

RADIO TEST REPORT

Test Report No.: 10309424H-A

Applicant	:	ALPS ELECTRIC CO., LTD.
Type of Equipment	:	Immobilizer base station
Model No.	:	TWK1A0028
Test regulation	:	FCC Part 15 Subpart C: 2014
FCC ID	:	CWTWK1A0028

Test Result : Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

June 16 and 18, 2014

Representative test engineer:

Masatoshi Nishiguchi Engineer Consumer Technology Division

Approved by:

Masanori Nishiyama Manager Consumer Technology Division

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999 Facsimile : +81 596 24 8124

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/ma rk1/index.jsp#nvlap

REVISION HISTORY

Original Test Report No.: 10309424H-A

Revision	Test report No.	Date	Page revised	Contents
- (Original)	10309424H-A	June 25, 2014	-	-

CONTENTS

PAGE

SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	9
SECTION 6: -26dB Bandwidth	.11
SECTION 7: 99% Occupied Bandwidth	.11
APPENDIX 1: Data of EMI test	.12
Radiated Emission below 30MHz (Fundamental and Spurious Emission)	.12
Radiated Emission above 30MHz (Spurious Emission).	.13
-26dB Bandwidth and 99% Occupied Bandwidth	. 14
APPENDIX 2: Test instruments	.15
APPENDIX 3: Photographs of test setup	. 16
Radiated Emission	. 16
Worst Case Position	.17

Test report No. Page Issued date FCC ID	: 10309424H-A : 4 of 18 : June 25, 2014 : CWTWK1A0028

SECTION 1: Customer information

Company Name	:	ALPS ELECTRIC CO., LTD.
Address	:	6-3-36, Nakazato, Furukawa, Osaki-city, Miyagi-pref, 989-6181, Japan
Telephone Number	:	+81-229-23-5111
Facsimile Number	:	+81-229-23-5129
Contact Person	:	Toshiya Ikarashi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment :	Immobilizer base station
Model No. :	TWK1A0028
Serial No. :	Refer to Section 4, Clause 4.2
Receipt Date of Sample :	June 10, 2014
Country of Mass-production :	Mexico
Condition of EUT :	Engineering prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification of EUT :	No Modification by the test lab

2.2 **Product Description**

Model No: TWK1A0028 (referred to as the EUT in this report) is the Immobilizer base station.

General Specification

:	4MHz
:	Transceiver
:	125kHz
:	ASK
:	Loop Antenna
:	Ceramic Resonator
:	DC 12.0V
:	-40 to +85 deg. C
	:

Test report No.	: 10309424H-A
Page	: 5 of 18
Issued date	: June 25, 2014
FCC ID	: CWTWK1A0028

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	:	FCC Part 15 Subpart C: 2014, final revised on May 1, 2014 and effective June 2, 2014
Title	:	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted Emission Section 15.209 Radiated emission limits, general requirements

FCC 15.31 (e)

This test was performed with the New Battery (DC 12V) and the constant voltage was supplied to this EUT during the tests. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	Conducted Emission	<fcc> ANSI C63.4:2003 7. AC powerline conducted emission measurements <ic> RSS-Gen 7.2.4</ic></fcc>	<fcc> Section 15.207 <ic> RSS-Gen 7.2.4</ic></fcc>	-	N/A *1)	N/A	N/A
2	Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.8, 4.11</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	18.7dB 0.12500MHz 0 deg. PK with Duty factor	Complied
3	Electric Field Strength of Spurious Emission	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.9, 4.11</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	1.1dB 48.283MHz, Vertical, QP	Complied
4	-26dB Bandwidth	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> -</ic></fcc>	<fcc> Reference data <ic> -</ic></fcc>	Radiated	N/A	N/A	N/A
Note	· UIL Japan Inc.'s EMI W	ork Procedures No. 13-El	M-W0420 and 13-E	M-W0422			

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Test report No.	: 10309424H-A				
Page	: 6 of 18				
Issued date	: June 25, 2014				
FCC ID	: CWTWK1A0028				

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99% Occupied	RSS-Gen 4.6.1	RSS-Gen 4.6.1	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Radiated emission						
(semi-	(3m*)(<u>+</u> dB)				(1m*)(<u>+</u> dB)		(0.5m*)(<u>+</u> dB)
anechoic chamber)	9kHz -30MHz	30MHz -300MHz	300MHz -1GHz	1GHz -10GHz	10GHz -18GHz	18GHz -26.5GHz	26.5GHz -40GHz
No.1	4.0dB	5.1dB	5.0dB	5.1dB	6.0dB	4.9dB	4.3dB
No.2	3.9dB	5.2dB	5.0dB	4.9dB	5.9dB	4.7dB	4.2dB
No.3	4.3dB	5.1dB	5.2dB	5.2dB	6.0dB	4.8dB	4.2dB
No.4	4.6dB	5.2dB	5.0dB	5.2dB	6.0dB	5.7dB	4.2dB

*3m/1m/0.5m = Measurement distance

Radiated emission test(3m)

[Electric Field Strength of Fundamental Emission]

The data listed in this test report has enough margin, more than the site margin.

[Electric Field Strength of Spurious Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

3.5 Test Location

UL Japan, Inc. Ise EMC	Lab. *NVLAP	Lab. code: 200572-0
4383-326 Asama-cho, I	se-shi, Mie-ken 5	516-0021 JAPAN
Telephone : +81 596 24	8999 I	Facsimile : +81 596 24 8124

	IC Registration Number	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms
No.1 semi-anechoic chamber	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power source room
No.2 semi-anechoic chamber	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
No.3 semi-anechoic chamber	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3 Preparation room
No.3 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic chamber	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4 Preparation room
No.4 shielded room	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic chamber	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
No.6 shielded room	-	4.0 x 4.5 x 2.7m	4.0 x 4.5 m	-
No.6 measurement room	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
No.7 shielded room	-	4.7 x 7.5 x 2.7m	4.7 x 7.5m	-
No.8 measurement room	-	3.1 x 5.0 x 2.7m	N/A	-
No.9 measurement room	-	8.0 x 4.6 x 2.8m	2.4 x 2.4m	-
No.11 measurement room	-	6.2 x 4.7 x 3.0m	4.8 x 4.6m	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Data of EMI, Test instruments, and Test set up

Refer to APPENDIX.

Test report No.	: 10309424H-A
Page	: 8 of 18
Issued date	: June 25, 2014
FCC ID	: CWTWK1A0028

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

Test mode	Remarks
Transmitting mode (Tx)	125kHz

Justification : The system was configured in typical fashion (as a user would normally use it) for testing.

4.2 Configuration and peripherals

* Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
Α	Immobilizer base station	TWK1A0028	14060907	ALPS ELECTRIC CO.,	EUT
				LTD.	
В	Jig Box	-	14060908	ALPS ELECTRIC CO.,	-
				LTD.	
С	Transponder	-	F2	ALPS ELECTRIC CO.,	-
	_			LTD.	

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	Signal Cable	1.25	Unshielded	Unshielded	-
2	DC Cable	2.20	Unshielded	Unshielded	-
3	DC Cable	2.00	Unshielded	Unshielded	-

Test report No.	: 10309424H-A
Page	: 9 of 18
Issued date	: June 25, 2014
FCC ID	: CWTWK1A0028

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

The Radiated Electric Field Strength intensity has been measured on No. 3 semi anechoic chamber with a ground plane and at a distance of 3m.

Frequency : From 9kHz to 30MHz at distance 3m

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0deg., 45deg., 90deg., 135 deg., and 180 deg.) and horizontal polarization.

*Refer to Figure 1 about Direction of the Loop Antenna.

Frequency : From 30MHz to 1GHz at distance 3m

The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

Measurements were performed with a QP, PK, and AV detector.

The radiated emission measurements were made with the following detector function of the test receiver (below 1GHz).

	From 9kHz	From 90kHz	From 150kHz	From 490kHz	From 30MHz to
	to 90kHz	to 110kHz	to 490kHz	to 30MHz	1GHz
	and				
	From 110kHz				
	to 150kHz				
Detector Type	PK/AV	QP	PK/AV	QP	QP
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz
Distance factor	-80dB	-80dB	-80dB	-40dB	-
*1)					

*1) $-80dB = 40 \times \log (3m/300m)$ $-40dB = 40 \times \log (3m/30m)$

- The carrier level was measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

With the position, the noise levels of all the frequencies were measured.

This EUT has two modes which transponder is attached to the EUT or not. The worst case was confirmed with and without transponder, as a result, the test without transponder was the worst case. Therefore the test without transponder was performed only.

Test data Test result		: APPENDIX 1 : Pass	l	
Date:	June 16, 2014 June 18, 2014		Test engineer:	Takumi Shimada Masatoshi Nishiguchi

Test report No.	: 10309424H-A
Page	: 10 of 18
Issued date	: June 25, 2014
FCC ID	: CWTWK1A0028

Test report No.	: 10309424H-A
Page	: 11 of 18
Issued date	: June 25, 2014
FCC ID	: CWTWK1A0028

SECTION 6: -26dB Bandwidth

Test Procedure

ľ

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26dB Bandwidth	100kHz	1kHz	3kHz	Auto	Peak	Max Hold	Spectrum Analyzer

Test data	: APPENDIX 1
Test result	: Pass

SECTION 7: 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
99% Occupied Bandwidth	Enough width to display 20dB Bandwidth	1 % of Span	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer

Test data Test result : APPENDIX 1 : Pass

APPENDIX 1: Data of EMI test

Radiated Emission below 30MHz (Fundamental and Spurious Emission)

Test place Order No. Date Temperature/ Humidity Engineer Mode Ise EMC Lab. No.3 Measurement Room 10309424H 06/16/2014 25 deg. C / 40% RH Takumi Shimada Tx 125kHz

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.12500	РК	93.8	19.5	-74.1	32.3	-	6.9	45.6	38.7	Fundamental
0	0.25000	PK	67.2	19.3	-74.0	32.2	-	-19.7	39.6	59.3	
0	0.37500	PK	67.5	19.5	-74.0	32.2	-	-19.2	36.1	55.3	
0	0.50000	QP	36.7	19.5	-34.0	32.2	-	-10.0	33.6	43.6	
0	0.62500	QP	40.6	19.3	-34.0	32.2	-	-6.3	31.7	38.0	
0	0.75000	QP	35.1	19.4	-34.0	32.2	-	-11.7	30.1	41.8	
0	0.87500	QP	34.0	19.6	-34.0	32.2	-	-12.6	28.7	41.3	
0	1.00000	QP	33.6	19.6	-34.0	32.2	-	-13.0	27.6	40.6	
0	1.12500	QP	34.8	19.6	-34.0	32.2	-	-11.8	26.5	38.3	
0	1.25000	QP	31.9	19.6	-33.9	32.2	-	-14.6	25.6	40.2	

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier)

PK with Duty factor

Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
			Factor			Factor				
[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0.12500	PK	93.8	19.5	-74.1	32.3	0.0	6.9	25.6	18.7	
0.25000	PK	67.2	19.3	-74.0	32.2	0.0	-19.7	19.6	39.3	
0.37500	PK	67.5	19.5	-74.0	32.2	0.0	-19.2	16.1	35.3	
	Frequency [MHz] 0.12500 0.25000 0.37500	Frequency Detector [MHz] - 0.12500 PK 0.25000 PK 0.37500 PK	Frequency Detector Reading [MHz] [dBuV] 0.12500 PK 93.8 0.25000 PK 67.2 0.37500 PK 67.5	Frequency Detector Reading Ant [MHz] [dBuV] [dBv] 0.12500 PK 93.8 19.5 0.25000 PK 67.2 19.3 0.37500 PK 67.5 19.5	Frequency Detector Reading Ann Lossi [MHz] [dBuV] [dBuV] [dBuV] [dBuV] 0.12500 PK 93.8 19.5 -74.1 0.25000 PK 67.2 19.3 -74.0 0.37500 PK 67.5 19.5 -74.0	Frequency Detector Reading Ant Loss Gain [MHz] (d Factor [dBl] [dBl] [dBl] [MHz] [dBl] [dBl] [dBl] [dBl] [dBl] 0.12500 PK 93.8 19.5 -74.1 32.3 0.25000 PK 67.2 19.3 -74.0 32.2 0.37500 PK 67.5 19.5 -74.0 32.2	Frequency Detector Reading Ant Loss Gain Duty [MHz] (H Factor (H Factor (H Factor [MHz] (BBuV) [dBm] [dB] [dB] (dB] (dB) 0.12500 PK 93.8 19.5 -74.1 32.3 0.0 0.25000 PK 67.2 19.3 -74.0 32.2 0.0 0.37500 PK 67.5 19.5 -74.0 32.2 0.0	Frequency Detector Reading Ant Loss Gain Duty Result [MHz] [Ammodel] Factor Factor Factor Factor Factor [MHz] [dBuV] [dBm] [dB]	Frequency Detector Reading Ant Loss Gain Duty Result Limit [MHz] E Factor Factor Factor Factor [dBuV/m] [MHz] [dBuV] [dBm] [dB] [dB] [dB] [dB] [dBuV/m] [dBuV/m] 0.12500 PK 93.8 19.5 -74.1 32.2 0.0 6.9 25.6 0.25000 PK 67.2 19.3 -74.0 32.2 0.0 -19.7 19.6 0.37500 PK 67.5 19.5 -74.0 32.2 0.0 -19.2 16.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Result = Reading + Ant Factor + Loss (Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor + Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor * Cable + Attenuator + Filter + D.Factor) - Gain(Amprifier) + Duty factor + Cable + Attenuator + Filter + D.Factor + D.Fac

* Since the peak emission result satisfied the average limit, the peak emission result with Duty Factor was calculated as Duty 100%.

Result of the fundamental emission at 3m without Distance factor

	PK or QP											
ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
[0	0.12500	PK	93.8	19.5	5.9	32.2	-	87.0	-	-	Fundamental

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

* All spurious emissions lower than this result.

* The pre amplifier used for carrier frequency measurement was not saturated.

Test report No.	: 10309424H-A
Page	: 13 of 18
Issued date	: June 25, 2014
FCC ID	: CWTWK1A0028

Radiated Emission above 30MHz (Spurious Emission)

Execution of	equency Reading		Antenna	Loss&	امريما	Angla	Height		limi+	Norgin	
Frequency	Reading	DET	Factor	Gain	Level	Angre	neight	Polar.	LIMIL	margin	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]		[dBuV/m]	[dB]	
48. 283	29.9	QP	11.5	-24. 9	16.5	118	349	Hori.	40.0	23. 5	
48. 283	52.3	QP	11.5	-24. 9	38.9	159	100	Vert.	40.0	1.1	
46.268	25.2	QP	12. 2	-24.9	12.5	272	347	Hori.	40.0	27.5	
46.268	43.8	QP	12.2	-24. 9	31.1	271	100	Vert.	40.0	8.9	
56.100	27.8	QP	9.0	-24.8	12.0	351	356	Hori.	40.0	28. 0	
56.100	42.3	QP	9.0	-24.8	26.5	122	100	Vert.	40.0	13.5	
80. 473	32.8	QP	6.4	-24.3	14.9	9	360	Hori.	40.0	25.1	
80. 473	51.7	QP	6.4	-24.3	33.8	129	111	Vert.	40.0	6.2	
88. 523	35.3	QP	7.9	-24. 2	19.0	197	211	Hori.	43.5	24. 5	
88. 523	45.1	QP	7.9	-24. 2	28.8	102	123	Vert.	43.5	14. 7	
104. 700	34.5	QP	10.8	-24.1	21.2	101	291	Hori.	43.5	22.3	
104. 700	43.7	QP	10.8	-24.1	30.4	188	100	Vert.	43.5	13.1	
									1		
									1		
	1										
	1										
1	1						1		1		4

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:Result=Reading + ANT Factor + Loss (Cable + ATTEN. - AMP)

*The test result is rounded off to one or two decimal places, so some differences might be observed.

-26dB Bandwidth and 99% Occupied Bandwidth

Test place	Ise EMC Lab. No.3 Measurement Room
Order No.	10309424H
Date	06/16/2014
Temperature/ Humidity	25 deg. C / 40% RH
Engineer	Takumi Shimada
Mode	Tx 125kHz

-26dB Bandwidth	99% Occupied Bandwidth
[kHz]	[kHz]
26.714	47.1051

APPENDIX 2: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-03	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2014/02/27 * 12
MOS-13	Thermo-Hygrometer	Custom	CTH-180	1301	RE	2014/02/20 * 12
MJM-16	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MRENT-116	Spectrum Analyzer	Agilent	E4440A	MY46187620	RE	2014/03/05 * 12
MTR-08	Test Receiver	Rohde & Schwarz	ESCI	100767	RE	2013/08/20 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2013/10/30 * 12
MCC-112	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W(10m)/ SFM141(3m)/ sucoform141-PE(1m)/ 421-010(1.5m)/ RFM-E321(Switcher)	-/00640	RE	2013/07/23 * 12
MCC-143	Coaxial Cable	UL Japan	-	-	RE	2013/07/22 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2014/03/14 * 12
MAT-70	Attenuator(6dB)	Agilent	8491A-006	MY52460153	RE	2014/04/14 * 12
MRENT-114	Spectrum Analyzer	Agilent	E4440A	MY46187105	RE	2013/11/11 * 12
MBA-03	Biconical Antenna	Schwarzbeck	BBA9106	1915	RE	2013/10/13 * 12
MLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	174	RE	2013/10/13 * 12
MCC-51	Coaxial cable	UL Japan	-	-	RE	2013/07/23 * 12

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Spurious emission