

EMI TEST REPORT

Test Report No.: 26GE0136-YK-F1

Applicant	: Alps Electric Co., Ltd.
Type of Equipment	: Bluetooth Transceiver Module
Model No.	: UGPZ6
FCC ID	: CWTUGPZ6
Test Item and Standard	: Conducted Emissions Out of Band Emissions (Radiated) FCC Part15 Subpart C, Section 15.207, 15.209, 15.247: 2006
Test Result	: Complied

- 1. This test report shall not be reproduced except in full, without the written approval of UL Apex Co., Ltd.
- 2. The results in this report apply only to the sample tested.
- 3. This equipment is in compliance with above regulation. We hereby certify that the data contain a true representation of the EMC profile.
- 4. The test results in this test report are traceable to the national or international standards.

Date of test:

March 4 and 5, 2006

Tested by:

Toyokazu Imamura

Approved by:

Osamu Watatani Site Manager of Yamakita EMC Lab.

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

FCC ID: CWTUGPZ6Test report No.: 26GE0136-YK-F1Page: 2 of 31Issued date: March 9, 2006

Table of Contents	Page
1 Applicant Information	3
2 Product Description	4
3 Test Specification, Procedures and Results	5
4 System Test Configuration	8
5 Conducted Emissions	10
6 Out of Band Emissions (Radiated)	11
Contents of Appendixes	12
APPENDIX 1: Photographs of test setup	13
APPENDIX 2: Test Data	17
APPENDIX 3: Test instruments	31

 FCC ID
 : CWTUGPZ6

 Test report No.
 : 26GE0136-YK-F1

 Page
 : 3 of 31

 Issued date
 : March 9, 2006

1 Applicant Information

Company Name	: Alps Electric Co., Ltd.
Brand Name	: ALPS
Address	: 1-7, Yukigaya, Otsuka-cho, Ota-ku, Tokyo, 145-8501 JAPAN
Telephone Number	: +81 244 35 1207
Facsimile Number	: +81 244 35 1602
Contact Person	: Masaaki Ueki

UL Apex Co., Ltd. YAMAKITA EMC LAB. 907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

 FCC ID
 : CWTUGPZ6

 Test report No.
 : 26GE0136-YK-F1

 Page
 : 4 of 31

 Issued date
 : March 9, 2006

2 Product Description

Type of Equipment	: Bluetooth Transceiver Module
Model No.	: UGPZ6
Serial No.	: UGPZ6-001
Rating	: DC 3.3V
Country of Manufacture	: Japan
Receipt Date of Sample	: February 23, 2006
Condition of EUT	: Production prototype (Not for Sale: This sample is equivalent to mass-produced items.)

Model: UGPZ6 (referred to as the EUT in this report) is a Bluetooth Transceiver Module.

The clock frequency used in EUT: 26MHz

Equipment type	:	Transceiver
Frequency of operation	:	2402 - 2480 MHz
Band width	:	79 MHz
Channel spacing	:	1 MHz
Channel number	:	79 channels
Type of modulation	:	FHSS
Antenna model	:	WDAN-SCMS2003-1F
Antenna type	:	PIFA antenna
Antenna connector type	:	U. FL (Hirose)
Antenna gain (with cable lo	oss):	-1.9 dBi (Peak)
Emission Designation	:	F1D, G1D
Operation temperature rang	ge:	15 - 35 deg. C.

FCC Part15.31 (e)

Host devise (ex. PC) provides the Bluetooth Transceiver Module with stable power supply (DC1.8V), and the power is not changed when voltage of the device is varied. Therefore, the equipment complies power supply regulation.

FCC Part15.203 Antenna requirement

Bluetooth Transceiver Module complies with the requirement. When it is put up for sale, one of the antennas is attached and the antenna is with a unique coupling to the intentional radiator.

FCC ID: CWTUGPZ6Test report No.: 26GE0136-YK-F1Page: 5 of 31Issued date: March 9, 2006

3 Test Specification, Procedures and Results

3.1 Test specification

Test specification	: FCC Part15 Subpart C: 2006
Title	: FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators
	Section 15.207 Conducted limits
	Section 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz,
	and 5725-5850MHz

FCC ID: CWTUGPZ6Test report No.: 26GE0136-YK-F1Page: 6 of 31Issued date: March 9, 2006

3.2 Procedu	.2 Procedures & Results						
Item	Test Procedure	Specification	Remarks	Deviation	Worst Margin	Results	
Conducted emission	ANSI C63.4:2003 7. AC powerline conducted emission measurements	Section 15.207	-	N/A	11.6dB (0.2093MHz, N, AV Tx 2402MHz)	Complied	
Carrier Frequency Separation	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.247 (a)(1)	Conducted	Excluded *1		N/A	
20dB Bandwidth	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.247 (a)(1)	Conducted	Excluded *1		N/A	
Number of Hopping Frequency	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.247 (a)(1)(iii)	Conducted	Excluded *1		N/A	
Dwell time	ANSI C63.4:2003 13.Measurement of intentional radiators	Section15.247 (a)(1)(iii)	Conducted	Excluded *1	-	N/A	
Maximum Peak Output Power	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.247 (b)(1)	Conducted	Excluded *1		N/A	
Spurious Emission & Band Edge Compliance	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.247(d)	Conducted	Excluded *1		N/A	
Spurious Emission & Band Edge Compliance	ANSI C63.4:2003 13. Measurement of intentional radiators	Section15.209 Section15.247(d)	Radiated	N/A	0.3dB, AV, Tx 2480MHz (17360MHz, Horizontal & Vertical, 24800MHz, Horizontal)	Complied	

3.2 Procedures & Results

The measurements also referred to FCC Public Notice DA 00-705 "Guidance on Measurement for Frequency Hopping Spread Spectrum Systems".

*1) Results for these test items are described in the test report 25JE0028-YK-1. The Module has been certificated with other type antennas.

*2) These tests were performed without any deviations from test procedure except for additions or exclusions.

3.3 Uncertainty

Conducted emission

The measurement uncertainty (with 95% confidence level) for this test is ± 2.7 dB. The data listed in this test report has enough margin, more than site margin.

Radiated emission

The measurement uncertainty (with 95% confidence level) for this test using Biconical antenna is ± 4.5 dB. The measurement uncertainty (with 95% confidence level) for this test using Logperiodic antenna is ± 4.3 dB. The measurement uncertainty (with 95% confidence level) for this test using Horn antenna is ± 5.2 dB.

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

3.4 Test Location

UL Apex Co., Ltd. Yamakita EMC Lab. 907, Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken 258-0124 JAPAN Telephone number : +81 465 77 1011 Facsimile number : +81 465 77 2112 NVLAP Lab. code : 200441-0

No. 1 test site has been fully described in a report submitted to FCC office, and accepted on August 26, 2005 (Registration No.: 95486). IC Registration No. : IC3489A

No. 2 test site has been fully described in a report submitted to FCC office, and accepted on April 4, 2005 (Registration No.: 466226). IC Registration No. : IC3489A-2

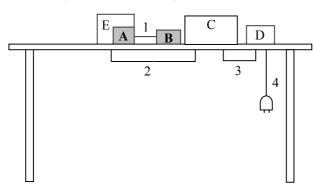
No. 1 anechoic chamber has been fully described in a report submitted to FCC office, and accepted on November 2, 2005 (Registration No.: 95967).

IC Registration No. : IC3489A-B

Test room	Width x Depth x Height (m)	Test room	Width x Depth x Height (m)
No.1 shielded room	8.0 x 5.0 x 2.5	No.1 EMS lab.	10.0 x 7.5 x 5.7
No.2 shielded room	5.0 x 4.0 x 2.5	(Semi-anechoic chamber)	
No.3 shielded room	4.0 x 5.0 x 2.7		

4 System Test Configuration

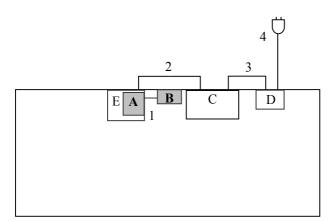
4.1 Justification

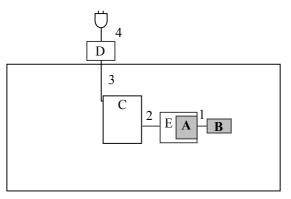

The system was configured in typical fashion (as a customer would normally use it) for testing.

Test mode:	Transmitting mode (Packet size: DH5)		
	- Low channel : 2402MHz		
	- Middle channel : 2441MHz		
	- High channel : 2480MHz		

AC120V/60Hz

4.2 Configuration of Tested System


Front View (Conducted emission)


Front View (Radiated emission)

Top View (Conducted emission)

Top View (Radiated emission)

* Test data was taken under worse case conditions.

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

No.	Item	Model number	Serial number	Manufacturer	FCC ID
					(Remarks)
Α	Bluetooth Transceiver Module	UGPZ6	UGPZ6-001	ALPS	CWTUGPZ6
					(EUT)
В	PIFA Antenna	WDAN-SCMS20	-	FOXCONN Co.,	(EUT)
		03-1F		LTD.	
С	Notebook PC	PAS252JF	59017317	TOSHIBA	-
D	AC Adapter	PA3049U-1ACA	0003A0210057G	TOSHIBA	-
Е	Testing Board	-	-	-	(Test jig)

Description of EUT and support equipment

List of cables used

No.	Name	Length (m)	Shield	Remark
1	Antenna cable	0.18	Shielded	-
2	USB cable	1.0	Shielded	-
3	DC cable	1.8	Unshielded	-
4	AC cable	2.0	Unshielded	-

FCC ID: CWTUGPZ6Test report No.: 26GE0136-YK-F1Page: 10 of 31Issued date: March 9, 2006

5 Conducted Emissions

5.1 Operating environment

The test was carried out in No.2 shielded room.

5.2 Test configuration

EUT was placed on a platform of nominal size, 1m by 1.8m, raised 80cm above the conducting ground plane. The rear of tabletop was located 40cm to the vertical conducting plane. The rear of peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from a Line Impedance Stabilization Network (LISN) and excess AC cable was bundled in center. I/O cable were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30cm to 40cm long and were hanged at a 40cm height to the ground plane.

5.3 Test conditions

Frequency range	: 0.15 - 30MHz
EUT operation mode	: Transmitting

5.4 Test procedure

The EUT was connected to a LISN. An overview sweep with peak detection has been performed. The Conducted emission measurements were made with the following detector function of the test receiver.

Detector: QP/AV IF Bandwidth: 9kHz

5.5 Results

Summary o	f the test results :	Pass	21
Test data	:	APPENDIX 2 Page 17 - 2	
Date :	March 5, 2006	Test engineer :	Toyokazu Imamura

6 Out of Band Emissions (Radiated)

6.1 Operating environment

The test was carried out in No.1 anechoic chamber.

6.2 Test configuration

EUT was placed on a platform of nominal size, 0.5m by 0.5m, raised 80cm above the conducting ground plane. A drawing of the set up is shown in the photos of Appendix 1.

6.3 Test conditions

Frequency range	: 30MHz - 26GHz
Test distance	: 3m
EUT operation mode	: Transmitting

6.4 Test procedure

The Radiated Electric Field Strength intensity has been measured with a ground plane and at a distance of 3m. The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

Measurements were performed with QP, PK, and AV detector.

The radiated emission measurements were made with the following detector function of the test receiver. When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Frequency	Below 1GHz	Above 1GHz
Instrument used	Test Receiver	Spectrum Analyzer
Detector	QP: BW 120kHz	PK: RBW: 1MHz/VBW: 1MHz
IF Bandwidth		AV: RBW: 1MHz/VBW: 10Hz

The equipment and its antenna were previously checked at each position of three axes X, Y and Z. The position in which the maximum noise occurred was chosen to put into measurement. See the table below and photographs in page 15 to 16. With the position, the noise levels of all the frequencies were measured.

Combinations of the worst case

	Module	Antenna
Below 1GHz		
Horizontal	Z	Ζ
Vertical	Х	Z
Above 1GHz		
Horizontal	Х	Х
Vertical	Z	Z

6.5 Results

Summary of the test results :	Pass
Test data :	APPENDIX 2 Page 22 - 24 (30 - 1000MHz) APPENDIX 2 Page 25 - 30 (1 - 26GHz)
Date : March 4 and 5, 200	6 Test engineer : Toyokazu Imamura

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

FCC ID: CWTUGPZ6Test report No.: 26GE0136-YK-F1Page: 12 of 31Issued date: March 9, 2006

APPENDIX 1: Photographs of test setup

Page 13	•	Conducted emission
Page 14	:	Radiated emission
Page 15 - 16	:	Pre check of worse-case position

APPENDIX 2: Test Data

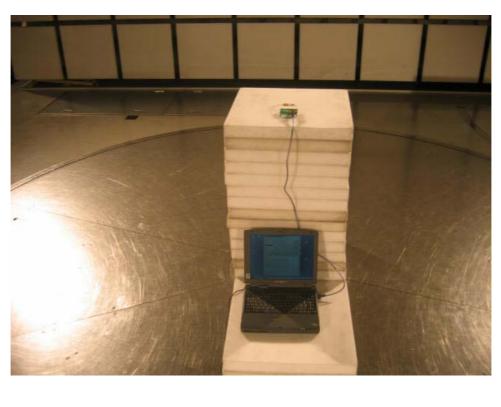
Page 17 - 21	:	Conducted Emission
Page 22 - 30	:	Out of Band Emissions (Radiated)
22 - 24	:	30-1000MHz
25 - 30	:	1-26GHz

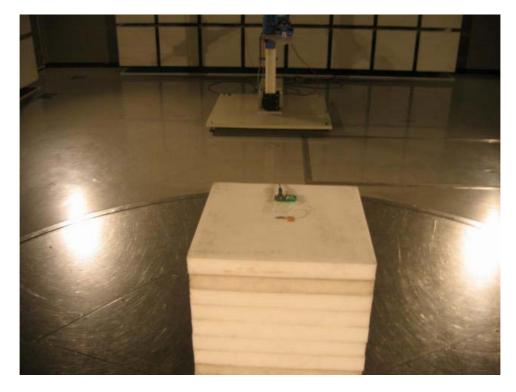
APPENDIX 3: Test instruments

Page 31 : Test instruments

FCC ID	: CWTUGPZ6	
Test report No.	: 26GE0136-YK-F1	
Page	: 13 of 31	
Issued date	: March 9, 2006	

Conducted emission

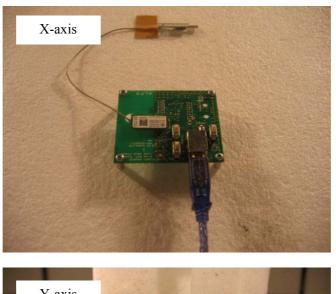



UL Apex Co., Ltd. YAMAKITA EMC LAB.

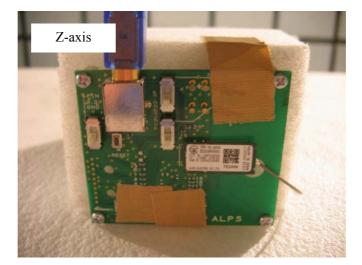
907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

FCC ID	: CWTUGPZ6	
Test report No.	: 26GE0136-YK-F1	
Page	: 14 of 31	
Issued date	: March 9, 2006	

Radiated emission

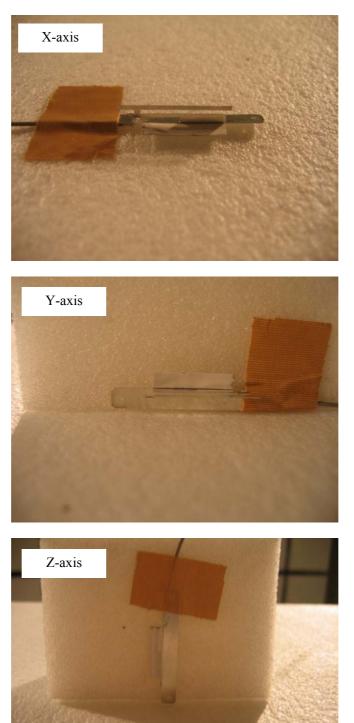


UL Apex Co., Ltd. YAMAKITA EMC LAB.


907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

FCC ID	: CWTUGPZ6	
Test report No.	: 26GE0136-YK-F1	l
Page	: 15 of 31	
Issued date	: March 9, 2006	

Pre check of worse-case position (Module)



UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

FCC ID	: CWTUGPZ6
Test report No.	: 26GE0136-YK-F1
Page	: 16 of 31
Issued date	: March 9, 2006

Pre check of worse-case position (Antenna)

UL Apex Co., Ltd. YAMAKITA EMC LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

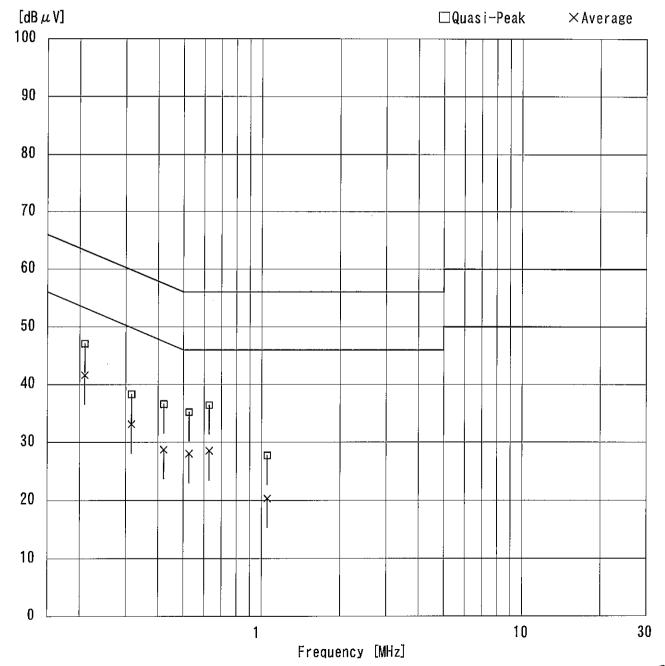
DATA OF CONDUCTION TEST

UL Apex Co.,Ltd. YAMAKITA No.2 SHIELD ROOM Report No. : 26GE0136-YK - F 1

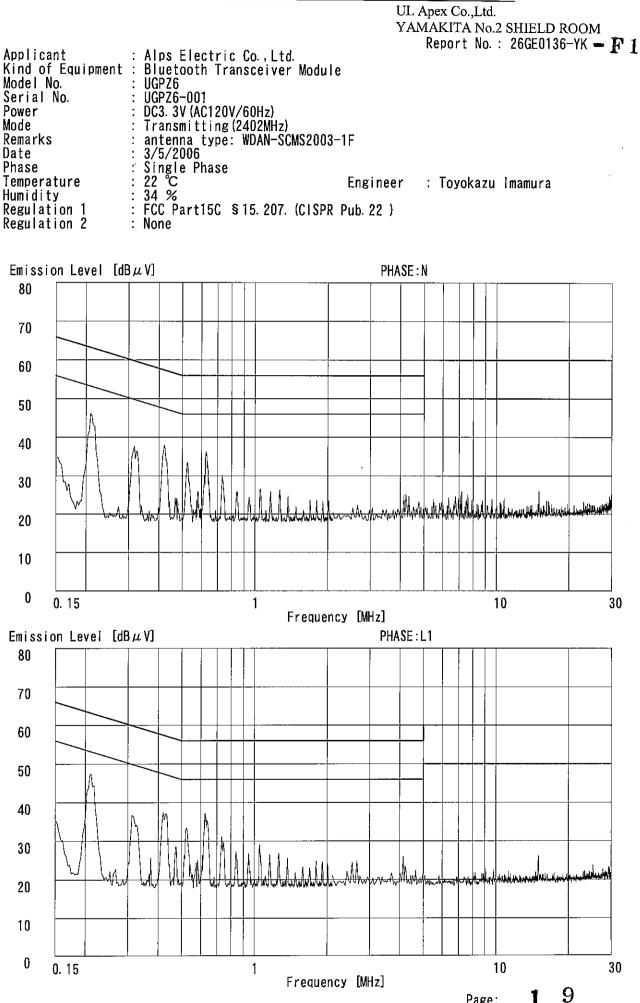
Kind Model Seria Power Remar Date Phase Tempe Humid	Kind of Equipment : Model No. : Serial No. : Power : Mode : Remarks : Date : Phase : Temperature : Humidity :				oth Tra (AC120) tting type 6 Phase	c Co.,L ansceiv V/60Hz) (2402MH : WDAN- \$ 15.20	er Mod z) SCMS20	03-1F Eng	ineer . 22)	: Т	oyokaz	u Imam	lura	
No.	FREQ. [MHz]	READI QP [dB µ	AV	READI QP [dB 4		LISN FACTOR [dB]		ATTEN. [dB]	RES QP [dB]	ULT AV [dB	LIM QP [µV]	ITS AV [dB #	MAR QP 4 V]	GIN AV [dB]
1. 2. 3. 4. 5. 6.	0. 2093 0. 3162 0. 4207 0. 5257 0. 6280 1. 0509	46. 9 36. 4 36. 5 33. 2 36. 3 27. 5	41. 4 30. 9 28. 6 25. 2 28. 4 20. 1	45. 2 38. 1 35. 6 35. 1 35. 2 25. 5	39. 2 32. 9 27. 7 27. 9 27. 1 19. 1	$\begin{array}{c} 0. \ 1 \\ 0. \ 1 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 1 \end{array}$	0. 1 0. 1 0. 1 0. 1 0. 1 0. 1	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0	$\begin{array}{c} 47. \ 1\\ 38. \ 3\\ 36. \ 6\\ 35. \ 2\\ 36. \ 4\\ 27. \ 7\end{array}$	41. 6 33. 1 28. 7 28. 0 28. 5 20. 3	63. 2 59. 8 57. 4 56. 0 56. 0 56. 0	53. 2 49. 8 47. 4 46. 0 46. 0 46. 0	16. 1 21. 5 20. 8 20. 8 19. 6 28. 3	11. 6 16. 7 18. 7 18. 0 17. 5 25. 7

CALCULATION: READING + LISN FACTOR + CABLE LOSS + ATTEN.

■LISN :KLS-01 (NSLK8126) ■COAXIAL CABLE:KCC-33/34 ■RECEIVER:KTR-01 (ESI40)


.

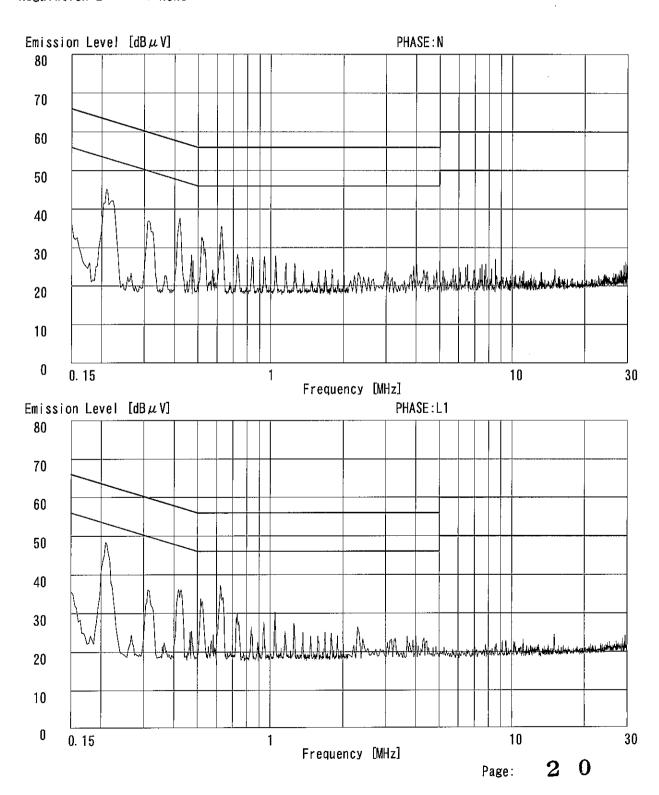
DATA OF CONDUCTION TEST


- • •

UL Apex Co.,Ltd. YAMAKITA No.2 SHIELD ROOM Report No. : 26GE0136-YK - F 1

Applicant Kind of Equipment Model No.	: Alps Electric Co.,Ltd. : Bluetooth Transceiver Module : UGPZ6
Serial No.	: UGPZ6-001
Power	DC3. 3V (AC120V/60Hz)
Mode	: Transmitting (2402MHz)
Remarks	: antenna type: WDAN-SCMS2003-1F
Date	: 3/5/2006
Phase	: Single Phase
Temperature	: 22 °C Engineer : Toyokazu Imamura
Humidity	: 34 %
Regulation	: FCC Part15C § 15. 207. (CISPR Pub. 22)

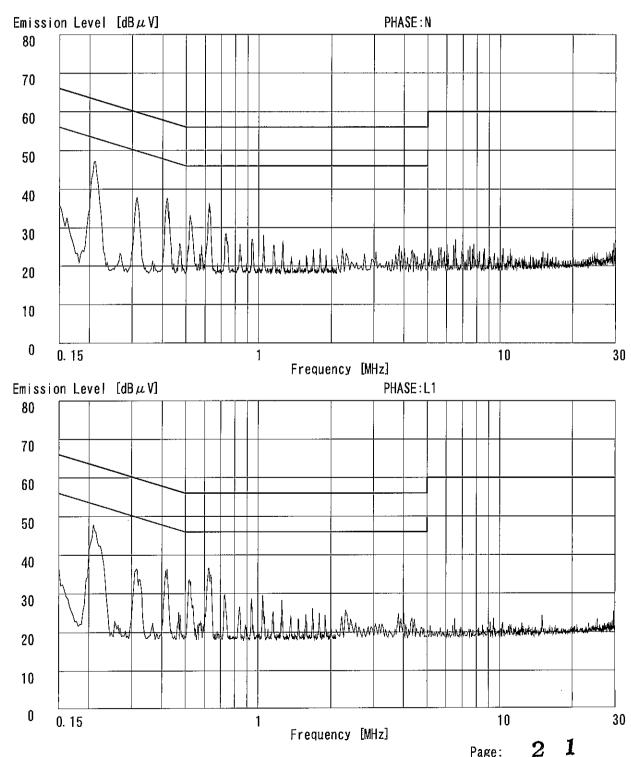
DATA OF CONDUCTION TEST CHART


1 Page:

DATA OF CONDUCTION TEST CHART

UL Apex Co.,Ltd.

Ċ


YAMAKITA No.2 SHIELD ROOM Report No. : 26GE0136-YK 🖛 🗜 1 Applicant : Alps Electric Co., Ltd. Kind of Equipment : Bluetooth Transceiver Module : UGPZ6 : UGPZ6-001 : DC3. 3V (AC120V/60Hz) Model No. Serial No. Power Mode Transmitting (2441MHz) : antenna type: WDAN-SCMS2003-1F Remarks 3/5/2006 Date : : Single Phase : 22 °C : 34 % Phase Temperature : Toyokazu Imamura Engineer Humidity : FCC Part15C § 15. 207. (CISPR Pub. 22) Regulation 1 Regulation 2 : None

DATA OF CONDUCTION TEST CHART

UL Apex Co.,Ltd. YAMAKITA No.2 SHIELD ROOM Report No. : 26GE0136-YK - F 1

Model No. Serial No. Power	: Alps Electric Co., Ltd. : Bluetooth Transceiver Module : UGPZ6 : UGPZ6-001 : DC3. 3V (AC120V/60Hz) : Transmitting (2480MHz) : antenna type: WDAN-SCMS2003-1F : 3/5/2006 : Single Phase		•
Temperature Humidity	: 22 °C Engineer : 34 %	: Toyokazu Imamura	
Regulation 1	: FCC Part15C §15. 207. (CISPR Pub. 22)		
Regulation 2	: None		

Page:

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER Report No. : 26GE0136-YK - F 1

Kind Mode Seria Powe Reman Date Test Tempe Humic	al No. r rks Distance erature			Blue UGPZ DC3. Tran ante 3/4/ 3 m 21 °C 30 %	6-001 3V(AC12) smittin; nna typ; 2006 C	ransce OV/60H g(2402 e: WD/	eiver M Hz) 2MHz) AN-SCMS	2003-1F	gineer	: T	oyokazu	Imamu	ra
No.		ANT FYPE	READ HOR [dB 4	VER	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ V	ILT I VER [/m] [d]	LIMITS 3µV/m]	HOR	RGIN VER B]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	$\begin{array}{c} 66. \ 65\\ 99. \ 98\\ 166. \ 63\\ 199. \ 96\\ 299. \ 94\\ 333. \ 26\\ 399. \ 92\\ 466. \ 57\\ 533. \ 22\\ 699. \ 85\end{array}$	BB BB BB BB BB BB BB BB BB BB	$\begin{array}{c} 33. \ 6\\ 30. \ 5\\ 38. \ 4\\ 32. \ 3\\ 33. \ 8\\ 42. \ 2\\ 32. \ 2\\ 29. \ 8\\ 32. \ 1\\ 28. \ 0 \end{array}$	$\begin{array}{c} 41. \ 7\\ 39. \ 2\\ 40. \ 4\\ 32. \ 5\\ 33. \ 9\\ 39. \ 5\\ 33. \ 3\\ 32. \ 7\\ 36. \ 2\\ 29. \ 9\end{array}$	8. 0 11. 1 16. 0 17. 1 20. 6 15. 8 18. 0 18. 4 18. 9 20. 1	$\begin{array}{c} 27. \ 6\\ 27. \ 6\\ 27. \ 2\\ 27. \ 0\\ 27. \ 0\\ 26. \ 9\\ 27. \ 3\\ 27. \ 7\\ 28. \ 0\\ 28. \ 0\end{array}$	$\begin{array}{c} 1. \ 6\\ 2. \ 0\\ 2. \ 7\\ 2. \ 9\\ 3. \ 7\\ 4. \ 1\\ 5. \ 2\\ 5. \ 8\end{array}$	$\begin{array}{c} 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \\ 6. & 0 \end{array}$	$\begin{array}{c} 21. \ 6\\ 22. \ 0\\ 35. \ 9\\ 31. \ 3\\ 37. \ 1\\ 41. \ 2\\ 33. \ 8\\ 31. \ 6\\ 34. \ 2\\ 31. \ 9\end{array}$	$\begin{array}{c} 29.\ 7\\ 30.\ 7\\ 37.\ 9\\ 31.\ 5\\ 37.\ 2\\ 38.\ 5\\ 34.\ 9\\ 34.\ 5\\ 38.\ 3\\ 33.\ 8\\ 33.\ 8\end{array}$	$\begin{array}{c} 40. \ 0\\ 43. \ 5\\ 43. \ 5\\ 43. \ 5\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\end{array}$	18. 4 21. 5 7. 6 12. 2 8. 9 4. 8 12. 2 14. 4 11. 8 14. 1	$\begin{array}{c} 10. \ 3\\ 12. \ 8\\ 5. \ 6\\ 12. \ 0\\ 8. \ 8\\ 7. \ 5\\ 11. \ 1\\ 11. \ 5\\ 7. \ 7\\ 12. \ 2\end{array}$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KBA-03 (BBA9106) 30-299MHz/KLA-03 (USLP9143) 300-1000MHz ■ AMP: KAF-05 (8447D) ■ RECEIVER: KTR-01 (ESI40) ■ KCC-30_31_32_34 (RE)

Page: 2 2

÷

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER Report No. : 26GE0136-YK - F 1

Kind Model Seria Power Mode Reman Date Test Tempe Humic	al No. r rks Distance erature	Equipment : Bluetooth Transceiver Module lo. : UGPZ6 No. : UGPZ6-001 : DC3. 3V (AC120V/60Hz) : Transmitting (2441MHz) : antenna type: WDAN-SCMS2003-1F : 3/4/2006 stance : 3 m iture : 21 °C Engineer : Toyokazu Imamura :y : 30 % ion : FCC Part15C § 15. 209								ra	
No.	FREQ. ANT TYPE [MHz]	READING HOR VER [dB µ V]	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	HOR	JLT I VER //m] [dE	.IMITS βμV/m]	HOR	RGIN VER IB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	66. 65 BB 99. 98 BB 166. 63 BB 199. 96 BB 299. 94 BB 333. 26 BB 399. 92 BB 466. 57 BB 533. 22 BB 699. 85 BB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8. 0 11. 1 16. 0 17. 1 20. 6 15. 8 18. 0 18. 4 18. 9 20. 1	27. 6 27. 6 27. 2 27. 0 27. 0 26. 9 27. 3 27. 7 28. 0 28. 0	3.7 4.1 4.9 5.1 5.2	$\begin{array}{c} 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ 6. \ 0\\ \end{array}$	$\begin{array}{c} 29. \ 9\\ 23. \ 0\\ 35. \ 5\\ 31. \ 9\\ 36. \ 4\\ 37. \ 6\\ 34. \ 6\\ 32. \ 3\\ 34. \ 2\\ 34. \ 7\end{array}$	$\begin{array}{c} 30. \ 1\\ 26. \ 7\\ 38. \ 0\\ 30. \ 9\\ 37. \ 5\\ 38. \ 4\\ 34. \ 2\\ 34. \ 1\\ 37. \ 6\\ 35. \ 2 \end{array}$	$\begin{array}{c} 40. \ 0\\ 43. \ 5\\ 43. \ 5\\ 43. \ 5\\ 43. \ 5\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ 46. \ 0\\ \end{array}$	10. 1 20. 5 8. 0 11. 6 9. 6 8. 4 11. 4 13. 7 11. 8 11. 3	9.9 16.8 5.5 12.6 8.5 7.6 11.8 11.9 8.4 10.8

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KBA-03 (BBA9106) 30-299MHz/KLA-03 (USLP9143) 300-1000MHz ■ AMP: KAF-05 (8447D) ■ RECE!VER: KTR-01 (ESI40) ■ KCC-30_31_32_34 (RE)

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER Report No. : 26GE0136-YK - F 1

Mode Seria Power Mode Reman Date Test Tempo Humio	al No. r rks Distanc erature			Blue UGPZ DC3. Tran ante 3/4/ 3 m 21 °C 30 9	6-001 3V(AC12 smittin nna typ 2006 C	ransce OV/60H g(2480 e: WDA	iver M Iz) MHz) N-SCMS	2003–1F	gineer	: Т	oyokazu	imamu	ra
No.	FREQ.	ANT TYPE	REAL		ANT	AMP	CABLE	ATTEN.	RES		LIMITS		RGIN
	[MHz]	11115	HOR [dB]	VER µV]	FACTOR [dB/m]	GAIN [dB]	LOSS [dB]	[dB]	HOR [dB µ]	VER V/m] [d	ΒµV/m]	HOR	VER dB]
1.	66.65	BB	[dB] 41.5	μV] 41.3	[dB/m] 8.0	[dB] 27.6	[dB] 1.6	6.0	$\frac{[dB \mu]}{29.5}$	V/m] [d 29.3	40. 0	[0 10. 5	dB] 10. 7
2.	66. 65 99. 98	BB BB	[dB] 41.5 31.1	μV] 41.3 38.5	[dB/m] 8.0 11.1	[dB] 27.6 27.6	[dB] 1.6 2.0	6. 0 6. 0	[dB μ] 29. 5 22. 6	V/m] [d 29.3 30.0	40. 0 43. 5	[0 10. 5 20. 9	dB] 10.7 13.5
2. 3.	66. 65 99. 98 166. 63	BB BB BB	[dB, 41.5 31.1 37.9	μ V] 41. 3 38. 5 40. 8	[dB/m] 8.0 11.1 16.0	[dB] 27.6 27.6 27.2	[dB] 1.6 2.0 2.7	6.0 6.0 6.0	[dB μ] 29. 5 22. 6 35. 4	V/m] [d 29.3 30.0 38.3	40. 0 43. 5 43. 5	10.5 20.9 8.1	dB] 10.7 13.5 5.2
2. 3. 4.	66. 65 99. 98 166. 63 199. 96	BB BB BB BB	[dB, 41.5 31.1 37.9 31.9	μ V] 41.3 38.5 40.8 33.4	[dB/m] 8.0 11.1 16.0 17.1	[dB] 27.6 27.6 27.2 27.0	[dB] 1.6 2.0 2.7 2.9	6.0 6.0 6.0 6.0	$ \begin{bmatrix} dB \mu \\ 29.5 \\ 22.6 \\ 35.4 \\ 30.9 \end{bmatrix} $	V/m] [d 29.3 30.0 38.3 32.4	40. 0 43. 5 43. 5 43. 5 43. 5	10.5 20.9 8.1 12.6	dB] 10.7 13.5 5.2 11.1
2. 3. 4. 5.	66. 65 99. 98 166. 63 199. 96 299. 94	BB BB BB BB BB	[dB, 41.5 31.1 37.9 31.9 33.2	μ V] 41. 3 38. 5 40. 8 33. 4 34. 1	[dB/m] 8.0 11.1 16.0 17.1 20.6	[dB] 27.6 27.6 27.2 27.0 27.0	[dB] 1.6 2.0 2.7 2.9 3.7	6.0 6.0 6.0 6.0 6.0 6.0	$\begin{bmatrix} dB \ \mu \\ 29.5 \\ 22.6 \\ 35.4 \\ 30.9 \\ 36.5 \end{bmatrix}$	V/m] [d 29.3 30.0 38.3 32.4 37.4	40. 0 43. 5 43. 5 43. 5 43. 5 46. 0	10.5 20.9 8.1 12.6 9.5	dB] 10.7 13.5 5.2 11.1 8.6
2. 3. 4. 5. 6.	66. 65 99. 98 166. 63 199. 96 299. 94 333. 26	BB BB BB BB BB BB	[dB] 41.5 31.1 37.9 31.9 33.2 40.0	μ V] 41. 3 38. 5 40. 8 33. 4 34. 1 38. 6	[dB/m] 8.0 11.1 16.0 17.1 20.6 15.8	[dB] 27.6 27.6 27.2 27.0 27.0 27.0 26.9	[dB] 1.6 2.0 2.7 2.9 3.7 4.1	6.0 6.0 6.0 6.0 6.0 6.0 6.0	$\begin{bmatrix} dB \ \mu \\ 29.5 \\ 22.6 \\ 35.4 \\ 30.9 \\ 36.5 \\ 39.0 \end{bmatrix}$	V/m] [d 29.3 30.0 38.3 32.4 37.4 37.6	40. 0 43. 5 43. 5 43. 5 43. 5 46. 0 46. 0	10.5 20.9 8.1 12.6 9.5 7.0	dB] 10.7 13.5 5.2 11.1 8.6 8.4
2. 3. 4. 5. 6. 7.	66. 65 99. 98 166. 63 199. 96 299. 94 333. 26 399. 92	BB BB BB BB BB BB BB	[dB, 41.5 31.1 37.9 31.9 33.2 40.0 33.2	μ V] 41. 3 38. 5 40. 8 33. 4 34. 1 38. 6 32. 0	[dB/m] 8.0 11.1 16.0 17.1 20.6 15.8 18.0	[dB] 27.6 27.6 27.2 27.0 27.0 26.9 27.3	[dB] 1.6 2.0 2.7 2.9 3.7 4.1 4.9	6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	$\begin{bmatrix} dB \ \mu \end{bmatrix}^{29.5} \\ 22.6 \\ 35.4 \\ 30.9 \\ 36.5 \\ 39.0 \\ 34.8 \end{bmatrix}$	V/m] [d 29.3 30.0 38.3 32.4 37.4 37.6 33.6	40. 0 43. 5 43. 5 43. 5 46. 0 46. 0 46. 0	10.5 20.9 8.1 12.6 9.5 7.0 11.2	dB] 10.7 13.5 5.2 11.1 8.6 8.4 12.4
2. 3. 4. 5. 6.	66. 65 99. 98 166. 63 199. 96 299. 94 333. 26	BB BB BB BB BB BB	[dB] 41.5 31.1 37.9 31.9 33.2 40.0	μ V] 41. 3 38. 5 40. 8 33. 4 34. 1 38. 6	[dB/m] 8.0 11.1 16.0 17.1 20.6 15.8	[dB] 27.6 27.6 27.2 27.0 27.0 27.0 26.9	[dB] 1.6 2.0 2.7 2.9 3.7 4.1	6.0 6.0 6.0 6.0 6.0 6.0 6.0	$\begin{bmatrix} dB \ \mu \\ 29.5 \\ 22.6 \\ 35.4 \\ 30.9 \\ 36.5 \\ 39.0 \end{bmatrix}$	V/m] [d 29.3 30.0 38.3 32.4 37.4 37.6	40. 0 43. 5 43. 5 43. 5 43. 5 46. 0 46. 0	10.5 20.9 8.1 12.6 9.5 7.0	dB] 10.7 13.5 5.2 11.1 8.6 8.4

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KBA-03 (BBA9106) 30-299MHz/KLA-03 (USLP9143) 300-1000MHz ■ AMP: KAF-05 (8447D) ■ RECEIVER: KTR-01 (ESI40) ■ KCC-30_31_32_34 (RE)

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER

Report No.: 26GE0136-YK - F 1

Applicant Kind of Equipment Model No. Serial No. Power Mode Remarks Date Test Distance Temperature Humidity Regulation	Alps Electric Co. Bluetooth Transce UGPZ6 UGPZ6-001 DC3.3V(AC120V/60H Transmitting(2402 antenna type: WDA 3/5/2006 3 m 22 ℃ 34 % FCC Part15C §15.	iver Module z) MHz) N-SCMS2003-1F Eng	ineer : Toyokazu	Imamura
No. FREQ. ANT TYPE [MHz]	READING ANT AMP HOR VER FACTOR GAIN [dBμV] [dB/m] [dB]	CABLE ATTEN. LOSS [dB] [dB]	RESULT LIMITS HOR VER [dBμV/m] [dBμV/m]	MARGIN HOR VER [dB]
1. 2390.00 BB 2. 4804.00 BB 3. 7206.00 BB 4. 9608.00 BB 5. 12010.00 BB 6. 14412.00 BB 7. 16814.00 BB 8. 19216.00 BB 9. 21618.00 BB 10. 24020.00 BB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

.

■ ANTENNA:KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ CABLE:KCC-D7/D13 ■ PREAMP:KAF-02 (8449B) ■ SPECTRUMANALYZER:KTR-01 (ESI40)

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER Report No. : 26GE0136-YK - F 1

Kinc Mode Seri Powe Mode Rema Date Test Temp Humi	e arks		t	Blue UGPZ DC3. Tran ante 3/5/ 3 m 22 °C 34 9	6-001 3V(AC12) smittin nna typ 2006 C	ransco 0V/60H g(2402 e: WD/	eiver M Hz) 2MHz) AN-SCMS	2003-1F	sineer		oyokazu	Imamu	
No.	FREQ. [MHz]	ANT TYPE	READ HOR [dB]	VER	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [dB µ]	ULT I VER V/m] [de	LIMITS βμV/m]	HOR	RGIN VER IB]
6. 7. 8. 9.	$\begin{array}{c} 2390. \ 00\\ 4804. \ 00\\ 7206. \ 00\\ 9608. \ 00\\ 12010. \ 00\\ 14412. \ 00\\ 16814. \ 00\\ 19216. \ 00\\ 21618. \ 00\\ 24020. \ 00 \end{array}$	BB BB BB BB BB BB BB BB BB	33. 1 44. 8 32. 9 32. 0 32. 1 32. 3 32. 2 33. 3 33. 4 33. 4 33. 4	$\begin{array}{c} 33. \ 0\\ 46. \ 7\\ 32. \ 3\\ 32. \ 3\\ 32. \ 2\\ 32. \ 3\\ 32. \ 2\\ 32. \ 3\\ 32. \ 2\\ 32. \ 3\\ 32. \ 3\\ 32. \ 3\\ 32. \ 3\\ 33. \ 3\end{array}$	28. 7 32. 9 36. 4 38. 4 40. 6 43. 0 42. 1 38. 4 38. 4 38. 8 39. 1	$\begin{array}{c} 37. \ 0\\ 36. \ 5\\ 36. \ 8\\ 37. \ 1\\ 36. \ 2\\ 35. \ 0\\ 35. \ 7\\ 34. \ 7\\ 34. \ 9\end{array}$	$\begin{array}{c} 4.\ 2\\ 6.\ 1\\ 7.\ 6\\ 8.\ 8\\ 10.\ 0\\ 11.\ 0\\ 12.\ 1\\ 13.\ 2\\ 13.\ 7\\ 15.\ 0\end{array}$	10. 0 0. 5 0. 2 0. 5 0. 0 0. 3 0. 6 0. 0 0. 0 0. 0 0. 0	$\begin{array}{c} 39. \ 0\\ 47. \ 8\\ 40. \ 3\\ 42. \ 6\\ 46. \ 5\\ 51. \ 6\\ 51. \ 3\\ 50. \ 2\\ 50. \ 2\\ 52. \ 6\end{array}$	$\begin{array}{c} 38. \ 9\\ 49. \ 7\\ 42. \ 1\\ 42. \ 9\\ 46. \ 7\\ 51. \ 5\\ 51. \ 4\\ 49. \ 1\\ 49. \ 2\\ 52. \ 5\end{array}$	$\begin{array}{c} 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\end{array}$	$\begin{array}{c} 15. \ 0\\ 6. \ 2\\ 13. \ 7\\ 11. \ 4\\ 7. \ 5\\ 2. \ 4\\ 2. \ 7\\ 3. \ 8\\ 3. \ 8\\ 1. \ 4\end{array}$	$\begin{array}{c} 15. \ 1\\ 4. \ 3\\ 11. \ 9\\ 11. \ 1\\ 7. \ 3\\ 2. \ 5\\ 2. \ 6\\ 4. \ 9\\ 4. \ 8\\ 1. \ 5\end{array}$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA:KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ CABLE:KCC-D7/D13■ PREAMP:KAF-02 (8449B) ■ SPECTRUMANALYZER:KTR-01 (ESI40)

.

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER

Report No. : 26GE0136-YK - F 1

Applicant Kind of Equipment Model No. Serial No. Power Mode Remarks Date Test Distance Temperature Humidity Regulation	: UGPZ6 : UGPZ6-001 : DC3.3V(AC1 : Transmitti : antenna ty : 3/5/2006 : 3 m : 22 ℃ : 34 %	Transceiver M 20V/60Hz) ng(2441MHz) pe: WDAN-SCMS	odule 2003-1F PK(F Engineer Detection)1-2	: Toyokazu	lmamura
No. FREQ. ANT TYPE [MHz]	READING ANT HOR VER FACTOR [dbµV] [db/m]	AMP CABLE GAIN LOSS [db] [db]	ATTEN. RES HOR [dB] [dBμ]	ULT LIMITS VER V/m] [dBµV/m]	MARGIN HOR VER [dB]
1. 4882.00 BB 2. 7323.00 BB 3. 9764.00 BB 4. 12205.00 BB 5. 14646.00 BB 6. 17087.00 BB 7. 19528.00 BB 8. 21969.00 BB 9. 24410.00 BB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

.

■ ANTENNA:KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ CABLE:KCC-D7/D13 ■ PREAMP:KAF-02 (8449B) ■ SPECTRUMANALYZER:KTR-01 (ESI40)

2 7 Page:

UL Apex Co.,Ltd.

YAMAKITA No.1 ANECHOIC CHAMBER Report No. : 26GE0136-YK - F

Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum	e arks	ce		Blue UGPZ UGPZ DC3. Tran ante 3/5/ 3 m 22 °C 34 9	6-001 3V(AC12) smittin nna type 2006	ransce 0V/60H g (2441 e: WDA	eiver M Hz) IMHz) AN-SCMS	2003-1F	ineer	: T	oyokazu	Imamu	ra
No.	FREQ. [MHz]	ANT TYPE	READ HOR [dB µ	VER	ANT FACTOR [dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR [db µ V	JLT I VER V/m] [di	LIMITS BµV/m]	HOR	GIN VER B]
1. 2. 3. 4. 5. 6. 7. 8. 9.	$\begin{array}{r} 4882.\ 00\\ 7323.\ 00\\ 9764.\ 00\\ 12205.\ 00\\ 14646.\ 00\\ 17087.\ 00\\ 19528.\ 00\\ 21969.\ 00\\ 24410.\ 00\\ \end{array}$	BB BB BB BB BB BB BB BB BB	$\begin{array}{c} 37. \ 1 \\ 32. \ 0 \\ 31. \ 9 \\ 32. \ 7 \\ 32. \ 5 \\ 32. \ 4 \\ 33. \ 2 \\ 33. \ 5 \\ 33. \ 4 \end{array}$	$\begin{array}{c} 38. \ 4\\ 33. \ 2\\ 36. \ 3\\ 32. \ 6\\ 32. \ 4\\ 32. \ 3\\ 32. \ 2\\ 33. \ 7\\ 33. \ 0\end{array}$	$\begin{array}{c} 33. \ 1\\ 36. \ 6\\ 38. \ 5\\ 40. \ 5\\ 43. \ 0\\ 43. \ 2\\ 37. \ 9\\ 38. \ 8\\ 39. \ 2\end{array}$	36. 5 36. 8 37. 1 36. 0 35. 3 35. 6 35. 2 35. 1 35. 0	$\begin{array}{c} 6. \ 1 \\ 7. \ 7 \\ 8. \ 8 \\ 10. \ 0 \\ 11. \ 1 \\ 12. \ 3 \\ 13. \ 4 \\ 13. \ 7 \\ 15. \ 1 \end{array}$	0.5 0.2 0.3 0.5 0.5 0.5 0.0 0.0 0.0	40. 3 39. 7 42. 4 47. 2 51. 8 52. 8 49. 3 50. 9 52. 7	$\begin{array}{c} 41. \ 6\\ 40. \ 9\\ 46. \ 8\\ 47. \ 1\\ 51. \ 7\\ 52. \ 7\\ 48. \ 3\\ 51. \ 1\\ 52. \ 3\end{array}$	$\begin{array}{c} 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\\ 54. \ 0\end{array}$	$\begin{array}{c} 13.\ 7\\ 14.\ 3\\ 11.\ 6\\ 6.\ 8\\ 2.\ 2\\ 1.\ 2\\ 4.\ 7\\ 3.\ 1\\ 1.\ 3\end{array}$	12. 413. 17. 26. 92. 31. 35. 72. 91. 7

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ CABLE: KCC-D7/D13 ■ PREAMP: KAF-02 (8449B) ■ SPECTRUMANALYZER: KTR-01 (ESI40)

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER Report No. : 26GE0136-YK- 🔐 (

Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum	e arks	: Blue : UGP2 : UGP2 : DC3. : Tran : ante : 3/5/ : 3 m : 22 ° : 34 9	26 26-001 3V(AC120V) Smitting(enna type: 2006 C	nsceiver M /60Hz) 2480MHz) WDAN-SCMS	2003–1F Eng	PK (RBW:1) sineer : on) 1-26GHz	Toyokazu	lmamura
No.	FREQ. ANT TYPE [MHz]	READING HOR VER [dB µ V]	FACTOR GA	AMP CABLE AIN LOSS 1B] [dB]	ATTEN. [dB]	RESULT HOR VER [dBµV/m]	LIMITS [dBµV/m]	MARGIN HOR VER [dB]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	2483.50 BB 4960.00 BB 7440.00 BB 9920.00 BB 12400.00 BB 14880.00 BB 17360.00 BB 22320.00 BB 22320.00 BB 24800.00 BB	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 10. \ 0 \\ 0. \ 5 \\ 0. \ 2 \\ 0. \ 2 \\ 0. \ 0 \\ 0. \ 7 \\ 0. \ 2 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ CABLE: KCC-D7/D13 ■ PREAMP: KAF-02 (8449B) ■ SPECTRUMANALYZER: KTR-01 (ESI40)

Page:

 $\mathbf{2}$

9

UL Apex Co.,Ltd. YAMAKITA No.1 ANECHOIC CHAMBER Report No. : 26GE0136-YK - F

Kin Mod Ser Pow Mod Rem Dat Tes Tem Hum	e arks	ent :	Blueto UGPZ6- DC3.3 Transi anteni 3/5/2 3 m 22 °C 34 %	-001 V(AC12(mitting na type 006	ransce)V/60H g (2480 g: WDA	iver M z) MHz) N-SCMS:	2003-1F	ineer	: To	oyokazu	lmamu	
No.	FREQ. ANI TYF [MHz]	F READ PE HOR [dB]	VER F	ANT ACTOR dB/m]	AMP GAIN [dB]	CABLE LOSS [dB]	ATTEN. [dB]	RESU HOR (dB µ V	ILT L VER [/m] [de	IMITS 8µV/m]	HOR	CGIN VER (B]
1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	2483. 50 BF 4960. 00 BF 7440. 00 BF 9920. 00 BF 12400. 00 BF 14880. 00 BF 17360. 00 BF 22320. 00 BF 24800. 00 BF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 33. \ 2\\ 36. \ 9\\ 32. \ 2\\ 32. \ 2\\ 32. \ 4\\ 32. \ 6\\ 32. \ 4\\ 32. \ 4\\ 32. \ 4\\ 32. \ 3\\ 32. \ 3\\ 33. \ 3\end{array}$	$\begin{array}{c} 28. \ 8\\ 33. \ 3\\ 36. \ 9\\ 38. \ 6\\ 40. \ 4\\ 42. \ 3\\ 44. \ 5\\ 38. \ 2\\ 39. \ 1\\ 39. \ 4\end{array}$	$\begin{array}{c} 37. \ 1\\ 36. \ 4\\ 36. \ 8\\ 37. \ 0\\ 35. \ 7\\ 35. \ 7\\ 35. \ 7\\ 35. \ 0\\ 35. \ 0\\ 34. \ 7\end{array}$	$\begin{array}{r} 4.3\\ 6.2\\ 7.7\\ 8.9\\ 10.0\\ 11.1\\ 12.3\\ 13.6\\ 15.4\\ 15.4\end{array}$	10. 0 0. 5 0. 2 0. 2 0. 0 0. 7 0. 2 0. 0 0. 0 0. 0 0. 0	$\begin{array}{c} 39. \ 1 \\ 40. \ 1 \\ 42. \ 5 \\ 47. \ 2 \\ 51. \ 0 \\ 53. \ 7 \\ 49. \ 2 \\ 51. \ 1 \\ 53. \ 7 \end{array}$	$\begin{array}{c} 39. \ 2\\ 40. \ 5\\ 40. \ 2\\ 42. \ 9\\ 47. \ 1\\ 51. \ 0\\ 53. \ 7\\ 49. \ 2\\ 50. \ 1\\ 53. \ 4\end{array}$	$\begin{array}{c} 54. \ 0\\ 54. \$	14. 9 13. 9 13. 9 11. 5 6. 8 3. 0 0. 3 4. 8 2. 9 0. 3	14. 8 13. 5 13. 8 11. 1 6. 9 3. 0 0. 3 4. 8 3. 9 0. 6

CALCULATION: READING + ANT. FACTOR + CABLE LOSS - AMP. GAIN + ATTEN.

,

■ ANTENNA:KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26GHz ■ CABLE:KCC-D7/D13 ■ PREAMP:KAF-02 (8449B) ■ SPECTRUMANALYZER:KTR-01 (ESI40)

-

Test Report No :26GE0136-YK-F1

APPENDIX 3 Test Instruments

EMI test equipment

	្រីស្រួលាក់ពីស្រួល	Manufacturer	ModeliNo	- Vestliem	Calibration Date Calibration (Date Calibration)
KAEC-01(NSA)	Anechoic Chamber	JSE	Semi 3m	RE	2005/09/03 * 12
KAF-02	Pre Amplifier	Hewlett Packard	8449B	RE	2005/04/28 * 12
KAF-05	Pre Amplifier	Agilent	8447D	RE	2005/05/11 * 12
KAT10-S1	Attenuator	Agilent	8449D 010	RE	2005/04/12 * 12
KAT6-01	Attenuator	INMET	18N-6dB	RE	2005/04/07 * 12
KBA-03	Biconical Antenna	Schwarzbeck	BBA9106	RE	2006/01/17 * 12
KCC-30/31/32 /34	Coaxial Cable	Fujikura/Suhner	5D-2W/S04272B	RE	2005/12/22 * 12
KCC-33/34	Coaxial Cable	Fujikura/Suhner	5D-2W/S04272B	CE	2005/12/22 * 12
KFL01	Highpass Filter	Hewlett Packard	84300 80038	RE	2005/04/12 * 12
KHA-01	Hom Antenna	A.H.Systems	SAS-200/571	RE	2005/08/20 * 12
KHA-03	Hom Antenna	EMCO	3160-09	RE	2005/05/14 * 12
KLA-03	Logperiodic Antenna	Schwarzbeck	USLP9143	RE	2006/01/17 * 12
KLS-01	LISN(AMN)	Schwarzbeck	NSLK8126	CE (EUT)	2005/05/10 * 12
KSA-04	Spectrum Analyzer	Advantest	R3271A	RE	2005/09/13 * 12
KTR-01	Test Receiver	Rohde & Schwarz	ESI40	CE/RE	2005/08/05 * 12
KCC-D7/D13	Coaxial cable	Advantest/Suhuner	A01002/SUCOFLEX1 04	RE	2005/04/12 * 12

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Test Item:

CE: Conducted emission, RE: Radiated emission