptop)	Laptop Computer	
USB Cable	Yes	0.5m	No	CC Debugger	Laptop Computer	
Ribbon Cable	No	0.2m	No	CC Debugger	Headphone Board (Direct Connect)	
USB Cable	Yes	1.6m	Yes	Mouse	Laptop Computer	
USB Cable	Yes	0.9m	No	Headphones	Laptop Computer	

Report No. GARR0032.1 11/49

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	7/20/2017	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	7/25/2017	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	8/9/2017	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	8/9/2017	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	8/9/2017	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	8/9/2017	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
7	8/9/2017	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. GARR0032.1 12/49

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	9/21/2016	9/21/2017
Cable - Conducted Cable Assembly	Element	TXA, HHZ, TQR	TXAA	4/17/2017	4/17/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFD	8/2/2017	8/2/2018
Power Source/Analyzer	Hewlett Packard	6841A	THC	NCR	NCR

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

GARR0032-2

MODES INVESTIGATED

Continuous Transmit. Mid Channel, 2445 MHz

Report No. GARR0032.1

EUT:	Garrett Z-Lynk MS-3 Headphones	Work Order:	GARR0032
Serial Number:	None	Date:	08/09/2017
Customer:	Garrett Metal Detectors	Temperature:	24°C
Attendees:	None	Relative Humidity:	53%
Customer Project:	None	Bar. Pressure:	1018 mb
Tested By:	Marty Martin	Job Site:	TX01
Power:	USB via 110VAC/60Hz	Configuration:	GARR0032-3

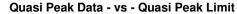
TEST SPECIFICATIONS

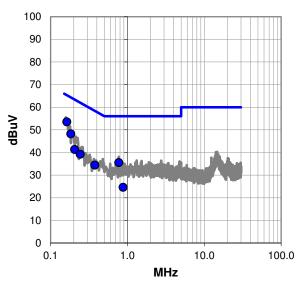
Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

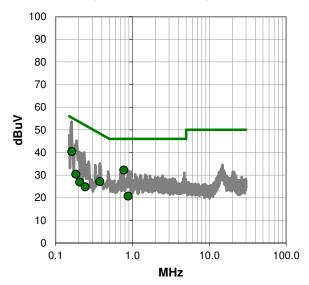
Run #:	9	Line:	High Line	Add. Ext. Attenuation (dB):	0
--------	---	-------	-----------	-----------------------------	---

COMMENTS


None


EUT OPERATING MODES

Continuous Transmit. Mid Channel, 2445 MHz


DEVIATIONS FROM TEST STANDARD

None

Average Data - vs - Average Limit

Report No. GARR0032.1 14/49

RESULTS - Run #9

Quasi Peak Data - vs - Quasi Peak Limit

addoir oak Bata 10 addoir oak Einit									
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)				
0.163	33.7	19.8	53.5	65.3	-11.8				
0.184	28.4	19.8	48.2	64.3	-16.1				
0.771	15.5	20.0	35.5	56.0	-20.5				
0.206	21.4	19.9	41.3	63.4	-22.1				
0.243	19.5	19.7	39.2	62.0	-22.8				
0.376	14.5	19.9	34.4	58.4	-24.0				
0.880	4.6	20.0	24.6	56.0	-31.4				

Average Data - vs - Average Limit									
	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
	0.771	12.2	20.0	32.2	46.0	-13.8			
	0.163	20.6	19.8	40.4	55.3	-14.9			
	0.376	7.2	19.9	27.1	48.4	-21.3			
	0.184	10.6	19.8	30.4	54.3	-23.9			
	0.880	0.7	20.0	20.7	46.0	-25.3			
	0.206	7.0	19.9	26.9	53.4	-26.5			
	0.243	5.1	19.7	24.8	52.0	-27.2			

CONCLUSION

Pass

Monty Marti

EUT:	Garrett Z-Lynk MS-3 Headphones	Work Order:	GARR0032
Serial Number:	None	Date:	08/09/2017
Customer:	Garrett Metal Detectors	Temperature:	24°C
Attendees:	None	Relative Humidity:	53%
Customer Project:	None	Bar. Pressure:	1018 mb
Tested By:	Marty Martin	Job Site:	TX01
Power:	USB via 110VAC/60Hz	Configuration:	GARR0032-3

TEST SPECIFICATIONS

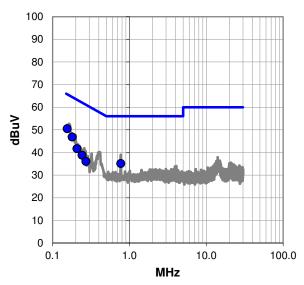
Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

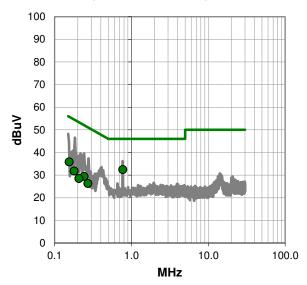
Ī	Run #:	10	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS

None


EUT OPERATING MODES

Continuous Transmit. Mid Channel, 2445 MHz


DEVIATIONS FROM TEST STANDARD

None

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Report No. GARR0032.1 16/49

RESULTS - Run #10

Quasi Peak Data - vs - Quasi Peak Limit

Guasi Can Data V3 Guasi Can Ellill								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
0.155	30.7	19.8	50.5	65.7	-15.2			
0.180	27.0	19.8	46.8	64.5	-17.7			
0.771	15.1	20.0	35.1	56.0	-20.9			
0.208	21.8	19.9	41.7	63.3	-21.6			
0.243	19.1	19.7	38.8	62.0	-23.2			
0.272	16.3	19.7	36.0	61.1	-25.1			

Average Data - vs - Average Limit											
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)						
0.771	12.4	20.0	32.4	46.0	-13.6						
0.155	16.0	19.8	35.8	55.7	-19.9						
0.243	9.7	19.7	29.4	52.0	-22.6						
0.180	12.0	19.8	31.8	54.5	-22.7						
0.208	8.6	19.9	28.5	53.3	-24.8						
0.272	6.6	19.7	26.3	51.1	-24.8						

CONCLUSION

Pass

Tested By

PSA-FSCI 2017.06.0

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuous Transmit

POWER SETTINGS INVESTIGATED

USB via 110VAC/60Hz

Battery

CONFIGURATIONS INVESTIGATED

GARR0032 - 2

GARR0032 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz	Stop Frequency	25000 MHz
------------------------	----------------	-----------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	JSDWK42-18004000-60-5P	PAM	11/18/2016	12 mo
Cable	Element	18-40GHz	TXE	11/18/2016	12 mo
Antenna - Double Ridge	A.H. Systems, Inc.	SAS-574	AXW	8/5/2016	24 mo
Cable	Element	8-18GHz	TXD	5/31/2017	12 mo
Cable	Element	1-8.2 GHz	TXC	5/31/2017	12 mo
Cable	Element	RE 9kHz - 1GHz	TXB	11/9/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	PAL	10/12/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	PAK	10/18/2016	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	PAJ	5/31/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AM-1551	PAH	11/9/2016	12 mo
Filter - Low Pass	Micro-Tronics	LPM50004	HHV	8/5/2016	12 mo
Antenna - Biconilog	ETS Lindgren	3143B	AYF	4/13/2016	24 mo
Antenna - Standard Gain	ETS Lindgren	3160-08	AJG	NCR	0 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AJF	NCR	0 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	10/4/2016	12 mo

Report No. GARR0032.1 18/49

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

	ork Order:	GARR0032		Date:	07/25/17	-21	01	
	Project:	None	Ten	nperature:	23.2 °C	Monty	1111	esta
	Job Site:	TX02		Humidity:	54% RH	9	1.00	" I'm
Seria	I Number:	None	Barome	tric Pres.:	1020 mbar	Tested	by: Marty Martin	
	EUT:	Garrett Z-Lynk MS-	3 Headphone	s				
	iguration:							
		Garrett Metal Detec	tors					
	Attendees:							
El	UT Power:	Battery						
Operati	ing Mode:	Continuous Transm	nit					
D	eviations:	None						
C	omments:	Transmitting at 5dB	sm.					
et Snec	ifications				Test M	Method		
C 15.24	17:2017	I				C63.10:2013		
Run #	22	Test Distance (n	n) 3	Antenna H	leight(s)	1 to 4(m)	Results	Pass
	•		.,	Antonna	0 (/	\ /	11000	
Г			.,,	Altonia I				
80				Pantonia i				
80				Automia				
-				- Automa				
80 -								
-								
70 -								
-								
70 -								
70 -								
70 -								
70 -				•				
70 -								
70 - 60 - 50 -								
70 -								
70 - 60 - 50 - W/\ngp 40 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -								
70 - 60 - 50 - W/\nngo 30 - 30 -								
70 - 60 - 50 - W/\ngp 40 - 60 - 60 - 60 - 60 - 60 - 60 - 60 -								
70 - 60 - 50 - W/\nngo 30 - 30 -								
70 - 60 - 50 - 70 - 70 - 70 - 70 - 70 - 70 - 7								
70 - 60 - W/NNAD 30 - 30 -								
70 - 60 - 50 - 30 - 20 -								
70 - 60 - 50 - 30 - 20 -								
70 - 60 - 50 - 50 - 30 - 20 - 10 - 10 - 50 - 50 - 50 - 50 - 50 - 5	00				10000			1000

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
7004 000				057.0				***		40.0	510	10.1	Comments
7334.668	29.9	14.0	1.0	357.9	3.0	0.0	Horz	AV	0.0	43.9	54.0	-10.1	EUT Horz, Mid Channel, 2445 MHz
7334.772	29.9	14.0	1.0	242.0	3.0	0.0	Vert	AV	0.0	43.9	54.0	-10.1	EUT Horz, Mid Channel, 2445 MHz
7440.280	29.4	14.1	1.0	345.0	3.0	0.0	Horz	AV	0.0	43.5	54.0	-10.5	EUT Horz, High Channel 2480 MHz
7439.878	29.3	14.1	1.0	93.9	3.0	0.0	Vert	AV	0.0	43.4	54.0	-10.6	EUT Horz, High Channel 2480 MHz
4960.025	30.2	7.0	1.0	21.9	3.0	0.0	Horz	AV	0.0	37.2	54.0	-16.8	EUT Horz, High Channel 2480 MHz
4960.403	30.2	7.0	1.0	73.0	3.0	0.0	Vert	AV	0.0	37.2	54.0	-16.8	EUT Horz, High Channel 2480 MHz
4960.228	30.2	7.0	1.0	261.0	3.0	0.0	Horz	AV	0.0	37.2	54.0	-16.8	EUT on Side, High Channel 2480 MHz
4960.428	30.2	7.0	1.0	13.0	3.0	0.0	Horz	AV	0.0	37.2	54.0	-16.8	EUT Vert, High Channel 2480 MHz
4959.900	30.2	7.0	1.0	222.0	3.0	0.0	Vert	AV	0.0	37.2	54.0	-16.8	EUT Vert, High Channel 2480 MHz
4809.500	30.3	6.8	3.9	78.0	3.0	0.0	Horz	AV	0.0	37.1	54.0	-16.9	EUT Horz, Low Channel, 2405 MHz
4889.507	30.2	6.9	1.0	219.9	3.0	0.0	Horz	AV	0.0	37.1	54.0	-16.9	EUT Horz, Mid Channel, 2445 MHz
4809.507	30.1	6.8	1.0	247.0	3.0	0.0	Vert	AV	0.0	36.9	54.0	-17.1	EUT Horz, Low Channel, 2405 MHz
4889.868	30.0	6.9	1.0	298.9	3.0	0.0	Vert	AV	0.0	36.9	54.0	-17.1	EUT Horz, Mid Channel, 2445 MHz
7336.340	41.9	14.0	1.0	230.0	3.0	0.0	Horz	PK	0.0	55.9	74.0	-18.1	EUT Horz, Mid Channel, 2445 MHz
7335.975	41.2	14.0	1.2	231.0	3.0	0.0	Vert	PK	0.0	55.2	74.0	-18.8	EUT Horz, Mid Channel, 2445 MHz
7440.233	40.9	14.1	1.0	240.0	3.0	0.0	Vert	PK	0.0	55.0	74.0	-19.0	EUT Horz, High Channel 2480 MHz
7440.363	40.7	14.1	1.0	182.0	3.0	0.0	Horz	PK	0.0	54.8	74.0	-19.2	EUT Horz, High Channel 2480 MHz
12024.520	33.5	-2.0	1.0	102.0	3.0	0.0	Vert	AV	0.0	31.5	54.0	-22.5	EUT Horz, Low Channel, 2405 MHz
12224.650	32.3	-1.6	2.1	145.0	3.0	0.0	Horz	AV	0.0	30.7	54.0	-23.3	EUT Horz, Mid Channel, 2445 MHz
12024.530	32.2	-2.0	1.0	134.0	3.0	0.0	Horz	AV	0.0	30.2	54.0	-23.8	EUT Horz, Low Channel, 2405 MHz
12224.810	31.8	-1.6	1.0	130.9	3.0	0.0	Vert	AV	0.0	30.2	54.0	-23.8	EUT Horz, Mid Channel, 2445 MHz
4960.198	42.4	7.0	1.0	360.0	3.0	0.0	Horz	PK	0.0	49.4	74.0	-24.6	EUT Vert, High Channel 2480 MHz
4809.545	42.5	6.8	3.9	78.0	3.0	0.0	Horz	PK	0.0	49.3	74.0	-24.7	EUT Horz, Low Channel, 2405 MHz

Report No. GARR0032.1 20/49

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12399.620	30.1	-0.8	1.0	3.9	3.0	0.0	Vert	AV	0.0	29.3	54.0	-24.7	EUT Horz, High Channel 2480 MHz
12399.610	29.9	-0.8	1.6	190.9	3.0	0.0	Horz	AV	0.0	29.1	54.0	-24.9	EUT Horz, High Channel 2480 MHz
4959.922	41.8	7.0	1.0	295.0	3.0	0.0	Vert	PK	0.0	48.8	74.0	-25.2	EUT on Side, High Channel 2480 MHz
4960.015	41.7	7.0	1.0	270.0	3.0	0.0	Horz	PK	0.0	48.7	74.0	-25.3	EUT on Side, High Channel 2480 MHz
4959.923	41.6	7.0	1.0	153.9	3.0	0.0	Horz	PK	0.0	48.6	74.0	-25.4	EUT Horz, High Channel 2480 MHz
4890.387	41.6	6.9	1.0	87.9	3.0	0.0	Vert	PK	0.0	48.5	74.0	-25.5	EUT Horz, Mid Channel, 2445 MHz
4959.755	41.4	7.0	1.0	189.9	3.0	0.0	Vert	PK	0.0	48.4	74.0	-25.6	EUT Vert, High Channel 2480 MHz
4959.810	41.4	7.0	3.6	93.0	3.0	0.0	Vert	PK	0.0	48.4	74.0	-25.6	EUT Horz, High Channel 2480 MHz
4810.035	41.3	6.8	1.0	247.0	3.0	0.0	Vert	PK	0.0	48.1	74.0	-25.9	EUT Horz, Low Channel, 2405 MHz
4889.830	41.0	6.9	1.0	274.9	3.0	0.0	Horz	PK	0.0	47.9	74.0	-26.1	EUT Horz, Mid Channel, 2445 MHz
12025.290	45.3	-2.0	1.0	102.0	3.0	0.0	Vert	PK	0.0	43.3	74.0	-30.7	EUT Horz, Low Channel, 2405 MHz
12025.200	43.9	-2.0	1.0	134.0	3.0	0.0	Horz	PK	0.0	41.9	74.0	-32.1	EUT Horz, Low Channel, 2405 MHz
12225.500	42.7	-1.6	1.0	231.0	3.0	0.0	Vert	PK	0.0	41.1	74.0	-32.9	EUT Horz, Mid Channel, 2445 MHz
12224.740	42.6	-1.6	1.0	297.0	3.0	0.0	Horz	PK	0.0	41.0	74.0	-33.0	EUT Horz, Mid Channel, 2445 MHz
12399.980	41.5	-0.8	1.0	200.0	3.0	0.0	Vert	PK	0.0	40.7	74.0	-33.3	EUT Horz, High Channel 2480 MHz
12399.860	41.2	-0.8	1.0	147.9	3.0	0.0	Horz	PK	0.0	40.4	74.0	-33.6	EUT Horz, High Channel 2480 MHz
4959.760	30.1	7.0	1.0	32.0	3.0	0.0	Vert	AV	0.0	37.1	54.0	-16.9	EUT on Side, High Channel 2480 MHz

Seria Conf	figuration: Customer: Attendees: UT Power: ting Mode: Deviations:	None TX02 None Garrett Z-Lyn 2 Garrett Metal None	k MS-3 Hea	Barome	Date: nperature: Humidity: tric Pres.: S	23.2 54%	5/17 2 °C 5 RH mbar		Tested by:		Mari	PSAESCI 2017 06.01	
FCC 15.24	17:2017	Test Dista	nce (m)	3	Antenna I	Height(s)	ANSI C63	1.10:2013 1 to 4(m)		Result	s F	'ass	- - -
80 -					<u> </u>								
60 - 50 -					•								
m//ngp 40 -													
20 - 10 -													
0 +	00					MHz				■ PK	◆ AV	10000 • QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	(meters) (d	Azimuth degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.500 2483.500 2483.500 2483.503 2483.520 2483.510 2483.537 2483.537	37.8 37.5 36.8 53.5 51.5 50.0 49.2 48.9 48.6	-4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0 -4.0	1.0 3.9 2.9 1.0 1.0 3.2	94.9 141.9 160.9 31.0 231.0 205.0 94.9 141.9 160.9	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	Vert Horz Vert Horz Horz Vert Vert Vert Vert	AV AV AV PK PK PK PK PK PK	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	53.8 53.5 52.8 69.5 67.5 66.0 65.2 64.9 64.6	54.0 54.0 54.0 74.0 74.0 74.0 74.0 74.0 74.0	-0.2 -0.5 -1.2 -4.5 -6.5 -8.0 -8.8 -9.1 -9.4	EUT on Vert, High Channel 2480 MHz EUT Horz, High Channel 2480 MHz EUT on Side, High Channel 2480 MH EUT on Vert, High Channel 2480 MH EUT on Side, High Channel 2480 MH EUT Horz, High Channel 2480 MH

Report No. GARR0032.1 22/49

										EmiR5 201	7.07.11		PSA-ESCI 2017.06.0	1
W	ork Order:		RR0032		Date:		25/17	n	1 -	_	1	11	-	
	Project:		one	Ter	mperature:		2 °C	7/6	orty		111	ant	2.	
	Job Site:		X02		Humidity:		6 RH		8			124		
Seria	al Number:		one		etric Pres.:	1020) mbar		Tested by:	Marty	Martir	1		_
	EUT:	Garrett Z-	Lynk MS-3 H	eadphone	es									_
Con	figuration:	2												_
	Customer:	Garrett M	etal Detectors	S										=
	Attendees:													_
E	UT Power:	Battery												_
		Continuo	ıe											=
Opera	ting Mode:	Oonlindoo	13											
		None												_
	Deviations:	None												
		T	:											_
_		ransmill	ing at 5 dBm											
,	comments:													
														_
Test Spec	cifications						Test Met	hod						=
FCC 15.24								3.10:2013						_
. 00 .0.2							,	3.10.2010						
Dun #	20	Toot D	iotonoo (m)	2	Antonno L	oiabt/o\		1 to 1/m		Doo	ulto	В		_
Run #	33	Test D	istance (m)	3	Antenna H	eignt(s)		1 to 4(m)		Res	uits		ass	=
ſ														
80 -														
00]														
70 -														
70														
60 -														
00														
50					<u> </u>									
εől					•									
₩/ \ng 40 -														
₩ *														
30 -														
50														
20 -														
20														
10 -														
0 +														
10	00												10000	
						MHz								
						IVI∏Z					PK	◆ AV	QP	
	Calculated					External	Polarity/ Transducer		Distance				Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Type	Detector	Adjustment	Adjust	ed	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	,,,		(dB)	(dBuV	/m)	(dBuV/m)	(dB)	
														Marker Delta Comments
2485.600	34.8	-4.0	3.9	31.0	3.0	20.0	Horz	AV	0.0	50.	8	54.0	-3.2	EUT Vert, High Ch, 2480: Fund 72.4dBuV + -
0.40= ===				005 -	0.5	aa -								37.6dBc = 34.8dBuV (calc. amp.)
2483.800	34.4	-4.0	1.0	205.0	3.0	20.0	Vert	AV	0.0	50.	4	54.0	-3.6	EUT Horz, High Ch, 2480: Fund 76.1dBuV + -
2484.115	34.1	-4.0	2.9	231.0	3.0	20.0	Horz	AV	0.0	50.	1	54.0	-3.9	41.7dBc = 34.4dBuV (calc. amp.) EUT on Side, High Ch, 2480: Fund 76.1dBuV + -
404.115	34.1	-4.0	۷.5	231.0	3.0	20.0	11012	AV	0.0	50.		J4.U	-3.9	42.0dBc = 34.1dBuV (calc. amp.)

Report No. GARR0032.1 23/49

EUT on Side, High Ch, 2480 PSA:ESCI 2017.06.01

EUT Vert, High Ch, 2480

EUT Horz, High Ch, 2480 PSA-ESCI 2017.06.01

Project: None Temperature: 22.6 °C Municipy: 55.4% RH None Barometric Pres. 10.20 mbar Tested by: Marty Martin EUT: Garrett Z-lymk MS-3 Headphones 10.20 mbar Tested by: Marty Martin EUT: Garrett Z-lymk MS-3 Headphones 10.20 mbar Tested by: Marty Martin EUT: Garrett Z-lymk MS-3 Headphones 10.20 mbar Tested by: Marty Martin EUT: Garrett Z-lymk MS-3 Headphones 10.20 mbar Tested by: Marty Martin EUT: Garrett Z-lymk MS-3 Headphones 10.20 mbar Tested by: Marty Martin EUT: Marty Marty Marty MS-3 EUT: EUT: Marty MS-3 EUT: Marty MS-3 EUT: EUT: Marty MS-3 EUT: EUT: Marty MS-3 EUT: EUT											EmiR5 2017.0	37.11	PSA-ESCI 2017.06.0	01
Continue	Wo					Date:			- 1	7 1		nn		
Continue					Ter				1/10	cirly	- 1	Mar	la	
Configuration Sample Metal Detectors										0		19	<u> </u>	
Customer Sarett Metal Detectors	Serial						1020	mbar		rested by:	: Marty IV	lartin		<u> </u>
Customer: Carrett Metal Detectors None	0			Lynk MS-3 F	Headphone	es								<u> </u>
Attendees: None EUT Power USB via 110VAC/60Hz Operating Mode Deviations None Transmitting at 5dBm. Using the headphones while charging is not a typical mode for the end user, but the headphones can operate in this mode. Scans were taken and the worse case points were re-tested to verify compliance while the headphones were charging and transmitting Test Method ANSI C63.10.2013 Run # 60 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass WHz WHz Freq Aregundas Pascur Pascur				-+-I D -++-										<u> </u>
Deviations None Transmitting at 5dBm. Using the headphones while charging is not a typical mode for the end user, but the headphones headphones can operate in this mode. Scars were taken and the worse case points were re-tested to verify compliance while the headphones were charging and transmitting at 5dBm. Using the headphones while charging is not a typical mode for the end user, but the headphones headphones were charging and transmitting at 5dBm. Using the headphones were classed in this mode. Scars were taken and the worse case points were re-tested to verify compliance while the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging and transmitting and transmitting at 5dBm. Using the headphones were charging and transmitting at 5dBm. Using the headphones were charging in the taken and the worse case points were re-tested to verify compliance while the headphones were charging in the taken and the worse case points were re-tested to verify compliance while the headphones were charging in the taken and the worse case points were re-tested to verify compliance. **Test** Method**				etai Detectoi	rs									_
Deviations None				40)/40/0011	_									<u> </u>
Deviations Transmitting at 5dBm. Using the headphones while charging is not a typical mode for the end user, but the headphones headphones case points were re-tested to verify compliance while the headphones were charging and transmitting Test Method	EU	JI Power:			Z									<u> </u>
Transmitting at 5dBm. Using the headphones while charging is not a typical mode for the end user, but the headphones loan operate in this mode. Scans were taken and the worse case points were re-tested to verify compliance while the headphones were charging and transmitting **Est Method** C15.247.2017 ANSI C63.10:2013 **Test Method** ANSI C63.10:2013 **Antenna Height(a)** 1 to 4(m) Results Pass **Pass **Pass	Operati	•		is Transmit										<u> </u>
Comments Can operate in this mode. Scans were taken and the worse case points were re-tested to verify compliance while the headphones were charging and transmitting	De	eviations:												_
ANSI C63.10:2013 ANSI C63.10	Co	omments:	can opera	te in this mo	de. Scan	s were taker	n and the w							<u> </u>
ANSI C63.10:2013 ANSI C63.10	st Speci	ifications						Test Met	hod					_
Run # 60 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass												-	-	_
Note Policy Pol	Dun #	60	Toot Di	otonoo (m)	2	Antonno	Hoight/o)		1 to 4/m)		Pagu	lto f	2000	_
Transductor (right) MHz PK AV QP	Run #		Test Di	stance (m)	3	Antenna	neigni(s)		1 (0 4(111)		nesu	isj r	rass	_
NHz Transducer	80													
NHz Transducer														
So	70									-				
So														
## Amplitude (meters) Test Distance (meters) Test Distance (meters) Type Detector Type Detector Adjusted (dBuVm) Compared to (dBuVm) Compared to (meters) Compared	60													
## Amplitude (meters) Test Distance (meters) Test Distance (meters) Type Detector Type Detector Adjusted (dBuVm) Compared to (dBuVm) Compared to (meters) Compared	}								-				$\overline{}$	
30 - 20 - 10000 MHz PK	- 50 +													
30 - 20 - 10000 MHz PK	5								ĭ				i I	
30 - 20 - 10000 MHz PK	3 [_				i I	
30 - 20 - 10000 MHz PK	9 40 †													
20 1000 1000 10000	•													
20 1000 1000 10000	30													
Transducer Type Detector Distance Adjusted (dBuV/m) (dB) Comments Amplitude (dBuV/m) (dB) Factor (dB) Factor (meters) Freq (MHz) Factor (dB) Factor (meters) Freq (MHz) Factor (dB) Factor (meters) Freq (MHz) Factor (dB) Factor (dB) Factor (meters) Freq (MHz) Factor (meters) Factor (meters) Freq (MHz) Factor (meters)	30													
Transducer Type Detector Distance Adjusted (dBuV/m) (dB) Comments Amplitude (dBuV/m) (dB) Factor (dB) Factor (meters) Freq (MHz) Factor (dB) Factor (meters) Freq (MHz) Factor (dB) Factor (meters) Freq (MHz) Factor (dB) Factor (dB) Factor (meters) Freq (MHz) Factor (meters) Factor (meters) Freq (MHz) Factor (meters)														
Test Distance (MHz) MHz Maximum (degrees) Test Distance (meters) Test Distance (meter	20													
Test Distance (MHz) MHz Maximum (degrees) Test Distance (meters) Test Distance (meter														
Test Distance (MHz) MHz Maximum (degrees) Test Distance (meters) Test Distance (meter														
Test Distance (MHz)	10 +													
Test Distance (MHz)														
Test Distance (MHz)														
Freq		10											10000	
Freq (MHz) (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB	100	Ü					MU-							
Freq Amplitude Factor (dB)							IVITIZ				■ P	K ◆ AV	• QP	
(MHz) (dBuV) (dB) (meters) (degrees) (meters) (dB) (dB) (dB) (dBuV/m) (dBuV/m) (dB) Comments 253.765 41.0 7.0 1.0 147.0 3.0 0.0 Vert AV 0.0 48.0 54.0 -6.0 EUT on Vert, High Channel 248 315.765 33.8 6.8 1.2 214.9 3.0 0.0 Horz AV 0.0 40.6 54.0 -13.4 EUT Horz, Low Channel, 2405 I 353.635 46.5 7.0 1.0 147.0 3.0 0.0 Vert PK 0.0 53.5 74.0 -20.5 EUT on Vert, High Channel 248	Fred	Amplitude	Factor	Antenna Height	Azimuth	Test Distance		Transducer	Detector		Adjusto	d Spec Limit	Compared to	
953.765 41.0 7.0 1.0 147.0 3.0 0.0 Vert AV 0.0 48.0 54.0 -6.0 EUT on Vert, High Channel 248 315.765 33.8 6.8 1.2 214.9 3.0 0.0 Horz AV 0.0 40.6 54.0 -13.4 EUT Horz, Low Channel, 2405 1953.635 46.5 7.0 1.0 147.0 3.0 0.0 Vert PK 0.0 53.5 74.0 -20.5 EUT on Vert, High Channel 248								1300	Detector					Commente
953.635 46.5 7.0 1.0 147.0 3.0 0.0 Vert PK 0.0 53.5 74.0 -20.5 EUT on Vert, High Channel 248	(141112)	(* . /												
	1953.765	41.0	7.0	1.0			0.0			0.0				
10.0000 43.0 0.0 1.2 214.9 3.0 0.0 HOIZ PK 0.0 49.8 /4.0 -24.2 EUTHOIZ, LOW Channel, 2405 i	1953.765 1815.765	41.0 33.8	6.8	1.2	214.9	3.0	0.0	Horz	AV	0.0	40.6	54.0	-13.4	EUT Horz, Low Channel, 2405 !
	1953.765 1815.765 1953.635	41.0 33.8 46.5	6.8 7.0	1.2 1.0	214.9 147.0	3.0 3.0	0.0	Horz Vert	AV PK	0.0 0.0	40.6 53.5	54.0 74.0	-13.4 -20.5	EUT on Vert, High Channel 2480 EUT Horz, Low Channel, 2405 M EUT on Vert, High Channel 2480

Report No. GARR0032.1 26/49

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Generator - Signal	Agilent	E4422B	TGS	3/27/2015	3/27/2018
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	10/4/2016	10/4/2017

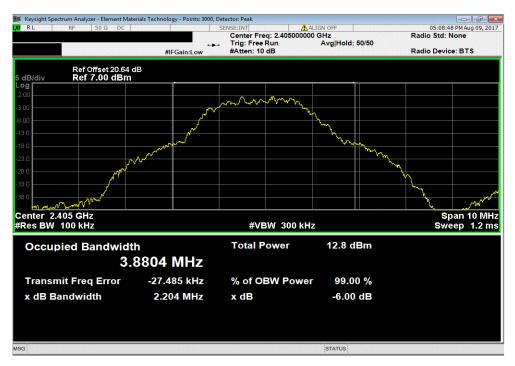
TEST DESCRIPTION

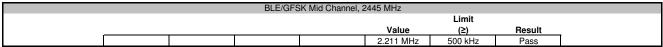
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.

							TbtTx 2017.07.11	XMit 2017.02.08
EUT:	Garrett Z-Lynk MS-3 Headph	iones				Work Order:	GARR0032	
Serial Number:	None					Date: 0	08/09/17	
Customer:	Garrett Metal Detectors					Temperature: 2	23.8 °C	
Attendees:	None					Humidity:	53% RH	
Project:	None					Barometric Pres.:	1018 mbar	
Tested by:	Marty Martin			Power:	USB via 110VAC/60Hz	Job Site:	TX02	
TEST SPECIFICATI	ONS				Test Method			
FCC 15.247:2017					ANSI C63.10:2013			
COMMENTS								
None								
DEVIATIONS FROM	I TEST STANDARD							
None								
			m	. —	21.			
Configuration #	1		1/100	an .	Marti			
		Signature	Mark I mark I was	1	atila			
							Limit	
						Value	(≥)	Result
BLE/GFSK Low Cha	nnel, 2405 MHz	<u> </u>			<u> </u>	2.204 MHz	500 kHz	Pass
BLE/GFSK Mid Char	nnel, 2445 MHz					2.211 MHz	500 kHz	Pass
BLE/GESK High Cha	annel 2480 MHz					2 211 MHz	500 kHz	Pass

Report No. GARR0032.1



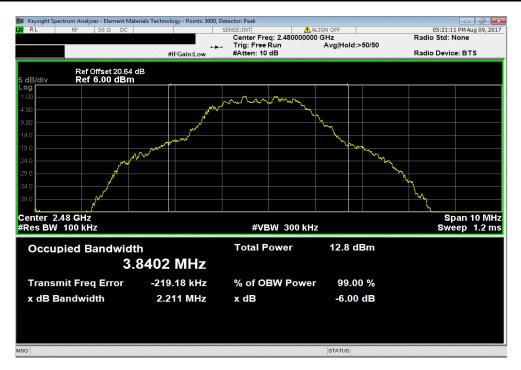

BLE/GFSK Low Channel, 2405 MHz

Limit

Value (2) Result

2.204 MHz 500 kHz Pass

Report No. GARR0032.1 30/49



BLE/GFSK High Channel, 2480 MHz

Limit

Value (≥) Result

2.211 MHz 500 kHz Pass

Report No. GARR0032.1 31/49

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Generator - Signal	Agilent	E4422B	TGS	3/27/2015	3/27/2018
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	3/14/2017	3/14/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

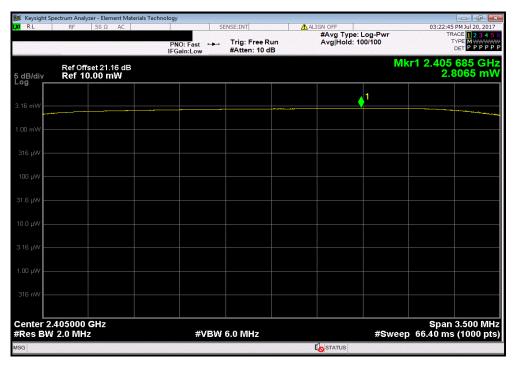
Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

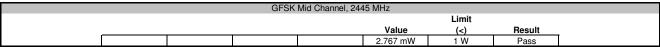
The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

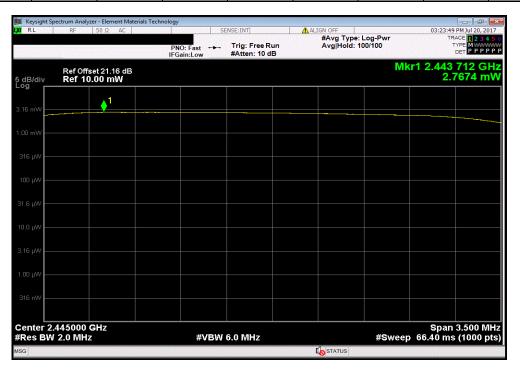
De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.

						TbtTx 2017.04.18	XMit 2017.02.08
EUT:	Garrett Z-Lynk MS-3 Headp	phones			Work Order:	GARR0032	
Serial Number:	None				Date:	07/20/17	
Customer:	Garrett Metal Detectors				Temperature:	22.8 °C	
Attendees:	None				Humidity:	53.5% RH	
Project:	None				Barometric Pres.:	1022 mbar	
Tested by:	Marty Martin		Power	Battery	Job Site:	TX09	
TEST SPECIFICATI	ONS			Test Method			
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FROM	I TEST STANDARD						
None							
			m	1111			
Configuration #	1 1		Monty	Marta			
		Signature	8				
						Limit	
					Value	(<)	Result
GFSK Low Channel,		·	·	·	2.807 mW	1 W	Pass
GFSK Mid Channel,					2.767 mW	1 W	Pass
GFSK High Channel	, 2480 MHz				2.676 mW	1 W	Pass

Report No. GARR0032.1 33/49

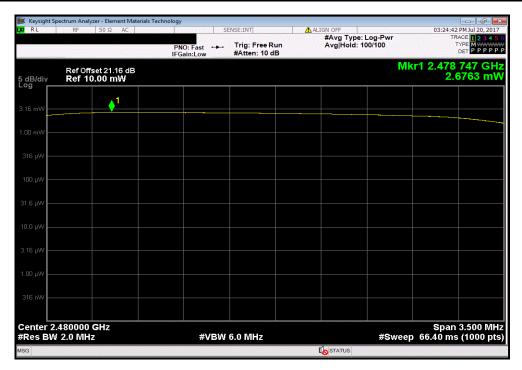



GFSK Low Channel, 2405 MHz


Limit

Value (<) Result

2.807 mW 1 W Pass



Report No. GARR0032.1 34/49

Report No. GARR0032.1

POWER SPECTRAL DENSITY

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Generator - Signal	Agilent	E4422B	TGS	3/27/2015	3/27/2018
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	10/4/2016	10/4/2017

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

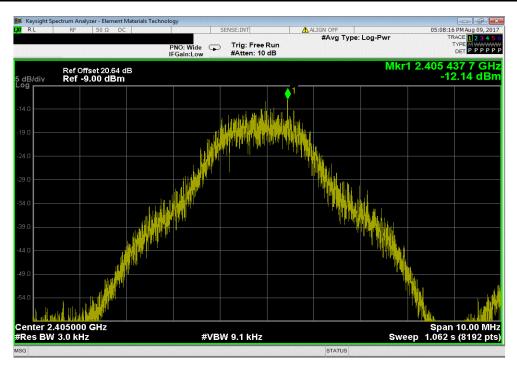
Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

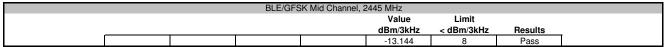
POWER SPECTRAL DENSITY

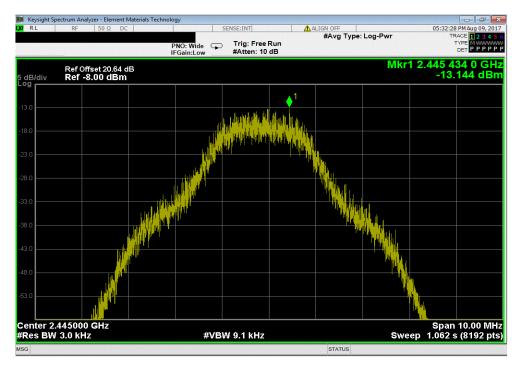
						TbtTx 2017.0	7.11 XMit 2017.02.08
EUT:	Garrett Z-Lynk MS-3 Headpho	nes			Wor	k Order: GARR0032	
Serial Number:	None					Date: 08/09/17	
Customer:	Garrett Metal Detectors				Temp	erature: 23.8 °C	
Attendees:	None				Ĥ	umidity: 53% RH	
Project:	None				Barometr	ic Pres.: 1018 mbar	
Tested by:	Marty Martin		P	ower: USB via 110VAC/60Hz		Job Site: TX02	
TEST SPECIFICATI	ONS			Test Method			
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	1	Signature	Morty	Marti			
		Signature			Val	ue Limit	
					dBm/		Results
BLE/GFSK Low Cha	nnel, 2405 MHz				-12.	144 8	Pass
BLE/GFSK Mid Char	nnel, 2445 MHz				-13.*	144 8	Pass
BLE/GESK High Cha	annel 2480 MHz				-13.3	337 8	Pass

Report No. GARR0032.1

POWER SPECTRAL DENSITY




BLE/GFSK Low Channel, 2405 MHz

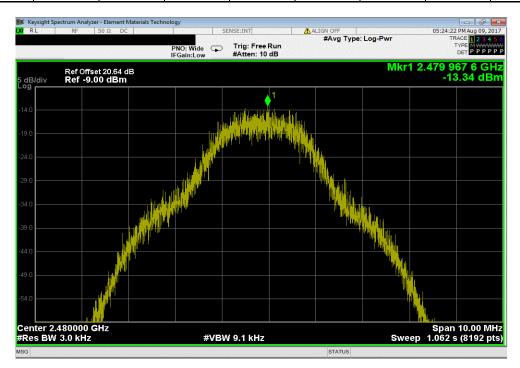

Value Limit

dBm/3kHz < dBm/3kHz Results

-12.144 8 Pass

Report No. GARR0032.1 38/49

POWER SPECTRAL DENSITY



BLE/GFSK High Channel, 2480 MHz

Value Limit

dBm/3kHz < dBm/3kHz Results

-13.337 8 Pass

Report No. GARR0032.1 39/49

BAND EDGE COMPLIANCE

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	10/4/2016	10/4/2017
Generator - Signal	Agilent	E4422B	TGS	3/27/2015	3/27/2018

TEST DESCRIPTION

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

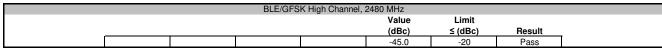
The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE

						TbtTx 2017.07.11	XMit 2017.02.08
EUT:	Garrett Z-Lynk MS-3 Headphone	es			Work Order:	GARR0032	
Serial Number:	None					08/09/17	
Customer:	Garrett Metal Detectors				Temperature:		
Attendees:	None				Humidity:	53.2% RH	
Project:					Barometric Pres.:	1018 mbar	
Tested by:	Marty Martin		Power	USB via 110VAC/60Hz	Job Site:	TX02	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
DEVIATIONS FROM	M TEST STANDARD						
None							
		- 22	21				
Configuration #	1	11	low	Marti			
		Signature	9	· et sta			
	-	-			Value	Limit	
					(dBc)	≤ (dBc)	Result
BLE/GFSK Low Cha	annel, 2405 MHz				-41.3	-20	Pass
BLE/GFSK High Ch	annel, 2480 MHz				-45.0	-20	Pass

Report No. GARR0032.1 41/49

BAND EDGE COMPLIANCE



BLE/GFSK Low Channel, 2405 MHz

Value Limit
(dBc) ≤ (dBc) Result

-41.3 -20 Pass

Report No. GARR0032.1 42/49

XMit 2017.02.08

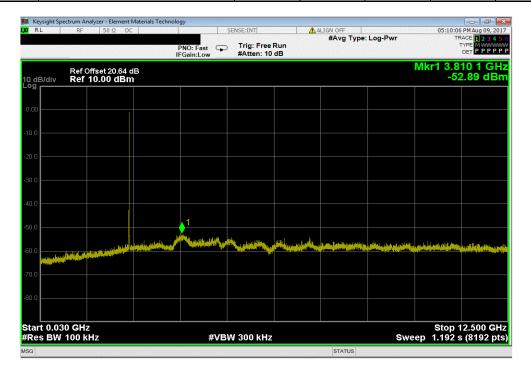
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Generator - Signal	Agilent	E4422B	TGS	3/27/2015	3/27/2018
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFL	10/4/2016	10/4/2017

TEST DESCRIPTION

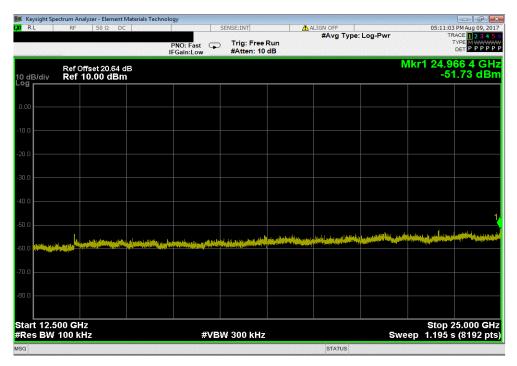
The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.


	rrett Z-Lynk MS-3 Headphones			Work Order:		
Serial Number: Non					08/09/17	
Customer: Gar	rrett Metal Detectors			Temperature:	23.8 °C	
Attendees: Non	ne			Humidity:	53.2% RH	
Project: Non	ne			Barometric Pres.:	1018 mbar	
Tested by: Mar			Power: USB via 110VAC/60Hz	Job Site:	TX02	
TEST SPECIFICATIONS	S		Test Method			
FCC 15.247:2017			ANSI C63.10:2013			
COMMENTS						
None						
1						
DEVIATIONS FROM TES	ST STANDARD					
DEVIATIONS FROM TES	ST STANDARD					
None	ST STANDARD	on.	2-4- 22-4			
	1	n M	nty Marti			
None	1	Signature	onty Marti			
None	1	Signature	Frequency	Max Value	Limit	Parella
None Configuration #	1	Signature	Frequency Range	(dBc)	≤ (dBc)	Result
None Configuration # BLE/GFSK Low Channel,	1 .	Signature	Frequency Range Fundamental	(dBc) N/A	≤ (dBc) N/A	N/A
None Configuration # BLE/GFSK Low Channel, BLE/GFSK Low Channel,	1 il, 2405 MHz il, 2405 MHz	Signature 1716	Frequency Range Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -53.87	≤ (dBc) N/A -20	N/A Pass
None Configuration # BLE/GFSK Low Channel, BLE/GFSK Low Channel, BLE/GFSK Low Channel,	1 il, 2405 MHz il, 2405 MHz il, 2405 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -53.87 -52.71	≤ (dBc) N/A -20 -20	N/A Pass Pass
None Configuration # BLE/GFSK Low Channel, BLE/GFSK Low Channel,	1 il, 2405 MHz il, 2405 MHz il, 2405 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -53.87	≤ (dBc) N/A -20	N/A Pass
None Configuration # BLE/GFSK Low Channel, BLE/GFSK Low Channel, BLE/GFSK Low Channel,	1 I, 2405 MHz II, 2405 MHz II, 2405 MHz I, 2445 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -53.87 -52.71	≤ (dBc) N/A -20 -20	N/A Pass Pass
None Configuration # BLE/GFSK Low Channel, BLE/GFSK Low Channel, BLE/GFSK Mid Channel, BLE/GFSK Mid Channel,	1 si, 2405 MHz si, 2405 MHz si, 2405 MHz si, 2445 MHz si, 2445 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	(dBc) N/A -53.87 -52.71 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
None Configuration # BLE/GFSK Low Channel, BLE/GFSK Low Channel, BLE/GFSK Mid Channel, BLE/GFSK Mid Channel,	1 I, 2405 MHz I, 2405 MHz I, 2405 MHz I, 2445 MHz I, 2445 MHz I, 2445 MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -53.87 -52.71 N/A -53.49	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
None Configuration # BLE/GFSK Low Channel, BLE/GFSK Low Channel, BLE/GFSK Mid Channel, BLE/GFSK Mid Channel, BLE/GFSK Mid Channel, BLE/GFSK Mid Channel,	1, 2405 MHz II, 2405 MHz II, 2405 MHz II, 2405 MHz II, 2445 MHz III, 2445 MHz IIII, 2445 MHz IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz	(dBc) N/A -53.87 -52.71 N/A -53.49 -53.49	≤ (dBc) N/A -20 -20 N/A -20 -20	N/A Pass Pass N/A Pass Pass

Report No. GARR0032.1 44/49

BLE/GFSk	Low Channel, 2405 MHz		
Frequency	Max Value	Limit	
Range	(dBc)	≤ (dBc)	Result
30 MHz - 12.5 GHz	-53.87	-20	Pass

Report No. GARR0032.1 45/49



BLE/GFSK Low Channel, 2405 MHz

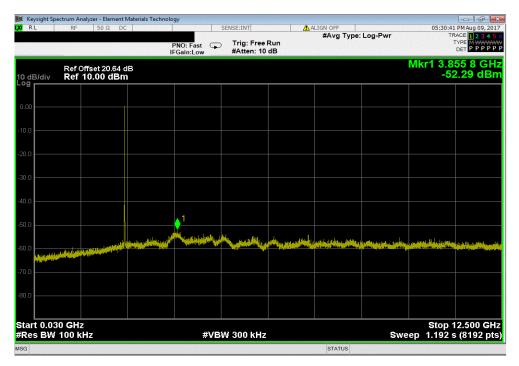
Frequency Max Value Limit

Range (dBc) ≤ (dBc) Result

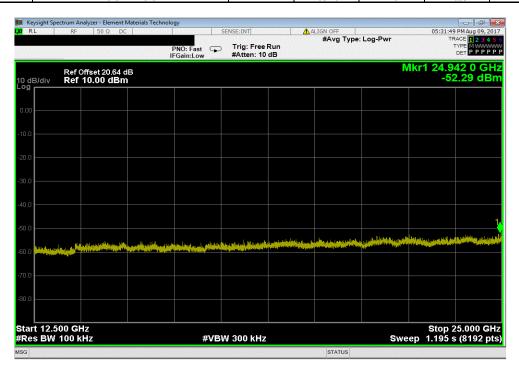
12.5 GHz - 25 GHz - 52.71 -20 Pass

BLE/GFSK Mid Channel, 2445 MHz					
Frequency	Max Value Limit				
Range	(dBc) ≤ (dBc)	Result			
Fundamental	N/A N/A	N/A			

Report No. GARR0032.1 46/49



BLE/GFSK Mid Channel, 2445 MHz


Frequency Max Value Limit

Range (dBc) ≤ (dBc) Result

30 MHz - 12.5 GHz -53.49 -20 Pass

BLE/GF	SK Mid Channel, 2	445 MHz		
Frequency		Max Value	Limit	
Range		(dBc)	≤ (dBc)	Result
12.5 GHz - 25 GHz		-53.49	-20	Pass

Report No. GARR0032.1 47/49

BLE/GFSK High Channel, 2480 MHz

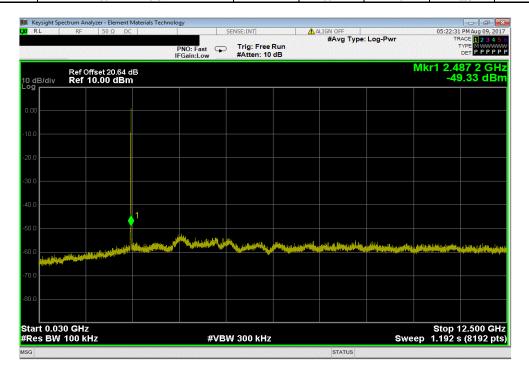
Frequency

Range

(dBc)

Fundamental

N/A


N/A

N/A

N/A

BLE/GFSK	High Channel, 2480 MHz		
Frequency	Max Value	Limit	
Range	(dBc)	≤ (dBc)	Result
30 MHz - 12.5 GHz	-50.41	-20	Pass

Report No. GARR0032.1 48/49

BLE/GFSK High Channel, 2480 MHz

Frequency

Range
(dBc) ≤ (dBc) Result

12.5 GHz - 25 GHz
-53.24
-20
Pass

Report No. GARR0032.1 49/49