

Garrett Metal Detectors

AT Max (1142000/1142100) FCC 15.247:2017 2400 – 2483.5 MHz Other Wideband (DTS) Transceiver

Report # GARR0033.5

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

CERTIFICATE OF TEST

Last Date of Test: August 28, 2017 Garrett Metal Detectors Model: AT Max (1142000/1142100)

Radio Equipment Testing

Standards	
Specification	Method
FCC 15.247:2017	ANSI C63.10:2013, KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6, 11.12.1, 11.13.2	Spurious Radiated Emissions	Yes	Pass	
7.8.2	Carrier Frequency Separation	No	N/A	Not required for DTS devices.
7.8.3	Number of Hopping Frequencies	No	N/A	Not required for DTS devices.
7.8.4	Dwell Time	No	N/A	Not required for DTS devices.
7.8.6	Band Edge Compliance - Hopping Mode	No	N/A	Not required for DTS devices.
11.6	Duty Cycle	Yes	N/A	Characterization of radio operation.
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA - Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://portlandcustomer.element.com/ts/scope/scope.htm</u> <u>http://gsi.nist.gov/global/docs/cabs/designations.html</u>

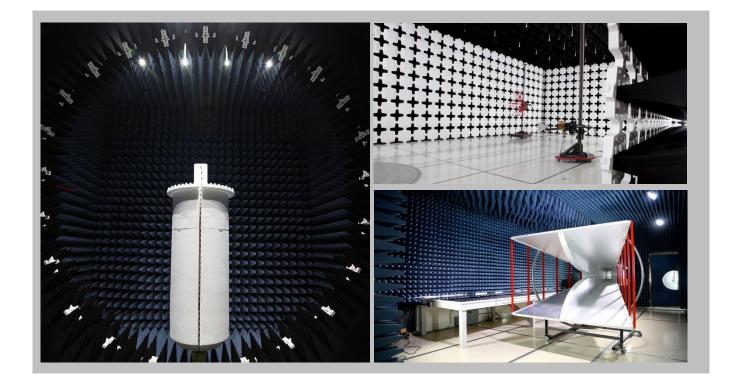
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.9 dB	-4.9 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California	Minnesota	New York Labs NY01-04	Oregon Labs EV01-12	Texas Labs TX01-09	Washington	
Labs OC01-13 41 Tesla	Labs MN01-08, MN10 9349 W Broadway Ave.	4939 Jordan Rd.	22975 NW Evergreen Pkwy	3801 E Plano Pkwy	Labs NC01-05 19201 120 th Ave NE	
Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600	
(949) 001-0910	(012)-030-5130	(313) 334-6214	(303) 844-4066	(409) 304-3233	(423)984-8800	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
	Innov	ation, Science and Eco	nomic Development Can	ada		
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	MI			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
		VC	CI			
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

Test Setup Block Diagrams

Antenna Port Conducted Measurements DC Block and Spectrum EUT Analyzer Attenuator **Coaxial Cable RF** Adapter **Near Field Test Fixture Measurements** Spectrum Near Field Analyzer Probe EUT **Coaxial Cable Spurious Radiated Emissions** Fully anechoic shielded enclosure above 1 GHz. Semi-anechoic below 1 GHz 3m Test Distance (No absorber on the floor). Preamp **Coaxial Cable** and EUT Filters Measurement Antenna Spectrum Analyzer Flush Mounted Turn table, Non-reflective foam table to support EUT

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Garrett Metal Detectors
Address:	1881 W. State Street
City, State, Zip:	Garland, TX 75042
Test Requested By:	Weldon Sanders
Model:	AT Max (1142000/1142100)
First Date of Test:	August 22, 2017
Last Date of Test:	August 28, 2017
Receipt Date of Samples:	August 16, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Metal detector with built in Z-Lynk radio

Testing Objective:

Seeking to demonstrate compliance under FCC 15.247:2017 for operation in the 2400 - 2483.5 MHz Band.

Configuration GARR0033-1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Metal Detector Wand (Transmitter)	Garrett Metal Detectors	AT Max (1142000/1142100)	57296858		

Configuration GARR0033-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Direct Conn Module	Garrett Metal Detectors	AT Max (1142000/1142100)	C1-17031354

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
SMA	Yes	10cm	No	Direct Conn Module	Direct Conn Cable Assembly

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	8/22/2017	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	8/28/2017	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
3	8/28/2017	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
4	8/28/2017	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
5	8/28/2017	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
6	8/28/2017	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at Low Ch 2406MHz, High Ch 2476MHz	
Continuously Transmitting at Low Ch 2406MHz, Mid Ch 2437MHz, High Ch 2476MHz	

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

GARR0033 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 26500 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Manufacturer	Model	ID	Last Cal.	Interval
Weinschel Corp	4H-20	AWB	3/3/2017	12 mo
Micro-Tronics	HPM50111	HGC	3/1/2017	12 mo
Micro-Tronics	LPM50004	HHV	8/3/2017	12 mo
Miteq	JSDWK42-18004000-60-5P	PAM	11/18/2016	12 mo
A.H. Systems, Inc.	SAS-574	AXW	8/5/2016	24 mo
Element	18-40GHz	TXE	11/18/2016	12 mo
Miteq	AMF-6F-12001800-30-10P	PAL	10/12/2016	12 mo
ETS Lindgren	3160-08	AJG	NCR	0 mo
Miteq	AMF-6F-08001200-30-10P	PAK	10/18/2016	12 mo
ETS Lindgren	3160-07	AJF	NCR	0 mo
Element	8-18GHz	TXD	5/31/2017	12 mo
Miteq	AMF-3D-00100800-32-13P	PAJ	5/31/2017	12 mo
ETS Lindgren	3115	AJN	9/15/2016	24 mo
Element	1-8.2 GHz	TXC	5/31/2017	12 mo
Miteq	AM-1551	PAH	11/9/2016	12 mo
ETS Lindgren	3143B	AYF	4/13/2016	24 mo
Element	RE 9kHz - 1GHz	TXB	11/9/2016	12 mo
Agilent	N9010A	AFL	10/4/2016	12 mo
	Weinschel Corp Micro-Tronics Micro-Tronics Miteq A.H. Systems, Inc. Element Miteq ETS Lindgren Element Miteq ETS Lindgren Element Miteq ETS Lindgren Element Miteq ETS Lindgren Element Element	Weinschel Corp 4H-20 Micro-Tronics HPM50111 Micro-Tronics LPM50004 Miteq JSDWK42-18004000-60-5P A.H. Systems, Inc. SAS-574 Element 18-40GHz Miteq AMF-6F-12001800-30-10P ETS Lindgren 3160-08 Miteq AMF-6F-08001200-30-10P ETS Lindgren 3160-07 Element 8-18GHz Miteq AMF-3D-00100800-32-13P ETS Lindgren 3115 Element 1-8.2 GHz Miteq AM-1551 ETS Lindgren 3143B Element RE 9kHz - 1GHz	Weinschel Corp4H-20AWBMicro-TronicsHPM50111HGCMicro-TronicsLPM50004HHVMiteqJSDWK42-18004000-60-5PPAMA.H. Systems, Inc.SAS-574AXWElement18-40GHzTXEMiteqAMF-6F-12001800-30-10PPALETS Lindgren3160-08AJGMiteqAMF-6F-08001200-30-10PPAKETS Lindgren3160-07AJFElement8-18GHzTXDMiteqAMF-3D-00100800-32-13PPAJETS Lindgren3115AJNElement1-8.2 GHzTXCMiteqAM-1551PAHETS Lindgren3143BAYFElementRE 9kHz - 1GHzTXB	Weinschel Corp 4H-20 AWB 3/3/2017 Micro-Tronics HPM50111 HGC 3/1/2017 Micro-Tronics LPM50004 HHV 8/3/2017 Miteq JSDWK42-18004000-60-5P PAM 11/18/2016 A.H. Systems, Inc. SAS-574 AXW 8/5/2016 Element 18-40GHz TXE 11/18/2016 Miteq AMF-6F-12001800-30-10P PAL 10/12/2016 ETS Lindgren 3160-08 AJG NCR Miteq AMF-6F-08001200-30-10P PAK 10/18/2016 ETS Lindgren 3160-07 AJF NCR Element 8-18GHz TXD 5/31/2017 Miteq AMF-3D-00100800-32-13P PAJ 5/31/2017 ETS Lindgren 3115 AJN 9/15/2016 Element 1-8.2 GHz TXC 5/31/2017 Miteq AM-1551 PAH 11/9/2016 Element 1-8.2 GHz TXC 5/31/2017 Miteq AM-1551 PAH <

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

SPURIOUS RADIATED EMISSIONS

						EmiR5 2017.07.11	PSA-ESCI 2017.06.01
Wo	rk Order	: GARR0033	Date:	08/22/17			
	Project	: None	Temperature:	23.9 °C	Jonat	than Ki	efer
	Job Site	: TX02	Humidity:	52.8% RH	0		0
Serial	Number	: 57296858	Barometric Pres.:	1021 mbar	Tested by	Willie Love	
	EUT	: AT Max (1142000/11	42100)				
Confi	guration	:1					
C	ustomer	: Garrett Metal Detecto	ors				
A	ttendees	: None					
		Battery					
	ng Mode		itting at Low Ch 2406MH	Iz, Mid Ch 2437MH	z, High Ch 2476MHz		
De	eviations						
Co	omments	PK and AVG(RMS) d	ata. Harmonics.				
Test Speci	fications			Test Met	thod		
FCC 15.24					3.10:2013		
Run #	64	Test Distance (m)	3 Antenna	Height(s)	1 to 4(m)	Results	Pass
80 70 60 50 W/Ngg 40 30 20 10							
0 +		100		1000	10000		100000
				MHz		■ РК 🔶	

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
4945.917	39.4	7.0	1.0	242.0	3.0	0.0	Horz	AV	0.0	46.4	54.0	-7.6	High Ch, EUT Horizontal
4945.900	38.4	7.0	1.0	319.0	3.0	0.0	Vert	AV	0.0	45.4	54.0	-8.6	High Ch, EUT Horizontal
7427.325	29.7	14.0	1.0	136.9	3.0	0.0	Horz	AV	0.0	43.7	54.0	-10.3	High Ch, EUT Horizontal
7426.133	29.6	14.0	1.0	24.0	3.0	0.0	Vert	AV	0.0	43.6	54.0	-10.4	High Ch, EUT Horizontal
4945.967	36.4	7.0	1.0	116.0	3.0	0.0	Vert	AV	0.0	43.4	54.0	-10.6	High Ch, EUT On Side
4945.925	34.9	7.0	1.0	337.0	3.0	0.0	Horz	AV	0.0	41.9	54.0	-12.1	High Ch, EUT On Side
4946.033	34.1	7.0	1.0	339.0	3.0	0.0	Vert	AV	0.0	41.1	54.0	-12.9	High Ch, EUT Vertical
7313.967	27.0	14.0	1.0	238.9	3.0	0.0	Vert	AV	0.0	41.0	54.0	-13.0	Mid Ch, EUT Horizontal
7313.275	26.9	14.0	1.0	330.0	3.0	0.0	Horz	AV	0.0	40.9	54.0	-13.1	Mid Ch, EUT Horizontal
4945.950	33.7	7.0	1.0	66.0	3.0	0.0	Horz	AV	0.0	40.7	54.0	-13.3	High Ch, EUT Vertical
4953.533	30.9	7.0	1.0	186.0	3.0	0.0	Horz	AV	0.0	37.9	54.0	-16.1	High Ch, EUT Horizontal
4954.275	30.5	7.0	1.0	147.0	3.0	0.0	Vert	AV	0.0	37.5	54.0	-16.5	High Ch, EUT Horizontal
7427.758	42.2	14.0	1.0	136.9	3.0	0.0	Horz	PK	0.0	56.2	74.0	-17.8	High Ch, EUT Horizontal
7427.733	41.4	14.0	1.0	24.0	3.0	0.0	Vert	PK	0.0	55.4	74.0	-18.6	High Ch, EUT Horizontal
4810.008	27.9	6.8	1.0	313.0	3.0	0.0	Horz	AV	0.0	34.7	54.0	-19.3	Low Ch, EUT Horizontal
4810.008	27.9	6.8	1.0	160.9	3.0	0.0	Vert	AV	0.0	34.7	54.0	-19.3	Low Ch, EUT Horizontal
7313.325	40.3	14.0	1.0	238.9	3.0	0.0	Vert	PK	0.0	54.3	74.0	-19.7	Mid Ch, EUT Horizontal
4878.167	27.3	6.9	1.0	81.9	3.0	0.0	Horz	AV	0.0	34.2	54.0	-19.8	Mid Ch, EUT Horizontal

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7315.917	40.2	14.0	1.0	330.0	3.0	0.0	Horz	PK	0.0	54.2	74.0	-19.8	Mid Ch, EUT Horizontal
4874.117	27.1	6.8	1.0	145.0	3.0	0.0	Vert	AV	0.0	33.9	54.0	-20.1	Mid Ch, EUT Horizontal
4946.192	46.0	7.0	1.0	242.0	3.0	0.0	Horz	PK	0.0	53.0	74.0	-21.0	High Ch, EUT Horizontal
4945.892	44.9	7.0	1.0	319.0	3.0	0.0	Vert	PK	0.0	51.9	74.0	-22.1	High Ch, EUT Horizontal
4945.717	44.3	7.0	1.0	116.0	3.0	0.0	Vert	PK	0.0	51.3	74.0	-22.7	High Ch, EUT On Side
4946.075	43.6	7.0	1.0	337.0	3.0	0.0	Horz	PK	0.0	50.6	74.0	-23.4	High Ch, EUT On Side
4946.567	43.6	7.0	1.0	66.0	3.0	0.0	Horz	PK	0.0	50.6	74.0	-23.4	High Ch, EUT Vertical
4949.933	43.3	7.0	1.0	186.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	High Ch, EUT Horizontal
4945.900	43.2	7.0	1.0	339.0	3.0	0.0	Vert	PK	0.0	50.2	74.0	-23.8	High Ch, EUT Vertical
4952.217	42.2	7.0	1.0	147.0	3.0	0.0	Vert	PK	0.0	49.2	74.0	-24.8	High Ch, EUT Horizontal
4876.167	40.9	6.9	1.0	145.0	3.0	0.0	Vert	PK	0.0	47.8	74.0	-26.2	Mid Ch, EUT Horizontal
4810.208	40.8	6.8	1.0	160.9	3.0	0.0	Vert	PK	0.0	47.6	74.0	-26.4	Low Ch, EUT Horizontal
4811.842	40.5	6.8	1.0	313.0	3.0	0.0	Horz	PK	0.0	47.3	74.0	-26.7	Low Ch, EUT Horizontal
4873.525	40.2	6.8	1.0	81.9	3.0	0.0	Horz	PK	0.0	47.0	74.0	-27.0	Mid Ch, EUT Horizontal
12377.910	26.9	-0.9	1.0	50.0	3.0	0.0	Vert	AV	0.0	26.0	54.0	-28.0	High Ch, EUT Horizontal
12377.800	26.9	-0.9	1.0	87.9	3.0	0.0	Horz	AV	0.0	26.0	54.0	-28.0	High Ch, EUT Horizontal
12031.350	27.8	-2.0	1.0	118.9	3.0	0.0	Horz	AV	0.0	25.8	54.0	-28.2	Low Ch, EUT Horizontal
12192.500	27.4	-1.7	1.0	296.0	3.0	0.0	Horz	AV	0.0	25.7	54.0	-28.3	Mid Ch, EUT Horizontal
12031.810	27.7	-2.0	1.0	277.0	3.0	0.0	Vert	AV	0.0	25.7	54.0	-28.3	Low Ch, EUT Horizontal
12192.420	27.1	-1.7	2.6	154.9	3.0	0.0	Vert	AV	0.0	25.4	54.0	-28.6	Mid Ch, EUT Horizontal
12379.520	41.5	-0.9	1.0	50.0	3.0	0.0	Vert	PK	0.0	40.6	74.0	-33.4	High Ch, EUT Horizontal
12379.730	40.3	-0.9	1.0	87.9	3.0	0.0	Horz	PK	0.0	39.4	74.0	-34.6	High Ch, EUT Horizontal
12030.570	41.2	-2.0	1.0	277.0	3.0	0.0	Vert	PK	0.0	39.2	74.0	-34.8	Low Ch, EUT Horizontal
12189.280	40.7	-1.7	1.0	296.0	3.0	0.0	Horz	PK	0.0	39.0	74.0	-35.0	Mid Ch, EUT Horizontal
12189.930	40.6	-1.7	2.6	154.9	3.0	0.0	Vert	PK	0.0	38.9	74.0	-35.1	Mid Ch, EUT Horizontal
12030.190	40.7	-2.0	1.0	118.9	3.0	0.0	Horz	PK	0.0	38.7	74.0	-35.3	Low Ch, EUT Horizontal

SPURIOUS RADIATED EMISSIONS

Work Order: GARR0033 Date: 09/22/17 Job Site: TX02 Humidity: 52.8%, RH Tested by: Serial Number: 5729068/8 Barnetric Press: 1021 mbar Tested by: Configuration: 1 Configuration: Image: Configuration: Image: Configuration: Custome: Garrett Metal Detectors Image: Configuration: Image: Configuration: Image: Configuration: Operating Mode: Configuration: Image: Configuration: Image: Configuration: Image: Configuration: Deviations: None Image: Configuration: Image: Confi										EmiR5 2017.07.11	PSA-ESCI 2017.06	
Job Site: TX02 Humidity: 52:8% RH Tested by: Wille Love EUT: AT Max (1142000/1142100) Tested by: Wille Love Image: Common State St	Wo	rk Order:	GARR0033		Date:							
Job Site: TX02 Humidity: 52:8% RH Tested by: Wille Love EUT: AT Max (1142000/1142100) Tested by: Wille Love Image: Common State St		Project:	None	Tem	perature:	23.9	°C	C	forat	han Ki	efer	
Serial Number: 57296858 Barometric Pres.: 1021 mbar Tested by: Willie Love Configuration: I		Job Site:	TX02	I	lumidity:	52.8%	6 RH	c.			0	
EUT: AT Max (1142000) 1142100) Configuration: 1 Customer: Carrett Metal Detectors Attendes: None EUT Power: Battery Operating Mode: Configuration: 1 Continuously Transmitting at Low Ch 2406MHz, High Ch 2476MHz Deviations: None PK and AVG(RMS) data. Transmit Band Edge. Comments: Test Method ANSI Ce3.10:2013 Run # 68 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass # # Operating Mode: Comments: PK and AVG(RMS) data. Transmit Band Edge. Comments: Run # 68 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass # # # Operating Mode: Comments: PK and AVG(RMS) data. Transmit Band Edge. Operating Mode: <td c<="" th=""><th>Serial</th><th>Number:</th><th>57296858</th><th>Baromet</th><th>ric Pres.:</th><th>1021</th><th>mbar</th><th>Т</th><th>ested by:</th><th>Willie Love</th><th></th></td>	<th>Serial</th> <th>Number:</th> <th>57296858</th> <th>Baromet</th> <th>ric Pres.:</th> <th>1021</th> <th>mbar</th> <th>Т</th> <th>ested by:</th> <th>Willie Love</th> <th></th>	Serial	Number:	57296858	Baromet	ric Pres.:	1021	mbar	Т	ested by:	Willie Love	
Configuration: 1		EUT:										
Custome: Carrett Metal Detectors EUT Powe: Battery Operating Mode: Continuously Transmitting at Low Ch 2406MHz, High Ch 2476MHz Deviations: None Comments: PK and AVG(RMS) data. Transmit Band Edge.	Confi			/								
Attendes: None EUT Power: Battery. Comtinuously Transmitting at Low Ch 2406MHz, High Ch 2476MHz Deviations: None PK and AVG(RMS) data. Transmit Band Edge. State Specifications	C	ustomer:	Garrett Metal Detector	s								
EUT Power: Battery Continuously Transmitting at Low Ch 2406MHz, High Ch 2476MHz None Deviations: None PK and AVG(RMS) data. Transmit Band Edge. PK and AVG(RMS) data. Transmit Band Edge. St Specifications Test Method CC 15.247:2017 ANSI C63.10:2013 Run # 68 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass Image: Contract of the second				-								
Operating Mode: Continuously Transmitting at Low Ch 2406MHz, High Ch 2476MHz Deviations: None PK and AVG(RMS) data. Transmit Band Edge. St Specifications Test Method CC 15.247:2017 ANSI C63.10:2013												
Deviations: PK and AVG(RMS) data. Transmit Band Edge. Isst Specifications Test Method ANSI C63.10:2013 ANSI C63.10:2013			0	tting at Low	Ch 2406MHz	, High Ch	2476MF	Hz				
Specifications Test Method CC 15.247:2017 ANSI CG3.10:2013 Run # 68 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 80	De	viations:	None									
CC 15.247:2017 ANSI C63.10:2013 Run # 68 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 80	Co	omments:	PK and AVG(RMS) da	ita. Transmi	t Band Edge.							
CC 15.247:2017 ANSI C63.10:2013 Run # 68 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 80	est Specif	ications	[1	Test Me	thod				
Run # 68 Test Distance (m) 3 Antenna Height(s) 1 to 4(m) Results Pass 80												
80 70 60 50 40 30 20 10 0 0 10 0 10 0 10 10 10 1	Bun #	68	Test Distance (m)	3	Antenna H	eiaht(s)		1 to 4(m)		Results	Pass	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	nun π	00	Test Distance (III)	5	Antenna In	eigiit(3)		1 (0 4(11)		nesuns	1 435	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
60 50 40 40 30 20 10 0	80 -											
60 50 40 40 30 20 10 0												
60 50 40 40 30 20 10 0												
	70 -											
	~~~											
	60 -											
	50											
	<b>E</b>											
	≥ I				•							
	<b>a</b> 40 +											
	<b>d</b>											
	30 🕂											
0	20					-						
0												
0	10											
	10											
						_						
	0											

						MHz				PK	♦ AV	o QP	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2483.657	32.0	-4.0	1.0	79.0	3.0	20.0	Horz	AV	0.0	48.0	54.0	-6.0	High Ch, EUT Horizontal
2484.043	31.7	-4.0	1.0	87.0	3.0	20.0	Horz	AV	0.0	47.7	54.0	-6.3	High Ch, EUT Vertical
2483.797	31.1	-4.0	1.0	86.0	3.0	20.0	Vert	AV	0.0	47.1	54.0	-6.9	High Ch, EUT On Side
2484.950	31.0	-4.0	1.0	63.0	3.0	20.0	Vert	AV	0.0	47.0	54.0	-7.0	High Ch, EUT Horizontal
2485.093	31.0	-4.0	1.0	0.0	3.0	20.0	Vert	AV	0.0	47.0	54.0	-7.0	High Ch, EUT Vertical
2483.520	30.9	-4.0	1.0	121.0	3.0	20.0	Horz	AV	0.0	46.9	54.0	-7.1	High Ch, EUT On Side
2389.730	31.1	-4.7	1.0	109.0	3.0	20.0	Horz	AV	0.0	46.4	54.0	-7.6	Low Ch, EUT Horizontal
2388.600	31.0	-4.7	1.0	202.9	3.0	20.0	Horz	AV	0.0	46.3	54.0	-7.7	Low Ch, EUT Vertical
2388.630	30.9	-4.7	1.0	133.0	3.0	20.0	Vert	AV	0.0	46.2	54.0	-7.8	Low Ch, EUT Horizontal
2388.177	30.9	-4.7	1.0	7.0	3.0	20.0	Vert	AV	0.0	46.2	54.0	-7.8	Low Ch, EUT Vertical
2484.050	43.1	-4.0	1.0	79.0	3.0	20.0	Horz	PK	0.0	59.1	74.0	-14.9	High Ch, EUT Horizontal
2484.447	43.1	-4.0	1.0	87.0	3.0	20.0	Horz	PK	0.0	59.1	74.0	-14.9	High Ch, EUT Vertical
2483.507	42.7	-4.0	1.0	86.0	3.0	20.0	Vert	PK	0.0	58.7	74.0	-15.3	High Ch, EUT On Side
2483.803	42.4	-4.0	1.0	0.0	3.0	20.0	Vert	PK	0.0	58.4	74.0	-15.6	High Ch, EUT Vertical
2485.033	42.2	-4.0	1.0	63.0	3.0	20.0	Vert	PK	0.0	58.2	74.0	-15.8	High Ch, EUT Horizontal
2389.860	42.9	-4.7	1.0	109.0	3.0	20.0	Horz	PK	0.0	58.2	74.0	-15.8	Low Ch, EUT Horizontal
2388.830	42.6	-4.7	1.0	133.0	3.0	20.0	Vert	PK	0.0	57.9	74.0	-16.1	Low Ch, EUT Horizontal
2483.893	41.7	-4.0	1.0	121.0	3.0	20.0	Horz	PK	0.0	57.7	74.0	-16.3	High Ch, EUT On Side

MHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2389.153	42.3	-4.7	1.0	7.0	3.0	20.0	Vert	PK	0.0	57.6	74.0	-16.4	Low Ch, EUT Vertical
2388.747	42.2	-4.7	1.0	202.9	3.0	20.0	Horz	PK	0.0	57.5	74.0	-16.5	Low Ch, EUT Vertical

## **DUTY CYCLE**



#### **TEST DESCRIPTION**

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum.

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.



XMit 2017.02.08

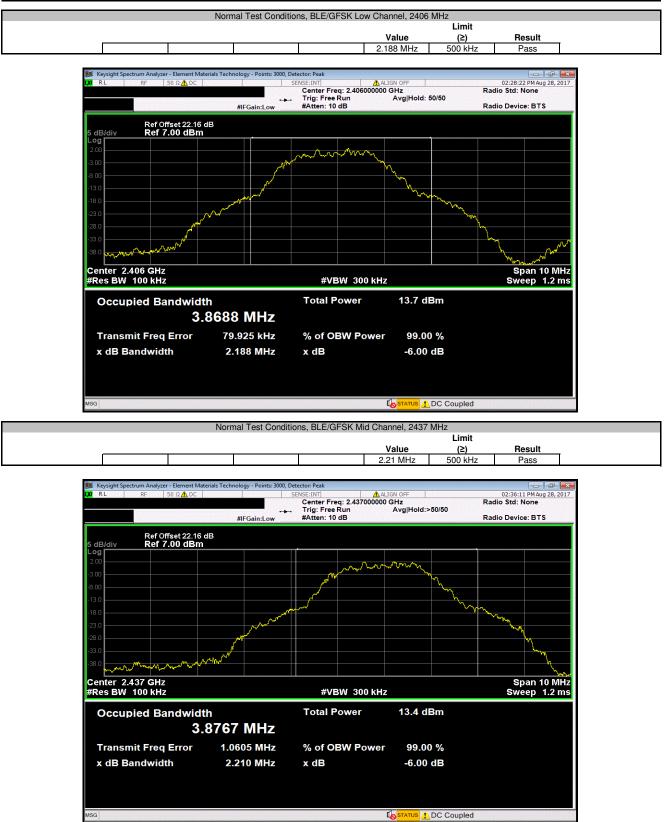
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Generator - Signal	Agilent	E4422B	TGS	7/11/2017	7/11/2020
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	3/14/2017	3/14/2018

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was set to the channels and modes listed in the datasheet.


The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 99.0% occupied bandwidth was also measured at the same time which can be needed during Output Power depending on the applicable method.



						TbtTx 2017.07.11	XMit 2017.02.08
EUT:	AT Max (1142000/114210	0)			Work Order:	GARR0033	
Serial Number:	C1-17031354				Date:	08/28/17	
Customer:	Garrett Metal Detectors				Temperature:	23.9 °C	
Attendees:	None				Humidity:	53.1% RH	
Project:	None				Barometric Pres.:	1017 mbar	
Tested by:	Marty Martin		P	ower: Battery	Job Site:	TX09	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
None							
<b>DEVIATIONS FROM</b>	M TEST STANDARD						
None							
Configuration #	3		Mart	Marti			
J	-	Signature	incorry	Masta			
		0.3.110.0				Limit	
					Value	(≥)	Result
Normal Test Conditi	ons						
	BLE/GFSK Low Channel,	2406 MHz			2.188 MHz	500 kHz	Pass
	BLE/GFSK Mid Channel, 2				2.21 MHz	500 kHz	Pass
	BLE/GFSK High Channel,				2.194 MHz	500 kHz	Pass
					LITOTIMIL		. 100



TbtTx 2017.07.11 XMit 2017.02.08





TbtTx 2017.07.11 XMit 2017.02.08



# **OUTPUT POWER**



XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

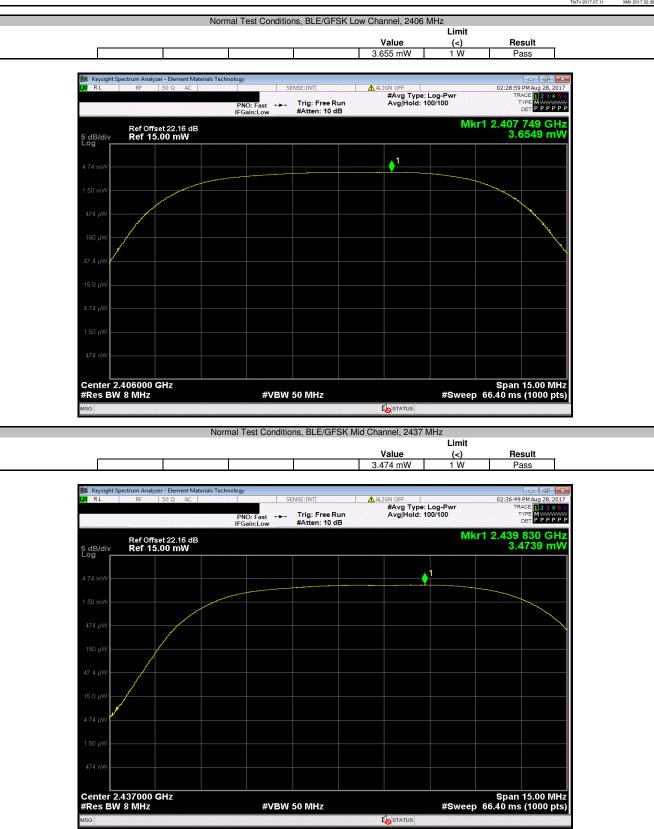
#### TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Generator - Signal	Agilent	E4422B	TGS	7/11/2017	7/11/2020
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	3/14/2017	3/14/2018

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

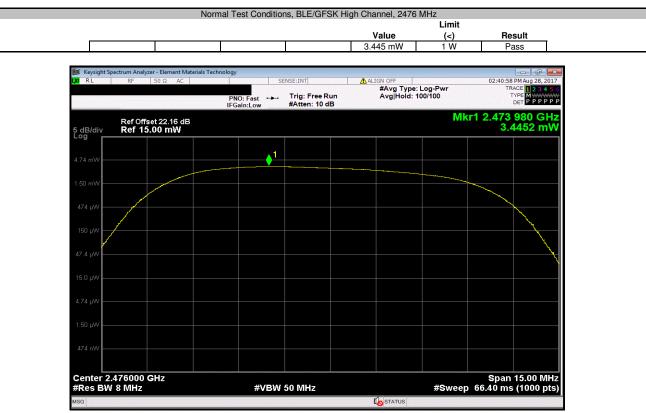

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

De Facto EIRP Limit: The EUT meets the de facto EIRP limit of +36 dBm.

### **OUTPUT POWER**



						Ibt1x 2017.07.11	XMit 2017.02.08
	AT Max (1142000/114210	0)				GARR0033	
Serial Number:	C1-17031354					08/28/17	
Customer:	Garrett Metal Detectors				Temperature	24 °C	
Attendees:	None				Humidity	: 53.2% RH	
Project:	None				Barometric Pres.		
	Marty Martin		Pow	er: Battery	Job Site	TX09	
TEST SPECIFICAT	IONS			Test Method			
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
<b>DEVIATIONS FROM</b>	M TEST STANDARD						
None							
			m	220			
Configuration #	3		Thank	Marti			
		Signature	8				
						Limit	
					Value	(<)	Result
Normal Test Conditi	ons						
	BLE/GFSK Low Channel, 2				3.655 mW	1 W	Pass
	BLE/GFSK Mid Channel, 2				3.474 mW	1 W	Pass
	BLE/GFSK High Channel,	2476 MHz			3.445 mW	1 W	Pass






TbtTx 2017.07.11 XMit 2017.02.08



TbtTx 2017.07.11 XMit 2017.02.08





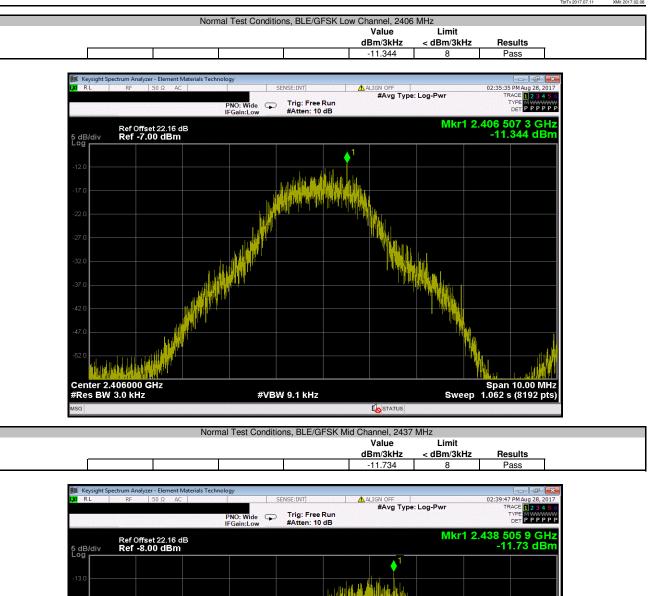
XMit 2017.02.08

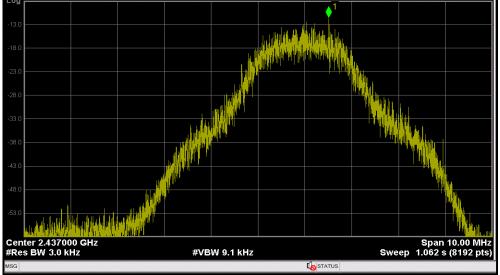
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Generator - Signal	Agilent	E4422B	TGS	7/11/2017	7/11/2020
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	3/14/2017	3/14/2018

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

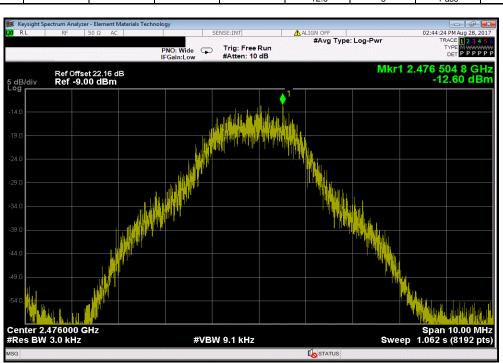

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.




						TbtTx 2017.07.11	XMit 2017.02.08
EUT:	AT Max (1142000/1142100)	)			Work Order:	GARR0033	
Serial Number:	C1-17031354				Date:	08/28/17	
Customer:	Garrett Metal Detectors				Temperature:	23.8 °C	
Attendees:	None				Humidity:	53.4% RH	
Project:	None				Barometric Pres.:	1017 mbar	
	Marty Martin		Pow	er: Battery	Job Site:	TX09	
TEST SPECIFICAT				Test Method			
FCC 15.247:2017				ANSI C63.10:2013			
COMMENTS							
None							
<b>DEVIATIONS FROM</b>	I TEST STANDARD						
None							
			- 21				
Configuration #	3		11min	Marti			
		Signature	······································	rice she			
	-	•			Value	Limit	
					dBm/3kHz	< dBm/3kHz	Results
Normal Test Conditi	ons						
	BLE/GFSK Low Channel, 24	406 MHz			-11.344	8	Pass
	BLE/GFSK Mid Channel, 24	137 MHz			-11.734	8	Pass
	BLE/GFSK High Channel, 2				-12.6	8	Pass



TbtTx 2017.07.11 XMit 2017.02.08








XMit 2017.02.08

TbtTx 2017.07.11 Normal Test Conditions, BLE/GFSK High Channel, 2476 MHz Value Limit dBm/3kHz < dBm/3kHz Results -12.6 8 Pass





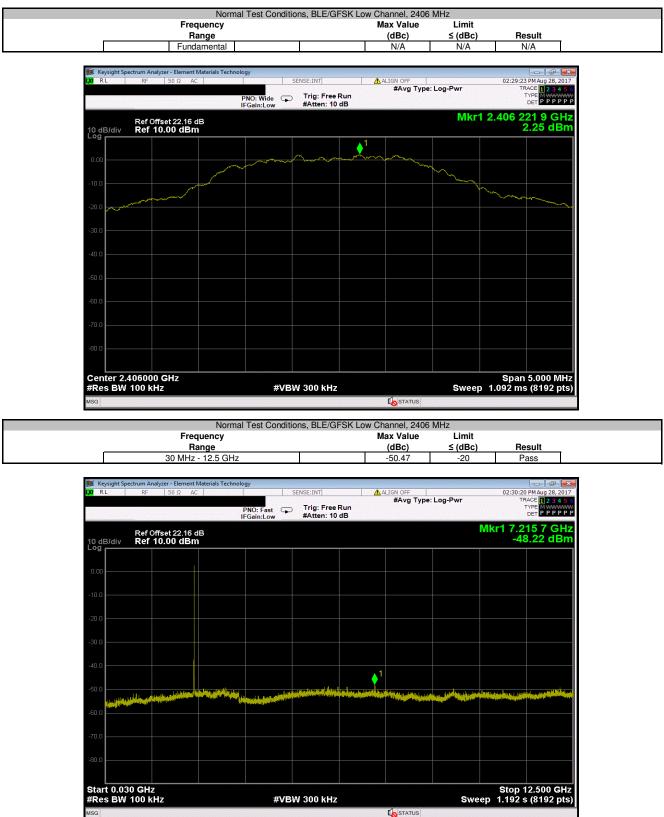
XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

#### **TEST EQUIPMENT**

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	3/14/2017	3/14/2018
Generator - Signal	Agilent	E4422B	TGS	7/11/2017	7/11/2020

#### **TEST DESCRIPTION**


The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range

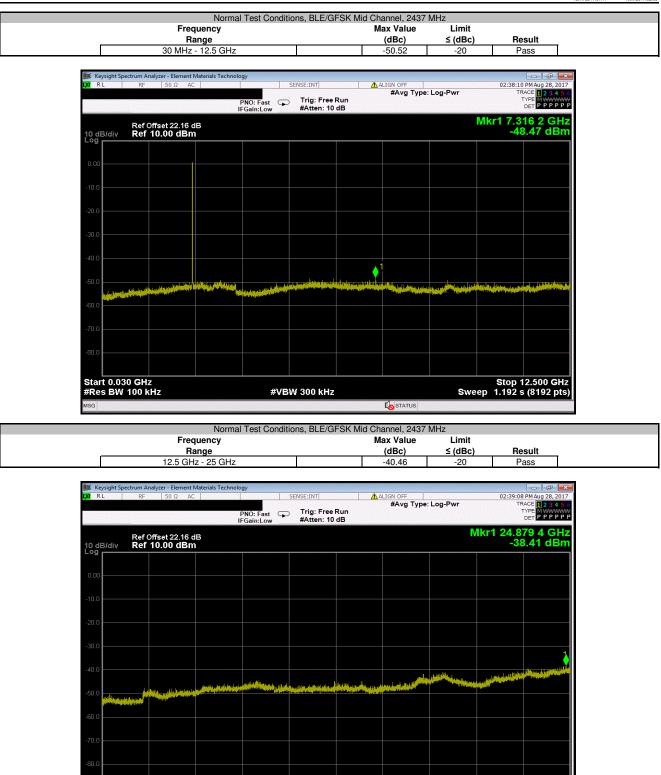



	AT Max (1142000/1142100	))			Work Order:		
Serial Number:						08/28/17	
Customer:	Garrett Metal Detectors				Temperature:	23.8 °C	
Attendees:					Humidity:		
Project:					Barometric Pres.:		
	Marty Martin			Power: Battery	Job Site:	TX09	
EST SPECIFICATI	IONS			Test Method			
CC 15.247:2017				ANSI C63.10:2013			
OMMENTS							
lone							
EVIATIONS EPON	M TEST STANDARD						
lone	I TEST STANDARD						
	3	Signature	Morty	Marta			
lone		Signature	Monty	Frequency	Max Value (dBc)	Limit	Popult
lone	3	Signature	Morty		Max Value (dBc)	Limit ≤ (dBc)	Result
lone	3 ons	Ÿ	Merty	Frequency Range	(dBc)	≤ (dBc)	
one	3 ons BLE/GFSK Low Channel, 2	2406 MHz	Morty	Frequency Range Fundamental	(dBc) N/A	≤ (dBc) N/A	N/A
lone	3 ons BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2	2406 MHz 2406 MHz	Morty	Frequency Range Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -50.47	≤ (dBc) N/A -20	N/A Pass
one	3 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2	2406 MHz 2406 MHz 2406 MHz 2406 MHz	Monty	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -50.47 -40.92	≤ (dBc) N/A -20 -20	N/A Pass Pass
one onfiguration #	3 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2	2406 MHz 2406 MHz 2406 MHz 2406 MHz 437 MHz	Marty	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	 ( <b>dBc</b> ) N/A -50.47 -40.92 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
one	3 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK Mid Channel, 2	2406 MHz 2406 MHz 2406 MHz 437 MHz 437 MHz	Marty	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -50.47 -40.92 N/A -50.52	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
ione onfiguration # formal Test Condition	3 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK Mid Channel, 2	2406 MHz 2406 MHz 2406 MHz 437 MHz 437 MHz 437 MHz 437 MHz	Marty	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -50.47 -40.92 N/A -50.52 -40.46	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass
Ione	3 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK High Channel, 2	2406 MHz 2406 MHz 2406 MHz 337 MHz 437 MHz 437 MHz 2476 MHz	Morty	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	(dBc) N/A -50.47 -40.92 N/A -50.52 -40.46 N/A	≤ (dBc) N/A -20 -20 N/A -20 -20 -20 N/A	N/A Pass Pass N/A Pass Pass N/A
Ione	3 BLE/GFSK Low Channel, 2 BLE/GFSK Low Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK Mid Channel, 2 BLE/GFSK Mid Channel, 2	2406 MHz 2406 MHz 2406 MHz 437 MHz 437 MHz 437 MHz 2476 MHz 2476 MHz	Marty	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -50.47 -40.92 N/A -50.52 -40.46	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass



TbtTx 2017.07.11 XMit 2017.02.08






Normal Test Conditions, BLE/GFSK Mid Channel, 2437 MHz						
Frequency			Max Value	Limit		
Range			(dBc)	≤ (dBc)	Result	
Fundamental			N/A	N/A	N/A	





TbtTx 2017.07.11 XMit 2017.02.08

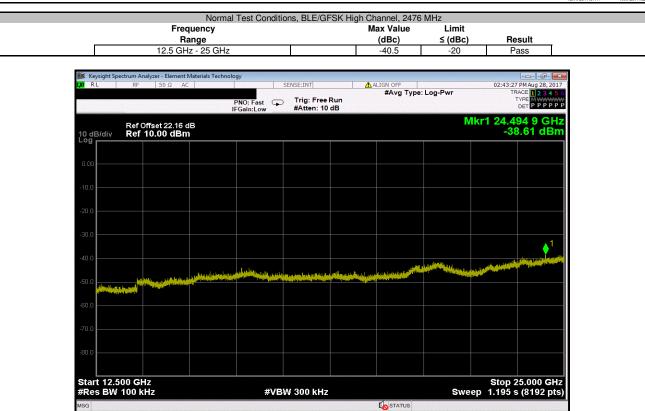


#VBW 300 kHz

STATUS

Start 12.500 GHz #Res BW 100 kHz Stop 25.000 GHz Sweep 1.195 s (8192 pts)




TbtTx 2017.07.11 XMit 2017.02.08



#VBW 300 kHz

STATUS

Start 0.030 GHz #Res BW 100 kHz Stop 12.500 GHz Sweep 1.192 s (8192 pts)





TbtTx 2017.07.11 XMit 2017.02.08

# **BAND EDGE COMPLIANCE**



XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Fairview Microwave	SCK0963-60	TXF	11/18/2016	11/18/2017
Block - DC	Fairview Microwave	SD3379	AMT	10/24/2016	10/24/2017
Attenuator	Fairview Microwave	SA4018-20	TYE	10/24/2016	10/24/2017
Generator - Signal	Agilent	E4422B	TGS	7/11/2017	7/11/2020
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	3/14/2017	3/14/2018

#### **TEST DESCRIPTION**

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

## **BAND EDGE COMPLIANCE**



			TbtTx 2017.07.11	XMit 2017.02.08
EUT:	AT Max (1142000/1142100)	Work Order:	GARR0033	
Serial Number:	C1-17031354	Date:	08/28/17	
Customer:	Garrett Metal Detectors	Temperature:	24 °C	
Attendees:	None	Humidity:	53.2% RH	
Project:	None	Barometric Pres.:	1017 mbar	
Tested by:	Marty Martin Power: Battery	Job Site:	TX09	
TEST SPECIFICAT	DNS Test Method			
FCC 15.247:2017	ANSI C63.10:2013			
COMMENTS				
None				
DEVIATIONS FROM	TEST STANDARD			
None				
Configuration #	3 Monty Marti			
°	Signature			
		Value	Limit	
		(dBc)	≤ (dBc)	Result
Normal Test Conditi	ins	()	() = = j	
	BLE/GFSK Low Channel, 2406 MHz	-40.05	-20	Pass
	BLE/GFSK High Channel, 2476 MHz	-44.36	-20	Pass
	BELOI ON HIGH ONALING, 2470 WHZ	-44.30	-20	1 455

## **BAND EDGE COMPLIANCE**



TbtTx 2017.07.11 XMit 2017.02.08



