The University of Michigan Radiation Laboratory 3228 EECS Building Ann Arbor, MI 48109-2122 Tel: (734) 647-1792

Measured Radio Frequency Emissions From

Clifford/ Rolls Royce RKE Transmitter Part Number PCT315

Report No. 415031-035 June 20, 1999 (Revised March 17, 2000)

Copyright © 2000

For: MIRA North America 47523 Clipper Street Plymouth, MI 48170

Contact: Bill Lusa Tel 734-455-6673 Fax 734-455-9666 PO: verbal

Measurements made by:

Ben Flaster Valdis Liepa Tests supervised by: Report approved by:

> Valdis V. Liepa Research Scientist

Summary

Tests for compliance with FCC Regulations, Part 15, Subpart C, and for compliance with Industry Canada RSS-210, were performed on Clifford/ Rolls Royce RKE transmitter. This device is subject to the Rules and Regulations as a transmitter and as a digital device.

In testing performed April 30 and May 5, 1999, the device tested in the worst case met the allowed specifications for radiated emissions by 13.3 dB at fundamental and by 11.1 dB at harmonics (see p. 6). Besides harmonics, there were no other significant spurious emissions found; emissions from digital circuitry were negligible. The line conducted emission tests do not apply, since the device is powered by one 12 V battery.

1. Introduction

Clifford/ Rolls Royce RKE transmitter, PN: PCT315, was tested for compliance with FCC Regulations, Part 15, adopted under Docket 87-389, April 18, 1989, and with Industry Canada RSS-210, Issue 2, dated February 14, 1998. The tests were performed at the University of Michigan Radiation Laboratory Willow Run Test Range following the procedures described in ANSI C63.4-1992 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz". The Site description and attenuation characteristics of the Open Site facility are on file with FCC Laboratory, Columbia, Maryland. (FCC file 31040/SIT) and with Industry Canada, Ottawa, ON (File Ref. No: IC2057).

2. Test Procedure and Equipment Used

The test equipment commonly used in our facility is listed in Table 2.1 below. The second column identifies the specific equipment used in these tests. The HP 8593E spectrum analyzer is used for primary amplitude and frequency reference.

Table 2.1. Test Equipment.

Test Instrument	Equipment Used	Manufacturer/Model	Cal. Date/By
Spectrum Analyzer (9kHz-22GHz)		Hewlett-Packard 8593A SN: 3107A01358	October 1999/UM
Spectrum Analyzer (9kHz-26GHz)	X	Hewlett-Packard 8593E SN: 3107A01131	September 1999/HP
Spectrum Analyzer (0.1-1500 MHz)		Hewlett-Packard 182T/8558B SN: 1529A01114/543592	October 1999/U of M Rad Lab
Preamplifier (5-1000MHz)	X	Watkins-Johnson A11 -1 plus A25-1S	October 1999/U of M Rad Lab
Preamplifier (5-4000 MHz)	X	Avantek	Oct. 1999/ U of M Rad Lab
Broadband Bicone (20-200 MHz)	X	University of Michigan	June 1996/U of M Rad Lab
Broadband Bicone (200-1000 MHz	·)	University of Michigan	June 1996/U of M Rad Lab
Dipole Antenna Set (25-1000 MHz)	t X	University of Michigan	Dec. 1997/U of M Rad Lab
Dipole Antenna Set (30-1000 MHz)	t	EMCO 3121C SN: 992	June 1996/U of M Rad Lab
Active Loop Anten (0.090-30MHz)	na	EMCO 6502 SN: 2855	December 1993/ EMCO
Active Rod (30Hz-50 MHz)		EMCO 3301B SN: 3223	December 1993/EMCO
Ridge-horn Antenn (0.5-5 GHz)		University of Michigan	March 1999/U of M Rad Lab
LISN Box Signal Cables	X	University of Michigan Assorted	Dec. 1997/U of M Rad Lab January 1993/U of M Rad Lab
X-Y Plotter Signal Generator	Α	Hewlett-Packard 7046A Hewlett-Packard 8656A	During Use/U of M Rad Lab January 1990/U of M Rad Lab
(0.1-990 MHz) Printer	X	Hewlett-Packard 2225A	August 1989/HP

3. Configuration and Identification of Device Under Test

The DUT is a paper match-box size two-button low power transmitter designed to send identification and control signals to a companion receiver. It is activated by depressing either of the buttons. When a button is pressed, digital words are transmitted for as long as the button is depressed. The emission is a pulse-width modulated code on a 315.0 MHz carrier generated by a SAW stabilized oscillator. The coding is performed by a microprocessor, timed by an RC stabilized oscillator, RC=8µsec.

The DUT was designed and manufactured by Clifford Electronics, Inc., 20750 Lassen Street,

Chatsworth, CA 91311. It is identified as:

Clifford/ Rolls Royce RKE Transmitter PN: PCT315 SN: 53-354 FCC ID: CZ57RRTRRXX

CANADA:

When testing for radiated emissions, the DUT was placed in a wooden clamp that depressed a button for repeated pulsed emissions.

3.1 EMI Relevant Modifications

No modifications were made by this laboratory.

4. Emission Limits

4.1 Radiated Emission Limits

The DUT tested falls under the category of an Intentional Radiators and the Digital Devices. For FCC, it is subject to Part 15, Subpart C, (Section 15.231), Subpart B, (Section 15.109), and Subpart A, (Section 15.33). For Industry Canada it is subject to RSS-210, (Sections 6.1 and 6.3). The applicable testing frequencies with corresponding emission limits are given in Tables 4.1 and 4.2 below. As a digital device, the DUT is considered as a Class B device.

Table 4.1. Radiated Emission Limits (FCC: 15.231(b), 15.205(a); IC: RSS-210; 6.1, 6.3) Transmitter.

Frequency	Fundan Ave. E _{lir}		Spurious** Ave. E _{lim} (3m)			
(MHz)	(μV/m)	dB (μV/m)	(µV/m)	dB (μV/m)		
260.0-470.0	3750-12500*		375-1250			
322-335.4	Restricted					
399.9-410	Bands		200	46.0		
608-614						
960-1240						
1300-1427	Restricted					
1435-1626.5	Bands		500	54.0		
1660-1710						
1718.9-1722.2						
2200-2300						

Linear interpolation, formula: E = -7083 + 41.67*f (MHz)
Measure up to tenth harmonic; 120 kHz BW up to 1 GHz, 1 MHz BW above 1 GHz

Table 4.2. Radiated Emission Limits (FCC: 15.33, 15.35, 15.109; IC: RSS-210, 6.2.2(r)). (Digital Class B)

Freq. (MHz)	E _{lim} (3m) μV/m	$E_{lim} dB(\mu V/m)$
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-2000	500	54.0

Average readings apply above 1000 MHz (1 MHz BW) Note: Quasi-Peak readings apply to 1000 MHz (120 kHz BW)

4.2 Conductive Emission Limits

The conductive emission limits and tests do not apply here, since the DUT is powered by one internal 12 V battery.

5. Radiated Emission Tests and Results

5.1 Anechonic Chamber Measurements

To familiarize with the radiated emission behavior of the DUT, the DUT was first studied and measured in a shielded anechoic chamber. In the chamber there is a set-up similar to that of an outdoor 3-meter site, with a turntable, an antenna mast, and a ground plane. Instrumentation includes spectrum analyzers and other equipment as needed.

In testing for radiated emissions, the transmitter was activated using the lock/unlock button with a special wooden clamp for repeated pulse emissions. It was placed on the test table flat, on its side, or on its end.

In the chamber we studied and recorded all the emissions using a bicone antenna up to 300 MHz and a ridged horn antenna above 200 MHz. The measurements made in the chamber below 1 GHz are used for pre-test evaluation only. The measurements made above 1 GHz are used in pre-test evaluation and in the final compliance assessment. We note that for the horn antenna, the antenna pattern is more directive and hence the measurement is essentially that of free space (no ground reflection). Consequently it is not essential to measure the DUT for both antenna polarizations, as long as the DUT is measured on all three of its major axis. In the chamber we also recorded the spectrum and modulation characteristics of the carrier. These data are presented in subsequent sections. We also note that in scanning from 30 MHz to 3.15 GHz using bicone and the ridge horn antennas, there were no other significant spurious emissions observed.

5.2 Outdoor Measurements

After the chamber measurements, the emissions were re-measured on the outdoor 3-meter site at fundamental and harmonics up to 1 GHz using tuned dipoles and/or the high frequency bicone. Photographs in Appendix show the DUT on the open in site table (OATS).

5.3 Computations and Results

To convert the dBm measured on the spectrum analyzer to $dB(\mu V/m)$, we use expression

$$E_3(dB\mu V/m) = 107 + P_R + K_A - K_G + K_E$$

power recorded on spectrum analyzer, dB, measured at 3m where

 P_R = power recorded on spectrum analyzer, dB, K_A = antenna factor, dB/m K_G = pre-amplifier gain, including cable loss, dB pulse operation correction factor, dB (see 6.1) When presenting the data, at each frequency the highest measured emission under all of the possible orientations is given. Computations and results are given in Table 5.1. There we see that the DUT meets the limit by 11.1 dB.

6. Other Measurements and Computations

6.1 Correction For Pulse Operation

When the transmitter is activated by momentary push, it transmits PWM coded (repeated) words for as long as the button is depressed. The "worst case" occurs when the whole word falls within a 100 ms window. Data are encoded by wide and narrow pulses and the worst case occurs when all the pulses are wide. For such then the duty factor is

$$K_E = 2.4947 \text{ ms}/ 2.9887 \text{ ms} = 0.835 \text{ or } -1.6 \text{ dB}.$$

6.2 Emission Spectrum

Using the ridge-horn antenna and DUT placed in its aperture, emission spectrum was recorded and is shown in Figure 6.2.

6.3 Bandwidth of the Emission Spectrum

The measured spectrum of the signal is shown in Figure 6.3. The allowed (-20 dB) bandwidth is 0.25% of 315 MHz, or 787.25 KHz. From the plot we see that the -20 dB bandwidth is 63.0 kHz, and the center frequency is 315.02 MHz.

6.4 Effect of Supply Voltage Variation

The DUT has been designed to be powered by 12 VDC battery. For this test, the battery was replaced by a laboratory variable power supply. Relative power radiated was measured at the fundamental as the voltage was varied from 5.4 to 16.0 volts. The emission variation is shown in Figure 6.4.

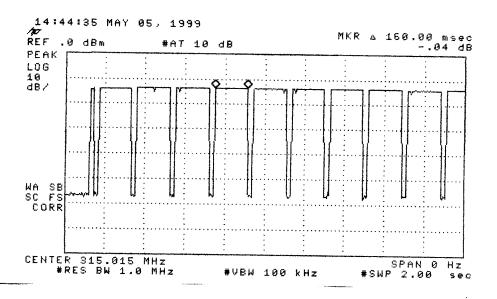
6.5 Input Voltage at Battery Terminals

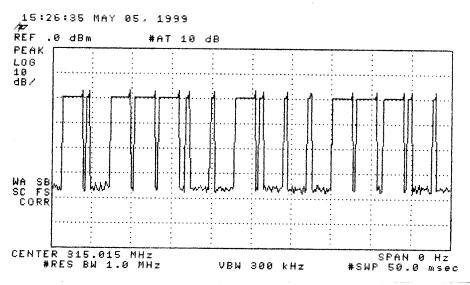
Batteries: before testing $V_{oc} = 12.3 \text{ V}$

after testing $V_{oc} = 11.6 \text{ V}$

Ave. current from batteries I = 5.0 mA (pulsed)

The University of Michigan
Radiation Laboratory
3228 EECS Building
Ann Arbor, Michigan 48109-2122
(734) 647-1792


Table 5.1 Highest Emissions Measured


	Radiated Emission - RF MIRA/Rolls TX; FCC/IC										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dBμV/m	dB	Comments
1	315.0	Dip	Н	-40.7	Pk	18.9	21.3	62.3	75.6	13.3	flat
2	315.0	Dip	V	-43.5	Pk	18.9	21.3	59.5	75.6	16.1	side
3	630.0	Dip	Н	-75.8	Pk	25.2	18.0	36.9	55.6	18.7	flat
4	630.0	Dip	V	-76.3	Pk	25.2	18.0	36.4	55.6	19.2	end
5	945.0	Dip	Н	-79.0	Pk	28.9	15.6	39.7	55.6	15.9	flat, noise
6	945.0	Dip	V	-78.5	Pk	28.9	15.6	40.2	55.6	15.4	end,noise
7	1260.0	Horn	Н	-60.5	Pk	20.4	28.1	37.2	55.6	18.4	end
8	1575.0	Horn	Н	-60.4	Pk	21.4	28.2	38.2	54.0	15.8	side
9	1890.0	Horn	Н	-60.0	Pk	22.1	28.1	39.4	55.6	16.2	side
10	2205.0	Horn	Н	-58.4	Pk	22.9	27.0	42.9	54.0	11.1	flat *worst case
11	2520.0	Horn	Н	-64.6	Pk	24.0	26.6	38.2	55.6	17.4	flat
12	2835.0	Horn	Н	-62.4	Pk	24.9	25.4	42.5	55.6	13.1	flat
13	3150.0	Horn	Н	-65.7	Pk	25.2	24.8	40.1	55.6	15.5	flat
14											
15											
16											
17											
18			*inclu	des -1.6 d	lB duty	factor					
19											
20											
21											

	Digital Emissions										
	Freq.	Ant.	Ant.	Pr	Det.	Ka	Kg	E3*	E3lim	Pass	
#	MHz	Used	Pol.	dBm	Used	dB/m	dB	dBμV/m	dΒμV/m	dB	Comments
1											
2											
3			Digita	Digital emissions are more than 20 dB below FCC Class B limit							
4											

	Conducted Emissions									
	Freq.	Line	Det.	Vtest	Vlim	Pass				
#	MHz	Side	Used	dΒμV	dΒμV	dB	Comments			
1										
2			Not ap	plicable						
3										
4										

Meas. 5/30/99; U of Mich.

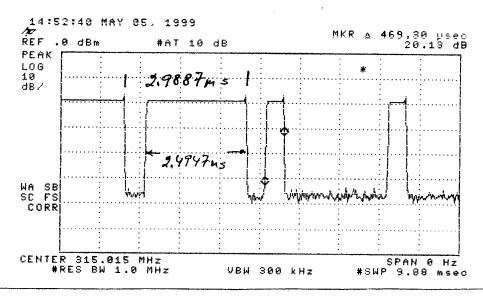


Figure 6.1. Transmissions modulation characteristics: (top) complete transmission, (center) expanded word, (bottom) expanded bits.

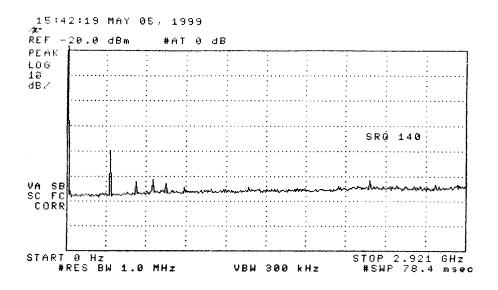


Figure 6.2. Emission spectrum of the DUT (pulsed emission).

The amplitudes are only indicative (not calibrated).

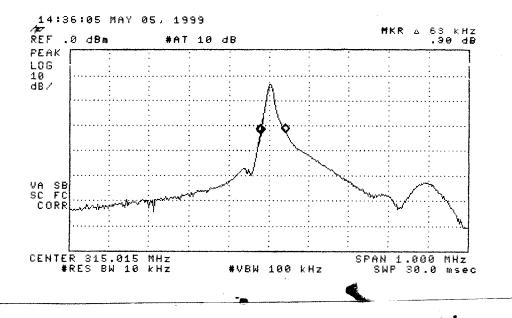


Figure 6.3. Measured bandwidth of the DUT (pulsed emission).

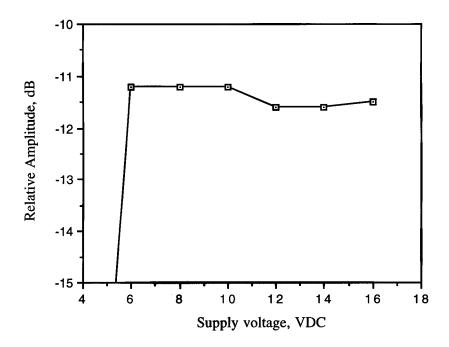


Figure 6.4. Relative emission at 315.0 MHz vs. supply voltage (pulsed emission).