

Specific Absorption Rate (SAR) Test Report

for

TECOM CO., LTD.

on the

GSM(900&1800&1900 MHz) / GPRS / Mobile Phone / with Bluetooth v1.2 and WLAN (IEEE 802.11b&g)

Report No. : FA812117-C

Trade Name : WIN II Model Name : DMP330

FCC ID : D6XDMP330 Date of Testing : Jan. 31, 2008 Date of Report : Feb. 15, 2008 Date of Review : Feb. 15, 2008

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 01

SPORTON International Inc. 6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

1.	Staten	nent of Compliance	1
		nistration Data	
	2.1	Testing Laboratory	
	2.2	Detail of Applicant	
	2.3	Detail of Manufacturer	2
	2.4	Application Details	2
3.	Gener	al Information	3
	3.1	Description of Device Under Test (DUT)	
	3.2	Basic Description of Equipment under Test	
	3.3	Product Photo	
	3.4 3.5	Applied Standard	
	3.6	Device Category and SAR Limits	
	3.0	3.6.1 Ambient Condition	
		3.6.2 Test Configuration	
4.	Specif	ic Absorption Rate (SAR)	
•	4.1	Introduction	
	4.2	SAR Definition	
5.	SAR N	Measurement Setup	
	5.1	DASY4 E-Field Probe System	
		5.1.1 ET3DV6 E-Field Probe Specification	
		5.1.2 ET3DV6 E-Field Probe Calibration	
	5.2	DATA Acquisition Electronics (DAE)	
	5.3	Robot	
	5.4 5.5	Measurement Server SAM Twin Phantom	
	5.6	Device Holder for SAM Twin Phantom	
	5.7	Data Storage and Evaluation	
		5.7.1 Data Storage	
		5.7.2 Data Evaluation	16
	5.8	Test Equipment List	19
6.	Tissue	e Simulating Liquids	20
7.	Uncer	tainty Assessment	22
8.	SAR N	Measurement Evaluation	24
	8.1	Purpose of System Performance check	
	8.2	System Setup	
	8.3	Validation Results	26
9.	Descr	iption for DUT Testing Position	27
10.	Measu	rement Procedures	
	10.1	Spatial Peak SAR Evaluation	
		Scan Procedures	
	10.3	SAR Averaged Methods	
11.		est Results	
	11.1	Right Cheek	
	11.2	Right Tilted	
	11.3 11.4	Left Cheek	
	11.5	Front Face with 1.5cm Gap	
	11.6	Rear Face with 1.5cm Gap	
12	_	ence	
		A - System Performance Check Data	
		B - SAR Measurement Data	
		C - Calibration Data	
		D - Product Photo	

Appendix E - Setup Photo

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum results found during testing for the TECOM CO., LTD. GSM(900&1800&1900 MHz) / GPRS / Mobile Phone / with Bluetooth v1.2 and WLAN (IEEE 802.11b&g) WIN II DMP330 are as follows (with expanded uncertainty 21.9%):

Position	802.11b/g (W/Kg)
Head	0.2
Body	0.434

The co-location of WLAN and Bluetooth were also checked. They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Roy Wu Manager

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc. **Department :** Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,

Test Report No : FA812117-C

TaoYuan Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-328-4978

2.2 Detail of Applicant

Company Name : TECOM CO., LTD.

Address: 23, R & D ROAD 2, SCIENCE-BASED INDUSTRIAL PARK, HSIN-CHU,

TAIWAN R.O.C.

2.3 <u>Detail of Manufacturer</u>

Company Name : TECOM CO., LTD.

Address: 23, R & D ROAD 2, SCIENCE-BASED INDUSTRIAL PARK, HSIN-CHU,

TAIWAN R.O.C.

2.4 Application Details

Date of reception of application:Jan. 21, 2008Start of test:Jan. 31, 2008End of test:Jan. 31, 2008

3. General Information

3.1 Description of Device Under Test (DUT)

GSM(900&1800&1900 MHz) / GPRS / Mobile Phone / with Bluetooth v1.2 and WLAN				
(IEEE 802.11b&g)				
WIN II				
DMP330				
D6XDMP330				
GSM1900 : 1850 ~1910 MHz				
Bluetooth / WLAN : 2400 ~ 2483.5 MHz				
GSM1900 : 1930 ~ 1990 MHz				
Bluetooth / WLAN: 2400 ~ 2483.5 MHz				
Bluetooth: 79				
WLAN: 11				
Bluetooth: 2402+n*1 MHz; n=0~78				
WLAN: 2412+(n-1)*5 MHz; n=1~11				
GSM1900 : 200 KHz				
Bluetooth: 1 MHz				
WLAN: 5 MHz				
GSM1900 : 28.26 dBm (GSM) / 28.09 dBm (GPRS)				
Bluetooth : -1.72 dBm (1Mbps)				
WLAN : 15.33 dBm (802.11b) / 13.85 dBm (802.11g)				
N/A				
GSM1900 : Fixed Internal				
Bluetooth : Chip Antenna				
WLAN : PIFA Antenna				
GSM1900 : 0 dBi				
Bluetooth: 1 dBi				
WLAN: 1.07 dBi				
12				
7510MB-008-A				
7S75100000-002-R1I				
GSM / GPRS : GMSK				
Bluetooth (1Mbps): GFSK				
WLAN: DSSS/OFDM				
Production Unit				
Certification				

Test Report No : FA812117-C

3.2 Basic Description of Equipment under Test

isic Descripii	on oj Equipment unae	<u> Test</u>	
Equipment		GSM(900&1800&1900 MHz) / GPRS / Mobile Phone / with	
		Bluetooth v1.2 and WLAN (IEEE 802.11b&g)	
Trade Name		WIN II	
Model Name		DMP330	
FCC ID		D6XDMP330	
	Brand Name	Tecom	
	Model Name	KWT05A11CN01G	
AC Adapter	D D-4'	I/P:100-240Vac, 50-60Hz, 0.25A;	
	Power Rating	O/P: 4.6~5.5Vdc, 550mA, 4.5W	
	AC Power Cord Type	1.545 meter non-shielded cable without ferrite core	
	Brand Name	Tecom	
Dattame.	Model Name	306-0000-00001	
Battery	Power Rating	3.7Vdc, 1000mAh	
	Type	Li-ion	
	Brand Name	N/A	
Earphone	Model Name	N/A	
	Signal Line Type	1.45 meter non-shielded cable without ferrite core	
	Brand Name	N/A	
USB Cable	Model Name	N/A	
	Signal Line Type	0.4 meter non-shielded cable without ferrite core	

Remark: Above EUT's information was declared by manufacturer. Please refer to the specifications of manufacturer or User's Manual for more detailed features description.

3.3 Product Photo

Please refer to Appendix D

3.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method and procedure for this GSM(900&1800&1900 MHz) / GPRS / Mobile Phone / with Bluetooth v1.2 and WLAN (IEEE 802.11b&g) is in accordance with the following standards:

Test Report No : FA812117-C

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528-2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.6 Test Conditions:

3.6.1 Ambient Condition

Item	HSL_2450	MSL_2450	
Ambient Temperature (°C)	20-24		
Tissue simulating liquid	21.7°C	21.5°C	
temperature (°C)	21.7 C	21.5 C	
Humidity (%)	<60 %		

3.6.2 Test Configuration

For WLAN link mode, engineering testing software installed on the EUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1. Measurements were performed on the lowest, middle, and highest channel for each testing position. However, measurements were performed only on the middle channel if the SAR is below 3 dB of limit for body SAR testing.

The data rates for WLAN SAR testing were set in 2Mbps for 802.11b and 24Mbps for 802.11g due to the highest RF output power. Power table of 802.11b/g as below:

<802.11b>

Channel	Frequency	Data Rate				
Chamilei	(MHz)	1M bps	2M bps	5.5M bps	11M bps	
CH 01	2412 MHz	15.09	15.33	15.27	15.27	
CH 06	2437 MHz	14.78	15.00	14.96	15.07	
CH 11	2462 MHz	14.47	14.57	14.55	14.58	

<802.11g>

Channal	Frequency				Data	Rate			
Channel	(MHz)	6M bps	9M bps	12M bps	18M bps	24M bps	36M bps	48M bps	54M bps
CH 01	2412 MHz	11.38	13.07	13.21	13.57	13.85	13.45	12.2	11.87
CH 06	2437 MHz	12.74	12.74	12.88	12.87	12.57	12.84	11.21	11.18
CH 11	2462 MHz	12.97	12.97	12.85	13.04	12.94	13.21	11.46	11.67

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

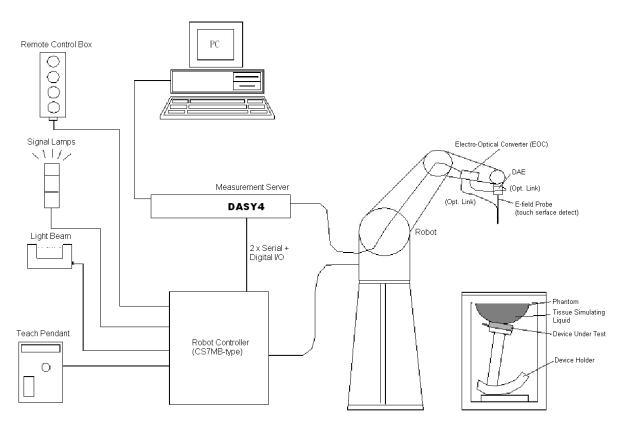


Fig. 5.1 DASY4 System

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

Test Report No : FA812117-C

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- > The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- ➤ A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- ➤ A device holder
- > Tissue simulating liquid
- > Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 <u>DASY4 E-Field Probe System</u>

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

Symmetrical design with triangular core Construction

Built-in optical fiber for surface detection

system

Built-in shielding against static charges

PEEK enclosure material (resistant to

organic solvents)

10 MHz to 3 GHz **Frequency**

Directivity \pm 0.2 dB in brain tissue (rotation around

probe axis)

 \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)

Dynamic Range $5 \mu \text{ W/g to} > 100 \text{mW/g}$; Linearity: $\pm 0.2 \text{dB}$

Surface Detection \pm 0.2 mm repeatability in air and clear

liquids on reflecting surface

Dimensions Overall length: 330mm

> Tip length: 16mm Body diameter: 12mm Tip diameter: 6.8mm

Distance from probe tip to dipole centers:

2.7mm

Application General dosimetry up to 3GHz

Compliance tests for mobile phones and

Wireless LAN

Fast automatic scanning in arbitrary

phantoms

Fig. 5.2 Probe setup on robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

> ET3DV6 sn1787

Sensitivity	X axis : 1.63 μV		Y axis : 1.66 μV		Z axis : 2.08 μV
Diode compression point	X axis : 92 mV		Y axis : 96 mV		Z axis : 91 mV
Conversion factor	Frequency (MHz)	X axis		Y axis	Z axis
(Head / Body)	2350~2550	4.50 / 4.02		4.50 / 4.02	4.50 / 4.02
Boundary effect	Frequency (MHz)	Alp	ha	Depth	
(Head / Body)	2350~2550	0.67 /	0.65	1.81 / 2.15	

Test Report No : FA812117-C

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY4 system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

Test Report No : FA812117-C

- ➤ High precision (repeatability 0.02 mm)
- ➤ High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY4 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY4 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $_{\rm r}$ =3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 <u>Data Storage and Evaluation</u>

5.7.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

Test Report No : FA812117-C

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 <u>Data Evaluation</u>

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2}

Conversion factor ConvF_i
 Diode compression point dcp_i
 Frequency f

Device parameters: - Frequency f
- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $U_i = input signal of channel i (i = x, y, z)$

 $cf = crest\ factor\ of\ exciting\ field\ (DASY\ parameter)$

 $dcp_i = diode\ compression\ point\ (DASY\ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

 $\textbf{E-field probes}: E_i = \sqrt{\frac{V_i}{Norm_iConvF}}$

H-field probes: $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel *i* in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

The power flow density is calculated assuming the excitation field to be a free space field.

^{*} Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

Test Report No : FA812117-C

with P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5.8 Test Equipment List

Manufacture	Name of Equipment	Type/Model	Serial Number	Calibration		
Manufacture	Name of Equipment	1 y pe/Model	Seriai Number	Last Cal.	Due Date	
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1787	Aug. 28, 2007	Aug. 28, 2008	
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 12, 2007	Jul. 12, 2009	
SPEAG	Data Acquisition Electronics	DAE4	778	Sep. 17, 2007	Sep. 17, 2008	
SPEAG	Device Holder	N/A	N/A	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1303	NCR	NCR	
SPEAG	Phantom	QD 000 P40 C	TP-1383	NCR	NCR	
SPEAG	Phantom	QD 0VA 001 BB	1029	NCR	NCR	
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR	
SPEAG	Software	DASY4 V4.7 Build 55	N/A	NCR	NCR	
SPEAG	Software	SEMCAD V1.8 Build 176	N/A	NCR	NCR	
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR	
Agilent	ENA Series Network Analyzer	E5071C	MY46100746	Feb. 21, 2007	Feb. 21, 2008	
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008	
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR	
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR	
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR	
R&S	Power Meter	NRVS	100444	Jun. 27, 2007	Jun. 27, 2008	
R&S	Power Sensor	NRV-Z32	100057	Jun. 27, 2007	Jun. 27, 2008	
Agilent	Signal Generator	E8247C	MY43320596	Mar. 01, 2006	Mar. 01, 2008	

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR)or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

Test Report No : FA812117-C

The following ingredients for tissue simulating liquid are used:

- \triangleright Water: deionized water (pure H₂0), resistivity 16M as basis for the liquid
- ➤ Sugar: refined sugar in crystals, as available in food shops to reduce relative permittivity
- ➤ Salt: pure NaCl to increase conductivity
- ➤ **Cellulose**: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- ➤ **Preservative**: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- ➤ **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency band 2450 MHz.

Ingredient	HSL-2450	MSL-2450
Water	550.0 ml	698.3 ml
Cellulose	0 g	0 g
Salt	0 g	0 g
Preventol D-7	0 g	0 g
Sugar	0 g	0 g
DGMBE	450.0 ml	301.7 ml
Total amount	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	f = 2450MHz	f = 2450MHz
	$\varepsilon_{\rm f} = 39 \pm 5\%$,	$\varepsilon_{f} = 52.7 \pm 5\%$
	σ = 1.84±5% S/m	$\sigma = 1.95 \pm 5\% \text{ S/m}$

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Bands	Position	Frequency (MHz)	Permittivity (r)	Conductivity ()	Measurement Date
		2412	38.0	1.82	
	Head	2437	37.9	1.84	Jan. 31, 2008
802.11b/g		2462	37.8	1.86	
$(2400 \sim 2483.5 \text{ MHz})$	Body	2412	53.6	1.92	
		2437	53.5	1.95	Jan. 31, 2008
		2462	53.4	1.98	

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $_{r}$ = 39.2 ± 5%, = 1.80 ± 5% for head 2450 band and $_{r}$ = 52.7 ± 5%, = 1.95 ± 5% for body 2450 band.

7. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Test Report No : FA812117-C

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1 Multiplying Factions for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

⁽b) is the coverage factor

C SAR Test Report Test Report No : FA812117-C

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	√3	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	∞
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty					±10.9	387
Coverage Factor for 95 %		K=2			•	•
Expanded uncertainty (Coverage factor = 2)					±21.9	

Table 7.2 Uncertainty Budget of DASY4

8. SAR Measurement Evaluation

Each DASY4 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY4 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Test Report No : FA812117-C

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

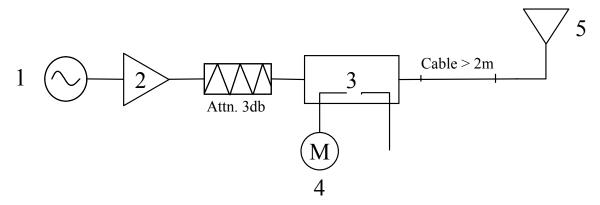


Fig. 8.1 System Evaluation Setup

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

Band	Position	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date
802.11b/g (2400 ~ 2483.5 MHz)	Head	SAR (1g)	52.7	56.3	6.8 %	Jan. 31, 2008
	пеац	SAR (10g)	24.5	26.7	9.0 %	Jan. 31, 2008
		SAR (1g)	52.5	53.2	1.3 %	Jan. 31, 2008
	Body	SAR (10g)	24.4	25.3	3.7 %	jan. 51, 2008

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 6 different positions. They are right cheek, right tilted, left cheek, left tilted, front face with 1.5cm Gap and rear face with 1.5cm Gap as illustrated below:

Test Report No : FA812117-C

1) "Cheek Position"

- i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).

2) "Tilted Position"

- i) To position the device in the "cheek" position described above.
- ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).

3) "Body Worn"

- i) To position the device parallel to the phantom surface.
- ii) To adjust the phone parallel to the flat phantom.
- iii) To adjust the distance between the EUT surface and the flat phantom to 1.5 cm.

Remark: Please refer to Appendix E for the test setup photo.

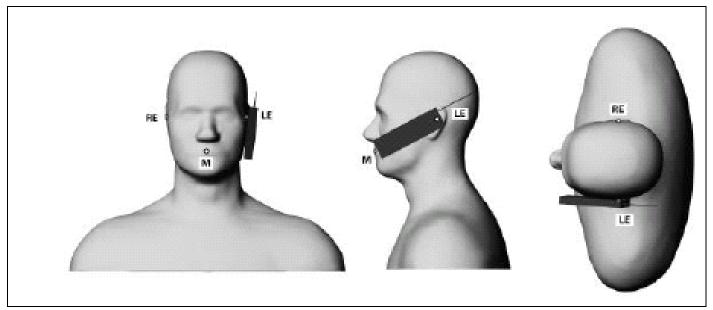


Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

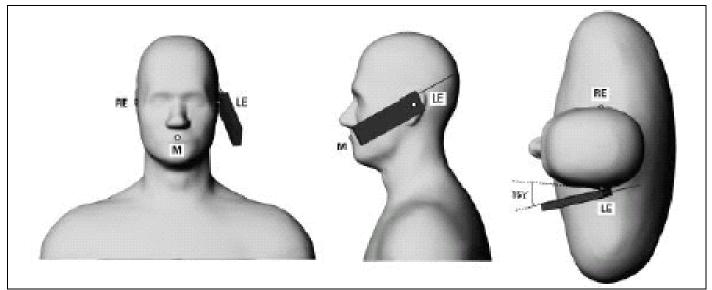


Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10.Measurement Procedures

The measurement procedures are as follows:

- Using engineering software to transmit RF power continuously (continuous Tx)
- > Placing the DUT in the positions described in the last section
- > Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the low channel
- Repeat the previous steps for the middle and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- > Power reference measurement
- ➤ Area scan
- > Zoom scan
- > Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

Test Report No : FA812117-C

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

Test Report No : FA812117-C

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Right Cheek

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
	1	2412(Low)	CCK	15.33	=	-	-	-
802.11b	6	2437(Mid)	CCK	15.00	-0.101	0.172	1.6	Pass
	11	2462(High)	CCK	14.57	-	-	-	-
	1	2412(Low)	OFDM	13.85	-	-	-	-
802.11g	6	2437(Mid)	OFDM	12.57	0.023	0.033	1.6	Pass
	11	2462(High)	OFDM	12.94	-	-	-	-

Test Report No : FA812117-C

11.2 Right Tilted

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
	1	2412(Low)	CCK	15.33	-0.182	0.176	1.6	Pass
802.11b	6	2437(Mid)	CCK	15.00	-0.133	0.189	1.6	Pass
	11	2462(High)	CCK	14.57	-0.04	0.197	1.6	Pass
802.11b with BT on	11	2462(High)	CCK	14.57	-0.016	0.2	1.6	Pass
	1	2412(Low)	OFDM	13.85	-	-	-	-
802.11g	6	2437(Mid)	OFDM	12.57	=	-	-	-
	11	2462(High)	OFDM	12.94	ī	-	-	-

11.3 Left Cheek

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
	1	2412(Low)	CCK	15.33	-	-	1	-
802.11b	6	2437(Mid)	CCK	15.00	-0.089	0.148	1.6	Pass
	11	2462(High)	CCK	14.57	-	-	ı	-
	1	2412(Low)	OFDM	13.85	-	-	ı	-
802.11g	6	2437(Mid)	OFDM	12.57	-	-	1	-
	11	2462(High)	OFDM	12.94	-	-	-	-

11.4 Left Tilted

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
	1	2412(Low)	CCK	15.33	ı	-	•	-
802.11b	6	2437(Mid)	CCK	15.00	-0.072	0.173	1.6	Pass
	11	2462(High)	CCK	14.57	-	-	-	-
	1	2412(Low)	OFDM	13.85	-	-	-	-
802.11g	6	2437(Mid)	OFDM	12.57	-	-	-	-
	11	2462(High)	OFDM	12.94	-	-	-	-

11.5 Front Face with 1.5cm Gap

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
	1	2412(Low)	CCK	15.33	-	-	-	-
802.11b	6	2437(Mid)	CCK	15.00	-0.163	0.051	1.6	Pass
	11	2462(High)	CCK	14.57	-	-	-	-
	1	2412(Low)	OFDM	13.85	-	-	-	-
802.11g	6	2437(Mid)	OFDM	12.57	-	-	1	-
	11	2462(High)	OFDM	12.94	-	-	-	-

11.6 Rear Face with 1.5cm Gap

Mode	Chan.	Freq (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Results
	1	2412(Low)	CCK	15.33	-0.048	0.221	1.6	Pass
802.11b	6	2437(Mid)	CCK	15.00	-0.021	0.318	1.6	Pass
	11	2462(High)	CCK	14.57	-0.005	0.415	1.6	Pass
802.11b with BT on	11	2462(High)	CCK	14.57	0.028	0.434	1.6	Pass
	1	2412(Low)	OFDM	13.85	-	-	-	-
802.11g	6	2437(Mid)	OFDM	12.57	0.039	0.057	1.6	Pass
	11	2462(High)	OFDM	12.94	-	-	-	-

Remark: Software ensures that GSM and WLAN can not transmit simultaneously.

Test Engineer: Jason Wang

12.Reference

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21, 2003

Test Report No : FA812117-C

- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Test Report No : FA812117-C

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

System Check_Head_2450MHz

DUT: Dipole 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

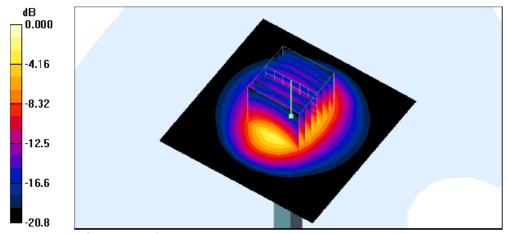
Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.37 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.6 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 12.1 W/kg

SAR(1 g) = 5.63 mW/g; SAR(10 g) = 2.67 mW/g

Maximum value of SAR (measured) = 6.32 mW/g

0 dB = 6.32 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

System Check_Body_2450MHz

DUT: Dipole 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

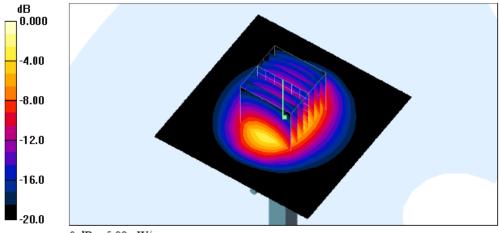
Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ mho/m}$; $\epsilon_r = 53.4$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.23 mW/g


Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.4 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 11.3 W/kg

SAR(1 g) = 5.32 mW/g; SAR(10 g) = 2.53 mW/g

Maximum value of SAR (measured) = 5.99 mW/g

0 dB = 5.99 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Right Cheek 802.11b Ch6

DUT: 812117

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

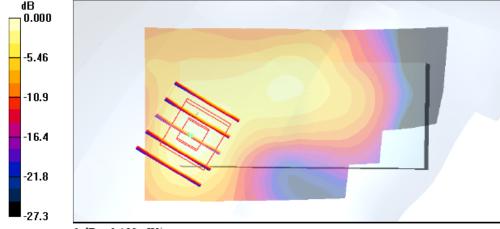
Medium: HSL 2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

Test Report No : FA812117-C

Ambient Temperature: 23.0 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.186 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.71 V/m; Power Drift = -0.101 dB

Peak SAR (extrapolated) = 0.350 W/kg

SAR(1 g) = 0.172 mW/g; SAR(10 g) = 0.084 mW/gMaximum value of SAR (measured) = 0.189 mW/g

0 dB = 0.189 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Right Cheek_802.11g Ch6

DUT: 812117

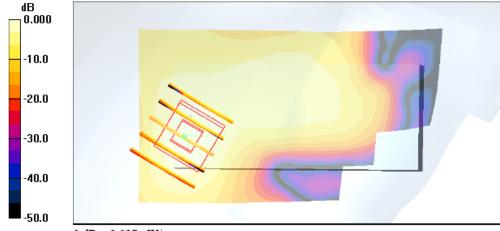
Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.037 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.26 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 0.066 W/kg

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.016 mW/gMaximum value of SAR (measured) = 0.037 mW/g

0 dB = 0.037 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Right Tilted_802.11b Ch11

DUT: 812117

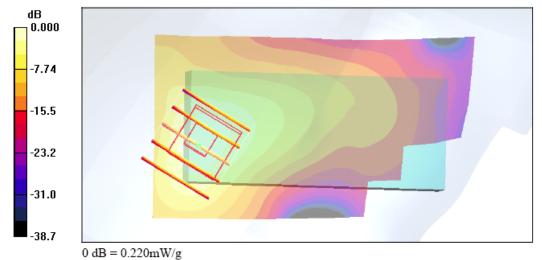
Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.86 \text{ mho/m}$; $\epsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch11/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.219 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 0.418 W/kg

SAR(1 g) = 0.197 mW/g; SAR(10 g) = 0.092 mW/gMaximum value of SAR (measured) = 0.220 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Left Cheek 802.11b Ch6

DUT: 812117

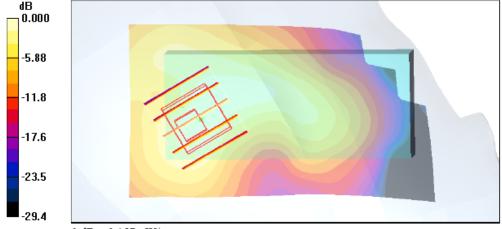
Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.149 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.91 V/m; Power Drift = -0.089 dB

Peak SAR (extrapolated) = 0.298 W/kg

SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.076 mW/gMaximum value of SAR (measured) = 0.157 mW/g

0 dB = 0.157 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Left Tilted_802.11b Ch6

DUT: 812117

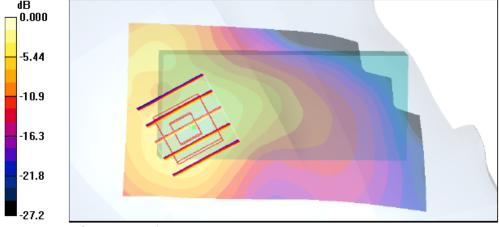
Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.84$ mho/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.0 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.171 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.14 V/m; Power Drift = -0.072 dB

Peak SAR (extrapolated) = 0.355 W/kg

SAR(1 g) = 0.173 mW/g; SAR(10 g) = 0.082 mW/gMaximum value of SAR (measured) = 0.190 mW/g

0 dB = 0.190 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date : 2008/1/31

Right Tilted_802.11b Ch11_Bluetooth On

DUT: 812117

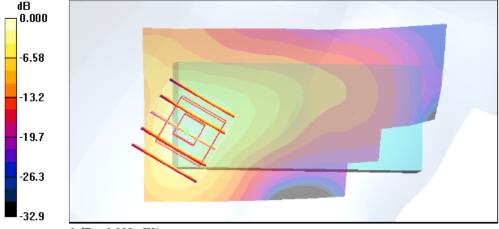
Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch11/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.227 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.418 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.094 mW/gMaximum value of SAR (measured) = 0.222 mW/g

0 dB = 0.222 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Body_802.11b Ch6_Front Face with 1.5cm Gap

DUT: 812117

Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.055 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.49 V/m; Power Drift = -0.163 dB

Peak SAR (extrapolated) = 0.101 W/kg

SAR(1 g) = 0.051 mW/g; SAR(10 g) = 0.029 mW/gMaximum value of SAR (measured) = 0.053 mW/g

0 dB = 0.053 mW/g

Date: 2008/1/31

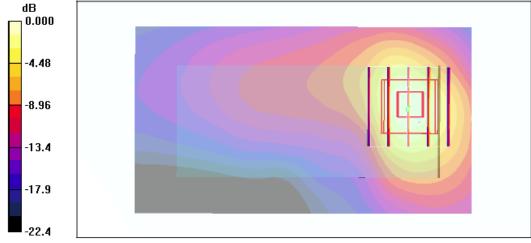
Body_802.11b Ch11_Rear Face With 1.5cm Gap

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

DUT: 812117

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³


Ambient Temperature: 22.9 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176

Ch11/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.465 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.7 V/m; Power Drift = -0.005 dB Peak SAR (extrapolated) = 0.838 W/kg SAR(1 g) = 0.415 mW/g; SAR(10 g) = 0.203 mW/g Maximum value of SAR (measured) = 0.463 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Body_802.11g Ch6_Rear Face with 1.5cm Gap

DUT: 812117

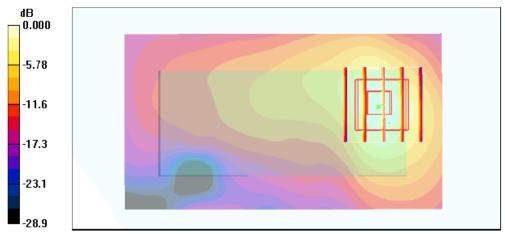
Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch6/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.063 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.20 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.057 mW/g; SAR(10 g) = 0.029 mW/gMaximum value of SAR (measured) = 0.065 mW/g

0 dB = 0.065 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Body_802.11b Ch11_Rear Face with 1.5cm Gap_Bluetooth On

DUT: 812117

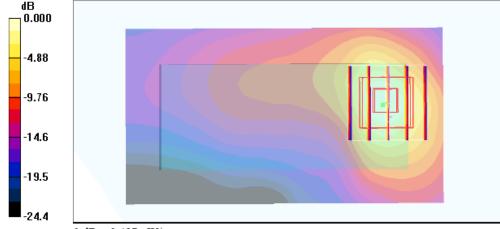
Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.8 °C; Liquid Temperature: 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch11/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.489 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.876 W/kg

SAR(1 g) = 0.434 mW/g; SAR(10 g) = 0.212 mW/gMaximum value of SAR (measured) = 0.487 mW/g

0 dB = 0.487 mW/g

FCC SAR Test Report No : FA812117-C

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Right Tilted_802.11b Ch11_Bluetooth On_2D

DUT: 812117

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.86$ mho/m; $\epsilon_r = 37.8$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.5, 4.5, 4.5); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch11/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.227 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.418 W/kg

SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.094 mW/gMaximum value of SAR (measured) = 0.222 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/1/31

Body_802.11b Ch11_Rear Face with 1.5cm Gap_Bluetooth On_2D

DUT: 812117

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.8 °C; Liquid Temperature : 21.5 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1787; ConvF(4.02, 4.02, 4.02); Calibrated: 2007/8/28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn778; Calibrated: 2007/9/17
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 176


Ch11/Area Scan (51x91x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.489 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = 0.028 dB

Peak SAR (extrapolated) = 0.876 W/kg

SAR(1 g) = 0.434 mW/g; SAR(10 g) = 0.212 mW/gMaximum value of SAR (measured) = 0.487 mW/g

Appendix C - Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Test Report No : FA812117-C

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton (Auden)

Accreditation No.: SCS 108

Certificate No: D2450V2-736_Jul07

Object	D2450V2 - SN: 7	36	THE STATE OF
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date:	July 12, 2007		
Condition of the calibrated item	In Tolerance		a production
Calibration Equipment used (Mi Primary Standards. Power mater EPN-442A Power sensor EPN-442A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV3		Cal Date (Calibrated by, Cartificate No.) G3-Oct-06 (METAS, No. 217-00608) G3-Oct-06 (METAS, No. 217-00608) 10-Aug-06 (METAS, No. 217-00591) 10-Aug-06 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jan-08
Calibration Equipment used (Mi Primary Standards Power mater EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV3 DAE4	ID # G837480704 U337292783 SN: 5066 (200) SN: 5047.2 (10r) SN: 3025 SN: 601	Cal Date (Calibrated by, Cartificate No.) G3-Oct-06 (METAS, No. 217-00608) G3-Oct-06 (METAS, No. 217-00608) 10-Aug-08 (METAS, No 217-00591) 10-Aug-08 (METAS, No 217-00591) 19-Oct-06 (SPEAG, No. ES3-3025 Oct06)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07
Calibration Equipment used (Mi Primary Standards Power mater EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN 5066 (20g) SN: 5047.2 (10r) SN 3025 SN 601	Cal Date (Calibrated by, Certificate No.) 63-Oct-06 (METAS, No. 217-00608) 03-Oct-06 (METAS, No. 217-00608) 10-Aug-08 (METAS, No. 217-00591) 10-Aug-08 (METAS, No. 217-00591) 19-Oct-06 (SPEAG, No. ES3-3025_Oct06) 30-Jan-07 (SPEAG, No. DAE4-001_Jan07)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jan-08
Calibration Equipment used (Mi Primary Standards Power mater EPM-442A Power sensor HP 8431A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E44218	ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047.2 (10r) SN: 3025 SN: 601 ID # MY41092317 MY41000875	Cal Date (Calibrated by, Cartificate No.) G3-Oct-06 (METAS, No. 217-00608) G3-Oct-06 (METAS, No. 217-00608) 10-Aug-08 (METAS, No. 217-00591) 10-Aug-08 (METAS, No. 217-00591) 10-Oct-06 (SPEAG, No. ES3-3025_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Chack In house check: Nov-07 In house check: Nov-07
Calibration Equipment used (Mi Primary Standards. Power mater EPM-442A Power sensor HP 8431A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator Agilent E44218	ID # GB37480704 US37292783 SN: 5066 (20g) SN: 5047.2 (10r) SN 3025 SN 601 ID # MY41092317 MY41000875 US37360585 S4206	Cal Date (Calibrated by, Certificate No.) 63-Oct-06 (METAS, No. 217-00608) 63-Oct-06 (METAS, No. 217-00608) 10-Aug-08 (METAS, No. 217-00591) 10-Aug-08 (METAS, No. 217-00591) 19-Oct-08 (SPEAG, No. ES3-3025_Oct06) 30-Jan-07 (SPEAG, No. DAE4-601_Jan07) Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-05) 11-May-05 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Oct-07 Oct-07 Aug-07 Aug-07 Oct-07 Jan-08 Scheduled Check In house check: Oct-07 In house check: Oct-07

Certificate No: D2450V2-736_Jul07

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst S Service suisse d'étalonnage C

Test Report No : FA812117-C

Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)",

February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields: Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- · Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-736 Jul07

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mha/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.6 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	******	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.3 mW / g
SAR normalized	normalized to 1W	53.2 mW / g
SAR for nominal Head TSL parameters 1	nomalized to 1W	52.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.17 mW/g
SAR normalized	normalized to 1W	24.7 mW / g
SAR for nominal Hoad TSL parameters 1	-normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-736_Jul07

Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 8 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52,0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	52.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.05 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	24.4 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-736_Jul07

Page 4 of 9

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.1 Ω + 3.0 jΩ	
Return Loss	- 27.6 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$48.7 \Omega + 4.6 j\Omega$	
Return Loss	- 26.3 dB	

General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the

feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 26, 2003

Certificate No: D2450V2-736 Jul07

Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 12.07.2007 11:00:03

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: f = 2450 MHz, $\sigma = 1.81$ mho/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

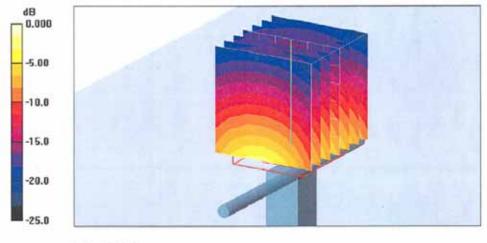
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025 (HF); ConvF(4.5, 4.5, 4.5); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronies: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

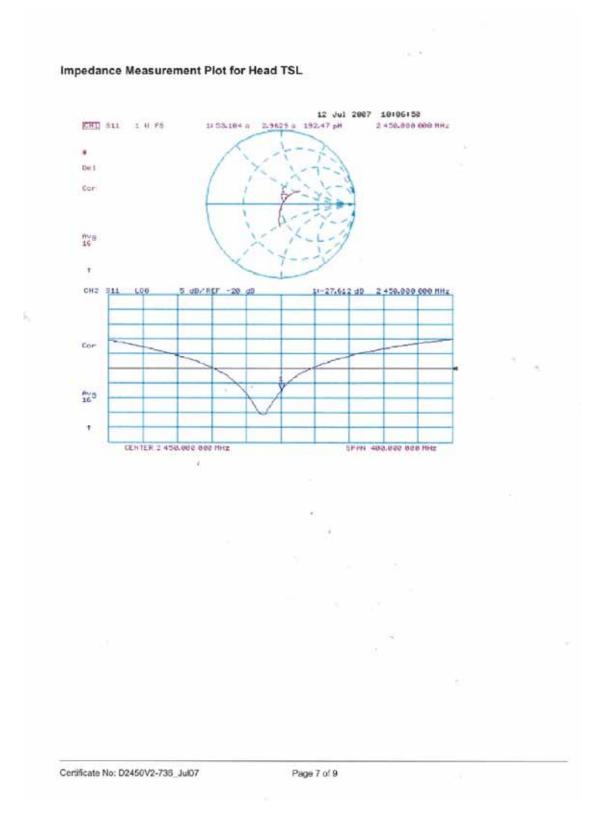

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.0 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.17 mW/g

Maximum value of SAR (measured) = 15.0 mW/g



0 dB = 15.0 mW/g

Certificate No. D2450V2-736_Jul07

Page 6 of 9

DASY4 Validation Report for Body TSL

Date/Time: 12.07.2007 12:28:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB;

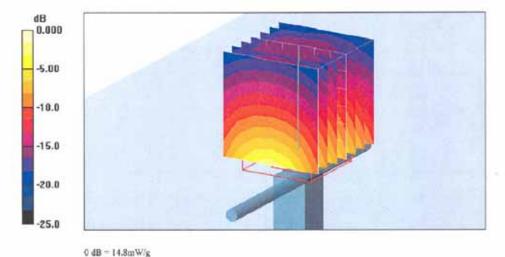
Medium parameters used: f = 2450 MHz; $\sigma = 1.94 \text{ mho/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 SN3025 (HF); ConvF(4.16, 4.16, 4.16); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172.

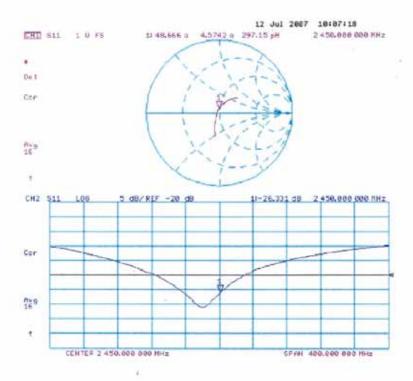

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx-5mm, dy-5mm, dz-5mm Reference Value = 88.6 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.05 mW/g

Maximum value of SAR (measured) = 14.8 mW/g



Gertificate No: D2450V2-736_Jul07

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-736_Jul07

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Sporton (Auolen)

Certificate No: DAE4-778_Sep07

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BG - SN: 778 Object QA CAL-06.v12 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) September 17, 2007 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# Cal Date (Calibrated by, Certificate No.) Primary Standards 13-Oct-06 (Elcal AG, No: 5492) Oct-07 Fluke Process Calibrator Type 702 SN: 6295803 03-Oct-96 (Elcal AG, No: 5478) Oct-07 Keithley Multimeter Type 2001 SN: 0810278 Scheduled Check Check Date (in house) Secondary Standards In house check Jun-08 SE UMS 008 AB 1004 25-Jun-07 (SPEAG, in house check) Calibrator Box V1.1 Name Function Signature Calibrated by: Dominique Steffen Technician R&D Director Fin Bomholt Approved by: Mules Issued: September 17, 2007 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-778_Sep07

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle information used in

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-778 Sep07

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	404.715 ± 0.1% (k=2)	403.520 ± 0.1% (k=2)	405.065 ± 0.1% (k=2)
Low Range	3.99539 ± 0.7% (k=2)	3.96323 ± 0.7% (k=2)	3.97102 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system 309 ° ± 1 °

Certificate No: DAE4-778_Sep07

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	199999.5	0.00
Channel X + Input	20000	20004.41	0.02
Channel X - Input	20000	-20002.56	0.01
Channel Y + Input	200000	200000.3	0.00
Channel Y + Input	20000	20003.67	0.02
Channel Y - Input	20000	-20003.41	0.02
Channel Z + Input	200000	200000.3	0.00
Channel Z + Input	20000	20002.49	0.01
Channel Z - Input	20000	-20006.25	0.03

Low Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Inpu	it 2000	1999.9	0.00
Channel X + Inpu	it 200	199.47	-0.26
Channel X - Inpu	t 200	-200.56	0.28
Channel Y + Inpu	nt 2000	2000.1	0.00
Channel Y + Inpu	it 200	199.15	-0.43
Channel Y - Inpu	t 200	-200.77	0.39
Channel Z + Inpu	it 2000	2000	0.00
Channel Z + Inpu	ıt 200	199.22	-0.39
Channel Z - Inpu	t 200	-201.39	0.69

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-6.00	-6.42
	- 200	7.17	6.60
Channel Y	200	-2.49	-2.64
	- 200	2.04	1.25
Channel Z	200	-10.83	-10.80
	- 200	9.19	8.80

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	1 2	2.57	0.15
Channel Y	200	0.11	-	4.08
Channel Z	200	-1.80	1.03	

Certificate No: DAE4-778_Sep07

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16068	16321
Channel Y	16180	16239
Channel Z	16405	16167

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

1	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.14	-1.23	0.61	0.34
Channel Y	-0.85	-2.24	0.48	0.49
Channel Z	-1.24	-2.43	0.38	0.51

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	201.7
Channel Y	0.2000	201.7
Channel Z	0.1999	202.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VD	OC)	
Supply (+ Vcc)		+7.9	
Supply (- Vcc)		-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	≠6 ·	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-778_Sep07

Page 5 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden)

Certificate No: ET3-1787_Aug07

Accreditation No.: SCS 108

Otject	ET3DV6 - SN:1	787	
Calibration procedure(s)	QA CAL-01.v6 Calibration proc	sedure for dosimetric E-field probes	
Calibration date:	August 28, 200	7	17.0322.00
Condition of the calibrated item	In Tolerance		THE PROPERTY OF
All calibrations have been condu	sted in the closed laborat	ory facility: environment temperature (22 ± 3)°C and	humidity < 70%.
Calibration Equipment used [M&]	TE critical for calibration)		
Calibration Equipment used [M&T	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Mar-OB
mitration Equipment used (M& many Standards Ower meter E44198	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration
miteration Equipment used [M& many Standards ower meter E44198 ower sensor E4412A	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration Mar-Oil
calibration Equipment used [M&* immary Standards lower meter E44198 lower sensor E4412A lower sensor E4412A	TE critical for calibration) 10 # GB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration Mar-08 Mar-08
calibration Equipment used [M61] rinnary Standards rower meter E44 198 rower sensor E4412A rower sensor E4412A seference 3 dB Attenuator telerence 20 dB Attenuator	TE critical for calibration) 1D # GB41293874 MY41495277 MY41498087 SN 55054 (3c) SN 55096 (20b)	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-0071)	Scheduled Calibration Mar-OB Mar-OB
Caribration Equipment used [M61 Primary Standards Power Inster E44199 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	TE critical for calibration) 1D # GB41293874 MY41495277 MY41498087 SN \$5034 (3c) SN \$5036 (20b) SN \$5129 (30b)	Cal Date (Calibrated by, Cartificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-00719) 8-Aug-Q7 (METAS, No. 217-00720)	Scheduled Calibration Mar-OB Mar-OB Mar-OB Aug-UB Mar-OB Aug-UB
Calibration Equipment used [M&T Primary Standards Fower Inster E44 19/8 Fower sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 97 ob Attenuator Reference Probe E83DV2	TE critical for calibration) 1D # GB41293874 MY41495277 MY41498087 SN 55054 (3c) SN 55096 (20b)	Cal Date (Calibrated by, Certificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-0071)	Scheduled Calibration Mar-OB Mar-OB Mar-OB Aug-UB Mar-OB
Calibration Equipment used [M6] Primary Standards Fower Inster E44 198 Power sonsor E4412A Power sonsor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN 55054 (3c) SN 55056 (20b) SN 55129 (30b) SN 3013	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Jug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Jug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Scheduled Calibration Mar-OB Mar-OB Mar-OB Aug-OB Mar-OB Aug-OB Jan-OB
Caribration Equipment used [M6] Primary Standards Power Inster E44 198 Power Sonsor E4412A Power Sonsor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe E830V2 DAE4 Secondary Standards	TE critical for calibration) ID # GB41293874 MY41495277 MY41499087 SN 55054 (3c) SN 55056 (20b) SN 55129 (30b) SN 3013 SN 654	Cal Date (Calibrated by, Certricate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-0071) 8-Aug-Q7 (METAS, No. 217-00720) 4-Jan-Q7 (SPEAG, No. ES3-3013_Jan07) 20-Apr-Q7 (SPEAG, No. DAE4-654_Apr07)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-08 Mur-08 Aug-08 Aug-08 Jan-08 Apr-08
Caribration Equipment used [M6] Primary Standards Fower inster E44-198 Power sonsor E4412A Fower sonsor E4412A Fairerence 3 dB Attenuator Reference 20 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards RF generator HP 8648C	TE critical for calibration) 1D # GB41293874 MY41495277 MY41499877 SN 55054 (3c) SN 55096 (20b) SN 55129 (30b) SN 3013 SN 654	Cal Date (Calibrated by, Cartificate No.) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 29-Mar-Q7 (METAS, No. 217-00670) 8-Aug-Q7 (METAS, No. 217-00719) 29-Mar-Q7 (METAS, No. 217-0072) 4-Jan-Q7 (METAS, No. 217-00720) 4-Jan-Q7 (SPEAG, No. ES3-3013_Jan07) 20-Apr-Q7 (SPEAG, No. DAE4-654_Apr07) Check Date (in house)	Scheduled Calibration Mar-OB Mar-OB Mar-OB Aug-UB Mar-OB Aug-OB Jan-OB Jan-OB Apr-OB Scheduled Check
Calibration Equipment used [M6] Primary Standards Fower Inster E44 15/8 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards RF generator HP 8648C Retwork Analyzer HP 8763E	TE critical for calibration) ID # GB41293874 MY41495277 MY41498087 SN 55054 (3c) SN 55056 (20b) SN 55129 (30b) SN 3013 SN 654 ID # US3642U01706 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 8-Aug-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-0071) 8-Aug-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-08)	Scheduled Calibration Mar-OB Mar-OB Mar-OB Aug-UB Mar-OB Aug-UB Jan-OB Apr-OB Scheduled Check In house check: Nov-OT
All celibration Equipment used [M&I Celibration Equipment used [M&I Primary Standards Fower meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe E83DV2 DAE4 Secondary Standards RF generator HP 8648C Vetwork Analyzer HP 8763E	ID # GB41293874 MY41495277 MY41495277 MY41498087 SN \$5054 (3c) SN \$5056 (3cb) SN \$5129 (30b) SN \$5129 (30b) SN \$654 ID # US3642U01700 US37390565	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00719) 29-Mar-07 (METAS, No. 217-00720) 4-Jan-07 (METAS, No. 217-00720) 4-Jan-07 (SPEAG, No. E33-3013_Jan07) 20-Apr-07 (SPEAG, No. DAE4-654_Apr07) Check Date (in house) 4-Aug-89 (SPEAG, in house check Nov-05) 16-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Mar-O8 Mar-O8 Mar-O8 Aug-U8 Mar-O8 Aug-O8 Jan-O8 Apr-O8 Scheduled Check In house check: Nov-O7 In house check: Oct-O7

Certificate No: ET3-1787_Aug07

Page 1 of 9

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage

Accreditation No.: SCS 108

- C Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Federal Office of Notrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z

tissue simulating liquid sensitivity in free space

ConF

sensitivity in TSL / NORMx.y,z

DCP

diode compression point

Polarization o

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1787_Aug07

Page 2 of 9

ET3DV6 SN:1787

August 28, 2007

Probe ET3DV6

SN:1787

Manufactured:

May 28, 2003

Last calibrated: Recalibrated: May 31, 2006 August 28, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1787_Aug07

Page 5 of 9

ET3DV6 SN:1787

August 28, 2007

DASY - Parameters of Probe: ET3DV6 SN:1787

Sensitivity in	Free Space ^A	Diode Compression ^B		
NormX	1.63 ± 10.1%	$\mu V/(V/m)^2$	DCP X	92 mV
NormY	1.66 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	96 mV
NormZ	2.08 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	91 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR	gradient: 5	% per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{to} [%]	Without Correction Algorithm	4.7	2.0
SAR _{to} [%]	With Correction Algorithm	0.1	0.0

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SARte [%]	Without Correction Algorithm	11.8	7.0
SAR _{to} [%]	With Correction Algorithm	0.2	0.4

Sensor Offset

Probe Tip to Sensor Center 2.7 mm

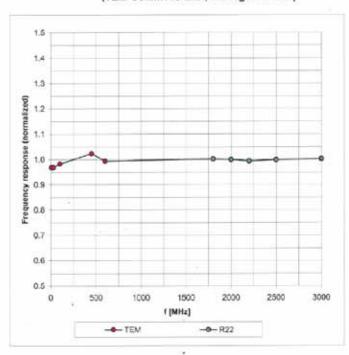
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1787 Aug07

Page 4 of 9

[^] The uncertainties of NormX,Y,Z do not affect the E^{\parallel} -field uncertainty inside TSL (see Page 8).

^{*} Numerical linearization parameter; uncertainty not required.

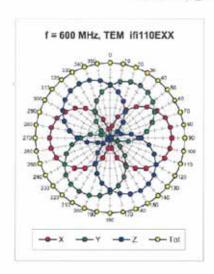


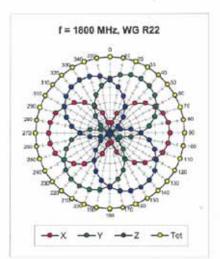
August 28, 2007

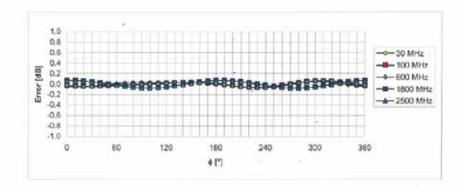
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

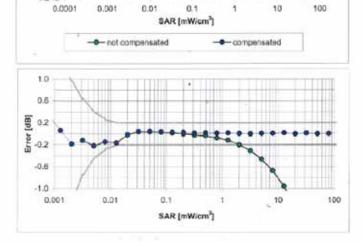

Certificate No: ET3-1787_Aug07


Page 5 of 9



August 28, 2007

Receiving Pattern (ϕ), $9 = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1787_Aug07

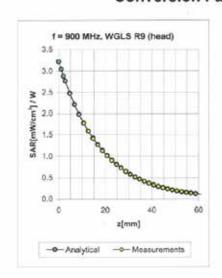
Page 6 of 9

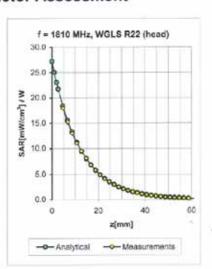
Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ETS-1787_Aug07

1.E+2

1.E+1


1.E+0


Page 7 of 9

ET3DV6 SN:1787

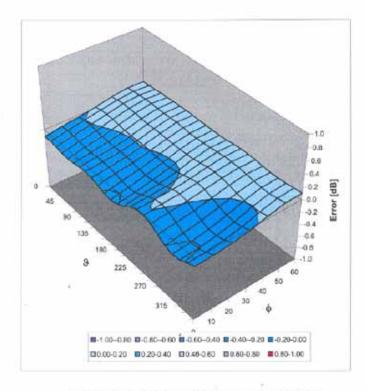
August 28, 2007

Conversion Factor Assessment

f [MHz]	Validity [MHz]*	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	±50/±100	Head	41.5 ± 5%	0.97 ± 5%	0.32	2.42	6.58 ± 11.0% (k=2)
1810	±50/±100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.50	2.61	5.16 ± 11.0% (4=2)
2000	±50/±100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.55	2.45	4.80 ± 11.0% (k=2)
2450	±50/±100	Head	39.2 ± 5%	1.80 ± 5%	0.67	1.81	4.50 ± 11.8% (k=2)
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.36	2.52	6.10 ± 11.0% (k=2)
1810	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.61	2.56	4.68 ± 11.0% (k=2)
2000	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.60	2,40	4.30 ± 11.0% (k=2)
2450	±50/±100	Body	52.7 ± 5%	$1.95 \pm 5\%$	0.65	2.15	4.02 ± 11.8% (k=2)

Certificate No: ET3-1787_Aug07

Page 8 of 9


The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

ET3DV6 SN:1787

August 28, 2007

Deviation from Isotropy in HSL

Error (o, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1787_Aug07

Page 9 of 9