FCC ID: CWTUGPZ3Test report No.: 23DE0002-YK-1Page: 1 of 74Issued date: November 29, 2002

# EMI TEST REPORT

# Test Report No. : 23DE0002-YK-1

| Applicant:         | Alps Electric Co., Ltd.              |
|--------------------|--------------------------------------|
| Type of Equipment: | Bluetooth Transceiver Module         |
| Model No.:         | UGPZ3                                |
| FCC ID:            | CWTUGPZ3                             |
| Test standard:     | FCC Part15 Subpart C, Section 15.247 |
| Test Result:       | Complied                             |

1. This test report shall not be reproduced except in full or partial, without the written approval of A-Pex International Co., Ltd.

2. The results in this report apply only to the sample tested.

Date of test:

November 20, 21, 22 and 26, 2002

Tested by:

Toyokazu Imamura EMC section

Approved by:

Ą MAN Osamu Watatani

Site Assistant Manager of Yamakita Lab.

| Table of Contents                                                     | Page   |
|-----------------------------------------------------------------------|--------|
| 1 GENERAL INFORMATION                                                 | 3      |
| <ul><li>1.1 Tested Methodology</li><li>1.2 Test Facility</li></ul>    | 3<br>3 |
| 2 PRODUCT DESCRIPTION                                                 | 4      |
| 3 SYSTEM TEST CONFIGURATION                                           | 5      |
| 3.1 Justification                                                     | 5      |
| 3.2 Configuration of Tested System                                    | 6      |
| 4 MEASUREMENT UNCERTAINTY                                             | 8      |
| 5 SUMMARY OF TEST                                                     | 9      |
| 5.1 §15.207 Conducted Emissions                                       | 9      |
| 5.2 §15.247(a)(1) Frequency Hopping System (Antenna Port Conducted)   | 9      |
| 5.3 §15.247(a)(1)(ii) Channel Utilization (Antenna Port Conducted)    | 10     |
| 5.4 §15.247(b)(3) Maximum Peak Out Put Power (Antenna port Conducted) | 10     |
| 5.5 §15.247(c) Out of Band Emissions (Radiated)                       | 11     |
| 5.6 §15.247(c) Out of Band Emissions (Antenna Port Conducted)         | 11     |
| Contents of Appendixes                                                | 12     |
| APPENDIX 1: Photographs of test setup                                 | 13     |
| APPENDIX 2: Test Data                                                 | 18     |
| APPENDIX 3: Test instruments                                          | 74     |

FCC ID: CWTUGPZ3Test report No.: 23DE0002-YK-1Page: 3 of 74Issued date: November 29, 2002

### **1 GENERAL INFORMATION**

| Company Name           | : Alps Electric Co., Ltd.                                  |
|------------------------|------------------------------------------------------------|
| Brand Name             | : ALPS                                                     |
| Address                | : 1-7, Yukigaya, Otsuka-cho, Ota-ku, Tokyo, 145-8501 JAPAN |
| Telephone Number       | : +81 3 3726 1211                                          |
| Facsimile Number       | : +81 3 3726 1741                                          |
| Contact Person         | : Masaaki Ueki                                             |
| Type of Equipment      | : Bluetooth Transceiver Module                             |
| Model No.              | : UGPZ3                                                    |
| Rating                 | : DC3.3V (1.8V after regulated)                            |
| Country of Manufacture | : Japan                                                    |
| Receipt Date of Sample | : November 20, 2002                                        |
| Condition of EUT       | : Production prototype                                     |
| Regulation(s)          | : FCC Part15 Subpart C, Section 15.247                     |
| Test Site              | : A-Pex Yamakita No.1 Open Test Site                       |

### **1.1 Tested Methodology**

The measurements were performed according to the procedures in ANSI C63.4 (2000). These tests were also referred to FCC Public Notice DA 00-705 "Guidance on Measurement for Frequency Hopping Spread Spectrum Systems".

### **1.2 Test Facility**

This site has been fully described in a report submitted to FCC office, and accepted on September 20, 2002 (Registration No.: 95486). NVLAP Lab. code : 200441-0

### **2 PRODUCT DESCRIPTION**

Alps Electric Co., Ltd. Model: UGPZ3 (referred to as the EUT in this report) is a Bluetooth Transceiver Module. The clock frequency used in EUT is 16MHz (X'tal).

| Frequency characteristics           | : | 2402MHz through 2480MHz                                   |
|-------------------------------------|---|-----------------------------------------------------------|
| Number of channels/ channel spacing | : | 79 channels/ 1MHz channel spacing                         |
| Modulation                          | : | GFSK (Low power Frequency Hopping Spread Spectrum (FHSS)) |
| Antenna type                        | : | $1/4\lambda$ Monopole                                     |
| Antenna model                       | : | YCE-5255, SSW2400 and LDA92                               |
| Antenna Gain                        | : | 4.0dBi (Max)                                              |
| Operating Voltage                   | : | DC3.3V +/-0.2V (1.8V after regulated)                     |

The Alps, UGPZ3 with Bluetooth wireless technology is a radio device that transmits and receives radio signals in accordance with the spectrum regulations for the 2.4GHz unlicensed frequency range.

- 1. Output power, Bluetooth class 2 (+3.0dBm/ 0.002W max)
- 2. Voltage regulator built in.
- 3. Flash memory and reference oscillator built in.
- 4. Board to board connection through USB interface.
- 5. Three kinds of external antenna provided.

\*FCC Part15.31 (e)

The host device provides the Bluetooth Transceiver Module with stable power supply (DC3.3V), and the power is not changed when voltage of the Bluetooth Transceiver Module is varied. Therefore, the Bluetooth Transceiver Module complies power supply regulation.

\*FCC Part 15.203 Antenna requirement

When Bluetooth Transceiver Module is put up for sale,

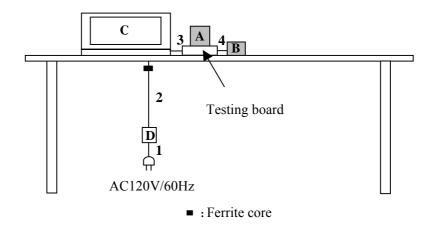
only one of the three antennas (YCE-5255, SSW2400 and LDA92) is attached and used with a particular antenna connector.

Therefore, Bluetooth Transceiver Module and its antenna comply with this requirement.

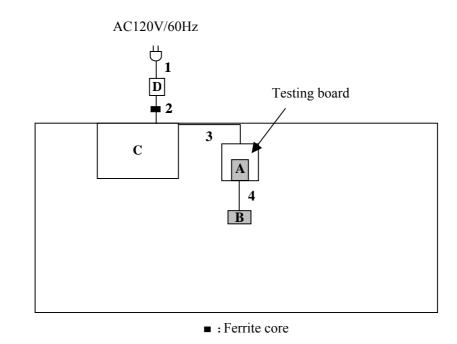
### **3 SYSTEM TEST CONFIGURATION**

### 3.1 Justification

The system was configured in typical fashion (as a customer would normally use it) for testing.


Test mode:

- Transmitting mode (DH5) : Radiated and Antenna Port Conducted tests Performed the test about channels 2402MHz (Low) and 2480MHz (High) channels of all Carrier frequencies.
   Hopping mode : Antenna Port Conducted tests
   Inquiry mode : Antenna Port Conducted tests
- 4. Page mode : Antenna Port Conducted tests


### 3.2 Configuration of Tested System

### Front View

Top View



\*Cabling was taken into consideration and test data was taken under worse case conditions.



\*Cabling was taken into consideration and test data was taken under worse case conditions.

# A-Pex International Co., Ltd. YAMAKITA LAB. 907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Telephone:+81 465 77 1011Facsimile:+81 465 77 2112

### **Description of EUT and support equipment**

| No. | Item                          | Model<br>number | Serial number | Manufacturer            | FCC ID   |
|-----|-------------------------------|-----------------|---------------|-------------------------|----------|
| Α   | Bluetooth Transceiver Module  | UGPZ3           | 11            | Alps Electric Co., Ltd. | CWTUGPZ3 |
| В   | $1/4\lambda$ Monopole Antenna | YCE-5255        | -             | YOKOWO                  | -        |
|     | $1/4\lambda$ Monopole Antenna | SSW2400         | -             | Sony Chemicals          | -        |
|     | $1/4\lambda$ Monopole Antenna | LDA92           | -             | Murata                  | -        |
| С   | Personal Computer             | PC-PJ120H       | 69029817      | SHARP                   | -        |
| D   | AC Adaptor                    | EA-J03V         | LTD0022031941 | SHARP                   | -        |

### List of cables used

| No. | Name          | Length (m) | Shield     | Backshell material |
|-----|---------------|------------|------------|--------------------|
| 1   | AC Main Cable | 1.8        | Unshielded | Polyvinyl chloride |
| 2   | DC Cable      | 1.2        | Unshielded | Polyvinyl chloride |
| 3   | USB Cable     | 0.95       | Shielded   | Polyvinyl chloride |
| 4   | Coaxial Cable | 0.05       | Shielded   | Polyvinyl chloride |

### 4 MEASUREMENT UNCERTAINTY

#### Conducted emission test

The measurement uncertainty (with a 95% confidence level) for this test was  $\pm 1.3$ dB.

The data listed in this test report has enough margin, more than site margin.

#### Radiated emission test

The measurement uncertainty (with 95% confidence level) for this test using Biconical antenna is  $\pm 4.8$ dB. The measurement uncertainty (with 95% confidence level) for this test using Logperiodic antenna is  $\pm 5.2$ dB. The measurement uncertainty (with 95% confidence level) for this test using Horn antenna is  $\pm 6.6$ dB.

The data listed in this test report may exceed the test limit because it does not have enough margin.

### **5 SUMMARY OF TESTS**

### 5.1 §15.207 Conducted Emissions (Limits by CISPR Pub.22 Class B)

### **Test Procedure**

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 80cm above the conducting ground plane.

The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop.

All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from LISN and excess AC cable was bundled in center.

Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the input power source.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT on a shielded room.

The EUT was connected to a Line Impedance Stabilization Network (LISN).

An overview sweep with peak detection has been performed.

The measurements have been performed with a CISPR quasi-peak detector (IF BW 9kHz). (Measurement range : 150kHz to 30MHz)

| Test data                | : APPENDIX Page 18 to 24                         |
|--------------------------|--------------------------------------------------|
| Photographs of test setu | p: Page 13                                       |
| Test result              | : Pass                                           |
| Test instruments         | : KCC-14/15/16/18/KPL-01, KLS-01, KSA-01, KTR-01 |

### 5.2 §15.247 (a)(1) Frequency Hopping Systems

Bluetooth Transceiver Module uses 79channels, each 1MHz wide. On Average, each channel is used equally.

| Test data        | : APPENDIX Page 25 |
|------------------|--------------------|
| Test result      | : Pass             |
| Test instruments | : KTR-01, KCC-D5   |

FCC ID : CWTUGPZ3 Test report No. : 23DE0002-YK-1 : 10 of 74 Page Issued date : November 29, 2002

#### 5.3 §15.247 (a)(1)(ii) Channel Utilization

The total number of channel is 79.

| Test data        | : APPENDIX Page 26 to 29 |
|------------------|--------------------------|
| Test result      | : Pass                   |
| Test instruments | : KTR-01, KCC-D5         |

20dB Band Width

1. 2402MHz (Low) : 0.9499MHz < 1MHz 2. 2480MHz (High): 0.9499MHz < 1MHz

| Test data        | : APPENDIX Page 30 |
|------------------|--------------------|
| Test result      | : Pass             |
| Test instruments | : KTR-01, KCC-D5   |

Dwell Time

Spectrum analyzer was set as center frequency 2402MHz, dwell time 30sec. (Hopping mode) Spectrum analyzer was set as center frequency 2402MHz, dwell time 1sec. (Inquiry and page mode)

1. Hopping mode

As a result of observation with Bluetooth Transceiver Module was on hopping condition, 101.6 Average times Hopping were appeared per 1channel. Maximum transmit ON time per appeared hopping is 2.90ms (DH5) 101.6\*2.90ms = 294.64ms < 400ms

2. Inquiry mode

As a result of observation with Bluetooth Transceiver Module was on hopping condition, 100 Average times Inquiry were appeared per 1channel. Maximum transmit ON time per appeared hopping is 120µs (Inquiry mode: 32ch)  $100^{(0.4*32)} = 153.6 \text{ms} < 400 \text{ms}$ 

3. Page mode

As a result of observation with Bluetooth Transceiver Module was on hopping condition, 100 Average times Page were appeared per 1channel. Maximum transmit ON time per appeared hopping is 121µs (Page mode: 32ch)

 $100^{(0.4*32)} \times 121 \mu s = 154.88 m s < 400 m s$ 

| Test data        | : APPENDIX Page 31 to 36 |
|------------------|--------------------------|
| Test result      | : Pass                   |
| Test instruments | : KTR-01, KCC-D5, KST-01 |

#### § 15.247(b)(3) Maximum Peak Out Put Power (Antenna Port Conducted) 5.4

#### **Test Procedure**

The Maximum Peak Output power was measured with a power meter connected to the antenna port. \* Antenna Gain dose not exceed 6dBi.

| Test data               | : APPENDIX Page 37 |
|-------------------------|--------------------|
| Test result             | : Pass             |
| <b>Test instruments</b> | : KPM-05, KPSS-01  |

### A-Pex International Co., Ltd. YAMAKITA LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

| Telephone: | +81 465 77 1011 |
|------------|-----------------|
| Facsimile: | +81 465 77 2112 |

### 5.5 § 15.247(c) Out of Band Emissions (Radiated)

#### **Test Procedure**

EUT was placed on a platform of nominal size, 1m by 1.5m, raised 80cm above the conducting ground plane.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization.

The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. The Radiated Electric Field Strength intensity has been measured on an open test site with a ground plane and at a distance of 3m.

The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

EUT emission levels were compared when the EUT antenna position was vertical polarization and horizontal polarization. The equipment was also previously checked at each position of three axes X, Y and Z.

In 30-1000MHz, Y axis of all antenna types was worst under both vertical and horizontal polarization.

In above 1GHz, Y axis of all antenna types was worst under the vertical antenna polarization.

Under the horizontal antenna polarization, Z axis was worst (YCE-5255) and X axis was worst (SSW2400 and LDA92).

The positions in which the maximum noise occurred were chosen to put into measurement.

See the photographs in page 15 to 17.

### **Radiated spurious emissions**

In any 100kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

The result was also satisfied the general limits specified in Sec.15.209 (a).

Measurement range : 30MHz to 1000MHz CISPR QP Detector, IF BW 120kHz

: 1GHz to 26GHz PK and AV Detector Test data:

| YCE-5255 | SSW2400              | LDA92                            |                                                        |
|----------|----------------------|----------------------------------|--------------------------------------------------------|
| 38 to 39 | 48 to 49             | 58 to 59                         | (30-1000MHz)                                           |
| 40 to 43 | 50 to 53             | 60 to 63                         | (1 – 26GHz)                                            |
| 44 to 47 | 54 to 57             | 64 to 67                         | (Band Edges:2390MHz/2483.5MHz, Restricted band Charts) |
|          | 38 to 39<br>40 to 43 | 38 to 3948 to 4940 to 4350 to 53 | 38 to 3948 to 4958 to 5940 to 4350 to 5360 to 63       |

| Photographs of test set | tup : Page 14                                                 |
|-------------------------|---------------------------------------------------------------|
| Test result             | : Pass                                                        |
| <b>Test instruments</b> | : KAF-01, KAF-02, KAT6-1, KBA-01, KCC-10/11/12/13/18, KCC-D3, |
|                         | KHA-01, KHA-03, KLA-01, KOTS-01, KSA-01, KTR-01               |

#### 5.6 § 15.247(c) Out of Band Emissions (Antenna Port Conducted)

#### **Test Procedure**

The Out of Band Emissions was measured with a spectrum analyzer connected to the antenna port.

| Test data        | : APPENDIX Page 68 to 73 |
|------------------|--------------------------|
| Test result      | : Pass                   |
| Test instruments | : KTR-01, KCC-D5         |

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

FCC ID: CWTUGPZ3Test report No.: 23DE0002-YK-1Page: 12 of 74Issued date: November 29, 2002

### **APPENDIX 1: Photographs of test setup**

| 1.Page 13      | : | Conducted emission               |
|----------------|---|----------------------------------|
| 2.Page 14      | : | Radiated emission                |
| 3.Page 15 - 17 | : | Pre check of worse-case position |

### **APPENDIX 2: Test Data**


| 1.Page 18 - 24 | : | Conducted emission                             |
|----------------|---|------------------------------------------------|
| 2.Page 25      | : | Channel Separation (Antenna Port Conducted)    |
| 3.Page 26 - 29 | : | Channel Utilization (Antenna Port Conducted)   |
| 4.Page 30      | : | 20dB Bandwidth (Antenna Port Conducted)        |
| 5.Page 31 - 36 | : | Dwell Time (Antenna Port Conducted)            |
| 6.Page 37      | : | Maximum Peak Power (Antenna Port Conducted)    |
| 7.Page 38 - 67 | : | Out of Band Emissions (Radiated)               |
| 8.Page 68 - 73 | : | Out of Band Emissions (Antenna Port Conducted) |
|                |   |                                                |

### **APPENDIX 3:** Test instruments

FCC ID: CWTUGPZ3Test report No.: 23DE0002-YK-1Page: 13 of 74Issued date: November 29, 2002

#### **Conducted emission**





### A-Pex International Co., Ltd. YAMAKITA LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

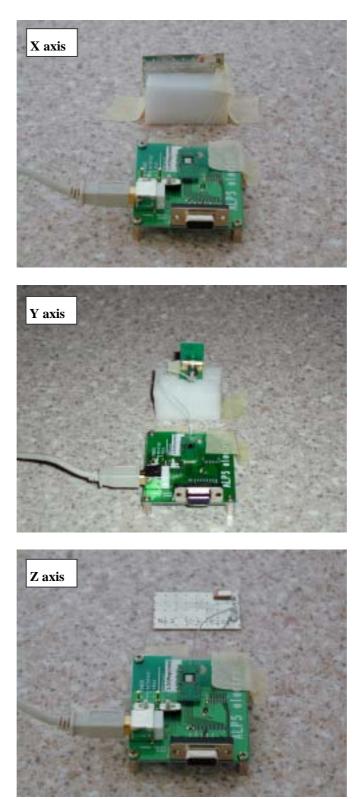
Telephone: +81 465 77 1011 Facsimile: +81 465 77 2112

MF060b(23.04.02)

FCC ID : CWTUGPZ3 Test report No. : 23DE0002-YK-1 Page : 14 of 74 Issued date : November 29, 2002

#### **Radiated emission**



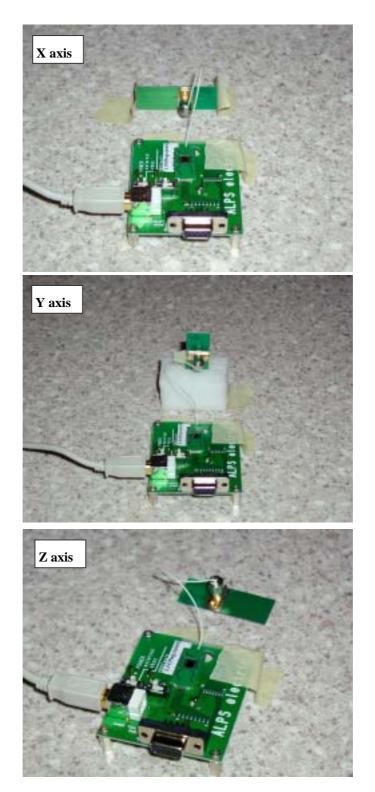



### A-Pex International Co., Ltd. YAMAKITA LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

+81 465 77 1011 +81 465 77 2112 Telephone: Facsimile:

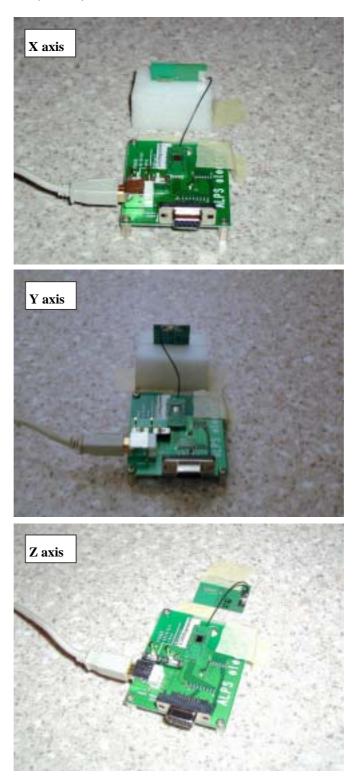
Pre check of worse-case position (YCE-5255)




### A-Pex International Co., Ltd. YAMAKITA LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

+81 465 77 1011 +81 465 77 2112 Telephone: Facsimile:


Pre check of worse-case position (SSW2400)



### A-Pex International Co., Ltd. YAMAKITA LAB.

907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

Telephone: Facsimile: +81 465 77 1011 +81 465 77 2112 Pre check of worse-case position (LDA92)



### A-Pex International Co., Ltd. YAMAKITA LAB. 907 Kawanishi, Yamakita-machi, Ashigarakami-gun, Kanagawa-ken, 258-0124 JAPAN

+81 465 77 1011 +81 465 77 2112 Telephone: Facsimile:

# **DATA OF CONDUCTION TEST**

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Shielded Room Report No. : 23DE0002-YK-1

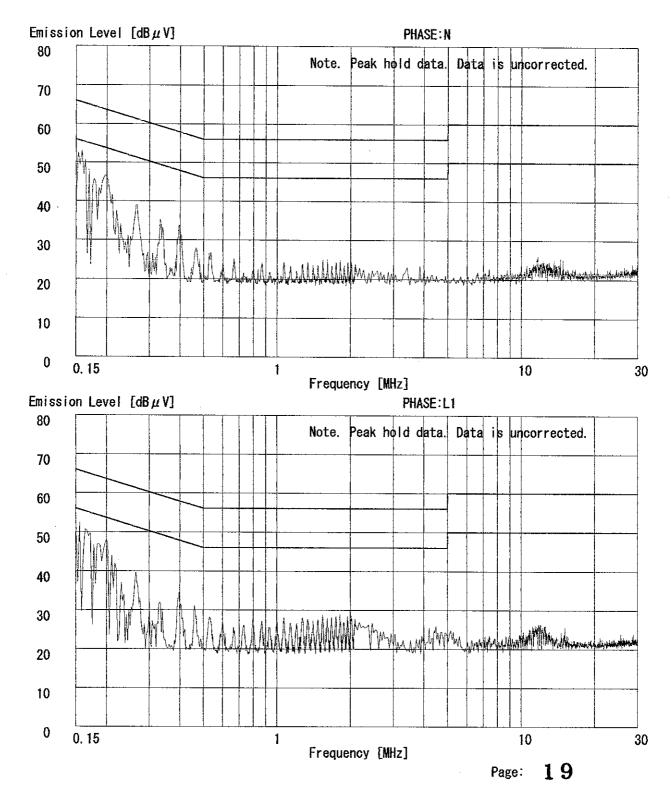
| Kind<br>Mode<br>Seri<br>Powe<br>Mode<br>Rema<br>Date<br>Phas<br>Temp<br>Humi | irks                                                                                            | UPGZ3<br>11<br>DC3.3V (PC:AC120V/60Hz)<br>Transmitting(2402MHz)<br>Tx Antenna Type: YCE-5255<br>11/22/2002<br>Single Phase<br>25 °C<br>41 % |                     |                                                    |                    |                                                                                         |                                              |                                                                                         | ineer                                              | <u>).</u><br>: † | <u>Incm</u> oyokaz                                 | <i>under</i><br>u Imam                   | ura                                                | _               |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------|------------------|----------------------------------------------------|------------------------------------------|----------------------------------------------------|-----------------|
| No.                                                                          | FREQ.<br>[MHz]                                                                                  | READI<br>QP<br>[dB                                                                                                                          | NG (N)<br>AV<br>uV] | QP                                                 | NG(L1<br>AV<br>uV] | ) LISN<br>FACTOR<br>[dB]                                                                |                                              | ATTEN<br>[dB]                                                                           | . RES<br>QP<br>[dBu                                | ULT<br>AV<br>V]  | LIM<br>QP<br>[dBu                                  | ITS<br>AV<br>V]                          | QP                                                 | GIN<br>AV<br>B] |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                                             | $\begin{array}{c} 0.\ 1500\\ 0.\ 2050\\ 0.\ 2740\\ 0.\ 3415\\ 1.\ 6260\\ 12.\ 2930 \end{array}$ | 43. 7<br>44. 2<br>33. 2<br>27. 8<br>17. 6<br>17. 4                                                                                          | 31.2                | 43. 9<br>44. 8<br>33. 2<br>29. 3<br>24. 3<br>16. 9 | 31.2               | $\begin{array}{c} 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 1 \\ 0. \ 3 \end{array}$ | 0. 1<br>0. 1<br>0. 1<br>0. 1<br>0. 3<br>1. 2 | $\begin{array}{c} 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \\ 0. \ 0 \end{array}$ | 44. 0<br>44. 9<br>33. 3<br>29. 4<br>24. 7<br>18. 9 | 31.3             | 66. 0<br>63. 4<br>61. 0<br>59. 2<br>56. 0<br>60. 0 | 56. 0  53. 4  51. 0  49. 2  46. 0  50. 0 | 22. 0<br>18. 5<br>27. 7<br>29. 8<br>31. 3<br>41. 1 | 22.1            |

CALCULATION: READING[dB $\mu$ V] + LISN FACTOR[dB] + CABLE LOSS[dB] + ATTEN[dB].

•

■LISN :KLS-02 (NSLK8127) ■COAXIAL CABLE:KCC-14/15/16/18 ■EMI RECEIVER:KTR-01 (ESI40) ■PULSE LIMITER:KPL-01 (PL01)

Page: 18


-

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Shielded Room Report No.: 23DE0002-YK-1

Toyokazu Imamura

| Applicant         | : ALPS Electric Co., Ltd          |           |
|-------------------|-----------------------------------|-----------|
| Kind of Equipment | : Bluetooth Transceiver module    |           |
| Model No.         | : UPGZ3                           |           |
| Serial No.        | : 11                              |           |
| Power             | : DC3.3V (PC:AC120V/60Hz)         |           |
| Mode              | : Transmitting(2402MHz)           |           |
| Remarks           | : Tx Antenna Type: YCE-5255       | ~         |
| Date              | : 11/22/2002                      | $/\gamma$ |
| Phase             | Single Phase                      | · /.      |
| Temperature       | : 25 °C                           | Engineer  |
| Humidity          | : 41 %                            |           |
| Regulation 1      | : FCC Part15C § 15. 207. (CISPR I | Pub. 22   |
| Regulation 2      | : FCC Part15C § 15. 207. (CISPR ) | Pub. 22 ) |
|                   |                                   |           |

. .



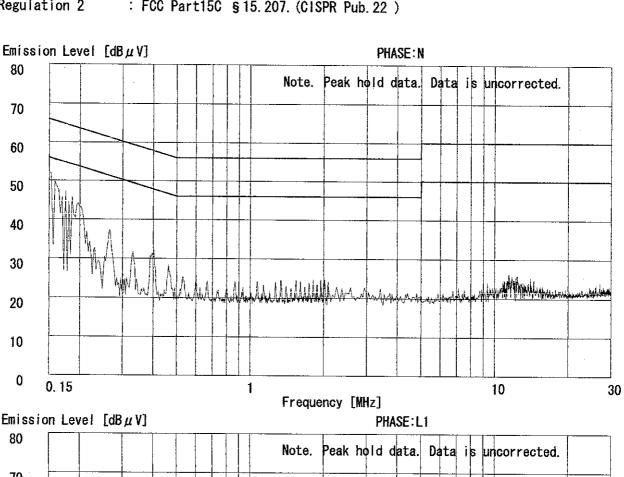
A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Shielded Room Report No. : 23DE0002-YK-1

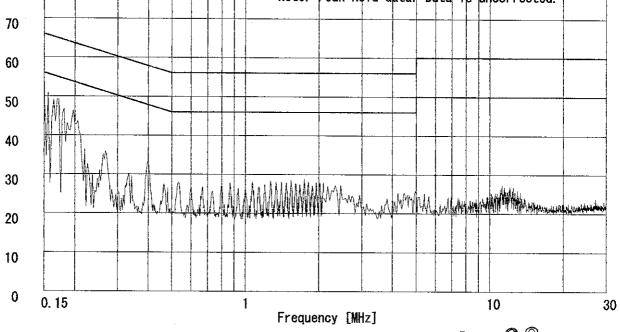
| Applic<br>Kind o<br>Model<br>Serial<br>Power<br>Mode<br>Remark<br>Date<br>Phase<br>Temper<br>Humidi<br>Regula | No.<br>No.<br>s<br>ature<br>ty<br>tion 1 | Ι       |        | PGZ3<br>1<br>C3.3<br>rans<br>x Ar<br>1/22<br>ingl<br>5 °C | 3<br>Smit<br>Smit<br>Ster<br>2/20<br>E F | (PC<br>tti<br>na<br>)02<br>Pha | : A(<br>ng<br>Ty<br>se | 012<br>(24<br>7pe | Co.,Ltd<br>sceiver m<br>20V/60Hz)<br>480MHz)<br>9: YCE-52<br>15.207.(C<br>15.207.(C | 55                                            | Engir        | l               | $\sum$   | /         | In            | E0002-YK-1<br><i>Communa</i><br>zu Imamura                        |                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|--------|-----------------------------------------------------------|------------------------------------------|--------------------------------|------------------------|-------------------|-------------------------------------------------------------------------------------|-----------------------------------------------|--------------|-----------------|----------|-----------|---------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Emissi                                                                                                        | on Lev                                   | vel [dE | 3μV]   |                                                           |                                          |                                |                        |                   |                                                                                     |                                               | P            | HASE:N          | 4        |           |               |                                                                   |                                                                                                                  |
| 80                                                                                                            |                                          |         |        |                                                           | 1                                        |                                |                        |                   | Note                                                                                | . Peak                                        |              |                 | <u> </u> | a is      |               | ncorrected.                                                       |                                                                                                                  |
| 70                                                                                                            |                                          |         |        |                                                           |                                          |                                |                        |                   |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 60                                                                                                            |                                          |         |        |                                                           |                                          |                                |                        |                   |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 50                                                                                                            |                                          |         |        | -                                                         |                                          |                                |                        |                   |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 40                                                                                                            |                                          | N. A    |        |                                                           |                                          |                                |                        | -                 |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 30                                                                                                            |                                          | WW      |        | 1.A                                                       | A                                        |                                | L.A.                   | A A               |                                                                                     | ALL AND                                       | man l.       | a hadida        |          |           | li dak        | AND HALF HARMAN                                                   |                                                                                                                  |
| 20                                                                                                            |                                          |         |        | <u> </u>                                                  |                                          | W P                            | ,                      | 141               | ╱╈┷ <sup>┲</sup> ┡┚┙╱╈╲┠╣Ѵ┩                                                         | *****                                         | - W ~W       | ╙₩╡╣╢╤┷╜╲       | <u> </u> | Nevi Vrye | 36-CH.        | Nandrafaan seun sa tura sensa.<br>Nandrafaan seun sa tura sensari | To Be a construction of the second  |
| 10                                                                                                            |                                          |         |        |                                                           |                                          |                                |                        |                   |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 0                                                                                                             | 0. 15                                    |         |        |                                                           |                                          |                                |                        |                   | 1<br>Freq                                                                           | uency                                         | [MH7]        |                 |          |           |               | 10                                                                | 30                                                                                                               |
|                                                                                                               | on Lev                                   | el [dB  | 3μV]   |                                                           |                                          |                                |                        |                   |                                                                                     |                                               |              | HASE: L         | .1       |           |               |                                                                   |                                                                                                                  |
| 80                                                                                                            |                                          |         |        |                                                           |                                          |                                |                        |                   | Note                                                                                | . Peak                                        | hold         | data.           | Data     | a is      | ; u           | ncorrected.                                                       |                                                                                                                  |
| 70                                                                                                            |                                          |         |        |                                                           |                                          |                                |                        | +                 |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 60                                                                                                            |                                          |         |        |                                                           |                                          |                                | _                      |                   | <br> <br>                                                                           |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 50                                                                                                            | MM                                       |         |        | -                                                         |                                          |                                |                        | -                 |                                                                                     |                                               |              |                 |          |           | -             |                                                                   |                                                                                                                  |
| 40                                                                                                            |                                          |         | . 1    |                                                           |                                          |                                |                        |                   |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 30                                                                                                            |                                          |         |        | M                                                         | A                                        |                                |                        | 11                |                                                                                     | MMM.                                          | Λ            | MM              | An       |           |               | ANT MANY ANT                                                      | الفتعدياتي والمراجع                                                                                              |
| 20                                                                                                            |                                          | · · · · | yy y/U | - 14 Ìr                                                   | ¥-¥/<br> <br>                            | ₩4                             |                        | / <b>)    </b>    | ĸĬŔĔŔĬĬŔŔŔĬŔĬŢĬĬĬ                                                                   | <u>, , , , , , , , , , , , , , , , , , , </u> | <u>YW</u> WA | <u>₩₩ ''' 1</u> | <u></u>  |           | <u>'01 '1</u> |                                                                   | and the second |
| 10                                                                                                            |                                          |         |        |                                                           |                                          |                                |                        |                   |                                                                                     |                                               |              |                 |          |           |               |                                                                   |                                                                                                                  |
| 0                                                                                                             | 0.15                                     |         | ·      |                                                           |                                          |                                | ••••• <b>•</b> ••      |                   | 1<br>Freq                                                                           | uency                                         | [MHz]        |                 | ·        | <u> </u>  |               | 10<br>: <b>20</b>                                                 | 30                                                                                                               |

Page: 20

.

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Shielded Room Report No. : 23DE0002-YK-1


| Power<br>Mode<br>Remarks<br>Date<br>Phase<br>Temperature | : UPGZ:<br>: 11<br>: DC3.:<br>: Tran:<br>: Tx An<br>: 11/2:<br>: Sing<br>: 25 °C<br>: 41 96 | 3<br>3V (<br>smit<br>nten<br>2/20<br>le P | (PC:<br>tin<br>na<br>)02<br>Phas | AC1<br>g (2<br>Typ<br>e | 20V,<br>2402 <br>3e: 1   | /60Hz)<br>MHz)<br>SSW2400 | Ī     | Engi<br>ub. 2<br>ub. 2 | nee  | 2<br>or    |     | У.        |      |          | 0002-YK-1<br><i>Cumuna</i><br>u Imamura |                           |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------|-------------------------|--------------------------|---------------------------|-------|------------------------|------|------------|-----|-----------|------|----------|-----------------------------------------|---------------------------|
| Emission Level [dB;                                      | μV]                                                                                         |                                           |                                  |                         |                          |                           |       |                        | PHAS | SE:N       |     |           |      |          |                                         |                           |
| 80                                                       |                                                                                             |                                           |                                  |                         |                          | Note.                     | Peak  | høl                    | d di | ata.       | Da  | ta        | is   | ur       | corrected.                              |                           |
| 70                                                       |                                                                                             |                                           |                                  |                         | _                        |                           |       | ·  ···                 |      |            |     |           |      |          |                                         |                           |
| 60                                                       |                                                                                             |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           |      |          |                                         |                           |
| 50                                                       | +                                                                                           |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           |      |          |                                         |                           |
| 40                                                       |                                                                                             |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           |      |          |                                         |                           |
| 30<br>20                                                 | hala                                                                                        |                                           | Alla                             | ul al la                | WALA                     |                           | Mury  | MAN                    | M.A  | Ahran      | AA  | , sin fai | wint | v d v bi | a Million Marian                        |                           |
|                                                          |                                                                                             |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           |      |          |                                         |                           |
| 10                                                       |                                                                                             |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           |      |          |                                         |                           |
| 0 0.15                                                   | ł                                                                                           | I I                                       |                                  | ] ]                     | 1                        |                           | l     |                        | Ì    | 1          | {   | E.        |      | 1        | 0                                       | 30                        |
| Emission Level [dB;                                      | 2 V]                                                                                        |                                           |                                  |                         |                          | Freque                    | ncy j |                        |      | SE:L       | 1   |           |      |          |                                         |                           |
| 80                                                       |                                                                                             |                                           |                                  |                         |                          | Note.                     | Peak  | hol                    | d da | ita.       | Da  | ta        | is   | un       | corrected.                              |                           |
| 70                                                       |                                                                                             |                                           |                                  |                         |                          |                           |       |                        |      | 1          | -   |           |      |          |                                         |                           |
| 60                                                       | +                                                                                           |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           |      |          |                                         | <b></b>                   |
| 50                                                       |                                                                                             |                                           |                                  |                         | _                        |                           |       |                        |      |            |     |           |      |          |                                         |                           |
| 40                                                       |                                                                                             |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           | -    |          |                                         |                           |
| 30                                                       | MILA                                                                                        |                                           |                                  |                         | M                        |                           | MW    | W.                     |      | M          | MAA |           | -    | h///     |                                         | La leile is nel la divisi |
| 20                                                       |                                                                                             | ***<br>                                   | ₩#-₩#<br>                        | 9 W W                   | · <del>u iv - 11</del> ( | <u>╺┅┲╛┲╡╟╂╄╉╏╜</u>       |       |                        | ~~~~ | - <b>1</b> |     |           |      |          |                                         |                           |
| 10                                                       |                                                                                             |                                           |                                  |                         |                          |                           |       |                        |      |            |     |           |      |          |                                         |                           |
| 0 0.15                                                   | -1                                                                                          |                                           |                                  |                         | 1                        | Freque                    | nev l | MH7                    | 7    |            | 1.  |           |      | 1        | 0                                       | 3(                        |

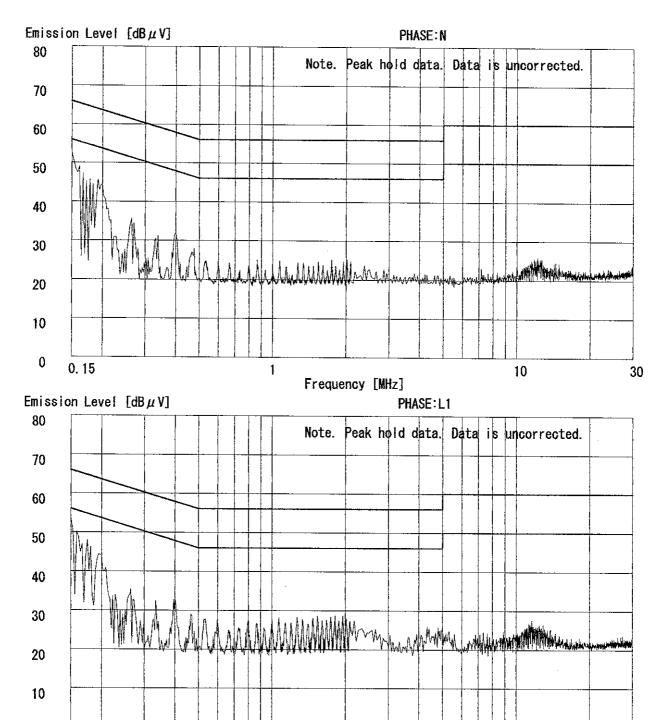



A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Shielded Room Report No.: 23DE0002-YK-1

Toyokazu Imamura

| Applicant<br>Kind of Equipment<br>Model No.<br>Serial No.<br>Power<br>Mode<br>Remarks<br>Date<br>Phase | ** ** ** ** ** ** ** | ALPS Electric Co., Ltd<br>Bluetooth Transceiver module<br>UPGZ3<br>11<br>DC3.3V (PC:AC120V/60Hz)<br>Transmitting(2480MHz)<br>Tx Antenna Type: SSW2400<br>11/22/2002<br>Single Phase | ,<br>,                           |
|--------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Temperature<br>Humidity<br>Regulation 1<br>Regulation 2                                                |                      | 25 °C<br>41 %<br>FCC Part15C § 15. 207. (CISPR<br>FCC Part15C § 15. 207. (CISPR                                                                                                     | Engineer<br>Pub.22 )<br>Pub.22 ) |






Page: 22

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Shielded Room Report No.: 23DE0002-YK-1

Toyokazu Imamura

| Applicant         | : | ALPS Electric Co.,Ltd           | •         |
|-------------------|---|---------------------------------|-----------|
| Kind of Equipment | 1 | Bluetooth Transceiver module    |           |
| Model No.         |   | UPGZ3                           |           |
| Serial No.        | 1 | 11                              |           |
| Power             | : | DC3. 3V (PC: AC120V/60Hz)       |           |
| Mode              | ; | Transmitting(2402MHz)           |           |
| Remarks           |   | Tx Antenna Type: LDA92          |           |
| Date              | : | 11/22/2002                      |           |
| Phase             | : | Single Phase                    | 1         |
| Temperature       |   | 25 °C                           | Engineer  |
| Humidity          | : | 41 %                            |           |
| Regulation 1      | : | FCC Part15C § 15. 207. (CISPR   | Pub. 22 ) |
| Regulation 2      | : | FCC Part15C § 15. 207. (CISPR ) | Pub. 22 ) |
|                   |   |                                 |           |



Frequency [MHz]

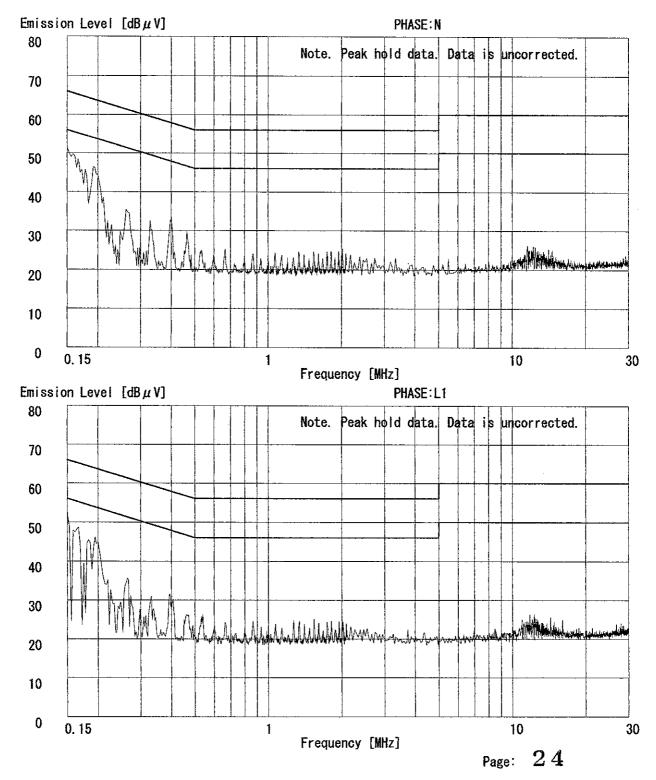
1

0

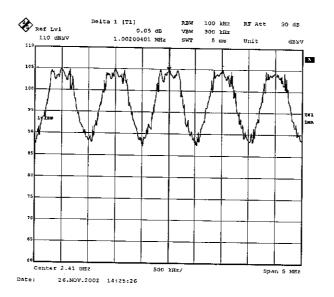
0.15



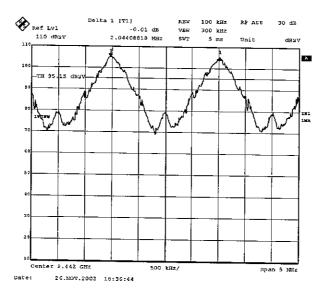
30


10

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Shielded Room Report No.: 23DE0002-YK-1

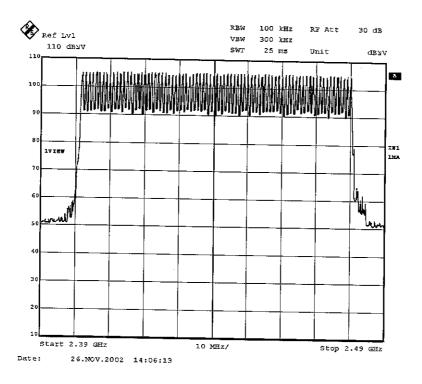

| Applicant               | : | ALPS Electric Co.,Ltd         | l       |
|-------------------------|---|-------------------------------|---------|
|                         |   | Bluetooth Transceiver module  | )       |
| Model No.<br>Serial No. | : | UPGZ3<br>11                   |         |
| Power                   |   | DC3. 3V (PC: AC120V/60Hz)     |         |
| Mode                    | : | Transmitting(2480MHz)         |         |
| Remarks                 | : | Tx Antenna Type: LDA92        |         |
| Date                    | 1 | 11/22/2002                    |         |
| Phase                   |   | Single Phase                  |         |
| Temperature             | : | 25 °C                         | Engi    |
| Humidity                | : | 41 %                          |         |
| Regulation 1            | : | FCC Part15C § 15. 207. (CISPR | Pub. 22 |
| Regulation 2            | : | FCC Part15C § 15. 207. (CISPR | Pub. 2  |
|                         |   |                               |         |

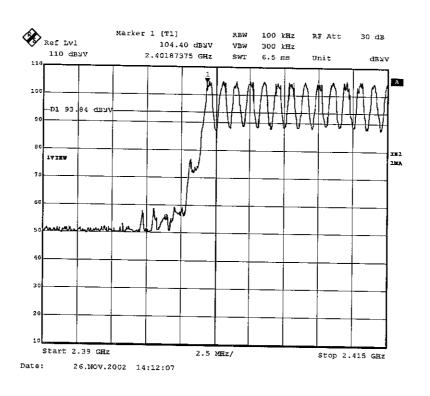
neer Toyókazu Imamura

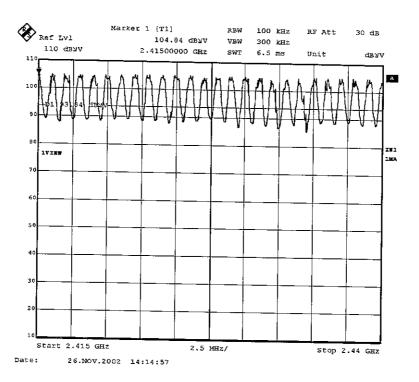

Engineer : Toyokazu Imamura .207. (CISPR Pub.22 ) .207. (CISPR Pub.22 )



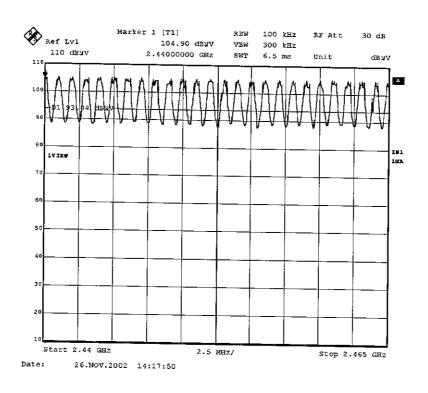
**Hopping** 

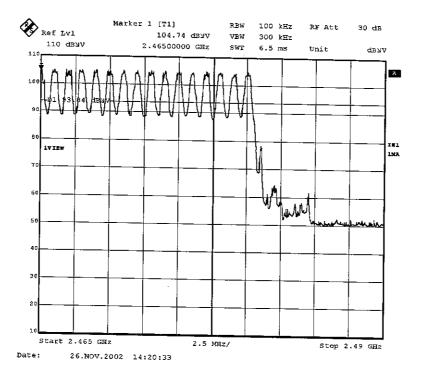




Inquiry




Ref Lvl 110 dEVV Delta 1 (T1) 0.03 dB 1.99398798 MHz 100 kHz 300 kHz 5 ms RBW RF Att 30 dB V3W SWT Unit dena 10 95 ZN1 1MA LVIER 10 Center 2.442 GHz 500 kHz/ Span 5 HHz Date: 26.NOV.2002 18:32:25


Page 1

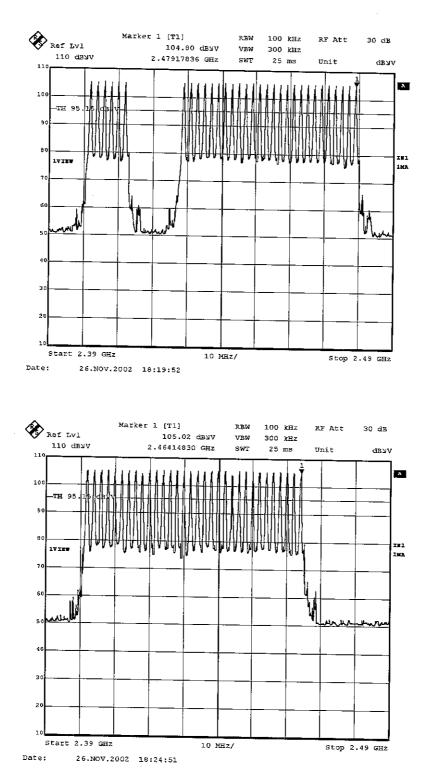




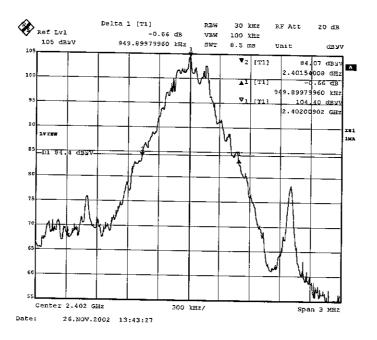



4.






### Channel Utilization: FCC 15.247(a)

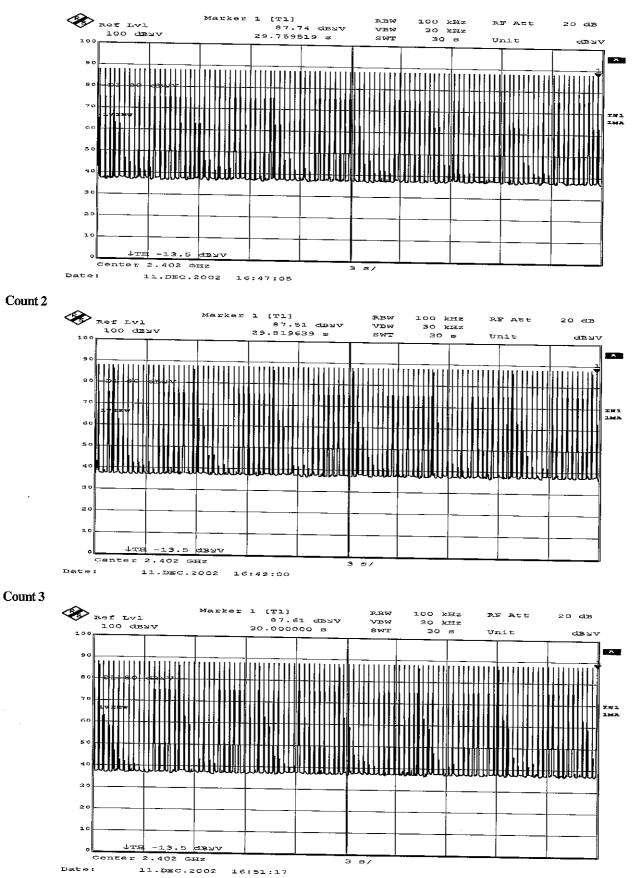

### FCC ID: CWTUGPZ3 Job No: 23DE0002-YK-1

### Inquiry

Page

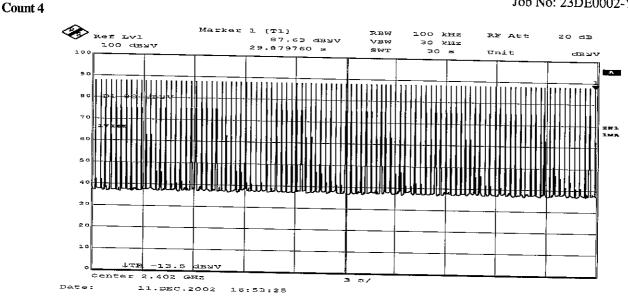


### 1. ch Low: 2402MHz

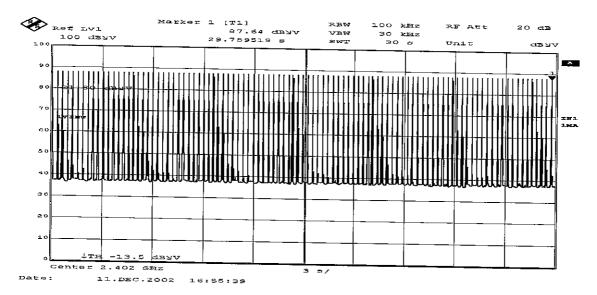



### 2. ch High: 2480MHz

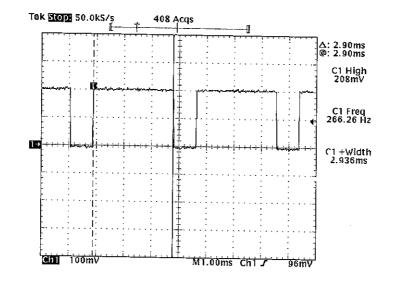



### FCC ID: CWTUGPZ3 Job No: 23DE0002-YK-1

#### Dwell Time(Hopping) Count 1



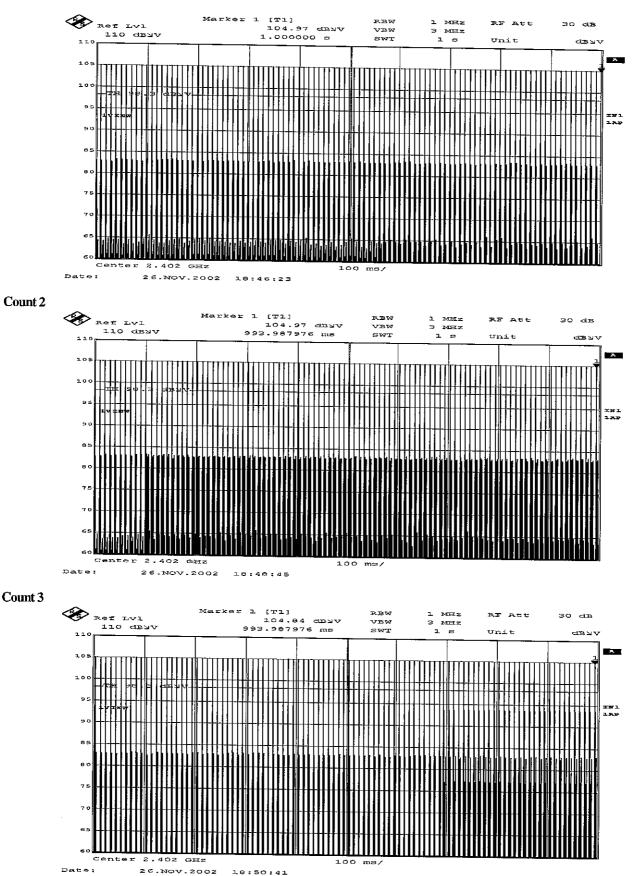

### FCC ID: CWTUGPZ3 Job No: 23DE0002-YK-1


.

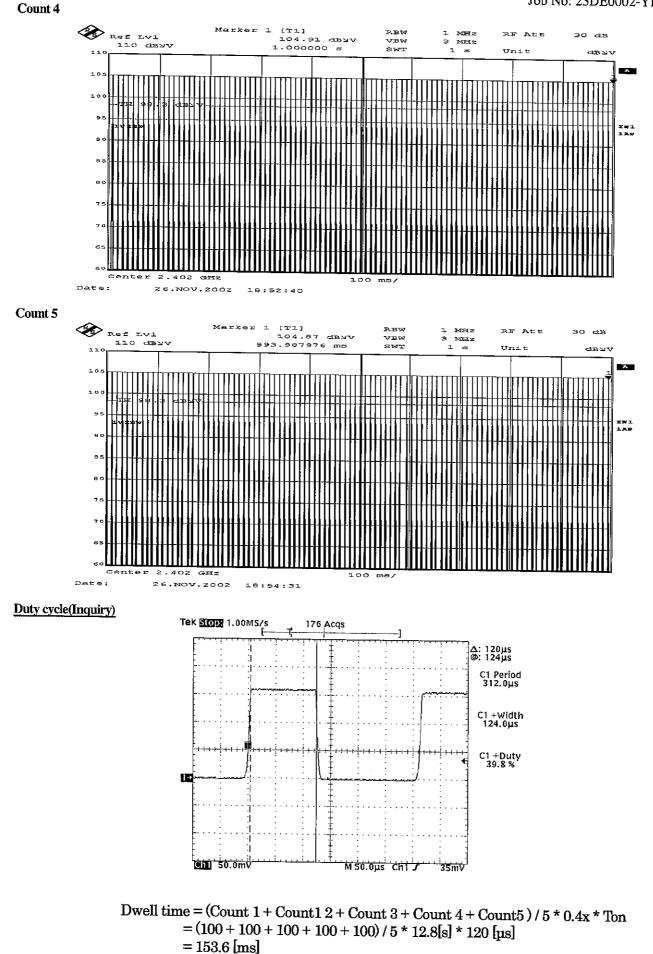


#### Count 5




### Duty cycle(Hopping)

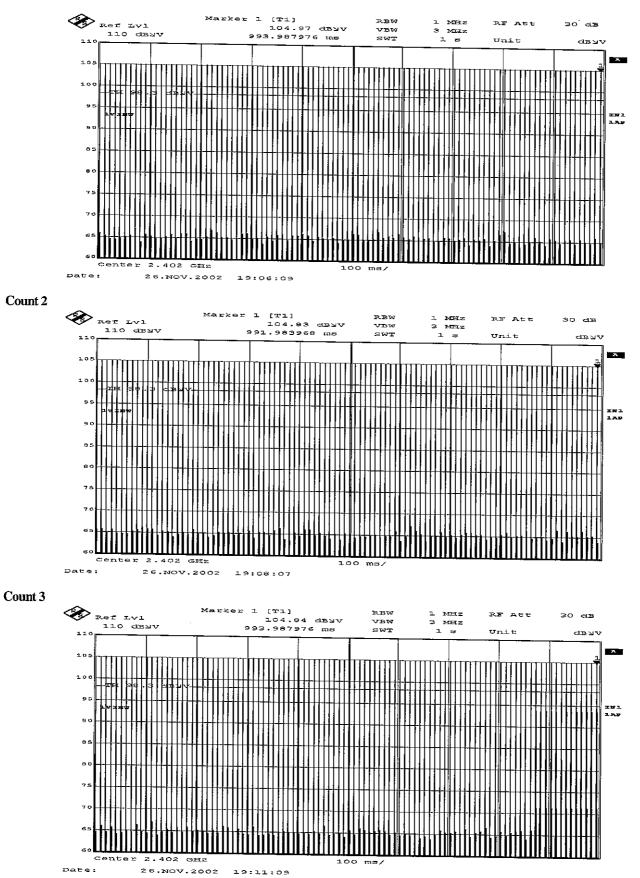



Dwell time = (Count 1 + Count 1 2 + Count 3 + Count 4 + Count 5)/5\*Ton = (102 + 102 + 102 + 101 + 101)/5\*2.90[ms] = 294.64 [ms]

### FCC ID: CWTUGPZ3 Job No: 23DE0002-YK-1

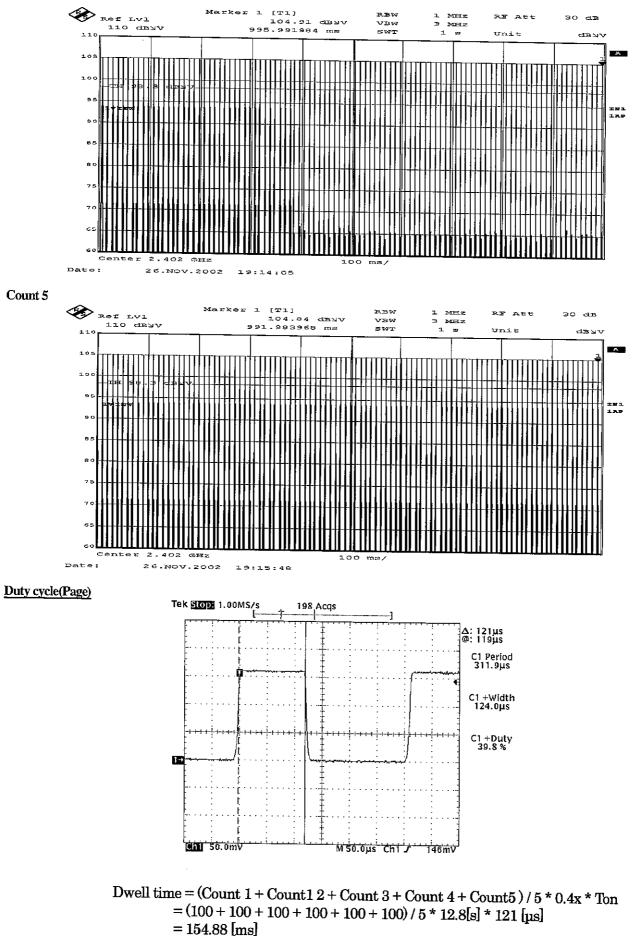
#### Dwell Time(Inquiry) Count 1




### FCC ID: CWTUGPZ3 Job No: 23DE0002-YK-1



Note.0.4x = 0.4 \* 32ch = 12.8[s]


### FCC ID: CWTUGPZ3 Job No: 23DE0002-YK-1

#### Dwell Time(Page) Count 1



Count 4

### FCC ID: CWTUGPZ3 Job No: 23DE0002-YK-1



## <u>Peak Out Put Power (Conducted)</u>

A-PEX INTERNATIONAL CO., LTD. YAMAKITA NO. 1 OPEN SITE

| COMPANY   | : | Alps Electric Co Ltd.        |
|-----------|---|------------------------------|
| EQUIPMENT | : | Bluetooth Transceiver Module |
| MODEL     |   | UGPZ3                        |
| FCC ID    | : | CWTUGPZ3                     |
| POWER     | : | DC3. 3V (PC: AC120V/60Hz)    |
| Mode      |   | Transmitting                 |
|           |   |                              |

REPORT NO REGULATION DATE Temp./Humi.

: 23DE0002-YK-1 : Fcc Part15SubpartC 247 (b) (1) : 2002/ 11/26 : 20℃/51%

ENGINEER

Smanuna/ : Toyokazu Imamura

| CH or Mode | FREQ<br>[GHz] | PM Reading<br>[dBm] | Limit<br>[dBm] | MARGIN<br>[dB] |
|------------|---------------|---------------------|----------------|----------------|
| Low        | 2402.00       | 1.64                | 30.0           | 28.36          |
| High       | 2480.00       | 1. 62               | 30.0           | 28.38          |
| Inquiry    | -             | 1. 97               | 30.0           | 28.03          |
| Page       | -             | 1.83                | 30.0           | 28.17          |
| Hopping    | —             | 1. 89               | 20.96          | 19.07          |

Limit:1W=30dBm

Limit (Hopping) :125mW=20.96dBm

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

| Kind<br>Mode<br>Seri<br>Powe<br>Mode<br>Rema<br>Date<br>Test<br>Temp<br>Humi | rks<br>Distan<br>erature                                                                                  | ce                                     | ıt                                                          | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 23<br>: 37 | .3V(PC:<br>nsmitti<br>Antenna<br>20/2002<br>℃      | AC120<br>ng (240<br>Type                             | ceiver<br>//60Hz)<br>)2MHz)<br>: YCE-5        |                                                                                                                       | Enginee                              | <u> </u>                                       | In ann<br>Toyoka                                     | <u>una</u><br>zu İma             | mura                                                       |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------|----------------------------------|------------------------------------------------------------|
| No.                                                                          | FREQ.<br>[MHz]                                                                                            | ANT<br>TYPE                            | REAL<br>HOR<br>[dB]                                         |                                                                                             | ANT<br>FACTOR<br>[dB/m]                            | AMP<br>GAIN<br>[dB]                                  | CABLE<br>LOSS<br>[dB]                         | ATTEN.<br>[dB]                                                                                                        | RESU<br>HOR<br>[dB µ V               | ILT  <br>VER<br>//m] [dl                       | LIMITS<br>BµV/m]                                     | HOR                              | RGIN<br>VER<br>HB]                                         |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                                       | $\begin{array}{c} 66.\ 75\\ 70.\ 93\\ 250.\ 01\\ 497.\ 84\\ 500.\ 25\\ 522.\ 25\\ 528.\ 02\\ \end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 36. 6<br>27. 4<br>29. 9<br>33. 9<br>28. 4<br>35. 0<br>31. 2 | 28. 0<br>35. 0<br>26. 4<br>36. 0<br>33. 3<br>32. 7<br>31. 8                                 | 7.2<br>6.6<br>16.8<br>19.0<br>19.0<br>19.2<br>19.2 | 28.6<br>28.5<br>27.8<br>29.1<br>29.1<br>29.5<br>29.5 | 2.0<br>2.1<br>4.2<br>6.2<br>6.2<br>6.4<br>6.4 | $\begin{array}{c} 6. \ 1 \\ 6. \ 1 \\ 6. \ 1 \\ 6. \ 1 \\ 6. \ 1 \\ 6. \ 1 \\ 6. \ 1 \\ 6. \ 1 \\ 6. \ 1 \end{array}$ | 13.7<br>29.2<br>36.1<br>30.6<br>37.2 | 14.7 $21.3$ $25.7$ $38.2$ $35.5$ $34.9$ $34.0$ | 40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0 | 16.7 26.3 16.8 9.9 15.4 8.8 12.6 | 25. 3<br>18. 7<br>20. 3<br>7. 8<br>10. 5<br>11. 1<br>12. 0 |

CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ANTENNA:KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■CABLE:KCC-10/11/12/13/18 ■PREAMP:KAF-01 (8447D) ■ENI RECEIVER:KTR-01 (ESI40)

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

| Kind<br>Mode<br>Seri<br>Powe<br>Mode<br>Rema<br>Date<br>Test<br>Temp<br>Humi | rks<br>Distan<br>erature                                                                                  | ce                                     | ıt                                                          | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 23<br>: 37 | .3V(PC:<br>nsmitti<br>Antenna<br>20/2002<br>°C     | Transo<br>AC120\<br>ng (248<br>Type:                        | ceiver<br>//60Hz)<br>80MHz)<br>: YCE-5                                              | 255                                                                | <i>(</i><br>Enginee                                         | <u>).</u><br>r                                              | Imm.<br>Toyoka                                                                                      | runa.<br>zu Ima                                       | mura                                                       |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|
| No.                                                                          | FREQ.<br>[MHz]                                                                                            | ANT<br>TYPE                            | REAL<br>HOR<br>[dB]                                         |                                                                                    | ANT<br>FACTOR<br>[dB/m]                            | AMP<br>GAIN<br>[dB]                                         | CABLE<br>LOSS<br>[dB]                                                               | ATTEN.<br>[dB]                                                     | RESI<br>HOR<br>[dB µ V                                      | JLT I<br>VER<br>V/m] [di                                    | LIMITS<br>3µV/m]                                                                                    | HOR                                                   | RGIN<br>VER<br>HB]                                         |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                                       | $\begin{array}{c} 66.\ 75\\ 70.\ 89\\ 250.\ 01\\ 497.\ 67\\ 500.\ 34\\ 522.\ 25\\ 528.\ 06\\ \end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 35. 1<br>38. 4<br>29. 4<br>33. 8<br>29. 3<br>36. 9<br>29. 8 | 32. 2<br>38. 8<br>26. 8<br>34. 4<br>33. 4<br>32. 8<br>31. 0                        | 7.2<br>6.6<br>16.8<br>19.0<br>19.0<br>19.2<br>19.2 | 28. 6<br>28. 5<br>27. 8<br>29. 1<br>29. 1<br>29. 5<br>29. 5 | $\begin{array}{c} 2.\ 0\\ 2.\ 1\\ 4.\ 2\\ 6.\ 2\\ 6.\ 2\\ 6.\ 4\\ 6.\ 4\end{array}$ | $\begin{array}{c} 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\$ | 21. 8<br>24. 7<br>28. 7<br>36. 0<br>31. 5<br>39. 1<br>32. 0 | 18. 9<br>25. 1<br>26. 1<br>36. 6<br>35. 6<br>35. 0<br>33. 2 | $\begin{array}{c} 40.\ 0\\ 40.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\end{array}$ | $18.2 \\ 15.3 \\ 17.3 \\ 10.0 \\ 14.5 \\ 6.9 \\ 14.0$ | 21. 1<br>14. 9<br>19. 9<br>9. 4<br>10. 4<br>11. 0<br>12. 8 |

CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz ■ CABLE: KCC-10/11/12/13/18 ■ PREAMP: KAF-01 (8447D) ■ ENI RECEIVER: KTR-01 (ESI40)

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1

| Kir<br>Moc<br>Ser<br>Pow<br>Moc<br>Ren<br>Dat<br>Tes<br>Ten<br>Hun | le<br>narks                                                                                       | ce                                                               | t                                                                                  | Blue<br>UPG<br>11<br>DC3<br>Trai<br>Trai<br>11/3<br>3 m<br>26<br>32                 | .3V(PC:<br>nsmitti<br>Antenna<br>21/2002<br>°C<br>%                              | AC120V<br>ng (240<br>Type:                                                                    | ceiver<br>(/60Hz)<br>)2MHz)<br>YCE-5                                 | 255                                                          | ngineer<br>tion)                                                                                    | <u>).</u><br>r                                                                                  | Ancom<br>Toyoka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>uur</u><br>zu Ima                                                      | mura                                                                     |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                    |                                                                                                   |                                                                  |                                                                                    |                                                                                     |                                                                                  |                                                                                               |                                                                      |                                                              |                                                                                                     |                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                                                          |
| No.                                                                | FREQ.<br>[MHz]                                                                                    | ANT<br>TYPE                                                      | HOR                                                                                | DING<br>VER<br>µV]                                                                  | ANT<br>FACTOR<br>[dB/m]                                                          | AMP<br>GAIN<br>[dB]                                                                           | CABLE<br>LOSS<br>[dB]                                                | ATTEN.<br>[dB]                                               | RESU<br>HOR<br>[dB µ V                                                                              | VER                                                                                             | LIMITS<br>BµV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOR                                                                       | RGIN<br>VER<br>HB]                                                       |
|                                                                    | [MHz]                                                                                             | TYPE                                                             | HOR<br>[dB                                                                         | VER<br>μV]                                                                          | FACTOR<br>[dB/m]                                                                 | GAIN<br>[dB]                                                                                  | LOSS<br>[dB]                                                         | [dB]                                                         | HOR<br>[dB µ V                                                                                      | VER<br>//m] [d                                                                                  | BμV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HOR [                                                                     | VER<br>fB]                                                               |
| No.                                                                | [MHz]<br>2390.00                                                                                  |                                                                  | HOR                                                                                | VER<br>μV]<br>36.9                                                                  | FACTOR<br>[dB/m]<br>30.6                                                         | GAIN<br>[dB]<br>36.7                                                                          | LOSS<br>[dB]<br>2.4                                                  | [dB]<br>0.0                                                  | HOR<br>[dB µ V<br>32. 4                                                                             | VER<br>//m] [d<br>33.2                                                                          | BμV/m]<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOR [6                                                                    | VER<br>[B]<br>20.8                                                       |
| <br>1.                                                             | [MHz]                                                                                             | TYPE<br>BB                                                       | HOR<br>[dB<br>36. 1                                                                | VER<br>μV]                                                                          | FACTOR<br>[dB/m]                                                                 | GAIN<br>[dB]<br>36.7<br>37.1                                                                  | LOSS<br>[dB]<br>2.4<br>3.5                                           | [dB]                                                         | HOR<br>[dB μ V<br>32. 4<br>34. 8                                                                    | VER<br>//m] [d<br>33.2<br>43.4                                                                  | BμV/m]<br>54.0<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HOR<br>[0<br>21.6<br>19.2                                                 | VER<br>[B]<br>20.8<br>10.6                                               |
| 1.<br>2.<br>3.<br>4.                                               | [MHz]<br>2390.00<br>4804.00                                                                       | TYPE<br>BB<br>BB                                                 | HOR<br>[dB<br>36. 1<br>33. 8<br>32. 2<br>32. 1                                     | VER<br>μ V]<br>36. 9<br>42. 4<br>32. 3<br>32. 1                                     | FACTOR<br>[dB/m]<br>30.6<br>34.6                                                 | GAIN<br>[dB]<br>36.7                                                                          | LOSS<br>[dB]<br>2.4                                                  | [dB]<br>0.0<br>0.0                                           | HOR<br>[dB µ V<br>32. 4                                                                             | VER<br>//m] [d<br>33.2                                                                          | BμV/m]<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOR<br>[6<br>21.6<br>19.2<br>17.0                                         | VER<br>IB]<br>20.8<br>10.6<br>16.9                                       |
| 1.<br>2.<br>3.<br>4.<br>5.                                         | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00                                     | TYPE<br>BB<br>BB<br>BB                                           | HOR<br>[dB<br>36. 1<br>33. 8<br>32. 2<br>32. 1<br>32. 3                            | VER<br>µ V]<br>36. 9<br>42. 4<br>32. 3<br>32. 1<br>32. 4                            | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0                         | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>37. 0<br>36. 1                            | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6                      | [dB]<br>0.0<br>0.0<br>0.0                                    | HOR<br>[dB μ V<br>32. 4<br>34. 8<br>37. 0                                                           | VER<br>//m] [d<br>33.2<br>43.4<br>37.1                                                          | BμV/m]<br>54.0<br>54.0<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HOR<br>[0<br>21.6<br>19.2                                                 | VER<br>IB]<br>20.8<br>10.6<br>16.9<br>14.7                               |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                                   | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00                         | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB                   | HOR<br>[dB<br>36. 1<br>33. 8<br>32. 2<br>32. 1<br>32. 3<br>31. 5                   | VER<br>µV]<br>36.9<br>42.4<br>32.3<br>32.1<br>32.4<br>31.6                          | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1                 | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>37. 0<br>36. 1<br>35. 1                   | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3               | [dB]<br>0.0<br>0.0<br>0.0<br>0.0                             | HOR<br>[dB $\mu$ V<br>32. 4<br>34. 8<br>37. 0<br>39. 3<br>43. 8<br>43. 8                            | VER<br>//m] [d<br>33.2<br>43.4<br>37.1<br>39.3                                                  | $\frac{B \mu V/m]}{54.0} \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 5$ | HOR<br>21.6<br>19.2<br>17.0<br>14.7                                       | VER<br>IB]<br>20.8<br>10.6<br>16.9                                       |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                             | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00<br>16814.00             | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB             | HOR<br>[dB<br>36. 1<br>33. 8<br>32. 2<br>32. 1<br>32. 3<br>31. 5<br>32. 0          | VER<br>µV]<br>36.9<br>42.4<br>32.3<br>32.1<br>32.4<br>31.6<br>32.1                  | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1<br>41.6         | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>37. 0<br>36. 1<br>35. 1<br>34. 9          | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3<br>6.5        | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | HOR<br>[dB $\mu$ V<br>32. 4<br>34. 8<br>37. 0<br>39. 3<br>43. 8<br>43. 8<br>43. 8<br>45. 2          | VER<br>//m] [d<br>33. 2<br>43. 4<br>37. 1<br>39. 3<br>43. 9<br>43. 9<br>43. 9<br>45. 3          | $     \begin{array}{r} B \mu V/m] \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\             54.0 \\          $                                                                                                                                                                                | HOR<br>21.6<br>19.2<br>17.0<br>14.7<br>10.2<br>10.2<br>8.8                | VER<br>HB]<br>20.8<br>10.6<br>16.9<br>14.7<br>10.1<br>10.1<br>8.7        |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.                       | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00<br>16814.00<br>19216.00 | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | HOR<br>[dB<br>36. 1<br>33. 8<br>32. 2<br>32. 1<br>32. 3<br>31. 5<br>32. 0<br>32. 0 | VER<br>µ V]<br>36. 9<br>42. 4<br>32. 3<br>32. 1<br>32. 4<br>31. 6<br>32. 1<br>32. 4 | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1<br>41.6<br>41.3 | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>37. 0<br>36. 1<br>35. 1<br>34. 9<br>34. 8 | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3<br>6.5<br>7.2 | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | HOR<br>[dB $\mu$ V<br>32. 4<br>34. 8<br>37. 0<br>39. 3<br>43. 8<br>43. 8<br>43. 8<br>45. 2<br>45. 7 | VER<br>//m] [d<br>33. 2<br>43. 4<br>37. 1<br>39. 3<br>43. 9<br>43. 9<br>43. 9<br>45. 3<br>46. 1 | $ \begin{array}{c} B \ \mu \ V/m] \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54.$                                                                                | HOR<br>21. 6<br>19. 2<br>17. 0<br>14. 7<br>10. 2<br>10. 2<br>8. 8<br>8. 3 | VER<br>IB]<br>20.8<br>10.6<br>16.9<br>14.7<br>10.1<br>10.1<br>8.7<br>7.9 |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                             | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00<br>16814.00<br>19216.00 | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB             | HOR<br>[dB<br>36. 1<br>33. 8<br>32. 2<br>32. 1<br>32. 3<br>31. 5<br>32. 0          | VER<br>µV]<br>36.9<br>42.4<br>32.3<br>32.1<br>32.4<br>31.6<br>32.1                  | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1<br>41.6         | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>37. 0<br>36. 1<br>35. 1<br>34. 9          | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3<br>6.5        | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | HOR<br>[dB $\mu$ V<br>32. 4<br>34. 8<br>37. 0<br>39. 3<br>43. 8<br>43. 8<br>43. 8<br>45. 2          | VER<br>//m] [d<br>33. 2<br>43. 4<br>37. 1<br>39. 3<br>43. 9<br>43. 9<br>43. 9<br>45. 3          | $ \begin{array}{c} B \ \mu \ V/m] \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54. \ 0 \\ 54.$                                                                                | HOR<br>21.6<br>19.2<br>17.0<br>14.7<br>10.2<br>10.2<br>8.8                | VER<br>HB]<br>20.8<br>10.6<br>16.9<br>14.7<br>10.1<br>10.1<br>8.7        |

CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ANTENNA:KHA-01 (SAS-200 571)1-18GHz/KHA-03 (3160-09) 18-26, 5GHz ■CABLE:KCC-D3■PREAMP:KAF-02 (8449B) ■EM1 RECEIVER:KTR-01 (ES140)

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1

| Kin<br>Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Tem<br>Hum | le<br>Iarks        |             | ıt           | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 26<br>: 32 | .3V(PC:<br>nsmitti<br>Antenna<br>21/2002<br>°C<br>% | AC120V<br>ng (248<br>Type: | ceiver<br>//60Hz)<br>80MHz)<br>YCE-5 | 255        | nginee<br>tion) | <u></u>         | <u>Umm</u><br>Toyoka | <u>muna</u><br>zu Ima | mura       |
|--------------------------------------------------------------------|--------------------|-------------|--------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------|--------------------------------------|------------|-----------------|-----------------|----------------------|-----------------------|------------|
| No.                                                                | FREQ.              | ANT<br>TYPE | REAI<br>HOR  |                                                                                             | ANT<br>FACTOR                                       | AMP<br>GAIN                | CABLE<br>LOSS                        | ATTEN.     | RESU            |                 | LIMITS               |                       | RGIN       |
|                                                                    | [MHz]              | IIIE        |              | μV]                                                                                         | [dB/m]                                              | [dB]                       | [dB]                                 | [dB]       | HOR<br>[dBµV    | VER<br>V/m] [d] | BμV/m]               | HOR<br>[c             | VER<br>£B] |
| 1.                                                                 | 2483.50            | BB          | 50.3         | 50.1                                                                                        | 30.6                                                | 36.7                       | 2.4                                  | 0.0        | 46.6            | 46.4            | 54. 0                | 7.4                   | 7.6        |
| 2.                                                                 | 2484.06            | BB          | 50.7         | 50.8                                                                                        | 30.6                                                | 36.7                       | 2.4                                  | 0.0        | 47.0            | 47.1            | 54.0                 | 7.0                   | 6.9        |
| 3.                                                                 | 4960.00            | BB          | 39.1         | 43.4                                                                                        | 35.6                                                | 36.8                       | 3.5                                  | 0.0        | 41.4            | 45.7            | 54.0                 | 12.6                  | 8.3        |
| 4.<br>5.                                                           | 7440.00<br>9920.00 | BB<br>BB    | 32.1<br>32.3 | 32.1<br>32.3                                                                                | 38.0                                                | 36.9                       | 4.3                                  | 0.0        | 37.5            | 37.5            | 54.0                 | 16.5                  | 16.5       |
| 5.<br>6.                                                           | 12400,00           | BB          | 32.5<br>31.4 | 32. 3<br>31. 3                                                                              | 39.0<br>42.6                                        | 36. 8<br>35. 6             | 5.4<br>5.7                           | 0.0        | 39.9            | 39.9            | 54.0                 | 14.1                  | 14.1       |
| 7.                                                                 | 14880.00           | BB          | 31.4<br>32.5 | 31. 5<br>32. 5                                                                              | 42.6                                                | 35. 6<br>35. 5             | 5.7<br>6.5                           | 0.0<br>0.0 | 44. 1<br>46. 1  | 44.0<br>46.1    | 54.0                 | 9.9<br>7.0            | 10.0       |
| . 8.                                                               | 17360.00           | BB          | 32.3         | 32.3<br>32.4                                                                                | 42.0                                                | 33. 9<br>34. 9             | 6.7                                  | 0.0        | 46.8            | 46.9            | 54. 0<br>54. 0       | $7.9 \\ 7.2$          | 7.9<br>7.1 |
| 9.                                                                 | 19840.00           | BB          | 32.0         | 32.2                                                                                        | 40.9                                                | 35.3                       | 7.5                                  | 0.0        | 45.1            | 45.3            | 54.0<br>54.0         | 8.9                   | 8.7        |
| 10.                                                                | 22320.00           | BB          | 33.1         | 33.1                                                                                        | 41.4                                                | 35.3                       | 7.2                                  | 0.0        | 46.4            | 46.4            | 54.0<br>54.0         | 7.6                   | 7.6        |
| 11.                                                                | 24800.00           | BB          | 32.0         | 32.1                                                                                        | 40.8                                                | 34.2                       | 8.3                                  | 0.0        | 46.9            | 47.0            | 54.0                 | 7.1                   | 7.0        |
| <u> </u>                                                           |                    |             |              |                                                                                             |                                                     |                            |                                      |            |                 |                 |                      |                       |            |

CALCULATION: READING[dB $\mu$ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz ■ CABLE: KCC-D3 ■ PREAMP: KAF-02 (8449B) ■ EM1 RECEIVER: KTR-01 (ES140)

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

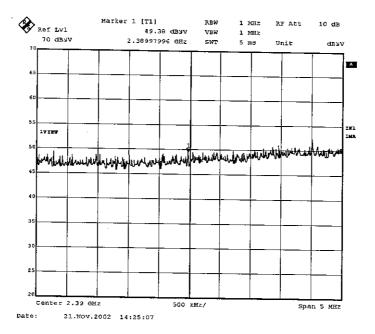
| Kind of EquipmentBluetooth TransceiverModel No.UPGZ3Serial No.11PowerDC3. 3V (PC:AC120V/60Hz)ModeTransmitting (2402MHz)RemarksTx Antenna Type: YCE-Date11/21/2002Test Distance3 mTemperature26 °CHumidity32 %RegulationFCC Part15C § 15. 209 | -5255<br>Engineer : Toyokazu Imamura                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| No. FREQ. ANT READING ANT AMP CABLE<br>TYPE HOR VER FACTOR GAIN LOSS                                                                                                                                                                         |                                                      |
| TYPEHORVERFACTORGAINLOSS $[MHz]$ $[dB \mu V]$ $[dB/m]$ $[dB]$ $[dB]$                                                                                                                                                                         |                                                      |
| 1. 2390.00 BB 49.4 50.5 30.6 36.7 2.                                                                                                                                                                                                         |                                                      |
| 2.         4804.00         BB         47.4         49.7         34.6         37.1         3.           3.         7206.00         BB         44.8         45.2         37.6         37.0         4.                                          |                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                         | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 5. 12010.00 BB 45.2 44.9 42.0 36.1 5.                                                                                                                                                                                                        |                                                      |
| 6. 14412.00 BB 44.2 44.4 41.1 35.1 6.                                                                                                                                                                                                        |                                                      |
| 7. 16814.00 BB 44.7 44.7 41.6 34.9 6.                                                                                                                                                                                                        | 5 0.0 57.9 57.9 74.0 16.1 16.1                       |
| 8. 19216.00 BB 44.7 45.5 41.3 34.8 7.                                                                                                                                                                                                        | 2 0.0 58.4 59.2 74.0 15.6 14.8                       |
| 9. 21618.00 BB 45.4 45.6 41.3 34.9 7.                                                                                                                                                                                                        |                                                      |
| 10. 24020. 00 BB 44. 4 45. 2 40. 5 34. 6 8.                                                                                                                                                                                                  | 1 0.0 58.4 59.2 74.0 15.6 14.8                       |

CALCULATION: READING  $[dB \mu V]$  + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

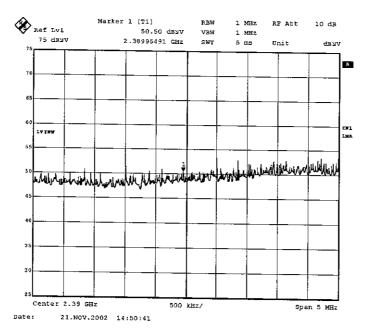
■ANTENNA:KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz ■CABLE:KCC-D3 ■ PREAMP:KAF-02 (8449B) ■ EMI RECEIVER:KTR-01 (ESI40)

Page: 42

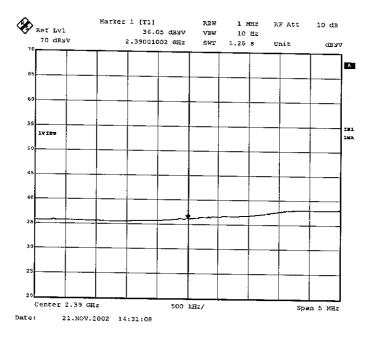
A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1


| Kin<br>Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Tem<br>Hum | le<br>Iarks |          | t              | <ul> <li>Blue</li> <li>UPG:</li> <li>11</li> <li>DC3:</li> <li>Trai</li> <li>Trai</li> <li>Tx //</li> <li>3 m</li> <li>26</li> <li>32</li> </ul> | .3V(PC:<br>nsmitti<br>Antenna<br>21/2002<br>°C<br>% | Transc<br>AC120V<br>ng (248<br>Type: | ceiver<br>//60Hz)<br>80MHz)<br>YCE-5 | 255        | nginee<br>tion) | <u> </u>       | <u>Inc</u><br>Toyoka | <i>u<u>mu</u>u</i><br>zu Ima | <u>122/</u><br>mura |
|--------------------------------------------------------------------|-------------|----------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|--------------------------------------|------------|-----------------|----------------|----------------------|------------------------------|---------------------|
| No.                                                                | FREQ. AL    |          | REAL           |                                                                                                                                                  | ANT                                                 | AMP                                  | CABLE                                | ATTEN.     | RESU            |                | LIMITS               |                              | RGIN                |
|                                                                    | [MHz]       | YPE      | HOR<br>[dB]    | νεκ<br>μ V]                                                                                                                                      | FACTOR<br>[dB/m]                                    | GAIN<br>[dB]                         | LOSS<br>[dB]                         | [dB]       | HOR<br>[dB µ V  | VER<br>//m] [d | BμV/m]               | HOR<br>[c                    | VER<br>1B]          |
| 1.                                                                 |             | BB       | 62.8           | 62.3                                                                                                                                             | 30.6                                                | 36.7                                 | 2.4                                  | 0.0        | 59.1            | 58.6           | 74.0                 | 14.9                         | 15.4                |
| 2.                                                                 |             | BB       | 62.9           | 62.5                                                                                                                                             | 30.6                                                | 36.7                                 | 2.4                                  | 0.0        | 59.2            | 58.8           | 74.0                 | 14.8                         | 15.2                |
| 3.<br>4.                                                           |             | BB<br>BB | 47.8<br>44.7   | 50.7<br>44.4                                                                                                                                     | 35.6<br>38.0                                        | 36.8                                 | 3.5                                  | 0.0        | 50.1            | 53.0           | 74.0                 | 23.9                         | 21.0                |
| 4.<br>5.                                                           |             | BB       | 44. 7<br>45. 6 | 44.4<br>45.2                                                                                                                                     | 38.0<br>39.0                                        | 36.9<br>36.8                         | 4.3<br>5.4                           | 0.0<br>0.0 | $50.1 \\ 53.2$  | 49. 8<br>52. 8 | 74.0<br>74.0         | 23. 9<br>20. 8               | 24.2<br>21.2        |
| 6.                                                                 |             | BB       | 44.4           | 44.2                                                                                                                                             | 42.6                                                | 35.6                                 | 5.7                                  | 0.0        | 53.2<br>57.1    | 52, 8<br>56, 9 | 74.0<br>74.0         | 20.8<br>16.9                 | 17.1                |
| 7.                                                                 |             | BB       | 45.2           | 45.1                                                                                                                                             | 42.6                                                | 35.5                                 | 6.5                                  | 0.0        | 58.8            | 58.7           | 74.0                 | 15.2                         | 15.3                |
| 8.                                                                 |             | BB       | 44.8           | 45.5                                                                                                                                             | 42.7                                                | 34.9                                 | 6.7                                  | 0.0        | 59.3            | 60.0           | 74.0                 | 14.7                         | 14.0                |
| 9.                                                                 |             | BB       | 44.6           | 45.2                                                                                                                                             | 40.9                                                | 35.3                                 | 7.5                                  | 0.0        | 57.7            | 58.3           | 74.0                 | 16.3                         | 15.7                |
| 10.                                                                |             | BB       | 45, 8          | 45.6                                                                                                                                             | 41.4                                                | 35.3                                 | 7.2                                  | 0.0        | 59.1            | 58.9           | 74.0                 | 14.9                         | 15.1                |
| 11.                                                                | 24800.00 I  | BB       | 44.7           | 44.7                                                                                                                                             | 40.8                                                | 34.2                                 | 8, 3                                 | 0.0        | 59.6            | 59.6           | 74.0                 | 14.4                         | 14.4                |
|                                                                    |             |          |                |                                                                                                                                                  |                                                     |                                      |                                      |            |                 |                | <b>-</b>             |                              |                     |

CALCULATION: READING [dB $\mu$ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].


.

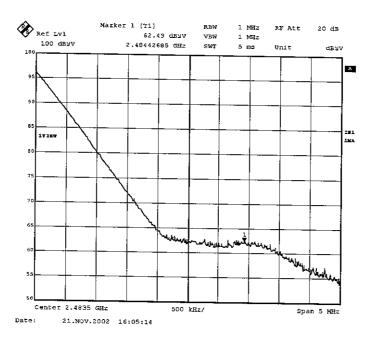
■ANTENNA: KHA-01 (SAS-200 571) 1~18GHz/KHA-03 (3160-09) 18-26. 5GHz ■CABLE: KCC-D3 ■ PREAMP: KAF-02 (8449B) ■ENI RECEIVER: KTR-01 (ESI40) Antenna Type:YCE-5255


## 2.39GHz (Ch :2402MHz) 1. Horizontal/PK

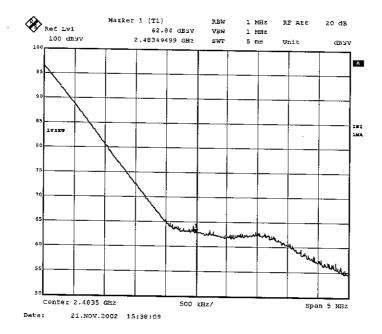


#### 2. Vertical/PK

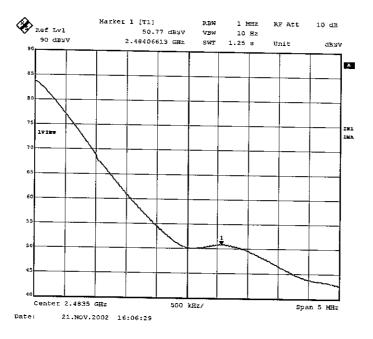



### 3. Horizontal/ AV

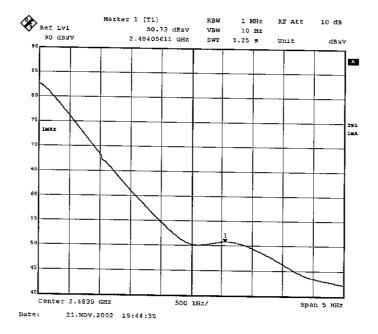



### 4. Vertical/ AV

| Ref LV1<br>75 dBNV | Mark  |            | ]<br>.92 dBNV<br>5491 GRZ |     | 10       | HZ                                           | RF Att                                  |          |
|--------------------|-------|------------|---------------------------|-----|----------|----------------------------------------------|-----------------------------------------|----------|
| 75                 |       | 2.3099     | 5491 GHZ                  | SWT | 1.25     | 5                                            | Unit                                    | dBЪ      |
|                    |       |            |                           |     |          |                                              | - · · · · · · · · · · · · · · · · · · · |          |
| 70                 |       |            |                           |     |          |                                              |                                         |          |
| · ·                |       |            | + +                       |     |          | <u>                                     </u> |                                         |          |
|                    |       |            | 1                         |     |          |                                              |                                         |          |
| 65                 |       | _          |                           |     | <u> </u> |                                              |                                         |          |
| 1                  |       |            |                           |     |          |                                              |                                         |          |
| 60                 |       |            |                           |     |          | <u> </u>                                     |                                         |          |
| 17 XEW             |       |            |                           |     |          |                                              |                                         |          |
| 55                 |       |            |                           |     |          |                                              |                                         |          |
|                    |       |            |                           |     |          |                                              |                                         | 1        |
| 50                 |       |            |                           |     |          |                                              |                                         | ĺ        |
|                    |       | 1-         |                           |     |          | †                                            |                                         | <u> </u> |
|                    |       | ł          |                           |     |          |                                              |                                         | 1        |
| 45                 |       |            |                           |     |          |                                              |                                         |          |
|                    |       |            |                           |     |          |                                              |                                         |          |
| 40                 |       | _ <u>_</u> |                           |     |          | <u> </u>                                     |                                         |          |
|                    |       |            | 1                         |     |          | Ļ                                            |                                         |          |
| 35                 |       |            |                           |     |          |                                              |                                         |          |
|                    |       |            |                           |     |          |                                              |                                         |          |
| 30                 |       |            |                           |     |          |                                              |                                         |          |
|                    |       |            |                           |     |          | ····                                         |                                         | <u> </u> |
|                    |       | Ì          |                           |     |          | 1                                            |                                         |          |
| 25<br>Center 2.39  | CTT - |            |                           |     |          |                                              |                                         | <u> </u> |
| Gencer 2.39        | GELZ  |            | 500 k                     | EZ/ |          |                                              | Sp                                      | an 5 MH  |


## 2.4835GHz (Ch :2480MHz) 1. Horizontal/PK




### 2. Vertical/PK



### 3. Horizontal/ AV



### 4. Vertical/ AV



A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

| Kind<br>Mode<br>Seri<br>Powe<br>Rema<br>Date<br>Test<br>Temp<br>Humi | e<br>Irks                                                                                                 | ce                                     |                                                             | Blu<br>UPG<br>11<br>DC3<br>Tra<br>Tra<br>11/<br>3 m<br>23<br>37 | .3V(PC:<br>nsmitti<br>Antenna<br>20/2002<br>°C     | AC120<br>ng (240<br>Type:                                   | ceiver<br>//60Hz)<br>D2NHz)<br>SSW24                                         | 00                                                                 | Enginee                                                                                    | <u></u><br>r :               | Imo<br>Toyoka                                                                              | zu Ima                                              | <i>e</i><br>mura                                           |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
| No.                                                                  | FREQ.<br>[MHz]                                                                                            | ANT<br>TYPE                            | HOR                                                         | DING<br>VER<br>µV]                                              | ANT<br>FACTOR<br>[dB/m]                            | AMP<br>GAIN<br>[dB]                                         | CABLE<br>LOSS<br>[dB]                                                        | ATTEN.<br>[dB]                                                     | RESI<br>HOR<br>[dB µ V                                                                     | ULT !<br>VER<br>V/m] [d]     | LIMITS<br>3µV/m]                                                                           | HOR                                                 | RGIN<br>VER<br>HB]                                         |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                               | $\begin{array}{c} 66.\ 75\\ 70.\ 89\\ 250.\ 01\\ 497.\ 67\\ 500.\ 43\\ 522.\ 24\\ 528.\ 03\\ \end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 33. 4<br>38. 9<br>29. 1<br>33. 8<br>30. 7<br>37. 7<br>29. 3 | 30. 8<br>39. 4<br>26. 9<br>34. 7<br>31. 8<br>33. 4<br>29. 3     | 7.2<br>6.6<br>16.8<br>19.0<br>19.0<br>19.2<br>19.2 | 28. 6<br>28. 5<br>27. 8<br>29. 1<br>29. 1<br>29. 5<br>29. 5 | $\begin{array}{c} 2.0\\ 2.1\\ 4.2\\ 6.2\\ 6.2\\ 6.4\\ 6.4\\ 6.4 \end{array}$ | $\begin{array}{c} 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\ 6.1\\$ | $\begin{array}{c} 20.\ 1\\ 25.\ 2\\ 28.\ 4\\ 36.\ 0\\ 32.\ 9\\ 39.\ 9\\ 31.\ 5\end{array}$ | 17.525.726.236.934.035.631.5 | $\begin{array}{c} 40.\ 0\\ 40.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\end{array}$ | 19.9<br>14.8<br>17.6<br>10.0<br>13.1<br>6.1<br>14.5 | 22. 5<br>14. 3<br>19. 8<br>9. 1<br>12. 0<br>10. 4<br>14. 5 |

CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) EMI RECEIVER: KTR-01 (ESI40)

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1

| Kind<br>Mode<br>Seri<br>Powe<br>Mode<br>Rema<br>Date<br>Test<br>Temp<br>Humi | rks                                                                                                       | Ce                                     | t .                                                         | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 23<br>: 37 | .3V(PC:<br>nsmitti<br>Antenna<br>20/2002<br>°C | Transo<br>AC120<br>ng (24<br>Type)                   | ceiver<br>V/60Hz)<br>BOMHz)<br>SSW24 |                                                      | e<br>Enginee                              | <u>)</u><br>r                                               | <u>Inom</u><br>Toyoka                                | 2 <u>11-6</u><br>zu Ima                              | mura                                                |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------|--------------------------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
| No.                                                                          | FREQ.                                                                                                     | ANT<br>TYPE                            | HOR                                                         | DING<br>VER<br>µV]                                                                 | ANT<br>FACTOR<br>[dB/m]                        | AMP<br>GAIN<br>[dB]                                  | CABLE<br>LOSS<br>[dB]                | ATTEN.<br>[dB]                                       | RESU<br>HOR<br>[dB µ V                    | VER                                                         | LIMITS<br>BµV/m]                                     | HOR                                                  | RGIN<br>VER<br>dB]                                  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                                       | $\begin{array}{c} 66.\ 75\\ 71.\ 00\\ 250.\ 02\\ 497.\ 80\\ 500.\ 23\\ 522.\ 26\\ 528.\ 06\\ \end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 29. 8<br>40. 1<br>29. 0<br>35. 6<br>29. 3<br>36. 8<br>29. 3 | 31. 7<br>35. 2<br>26. 4<br>37. 4<br>32. 0<br>32. 6<br>30. 0                        | 16.8<br>19.0<br>19.0                           | 28.6<br>28.5<br>27.8<br>29.1<br>29.1<br>29.5<br>29.5 | 2.1<br>4.2<br>6.2<br>6.2             | 6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1 | 26. 4<br>28. 3<br>37. 8<br>31. 5<br>39. 0 | 18. 4<br>21. 5<br>25. 7<br>39. 6<br>34. 2<br>34. 8<br>32. 2 | 40.0<br>40.0<br>46.0<br>46.0<br>46.0<br>46.0<br>46.0 | $23.5 \\ 13.6 \\ 17.7 \\ 8.2 \\ 14.5 \\ 7.0 \\ 14.5$ | 21.6<br>18.5<br>20.3<br>6.4<br>11.8<br>11.2<br>13.8 |

CALCULATION: READING[dB $\mu$ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) ENI RECEIVER: KTR-01 (ESI40)

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1

| Moc<br>Ser<br>Pow<br>Moc<br>Ren<br>Dat<br>Tes<br>Ten<br>Hun | le<br>Iarks                                                                           |                                              | ιt                                                                         | <ul> <li>Blue</li> <li>UPG:</li> <li>11</li> <li>DC3:</li> <li>Trai</li> <li>Tx /</li> <li>11/3</li> <li>3 m</li> <li>23 °</li> <li>36 °</li> </ul> | .3V(PC:<br>nsmitti<br>Antenna<br>22/2002<br>°C<br>%            | AC120<br>ng (240<br>Type                                            | ceiver<br>//60Hz)<br>D2MHz)<br>SSW24                  | 00                                                           | nginee<br>tion)                                                                 | <b>r</b> :                                                             | T <u>. Inn</u><br>Toyoka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>r/m.//</u><br>zu Ima                                          | mura                                                                  |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                             | FREQ.                                                                                 | ANT                                          | REAI                                                                       | DING                                                                                                                                                | ANT                                                            | AMP                                                                 | CABLE                                                 | ATTEN.                                                       | RESI                                                                            | ULT                                                                    | LIMITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MA                                                               | RGIN                                                                  |
| No.                                                         |                                                                                       | min                                          |                                                                            |                                                                                                                                                     | DIAMOD                                                         | A 1 T 11                                                            | 1000                                                  |                                                              |                                                                                 |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                                                                       |
| No.                                                         |                                                                                       | TYPE                                         | HOR                                                                        |                                                                                                                                                     | FACTOR<br>[dB/m]                                               | GAIN<br>[dB]                                                        | LOSS<br>[dB]                                          | [dB]                                                         | HOR                                                                             | VER                                                                    | lBμV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOR                                                              | VER<br>dB]                                                            |
| 1.                                                          | [MHz]<br>2390.00                                                                      | BB                                           | HOR<br>[dB]<br>36.5                                                        | VER<br>μ V]<br>37.0                                                                                                                                 | [dB/m]<br>                                                     | [dB]<br>                                                            | [dB]<br>2.4                                           | [dB]<br>0.0                                                  | HOR<br>[dB µ ]<br>32.8                                                          | VER<br>V/m] [d<br>33.3                                                 | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HOR<br>[4<br>21.2                                                | VER<br>dB]<br><br>20.7                                                |
| 1.<br>2.                                                    | [MHz]<br>2390.00<br>4804.00                                                           | BB<br>BB                                     | HOR<br>[dB]<br>36.5<br>46.5                                                | VER<br>μV]<br>37.0<br>44.6                                                                                                                          | [dB/m]<br>30.6<br>34.6                                         | [dB]<br>36. 7<br>37. 1                                              | [dB]<br>2.4<br>3.5                                    | [dB]<br>0.0<br>0.0                                           | HOR<br>[dB μ V<br>32.8<br>47.5                                                  | VER<br>V/m] [d<br>33.3<br>45.6                                         | 54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HOR<br>21.2<br>6.5                                               | VER<br>dB]<br>20.7<br>8.4                                             |
| 1.<br>2.<br>3.                                              | [MHz]<br>2390.00<br>4804.00<br>7206.00                                                | BB<br>BB<br>BB                               | HOR<br>[dB]<br>36.5<br>46.5<br>32.5                                        | VER<br>μV]<br>37.0<br>44.6<br>32.4                                                                                                                  | [dB/m]<br>30.6<br>34.6<br>37.6                                 | [dB]<br>36. 7<br>37. 1<br>37. 0                                     | [dB]<br>2.4<br>3.5<br>4.2                             | [dB]<br>0.0<br>0.0<br>0.0                                    | HOR<br>[dB μ ]<br>32. 8<br>47. 5<br>37. 3                                       | VER<br>V/m] [d<br>33.3<br>45.6<br>37.2                                 | 54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HOR<br>21.2<br>6.5<br>16.7                                       | VER<br>dB]<br>20.7<br>8.4<br>16.8                                     |
| 1.<br>2.<br>3.<br>4.                                        | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00                                     | BB<br>BB<br>BB<br>BB                         | HOR<br>[dB]<br>36. 5<br>46. 5<br>32. 5<br>32. 4                            | VER<br>μ V]<br>37. 0<br>44. 6<br>32. 4<br>32. 3                                                                                                     | [dB/m]<br>30.6<br>34.6<br>37.6<br>39.0                         | [dB]<br>36.7<br>37.1<br>37.0<br>37.0                                | [dB]<br>2.4<br>3.5<br>4.2<br>5.2                      | [dB]<br>0.0<br>0.0<br>0.0<br>0.0                             | HOR<br>[dB μ<br>32. 8<br>47. 5<br>37. 3<br>39. 6                                | VER<br>[d]<br>33.3<br>45.6<br>37.2<br>39.5                             | 54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HOR<br>21. 2<br>6. 5<br>16. 7<br>14. 4                           | VER<br>dB]<br>20. 7<br>8. 4<br>16. 8<br>14. 5                         |
| 1.<br>2.<br>3.<br>4.<br>5.                                  | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00                         | BB<br>BB<br>BB<br>BB<br>BB<br>BB             | HOR<br>[dB]<br>36. 5<br>46. 5<br>32. 5<br>32. 4<br>32. 5                   | VER<br>μ V]<br>37. 0<br>44. 6<br>32. 4<br>32. 3<br>32. 6                                                                                            | [dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0                 | [dB]<br>36.7<br>37.1<br>37.0<br>37.0<br>36.1                        | [dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6               | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | HOR<br>[dB $\mu$ V<br>32. 8<br>47. 5<br>37. 3<br>39. 6<br>44. 0                 | VER<br>V/m] [d<br>33.3<br>45.6<br>37.2<br>39.5<br>44.1                 | $54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOR<br>21. 2<br>6. 5<br>16. 7<br>14. 4<br>10. 0                  | VER<br>dB]<br>20.7<br>8.4<br>16.8<br>14.5<br>9.9                      |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                            | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00             | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB       | HOR<br>[dB]<br>36. 5<br>46. 5<br>32. 5<br>32. 4<br>32. 5<br>31. 7          | VER<br>μ V]<br>37. 0<br>44. 6<br>32. 4<br>32. 3<br>32. 6<br>31. 8                                                                                   | [dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1         | [dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>36. 1<br>35. 1          | [dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3        | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | HOR<br>[dB $\mu$ V<br>32. 8<br>47. 5<br>37. 3<br>39. 6<br>44. 0<br>44. 0        | VER<br>V/m] [d<br>33.3<br>45.6<br>37.2<br>39.5<br>44.1<br>44.1         | $54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. $ | HOR<br>21. 2<br>6. 5<br>16. 7<br>14. 4<br>10. 0<br>10. 0         | VER<br>dB]<br>20.7<br>8.4<br>16.8<br>14.5<br>9.9<br>9.9               |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                      | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00<br>16814.00 | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | HOR<br>[dB]<br>36. 5<br>46. 5<br>32. 5<br>32. 4<br>32. 5<br>31. 7<br>32. 2 | VER<br>μ V]<br>37. 0<br>44. 6<br>32. 4<br>32. 3<br>32. 6<br>31. 8<br>32. 3                                                                          | [dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1<br>41.6 | [dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>36. 1<br>35. 1<br>34. 9 | [dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3<br>6.5 | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | HOR $[dB \mu] V$<br>32. 8<br>47. 5<br>37. 3<br>39. 6<br>44. 0<br>44. 0<br>45. 4 | VER<br>V/m] [d<br>33.3<br>45.6<br>37.2<br>39.5<br>44.1<br>44.1<br>45.5 | $54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. $ | HOR<br>21. 2<br>6. 5<br>16. 7<br>14. 4<br>10. 0<br>10. 0<br>8. 6 | VER<br>dB]<br>20.7<br>8.4<br>16.8<br>14.5<br>9.9<br>9.9<br>9.9<br>8.5 |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                            | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00             | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB       | HOR<br>[dB]<br>36. 5<br>46. 5<br>32. 5<br>32. 4<br>32. 5<br>31. 7          | VER<br>μ V]<br>37. 0<br>44. 6<br>32. 4<br>32. 3<br>32. 6<br>31. 8                                                                                   | [dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1         | [dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>36. 1<br>35. 1          | [dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3        | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | HOR<br>[dB $\mu$ V<br>32. 8<br>47. 5<br>37. 3<br>39. 6<br>44. 0<br>44. 0        | VER<br>V/m] [d<br>33.3<br>45.6<br>37.2<br>39.5<br>44.1<br>44.1         | $54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. 0 \\ 54. $ | HOR<br>21. 2<br>6. 5<br>16. 7<br>14. 4<br>10. 0<br>10. 0         | VER<br>dB]<br>20.7<br>8.4<br>16.8<br>14.5<br>9.9<br>9.9               |

CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

MANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz CABLE: KCC-D3 PREAMP: KAF-02 (8449B) EMI RECEIVER: KTR-01 (ESI40)

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

| Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Tem<br>Hum | le<br>Iarks                                                                                                     |                                              |                                                                              | : Blue<br>UPG:<br>11<br>DC3<br>: Trai<br>Trai<br>11/2<br>3 m<br>: 23 °<br>: 36   | Z3<br>. 3V (PC:<br>nsmitti<br>Antenna<br>22/2002<br>°C<br>%    | Transo<br>AC120\<br>ng (248<br>Type:                                         | ceiver<br>//60Hz)<br>30MHz)<br>SSW24                         |                                                             | nginee<br>tion)                                                                                        | r :                                                                     | Y.<br>Toyoka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Incin</u><br>zu Ima                                 | <u>una</u><br>mura                                                                                                    |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| No.                                                         | FREQ.                                                                                                           | ANT<br>TYPE                                  | REAL<br>HOR                                                                  |                                                                                  | ANT<br>FACTOR                                                  | AMP<br>GAIN                                                                  | CABLE<br>LOSS                                                | ATTEN.                                                      | RESI<br>HOR                                                                                            | ULT<br>VER                                                              | LIMITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAI<br>HOR                                             | RGIN<br>VER                                                                                                           |
|                                                             |                                                                                                                 | 1111                                         |                                                                              | V 1 5 IX                                                                         | PAUMUN                                                         | 17411                                                                        | LU33                                                         |                                                             |                                                                                                        | VPR                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                       |
|                                                             | [MHz]                                                                                                           |                                              |                                                                              | μV]                                                                              | [dB/m]                                                         | [dB]                                                                         | [dB]                                                         | [dB]                                                        |                                                                                                        |                                                                         | lBμV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | dB]                                                                                                                   |
| 1.                                                          | 2483.50                                                                                                         | BB                                           | [dB]<br>51.2                                                                 | μV]<br><br>50.9                                                                  | [dB/m]<br>30.6                                                 | [dB]<br>                                                                     | [dB]<br>                                                     | [dB]<br>0.0                                                 |                                                                                                        | V/m] [d<br>                                                             | lBμV/m]<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        | dB]<br><br>6.8                                                                                                        |
| 2.                                                          | 2483. 50<br>2484. 10                                                                                            | BB<br>BB                                     | [dB]<br>51.2<br>51.7                                                         | μV]<br>50.9<br>51.6                                                              | [dB/m]<br>30.6<br>30.6                                         | [dB]<br>36. 7<br>36. 7                                                       | [dB]<br>2.4<br>2.4                                           | 0. 0<br>0. 0                                                | [dB μ ]<br>47. 5<br>48. 0                                                                              | V/m] [d<br>47.2<br>47.9                                                 | 54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.5<br>6.0                                             | dB]<br><br>6. 8<br>6. 1                                                                                               |
| 2.<br>3.                                                    | 2483.50<br>2484.10<br>4960.00                                                                                   | BB<br>BB<br>BB                               | [dB,<br>51.2<br>51.7<br>45.0                                                 | μV]<br>50.9<br>51.6<br>43.3                                                      | [dB/m]<br>30.6<br>30.6<br>35.6                                 | [dB]<br>36.7<br>36.7<br>36.8                                                 | [dB]<br>2.4<br>2.4<br>3.5                                    | 0.0<br>0.0<br>0.0                                           | [dB μ ]<br>47.5<br>48.0<br>47.3                                                                        | V/m] [d<br>47.2<br>47.9<br>45.6                                         | 54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.5<br>6.0<br>6.7                                      | dB]<br>6. 8<br>6. 1<br>8. 4                                                                                           |
| 2.<br>3.<br>4.                                              | 2483.50<br>2484.10<br>4960.00<br>7440.00                                                                        | BB<br>BB<br>BB<br>BB                         | [dB,<br>51.2<br>51.7<br>45.0<br>32.1                                         | μ V]<br>50.9<br>51.6<br>43.3<br>32.2                                             | [dB/m]<br>30.6<br>30.6<br>35.6<br>38.0                         | [dB]<br>36.7<br>36.7<br>36.8<br>36.9                                         | [dB]<br>2.4<br>2.4<br>3.5<br>4.3                             | 0.0<br>0.0<br>0.0<br>0.0                                    | [dB µ ]<br>47.5<br>48.0<br>47.3<br>37.5                                                                | V/m] [d<br>47.2<br>47.9<br>45.6<br>37.6                                 | 54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.5<br>6.0<br>6.7<br>16.5                              | dB]<br>6.8<br>6.1<br>8.4<br>16.4                                                                                      |
| 2.<br>3.<br>4.<br>5.                                        | 2483.50<br>2484.10<br>4960.00<br>7440.00<br>9920.00                                                             | BB<br>BB<br>BB<br>BB<br>BB                   | [dB,<br>51. 2<br>51. 7<br>45. 0<br>32. 1<br>32. 6                            | μ V]<br>50. 9<br>51. 6<br>43. 3<br>32. 2<br>32. 9                                | [dB/m]<br>30.6<br>30.6<br>35.6<br>38.0<br>39.0                 | [dB]<br>36.7<br>36.7<br>36.8<br>36.9<br>36.8                                 | [dB]<br>2.4<br>2.4<br>3.5<br>4.3<br>5.4                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | $\begin{bmatrix} dB \mu \\ 47.5 \\ 48.0 \\ 47.3 \\ 37.5 \\ 40.2 \end{bmatrix}$                         | V/m] [d<br>47.2<br>47.9<br>45.6<br>37.6<br>40.5                         | 54.0<br>54.0<br>54.0<br>54.0<br>54.0<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5<br>6.0<br>6.7<br>16.5<br>13.8                      | dB]<br>6.8<br>6.1<br>8.4<br>16.4<br>13.5                                                                              |
| 2.<br>3.<br>4.<br>5.<br>6.                                  | 2483.50<br>2484.10<br>4960.00<br>7440.00<br>9920.00<br>12400.00                                                 | BB<br>BB<br>BB<br>BB<br>BB<br>BB             | [dB]<br>51. 2<br>51. 7<br>45. 0<br>32. 1<br>32. 6<br>31. 5                   | μV]<br>50.9<br>51.6<br>43.3<br>32.2<br>32.9<br>31.6                              | [dB/m]<br>30.6<br>30.6<br>35.6<br>38.0<br>39.0<br>42.6         | [dB]<br>36. 7<br>36. 7<br>36. 8<br>36. 9<br>36. 8<br>35. 6                   | [dB]<br>2.4<br>2.4<br>3.5<br>4.3<br>5.4<br>5.7               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | [dB µ ]<br>47.5<br>48.0<br>47.3<br>37.5<br>40.2<br>44.2                                                | V/m] [d<br>47.2<br>47.9<br>45.6<br>37.6<br>40.5<br>44.3                 | 54.0<br>54.0<br>54.0<br>54.0<br>54.0<br>54.0<br>54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.5<br>6.0<br>6.7<br>16.5<br>13.8<br>9.8               | dB]<br>6. 8<br>6. 1<br>8. 4<br>16. 4<br>13. 5<br>9. 7                                                                 |
| 2.<br>3.<br>4.<br>5.<br>6.<br>7.                            | 2483.50<br>2484.10<br>4960.00<br>7440.00<br>9920.00<br>12400.00<br>14880.00                                     | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | [dB]<br>51. 2<br>51. 7<br>45. 0<br>32. 1<br>32. 6<br>31. 5<br>32. 6          | $\mu$ V]<br>50. 9<br>51. 6<br>43. 3<br>32. 2<br>32. 9<br>31. 6<br>32. 7          | [dB/m]<br>30.6<br>35.6<br>38.0<br>39.0<br>42.6<br>42.6         | [dB]<br>36. 7<br>36. 7<br>36. 8<br>36. 9<br>36. 8<br>35. 6<br>35. 5          | [dB]<br>2.4<br>2.4<br>3.5<br>4.3<br>5.4<br>5.7<br>6.5        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | $\begin{bmatrix} dB \mu \\ 47.5 \\ 48.0 \\ 47.3 \\ 37.5 \\ 40.2 \\ 44.2 \\ 46.2 \end{bmatrix}$         | V/m] [d<br>47.2<br>47.9<br>45.6<br>37.6<br>40.5<br>44.3<br>46.3         | $54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ $ | 6.5<br>6.0<br>6.7<br>16.5<br>13.8<br>9.8<br>7.8        | dB]<br>6. 8<br>6. 1<br>8. 4<br>16. 4<br>13. 5<br>9. 7<br>7. 7                                                         |
| 2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.                      | $\begin{array}{c} 2483.50\\ 2484.10\\ 4960.00\\ 7440.00\\ 9920.00\\ 12400.00\\ 14880.00\\ 17360.00 \end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | [dB]<br>51. 2<br>51. 7<br>45. 0<br>32. 1<br>32. 6<br>31. 5<br>32. 6<br>32. 6 | $\mu$ V]<br>50. 9<br>51. 6<br>43. 3<br>32. 2<br>32. 9<br>31. 6<br>32. 7<br>32. 9 | [dB/m]<br>30.6<br>35.6<br>38.0<br>39.0<br>42.6<br>42.6<br>42.7 | [dB]<br>36. 7<br>36. 7<br>36. 8<br>36. 9<br>36. 8<br>35. 6<br>35. 5<br>34. 9 | [dB]<br>2.4<br>2.4<br>3.5<br>4.3<br>5.4<br>5.7<br>6.5<br>6.7 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | $\begin{bmatrix} dB \mu \\ 47.5 \\ 48.0 \\ 47.3 \\ 37.5 \\ 40.2 \\ 44.2 \\ 46.2 \\ 47.1 \end{bmatrix}$ | V/m] [d<br>47.2<br>47.9<br>45.6<br>37.6<br>40.5<br>44.3<br>46.3<br>47.4 | 54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.5<br>6.0<br>6.7<br>16.5<br>13.8<br>9.8<br>7.8<br>6.9 | dB]           6.8           6.1           8.4           16.4           13.5           9.7           7.7           6.6 |
| 2.<br>3.<br>4.<br>5.<br>6.<br>7.                            | 2483.50<br>2484.10<br>4960.00<br>7440.00<br>9920.00<br>12400.00<br>14880.00                                     | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | [dB]<br>51. 2<br>51. 7<br>45. 0<br>32. 1<br>32. 6<br>31. 5<br>32. 6          | $\mu$ V]<br>50. 9<br>51. 6<br>43. 3<br>32. 2<br>32. 9<br>31. 6<br>32. 7          | [dB/m]<br>30.6<br>35.6<br>38.0<br>39.0<br>42.6<br>42.6         | [dB]<br>36. 7<br>36. 7<br>36. 8<br>36. 9<br>36. 8<br>35. 6<br>35. 5          | [dB]<br>2.4<br>2.4<br>3.5<br>4.3<br>5.4<br>5.7<br>6.5        | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | $\begin{bmatrix} dB \mu \\ 47.5 \\ 48.0 \\ 47.3 \\ 37.5 \\ 40.2 \\ 44.2 \\ 46.2 \end{bmatrix}$         | V/m] [d<br>47.2<br>47.9<br>45.6<br>37.6<br>40.5<br>44.3<br>46.3         | $54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ $ | 6.5<br>6.0<br>6.7<br>16.5<br>13.8<br>9.8<br>7.8        | dB]<br>6. 8<br>6. 1<br>8. 4<br>16. 4<br>13. 5<br>9. 7<br>7. 7                                                         |

CALCULATION: READING[dB $\mu$ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz ■ CABLE: KCC-D3 ■ PREAMP: KAF-02 (8449B) ■ ENI RECEIVER: KTR-01 (ESI40)

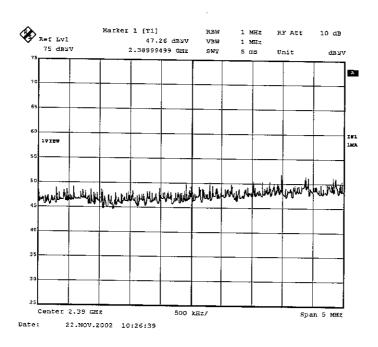
A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1

| Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Tem<br>Hum | le<br>Iarks                                                                           | ce                                                   | t                                                                          | Blu<br>UPG<br>11<br>DC3<br>Tra<br>Tx<br>11/<br>3 m<br>23<br>36             | .3V(PC:<br>nsmitti<br>Antenna<br>22/2002<br>°C<br>%                      | Transc<br>AC120V<br>ng (240<br>Type:                                        | eiver<br>//60Hz)<br>)2MHz)<br>SSW24                           | 00                                                           | nginee<br>tion)                                                               | ;<br>r :                                                               | . Jm.<br>Toyoka                                                        | <u>Ømu</u><br>zu Ima                                               | Wr<br>mura                                                         |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                             |                                                                                       |                                                      |                                                                            |                                                                            |                                                                          |                                                                             |                                                               |                                                              |                                                                               |                                                                        |                                                                        |                                                                    | ÷                                                                  |
| No.                                                         | FREQ.                                                                                 | ANT                                                  |                                                                            | DING                                                                       | ANT                                                                      | AMP                                                                         | CABLE                                                         | ATTEN.                                                       | RESU                                                                          |                                                                        | LIMITS                                                                 |                                                                    | RGIN                                                               |
| No.                                                         | FREQ.<br>[MHz]                                                                        | ANT<br>TYPE                                          | HOR                                                                        |                                                                            | ANT<br>FACTOR<br>[dB/m]                                                  | AMP<br>GAIN<br>[dB]                                                         | CABLE<br>LOSS<br>[dB]                                         | ATTEN.<br>[dB]                                               | HOR                                                                           | VER                                                                    | LIMITS<br> BµV/m]                                                      | HOR                                                                | RGIN<br>VER<br>1B]                                                 |
| 1.                                                          | [MHz]<br>2390.00                                                                      | TYPE<br>BB                                           | HOR<br>[dB]<br>47.3                                                        | VER<br>μ V]<br>48.8                                                        | FACTOR<br>[dB/m]<br>30.6                                                 | GAIN<br>[dB]<br>36.7                                                        | LOSS<br>[dB]<br>2.4                                           | [dB]<br>0.0                                                  | HOR<br>[dB µ ]<br>43. 6                                                       | VER<br>V/m] [d<br>                                                     | lBμV/m]<br>74.0                                                        | HOR<br>[0<br>30. 4                                                 | VER<br>1B]<br>28.9                                                 |
| 1.<br>2.                                                    | [MHz]<br>2390.00<br>4804.00                                                           | TYPE<br>BB<br>BB                                     | HOR<br>[dB]<br>47.3<br>53.5                                                | VER<br>μV]<br>48.8<br>52.8                                                 | FACTOR<br>[dB/m]<br>30.6<br>34.6                                         | GAIN<br>[dB]<br>36. 7<br>37, 1                                              | LOSS<br>[dB]<br>2.4<br>3.5                                    | [dB]<br>0.0<br>0.0                                           | HOR<br>$[dB \mu]$<br>43. 6<br>54. 5                                           | VER<br>V/m] [d<br>45.1<br>53.8                                         | BμV/m]<br>74.0<br>74.0                                                 | HOR<br>[4<br>30. 4<br>19. 5                                        | VER<br>1B]<br>28.9<br>20.2                                         |
| 1.<br>2.<br>3.                                              | [MHz]<br>2390.00<br>4804.00<br>7206.00                                                | TYPE<br>BB<br>BB<br>BB                               | HOR<br>[dB]<br>47.3<br>53.5<br>44.8                                        | VER<br>μ V]<br>48.8<br>52.8<br>45.3                                        | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6                                 | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0                                     | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2                             | [dB]<br>0.0<br>0.0<br>0.0                                    | HOR<br>$[dB \mu]$<br>43. 6<br>54. 5<br>49. 6                                  | VER<br>V/m] [d<br>45.1<br>53.8<br>50.1                                 | lBμV/m]<br>74.0<br>74.0<br>74.0<br>74.0                                | HOR<br>[4<br>30. 4<br>19. 5<br>24. 4                               | VER<br>1B]<br>28.9<br>20.2<br>23.9                                 |
| 1.<br>2.<br>3.<br>4.                                        | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00                                     | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB                   | HOR<br>[dB]<br>47. 3<br>53. 5<br>44. 8<br>45. 4                            | VER<br>μ V]<br>48. 8<br>52. 8<br>45. 3<br>44. 7                            | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0                         | GAIN<br>[dB]<br>36.7<br>37.1<br>37.0<br>37.0                                | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2                      | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | HOR<br>$[dB \mu]$<br>43. 6<br>54. 5<br>49. 6<br>52. 6                         | VER<br>V/m] [d<br>45.1<br>53.8<br>50.1<br>51.9                         | lBμV/m]<br>74.0<br>74.0<br>74.0<br>74.0<br>74.0                        | HOR<br>30. 4<br>19. 5<br>24. 4<br>21. 4                            | VER<br>1B]<br>28.9<br>20.2<br>23.9<br>22.1                         |
| 1.<br>2.<br>3.<br>4.<br>5.                                  | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00                         | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB             | HOR<br>[dB]<br>47. 3<br>53. 5<br>44. 8<br>45. 4<br>45. 0                   | VER<br>μ V]<br>48. 8<br>52. 8<br>45. 3<br>44. 7<br>45. 4                   | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0                 | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>36. 1                   | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6               | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | HOR<br>$[dB \mu]$<br>43. 6<br>54. 5<br>49. 6<br>52. 6<br>56. 5                | VER<br>V/m] [d<br>45.1<br>53.8<br>50.1<br>51.9<br>56.9                 | BμV/m]<br>74.0<br>74.0<br>74.0<br>74.0<br>74.0<br>74.0                 | HOR<br>[0<br>30. 4<br>19. 5<br>24. 4<br>21. 4<br>17. 5             | VER<br>iB]<br>28.9<br>20.2<br>23.9<br>22.1<br>17.1                 |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.                            | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00             | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB       | HOR<br>[dB]<br>47. 3<br>53. 5<br>44. 8<br>45. 4<br>45. 0<br>44. 7          | VER<br>μ V]<br>48. 8<br>52. 8<br>45. 3<br>44. 7<br>45. 4<br>44. 3          | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1         | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>37. 0<br>36. 1<br>35. 1 | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3        | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | HOR $[dB \mu]$<br>43. 6<br>54. 5<br>49. 6<br>52. 6<br>56. 5<br>57. 0          | VER<br>V/m] [d<br>45. 1<br>53. 8<br>50. 1<br>51. 9<br>56. 9<br>56. 6   | $\frac{[B \ \mu \ V/m]}{74.0}$ 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 | HOR<br>30. 4<br>19. 5<br>24. 4<br>21. 4<br>17. 5<br>17. 0          | VER<br>iB]<br>28.9<br>20.2<br>23.9<br>22.1<br>17.1<br>17.4         |
| 1.<br>2.<br>3.<br>4.<br>5.                                  | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00<br>16814.00 | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB             | HOR<br>[dB]<br>47. 3<br>53. 5<br>44. 8<br>45. 4<br>45. 0<br>44. 7<br>45. 2 | VER<br>μ V]<br>48. 8<br>52. 8<br>45. 3<br>44. 7<br>45. 4<br>44. 3<br>45. 5 | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1<br>41.6 | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>36. 1<br>35. 1<br>34. 9 | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3<br>6.5 | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | HOR $[dB \mu]$<br>43. 6<br>54. 5<br>49. 6<br>52. 6<br>56. 5<br>57. 0<br>58. 4 | VER<br>V/m] [d<br>45.1<br>53.8<br>50.1<br>51.9<br>56.9<br>56.6<br>58.7 | $\frac{18 \ \mu \ V/m]}{74.0}$ 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 | HOR<br>30. 4<br>19. 5<br>24. 4<br>21. 4<br>17. 5<br>17. 0<br>15. 6 | VER<br>[B]<br>28.9<br>20.2<br>23.9<br>22.1<br>17.1<br>17.4<br>15.3 |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                      | [MHz]<br>2390.00<br>4804.00<br>7206.00<br>9608.00<br>12010.00<br>14412.00             | TYPE<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | HOR<br>[dB]<br>47. 3<br>53. 5<br>44. 8<br>45. 4<br>45. 0<br>44. 7          | VER<br>μ V]<br>48. 8<br>52. 8<br>45. 3<br>44. 7<br>45. 4<br>44. 3          | FACTOR<br>[dB/m]<br>30.6<br>34.6<br>37.6<br>39.0<br>42.0<br>41.1         | GAIN<br>[dB]<br>36. 7<br>37. 1<br>37. 0<br>37. 0<br>37. 0<br>36. 1<br>35. 1 | LOSS<br>[dB]<br>2.4<br>3.5<br>4.2<br>5.2<br>5.6<br>6.3        | [dB]<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0        | HOR $[dB \mu]$<br>43. 6<br>54. 5<br>49. 6<br>52. 6<br>56. 5<br>57. 0          | VER<br>V/m] [d<br>45. 1<br>53. 8<br>50. 1<br>51. 9<br>56. 9<br>56. 6   | $\frac{[B \ \mu \ V/m]}{74.0}$ 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 | HOR<br>30. 4<br>19. 5<br>24. 4<br>21. 4<br>17. 5<br>17. 0          | VER<br>iB]<br>28.9<br>20.2<br>23.9<br>22.1<br>17.1<br>17.4         |

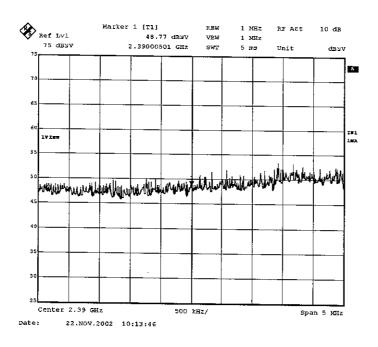
CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz ■ CABLE: KCC-D3 ■ PREAMP: KAF-02 (8449B) ■ EMI RECEIVER: KTR-01 (ESI40)

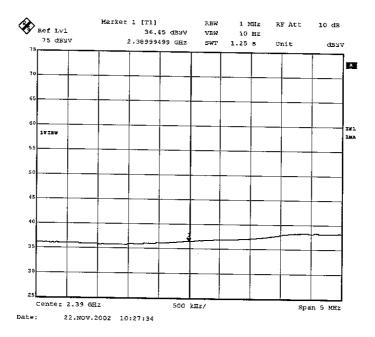
A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1


| Kin<br>Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Tem<br>Hum | le<br>Iarks                      |                | t                    | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 23<br>: 36 | .3V(PC:<br>nsmitti<br>Antenna<br>22/2002<br>°C<br>% | Transc<br>AC120\<br>ng (248<br>Type: | ceiver<br>//60Hz)<br>80MHz)<br>SSW24 | 00                | nginee<br>tion) | r<br>r          | Toyoka               | <i>Olfru (</i><br>zu ima | mura                 |
|--------------------------------------------------------------------|----------------------------------|----------------|----------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|--------------------------------------|-------------------|-----------------|-----------------|----------------------|--------------------------|----------------------|
| No.                                                                | FREQ.                            | ANT            | REAL                 |                                                                                             | ANT                                                 | AMP                                  | CABLE                                | ATTEN.            | RESI            |                 | LIMITS               |                          | RGIN                 |
|                                                                    | [MHz]                            | TYPE           | HOR<br>[dB]          |                                                                                             | FACTOR<br>[dB/m]                                    | GAIN<br>[dB]                         | LOSS<br>[dB]                         | [dB]              | HOR $[dB \mu]$  | VER<br>V/m] [d] | 3μV/m]               | HOR<br>[o                | VER<br>1B]           |
| 1.                                                                 | 2483.50                          | BB             | 63.1                 | 63.9                                                                                        | 30.6                                                | 36.7                                 | 2.4                                  | 0.0               | 59.4            | 60.2            | 74.0                 | 14.6                     | 13.8                 |
| 2.                                                                 | 2484.10                          | BB             | 62.7                 | 61.9                                                                                        | 30.6                                                | 36.7                                 | 2.4                                  | 0.0               | 59.0            | 58.2            | 74.0                 | 15.0                     | 15.8                 |
| 3.                                                                 | 4960.00                          | BB             | 52. 1                | 50.7                                                                                        | 35.6                                                | 36.8                                 | 3.5                                  | 0.0               | 54.4            | 53.0            | 74.0                 | 19.6                     | 21.0                 |
| 4.<br>5.                                                           | 7440.00<br>9920.00               | BB<br>BB       | 44.6<br>45.2         | 44.8                                                                                        | 38.0                                                | 36.9                                 | 4.3                                  | 0.0               | 50.0            | 50.2            | 74.0                 | 24.0                     | 23.8                 |
| э.<br>6.                                                           | 9920.00<br>12400.00              | BB             | 45. 2<br>44. 6       | 45.6<br>44.2                                                                                | 39.0<br>42.6                                        | 36, 8<br>35, 6                       | 5.4<br>5.7                           | 0.0<br>0.0        | 52.8            | 53.2            | 74.0                 | 21.2                     | 20.8                 |
| 7.                                                                 | 14880.00                         | BB             | 44.0                 | 44.2                                                                                        | 42.6                                                | 35. 0<br>35. 5                       | 5.7<br>6.5                           | 0.0               | 57.3<br>58.8    | 56.9<br>59.8    | 74.0                 | 16.7                     | 17.1                 |
|                                                                    | 10000.00                         |                | TU, 4                |                                                                                             |                                                     |                                      |                                      |                   |                 |                 | 74.0                 | 15.2                     | 14.2                 |
|                                                                    | 17360.00                         | RR             | 45 6                 | 45 5                                                                                        | 427                                                 | 34 U                                 | n /                                  |                   |                 |                 |                      |                          |                      |
| 8.<br>9.                                                           | 17360.00<br>19840.00             | BB<br>BB       | 45.6<br>44.6         | 45.5<br>45.4                                                                                | 42, 7<br>40, 9                                      | 34. 9<br>35. 3                       | 6.7<br>7.5                           | 0.0               | 60.1<br>57.7    | 60.0<br>58.5    | 74.0<br>74.0         | 13.9<br>16.3             | 14.0<br>15.5         |
| 8.                                                                 | 17360.00<br>19840.00<br>22320.00 | BB<br>BB<br>BB | 45.6<br>44.6<br>46.5 | 45.5<br>45.4<br>46.3                                                                        | 42.7<br>40.9<br>41.4                                | 34. 9<br>35. 3<br>35. 3              | 6.7<br>7.5<br>7.2                    | 0.0<br>0.0<br>0.0 | 57.7<br>59.8    | 58.5<br>59.6    | 74.0<br>74.0<br>74.0 | 13.9<br>16.3<br>14.2     | 14.0<br>15.5<br>14.4 |

CALCULATION: READING [dB $\mu$ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].


ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz CABLE: KCC-D3 PREAMP: KAF-02 (8449B) ENI RECEIVER: KTR-01 (ESI40) Antenna Type:SSW2400

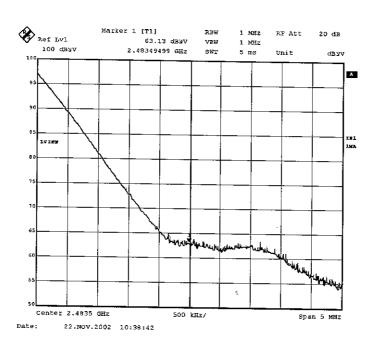
### 2.39GHz (Ch :2402MHz)


1. Horizontal/PK

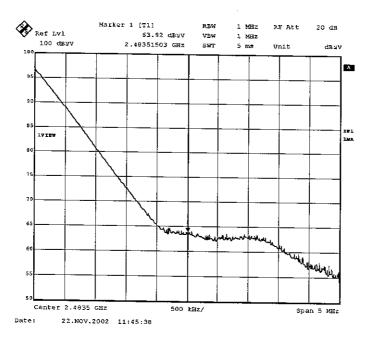


2. Vertical/PK

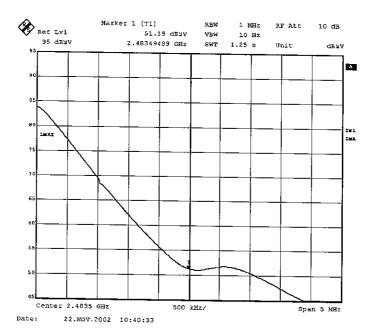



### 3. Horizontal/AV



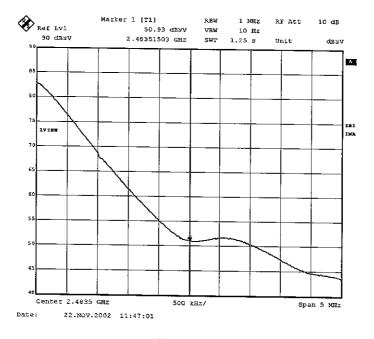

### 4. Vertical/ AV

| Ref Lvl<br>75 dBVV | Marker 1 [T1]<br>36.90 dBy |                                        | 10 Hz   | RF Att   |          |
|--------------------|----------------------------|----------------------------------------|---------|----------|----------|
| 75 0.897           | 2.39000501 GH              | SWT                                    | 1.25 \$ | Unit     | dB 2     |
|                    |                            |                                        |         |          | T .      |
|                    |                            |                                        |         |          |          |
| 70                 |                            |                                        |         | <u> </u> |          |
|                    |                            |                                        | ł       |          |          |
| 65                 |                            |                                        |         |          |          |
|                    |                            |                                        |         |          | 1        |
|                    |                            |                                        |         |          |          |
| 60                 |                            |                                        |         |          | <u> </u> |
| 19188              |                            |                                        |         |          |          |
| 55                 | <u> </u>                   |                                        |         |          |          |
|                    |                            |                                        |         |          |          |
| 50                 |                            |                                        |         |          |          |
|                    |                            |                                        |         |          |          |
|                    |                            |                                        |         |          |          |
| 45                 |                            | -                                      |         |          | <u> </u> |
|                    |                            |                                        |         |          |          |
| 40                 |                            |                                        |         | 1        | i        |
|                    |                            | -                                      |         |          | 1        |
|                    | ~ <u></u>                  | ¥                                      |         | -        |          |
| 35                 |                            | - · ·                                  |         |          |          |
|                    |                            |                                        |         |          |          |
| 30                 |                            | -                                      |         |          |          |
|                    |                            |                                        | [       |          |          |
| 25                 |                            |                                        |         |          |          |
| Center 2.39        | GEZ 500                    | kEz/                                   |         |          |          |
|                    | V.2002 10:15:11            | ······································ |         | spa      | an 5 MH  |


# 2.4835GHz (Ch :2480MHz) 1. Horizontal/PK



2. Vertical/PK




### 3. Horizontal/ AV



.

### 4. Vertical/ AV



A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1

| Kind<br>Mode<br>Seri<br>Powe<br>Mode<br>Rema<br>Date<br>Test<br>Temp<br>Humi | ı<br>ırks                                                                                              | Ce                                     | t                                                           | Blue<br>UPG<br>11<br>DC3<br>Trai<br>Tx<br>11/2<br>3 m<br>23<br>37 | .3V(PC:<br>nsmitti<br>Antenna<br>20/2002<br>℃      | AC120<br>ng (240<br>Type                             | ceiver<br>//60Hz)<br>)2MHz)<br>: LDA92                                 |                                                      | ,<br>Enginee                         | <u>~</u><br>r :                                | Toyoka                                                                                     | 200 Uma                                            | mura                                                       |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------|
| No.                                                                          | FREQ.<br>[MHz]                                                                                         | ANT<br>TYPE                            | HOR                                                         | DING<br>VER<br>µV]                                                | ANT<br>FACTOR<br>[dB/m]                            | AMP<br>GAIN<br>[dB]                                  | CABLE<br>LOSS<br>[dB]                                                  | ATTEN.<br>[dB]                                       | RESI<br>HOR<br>[dBµ]                 | VER                                            | LIMITS<br>BµV/m]                                                                           | HOR                                                | RGIN<br>VER<br>HB]                                         |
| $ \begin{array}{c} 1.\\ 2.\\ 3.\\ 4.\\ 5.\\ 6.\\ 7.\\ \end{array} $          | $\begin{array}{c} 66.\ 68\\ 71.\ 00\\ 250.\ 01\\ 497.\ 67\\ 500.\ 32\\ 522.\ 23\\ 528.\ 06\end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 34. 0<br>35. 2<br>29. 1<br>36. 3<br>30. 2<br>37. 1<br>29. 4 | 31. 0<br>36. 2<br>26. 4<br>36. 5<br>31. 9<br>33. 6<br>26. 8       | 7.2<br>6.6<br>16.8<br>19.0<br>19.0<br>19.2<br>19.2 | 28.6<br>28.5<br>27.8<br>29.1<br>29.1<br>29.5<br>29.5 | $\begin{array}{c} 2.0\\ 2.1\\ 4.2\\ 6.2\\ 6.2\\ 6.4\\ 6.4 \end{array}$ | 6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1 | 21.5<br>28.4<br>38.5<br>32.4<br>39.3 | 17.7 $22.5$ $25.7$ $38.7$ $34.1$ $35.8$ $29.0$ | $\begin{array}{c} 40.\ 0\\ 40.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\end{array}$ | 19.3<br>18.5<br>17.6<br>7.5<br>13.6<br>6.7<br>14.4 | 22. 3<br>17. 5<br>20. 3<br>7. 3<br>11. 9<br>10. 2<br>17. 0 |

CALCULATION: READING[dB $\mu$ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000MHz CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) EMI RECEIVER: KTR-01 (ESI40)

Page: 58

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

| Kind<br>Mode<br>Seri<br>Powe<br>Mode<br>Rema<br>Date<br>Test<br>Temp<br>Humi | rks                                                                                                       |                                        |                                                             | : Blue<br>: UPG<br>: 11<br>: DC3.<br>: Trai<br>: Tx /<br>: 11/2<br>: 3 m<br>: 23 °<br>: 37 ° | 3V (PC:<br>nsmitti<br>Antenna<br>20/2002<br>°C     | AC120<br>ng (248<br>Type:                                   | ceiver<br>//60Hz)<br>30MHz)<br>: LDA92 |                                                      | e<br>Enginee                                                             | <u></u> r                    | <u>Anami</u><br>Toyoka                                                                              | 2 <u>111∕</u><br>zu Ima                            | mura                                                        |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|
| No.                                                                          |                                                                                                           | ANT<br>FYPE                            | REAI<br>HOR<br>[dB,                                         | VER                                                                                          | ANT<br>FACTOR<br>[dB/m]                            | AMP<br>GAIN<br>[dB]                                         | CABLE<br>LOSS<br>[dB]                  | ATTEN.<br>[dB]                                       | RESU<br>HOR<br>[dB µ V                                                   | VER                          | LIMITS<br>BµV/m]                                                                                    | HOR                                                | RGIN<br>VER<br>IB]                                          |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.                                       | $\begin{array}{c} 66.\ 75\\ 71.\ 00\\ 250.\ 00\\ 497.\ 67\\ 500.\ 32\\ 522.\ 24\\ 528.\ 10\\ \end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 29. 4<br>38. 3<br>29. 3<br>35. 6<br>29. 3<br>35. 9<br>29. 9 | 29. 1<br>36. 5<br>27. 4<br>33. 7<br>32. 0<br>32. 4<br>29. 8                                  | 7.2<br>6.6<br>16.8<br>19.0<br>19.0<br>19.2<br>19.2 | 28. 6<br>28. 5<br>27. 8<br>29. 1<br>29. 1<br>29. 5<br>29. 5 | 2.1<br>4.2<br>6.2<br>6.2               | 6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1<br>6. 1 | $\begin{array}{c} 24.\ 6\\ 28.\ 6\\ 37.\ 8\\ 31.\ 5\\ 38.\ 1\end{array}$ | 15.822.826.735.934.234.632.0 | $\begin{array}{c} 40.\ 0\\ 40.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\\ 46.\ 0\end{array}$ | 23.9<br>15.4<br>17.4<br>8.2<br>14.5<br>7.9<br>13.9 | 24. 2<br>17. 2<br>19. 3<br>10. 1<br>11. 8<br>11. 4<br>14. 0 |

CALCULATION: READING[dB $\mu$ V] + ANT. FACTOR[dB/m] + CABLE LOSS[dB] - AMP. GAIN[dB] + ATTEN[dB].

ANTENNA: KBA-01 (BBA9106) 30-299. 99MHz/KLA-01 (USLP9143) 300-1000NHz CABLE: KCC-10/11/12/13/18 PREAMP: KAF-01 (8447D) ENI RECEIVER: KTR-01 (ESI40)

Page: 59

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

| Kin<br>Moo<br>Sen<br>Pov<br>Moo<br>Rer<br>Dat<br>Ter<br>Ter<br>Hur | de<br>narks        | ce       | ıt           | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 23<br>: 36 | .3V(PC:<br>nsmitti<br>Antenna<br>22/2002<br>℃<br>% | AC120V<br>ng (240<br>Type: | ceiver<br>(/60Hz)<br>)2MHz)<br>LDA92 | <u> </u>   | nginee<br>tion) | r<br>r         | Jin/<br>Toyoka | <u>//////</u><br>zu Ima | <i>a</i><br>mura |
|--------------------------------------------------------------------|--------------------|----------|--------------|------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------------------|------------|-----------------|----------------|----------------|-------------------------|------------------|
| No.                                                                | FREQ.              | ANT      | REAL         |                                                                                    | ANT                                                | AMP                        | CABLE                                | ATTEN.     | RESI            |                | LIMITS         |                         | RGIN             |
|                                                                    | [MHz]              | TYPE     | HOR<br>[dB]  |                                                                                    | FACTOR<br>[dB/m]                                   | GAIN<br>[dB]               | LOSS<br>[dB]                         | [dB]       | HOR [dB $\mu$ V | VER<br>V/m] [c | iBμV/m]        | HOR<br>[c               | VER<br>ib]       |
| 1.                                                                 | 2390.00            | BB       | 35.1         | 36.5                                                                               | 30.6                                               | 36.7                       | 2.4                                  | 0.0        | 31.4            | 32.8           | 54.0           | 22.6                    | 21.2             |
| 2.<br>3.                                                           | 4804.00<br>7206.00 | BB<br>BB | 40.4<br>32.4 | 42.9<br>32.1                                                                       | 34.6<br>37.6                                       | 37. 1<br>37. 0             | 3.5<br>4.2                           | 0.0<br>0.0 | 41.4<br>37.2    | 43.9<br>36.9   | 54.0           | 12.6                    | 10.1             |
| 4.                                                                 | 9608.00            | BB       | 32.4<br>32.4 | 32.1<br>32.3                                                                       | 39.0                                               | 37.0                       | 4. 2<br>5. 2                         | 0.0        | 39.6            | 30.9<br>39.5   | 54. 0<br>54. 0 | 16.8<br>14.4            | 17.1<br>14.5     |
| 5.                                                                 | 12010.00           | BB       | 32.6         | 32.5                                                                               | 42.0                                               | 36.1                       | 5.6                                  | 0.0        | <b>44.</b> 1    | 44.0           | 54.0           | 9,9                     | 10.0             |
| 6.                                                                 | 14412.00           | BB       | 31.7         | 31.7                                                                               | 41.1                                               | 35.1                       | 6.3                                  | 0.0        | 44.0            | 44.0           | 54.0           | 10.0                    | 10.0             |
| 7.                                                                 | 16814.00           | BB       | 32.2         | 32.2                                                                               | 41.6                                               | 34.9                       | 6.5                                  | 0.0        | 45.4            | 45.4           | 54.0           | 8.6                     | 8.6              |
| 8.                                                                 | 19216.00           | BB       | 32.3         | 33.1                                                                               | 41.3                                               | 34.8                       | 7.2                                  | 0.0        | 46.0            | 46.8           | 54.0           | 8.0                     | 7.2              |
| 9.                                                                 | 21618.00           | BB       | 32.7         | 33.1                                                                               | 41.3                                               | 34. 9<br>34. 6             | 7.5                                  | 0.0        | 46.6            | 47.0           | 54 <i>.</i> 0  | 7.4                     | 7.0              |
|                                                                    | 24020.00           | BB       | 32.8         | 32.8                                                                               | 40.5                                               |                            | 8.1                                  | 0.0        | 46.8            | 46.8           | 54.0           | 7.2                     | 7,2              |

CALCULATION: READING  $[dB \mu V]$  + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

MANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz CABLE: KCC-D3 PREAMP: KAF-02 (8449B) EMI RECEIVER: KTR-01 (ESI40)

Page: 60

A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1

| Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Tem<br>Hum | le<br>Iarks                                                                                                                      |                                        | t                                                                    | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 23<br>: 36 | .3V(PC:<br>nsmitti<br>Antenna<br>22/2002<br>°C<br>%         | AC120<br>ng (248<br>Type                                    | ceiver<br>//60Hz)<br>30MHz)<br>: LDA92               | <u>'</u>                                                    | nginee<br>tion)                                      | <u>,</u><br>r :                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>Cumu</u><br>zu Ima                            | mur a                                                                    |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------|
| No.                                                         |                                                                                                                                  | ANT                                    | REAI                                                                 |                                                                                             | ANT                                                         | AMP                                                         | CABLE                                                | ATTEN.                                                      | RESU                                                 |                                                             | LIMITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | RGIN                                                                     |
|                                                             | [MHz]                                                                                                                            | TYPE                                   | HOR<br>[dB]                                                          |                                                                                             | FACTOR<br>[dB/m]                                            | GAIN<br>[dB]                                                | LOSS<br>[dB]                                         | [dB]                                                        | HOR<br>[dBµ \                                        | VER<br>//m] [d                                              | BμV/m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HOR<br>[c                                        | VER<br>1B]                                                               |
|                                                             |                                                                                                                                  |                                        |                                                                      |                                                                                             |                                                             |                                                             |                                                      |                                                             |                                                      |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                                                                          |
| 1.                                                          | 2483.50                                                                                                                          | BB                                     | 48.0                                                                 | 50.3                                                                                        | 30.6                                                        | 36.7                                                        | 2.4                                                  |                                                             | 44.3                                                 | 46.6                                                        | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.7                                              | 7.4                                                                      |
| $\overline{2}$ .                                            | 2484.06                                                                                                                          | BB                                     | 48.7                                                                 | 50.9                                                                                        | 30.6                                                        | 36.7                                                        | 2.4                                                  | 0.0                                                         | 45.0                                                 | 47.2                                                        | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.0                                              | 6.8                                                                      |
| 2.<br>3.                                                    | 2484.06<br>4960.00                                                                                                               | BB<br>BB                               | 48. 7<br>34. 2                                                       | 50.9<br>40.2                                                                                | 30. 6<br>35. 6                                              | 36. 7<br>36. 8                                              | 2.4<br>3.5                                           | 0.0<br>0.0                                                  | 45. 0<br>36. 5                                       | $47.2 \\ 42.5$                                              | 54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0<br>17.5                                      | $6.8 \\ 11.5$                                                            |
| 2.<br>3.<br>4.                                              | $\begin{array}{c} 2484.\ 06\\ 4960.\ 00\\ 7440.\ 00\end{array}$                                                                  | BB<br>BB<br>BB                         | 48. 7<br>34. 2<br>32. 0                                              | 50, 9<br>40, 2<br>32, 0                                                                     | 30.6<br>35.6<br>38.0                                        | 36.7<br>36.8<br>36.9                                        | 2.4<br>3.5<br>4.3                                    | 0.0<br>0.0<br>0.0                                           | 45.0<br>36.5<br>37.4                                 | 47.2<br>42.5<br>37.4                                        | 54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.0<br>17.5<br>16.6                              | 6.8<br>11.5<br>16.6                                                      |
| 2.<br>3.<br>4.<br>5.                                        | 2484.06<br>4960.00<br>7440.00<br>9920.00                                                                                         | BB<br>BB<br>BB<br>BB                   | 48. 7<br>34. 2<br>32. 0<br>32. 8                                     | 50.9<br>40.2<br>32.0<br>32.9                                                                | 30.6<br>35.6<br>38.0<br>39.0                                | 36.7<br>36.8<br>36.9<br>36.8                                | 2.4<br>3.5<br>4.3<br>5.4                             | 0.0<br>0.0<br>0.0<br>0.0                                    | 45. 0<br>36. 5<br>37. 4<br>40. 4                     | 47.2<br>42.5<br>37.4<br>40.5                                | 54. 0<br>54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.0<br>17.5<br>16.6<br>13.6                      | 6.8<br>11.5<br>16.6<br>13.5                                              |
| 2.<br>3.<br>4.<br>5.<br>6.                                  | 2484.06<br>4960.00<br>7440.00<br>9920.00<br>12400.00                                                                             | BB<br>BB<br>BB<br>BB<br>BB             | 48.7<br>34.2<br>32.0<br>32.8<br>31.6                                 | 50.9<br>40.2<br>32.0<br>32.9<br>31.6                                                        | 30. 6<br>35. 6<br>38. 0<br>39. 0<br>42. 6                   | 36. 7<br>36. 8<br>36. 9<br>36. 8<br>35. 6                   | 2.4<br>3.5<br>4.3<br>5.4<br>5.7                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                             | 45. 0<br>36. 5<br>37. 4<br>40. 4<br>44. 3            | 47. 2<br>42. 5<br>37. 4<br>40. 5<br>44. 3                   | 54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0<br>17.5<br>16.6<br>13.6<br>9.7               | 6.8<br>11.5<br>16.6<br>13.5<br>9.7                                       |
| 2.<br>3.<br>4.<br>5.                                        | 2484.06<br>4960.00<br>7440.00<br>9920.00                                                                                         | BB<br>BB<br>BB<br>BB                   | 48.7<br>34.2<br>32.0<br>32.8<br>31.6<br>32.8                         | 50.9<br>40.2<br>32.0<br>32.9<br>31.6<br>32.8                                                | 30. 6<br>35. 6<br>38. 0<br>39. 0<br>42. 6<br>42. 6          | 36.7<br>36.8<br>36.9<br>36.8<br>35.6<br>35.5                | 2.4<br>3.5<br>4.3<br>5.4<br>5.7<br>6.5               | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                      | 45. 0<br>36. 5<br>37. 4<br>40. 4<br>44. 3<br>46. 4   | 47. 2<br>42. 5<br>37. 4<br>40. 5<br>44. 3<br>46. 4          | $54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ 54.0 \\ $ | 9.0<br>17.5<br>16.6<br>13.6<br>9.7<br>7.6        | 6.8<br>11.5<br>16.6<br>13.5<br>9.7<br>7.6                                |
| 2.<br>3.<br>4.<br>5.<br>6.<br>7.                            | $\begin{array}{c} 2484.\ 06\\ 4960.\ 00\\ 7440.\ 00\\ 9920.\ 00\\ 12400.\ 00\\ 14880.\ 00\\ 17360.\ 00\\ 19840.\ 00 \end{array}$ | BB<br>BB<br>BB<br>BB<br>BB<br>BB       | 48. 7<br>34. 2<br>32. 0<br>32. 8<br>31. 6<br>32. 8<br>32. 9<br>32. 1 | 50. 9<br>40. 2<br>32. 0<br>32. 9<br>31. 6<br>32. 8<br>32. 9<br>32. 3                        | 30. 6<br>35. 6<br>38. 0<br>39. 0<br>42. 6                   | 36. 7<br>36. 8<br>36. 9<br>36. 8<br>35. 6                   | 2.4<br>3.5<br>4.3<br>5.4<br>5.7                      | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0               | 45. 0<br>36. 5<br>37. 4<br>40. 4<br>44. 3            | 47. 2<br>42. 5<br>37. 4<br>40. 5<br>44. 3                   | 54. 0<br>54. 0<br>54. 0<br>54. 0<br>54. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.0<br>17.5<br>16.6<br>13.6<br>9.7<br>7.6<br>6.6 | $\begin{array}{c} 6.8\\ 11.5\\ 16.6\\ 13.5\\ 9.7\\ 7.6\\ 6.6\end{array}$ |
| 2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.                      | $\begin{array}{c} 2484.\ 06\\ 4960.\ 00\\ 7440.\ 00\\ 9920.\ 00\\ 12400.\ 00\\ 14880.\ 00\\ 17360.\ 00\\ \end{array}$            | BB<br>BB<br>BB<br>BB<br>BB<br>BB<br>BB | 48. 7<br>34. 2<br>32. 0<br>32. 8<br>31. 6<br>32. 8<br>32. 9          | 50. 9<br>40. 2<br>32. 0<br>32. 9<br>31. 6<br>32. 8<br>32. 9                                 | 30. 6<br>35. 6<br>38. 0<br>39. 0<br>42. 6<br>42. 6<br>42. 7 | 36. 7<br>36. 8<br>36. 9<br>36. 8<br>35. 6<br>35. 5<br>34. 9 | 2.4<br>3.5<br>4.3<br>5.4<br>5.7<br>6.5<br>6.7<br>7.5 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 45.0<br>36.5<br>37.4<br>40.4<br>44.3<br>46.4<br>47.4 | 47. 2<br>42. 5<br>37. 4<br>40. 5<br>44. 3<br>46. 4<br>47. 4 | 54. 054. 054. 054. 054. 054. 054. 054. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.0<br>17.5<br>16.6<br>13.6<br>9.7<br>7.6        | 6.8<br>11.5<br>16.6<br>13.5<br>9.7<br>7.6                                |

CALCULATION: READING [dB  $\mu$  V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

■ANTENNA:KHA-01 (SAS-200 571) 1~18GHz/KHA-03 (3160-09) 18-26. 5GHz ■CABLE:KCC-D3 ■ PREAMP:KAF-02 (8449B) ■ EMI RECEIVER:KTR-01 (ESI40)

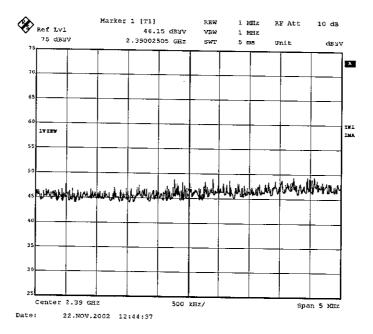
A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No. : 23DE0002-YK-1

| Kin<br>Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Ten<br>Hum | le<br>1arks              | ent      | : UPGZ<br>: 11<br>: DC3<br>: Tran<br>: Tx A<br>: 11/2<br>: 3 m<br>: 23 °C<br>: 36 9 | tooth<br>3<br>3V(PC:<br>smitti<br>ntenna<br>2/2002<br>C | AC120V<br>ng (240<br>Type: | eiver<br>7/60Hz)<br>2MHz)<br>LDA92 |            | nginee<br>tion) | <u>,</u><br>r : | Toyoka       | <u>amu</u><br>zu Ima | ua∕<br>mura    |
|--------------------------------------------------------------------|--------------------------|----------|-------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|------------------------------------|------------|-----------------|-----------------|--------------|----------------------|----------------|
| No.                                                                | FREQ. ANT<br>TYP         |          | DING<br>VER H                                                                       | ANT<br>FACTOR                                           | AMP<br>GAIN                | CABLE<br>LOSS                      | ATTEN.     | RESI<br>HOR     | JLT I<br>VER    | LIMITS       | MAI<br>HOR           | GIN<br>VER     |
|                                                                    | [MHz]                    |          |                                                                                     | [dB/m]                                                  | [dB]                       | [dB]                               | [dB]       |                 |                 | BμV/m]       |                      | IB]            |
| 1.                                                                 | 2390.00 BB               |          | 47.7                                                                                | 30.6                                                    | 36.7                       | 2.4                                |            | 42.5            | 44.0            | 74.0         | 31.5                 | 30.0           |
| 2.<br>3.                                                           | 4804.00 BB<br>7206.00 BB | ·· - · _ | 50.2<br>45.1                                                                        | 34.6<br>37.6                                            | 37.1<br>37.0               | 3, 5<br>4, 2                       | 0.0<br>0.0 | 50.2<br>50.2    | $51.2 \\ 49.9$  | 74.0<br>74.0 | $23.8 \\ 23.8$       | 22. 8<br>24. 1 |
| 4.                                                                 | 9608.00 BB               |          | 44.7                                                                                | 39.0                                                    | 37.0                       | 5.2                                | 0.0        | 53.3            | 51.9            | 74.0         | 20.7                 | 24.1<br>22.1   |
| 5.                                                                 | 12010.00 BB              |          | 45.2                                                                                | 42.0                                                    | 36.1                       | 5.6                                | 0.0        | 56.9            | 56.7            | 74.0         | 17.1                 | 17.3           |
| 6.                                                                 | 14412.00 BB              |          | 44.7                                                                                | 41.1                                                    | 35.1                       | 6.3                                | 0.0        | 57.0            | 57.0            | 74.0         | 17.0                 | 17.0           |
| 7.                                                                 | 16814.00 BB              |          | 44.7                                                                                | 41.6                                                    | 34.9                       | 6.5                                | 0.0        | 58.5            | 57.9            | 74.0         | 15.5                 | 16.1           |
| 8.                                                                 | 19216.00 BB              |          | 45.2                                                                                | 41.3                                                    | 34.8                       | 7.2                                | 0.0        | 58.9            | 58.9            | 74.0         | 15.1                 | 15.1           |
| 9.                                                                 | 21618.00 BB              |          | 46.1                                                                                | 41.3                                                    | 34.9                       | 7.5                                |            | 60.3            | 60.0            | 74.0         | 13.7                 | 14.0           |
| 10.                                                                | 24020,00 BB              | 45.7     | 45.5                                                                                | 40.5                                                    | 34.6                       | 8.1                                | 0.0        | 59.7            | 59.5            | 74.0         | 14.3                 | 1 <b>4.</b> 5  |
|                                                                    |                          |          |                                                                                     |                                                         |                            |                                    |            |                 |                 |              |                      |                |

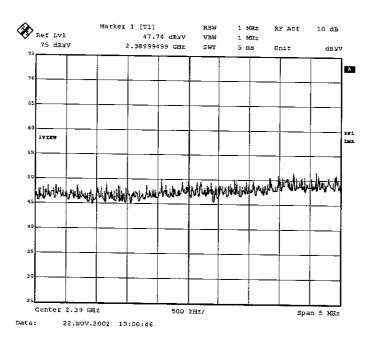
CALCULATION: READING  $[dB \mu V]$  + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].

MANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz CABLE: KCC-D3 PREAMP: KAF-02 (8449B) EMI RECEIVER: KTR-01 (ES 140)

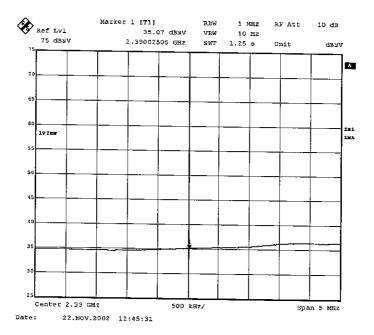
A-PEX INTERNATIONAL CO., LTD. Yamakita No.1 Open Test Site Report No.: 23DE0002-YK-1


| Kin<br>Mod<br>Ser<br>Pow<br>Mod<br>Rem<br>Dat<br>Tes<br>Tem<br>Hum | le<br>Iarks        | -        | t              | : Blu<br>: UPG<br>: 11<br>: DC3<br>: Tra<br>: Tx<br>: 11/<br>: 3 m<br>: 23<br>: 36 | .3V(PC:<br>nsmitti<br>Antenna<br>22/2002<br>°C<br>% | AC120<br>ng (24<br>Type | ceiver<br>//60Hz)<br>30MHz)<br>LDA92 |            | Enginee<br>stion) | <u></u>        | Toyoka         | <u>2111111</u><br>zu ima | nura         |
|--------------------------------------------------------------------|--------------------|----------|----------------|------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------|--------------------------------------|------------|-------------------|----------------|----------------|--------------------------|--------------|
| No.                                                                | FREQ.              | ANT      | REAI           | DING                                                                               | ANT                                                 | AMP                     | CABLE                                | ATTEN.     | RESU              | JLT            | LIMITS         | MA                       | RGIN         |
|                                                                    | [MHz]              | TYPE     | HOR<br>[dB]    | VER<br>µV]                                                                         | FACTOR<br>[dB/m]                                    | GAIN<br>[dB]            | LOSS<br>[dB]                         | [dB]       | HOR<br>[dBµ \     | VER            | BμV/m]         | HOR                      | VER<br>{B]   |
| 1.                                                                 | 2483.50            | BB       | 59.6           | 60.0                                                                               | 30.6                                                | 36.7                    | 2.4                                  | 0.0        | 55.9              | 56.3           | 74.0           | 18.1                     | 17.7         |
| 2.                                                                 | 2484.06            | BB       | 58.8           | 61.4                                                                               |                                                     | 36.7                    | 2.4                                  | 0.0        | 55.1              | 57.7           | 74.0           | 18.9                     | 16.3         |
| 3.                                                                 | 4960.00            | BB       | 49.0           | 48.2                                                                               | 35.6                                                | 36.8                    | 3.5                                  | 0.0        | 51.3              | 50.5           | 74.0           | 22.7                     | 23.5         |
| 4.<br>5.                                                           | 7440.00<br>9920.00 | BB<br>BB | 45. 0<br>45. 2 | 45.1<br>45.2                                                                       | 38.0<br>39.0                                        | 36.9<br>36.8            | 4.3                                  | 0.0        | 50.4              | 50.5           | 74.0           | 23.6                     | 23.5         |
| 6.                                                                 | 12400.00           | BB       | 45. Z<br>44. 2 | 40, Z<br>44, 7                                                                     | 39.0<br>42.6                                        | 30. o<br>35. 6          | 5.4<br>5.7                           | 0.0<br>0.0 | 52.8<br>56.9      | $52.8 \\ 57.4$ | 74.0<br>74.0   | $21.2 \\ 17.1$           | 21.2<br>16.6 |
| 7.                                                                 | 14880.00           | BB       | 45.6           | 45.6                                                                               | 42.6                                                | 35.5                    | 6.5                                  | 0.0        | 59.2              | 57.4<br>59.2   | 74.0           | 17.1<br>14.8             | 14.8         |
| 8.                                                                 | 17360.00           | BB       | 45.5           | 45.9                                                                               | 42.7                                                | 34.9                    | 6.7                                  | 0.0        | 60.0              | 60.4           | 74.0           | 14.0                     | 14.0         |
| 9.                                                                 | 19840.00           | BB       | 44.6           | 45.3                                                                               |                                                     | 35.3                    | 7.5                                  | 0.0        | 57.7              | 58.4           | 74.0           | 16.3                     | 15.6         |
|                                                                    |                    | ĎЛ       |                | 46.3                                                                               | 41.4                                                | 35.3                    | 7.2                                  | 0.0        | 59.5              | 59.6           | 74.0           | 14.5                     | 14.4         |
| 10.<br>11.                                                         | 22320.00           | BB       | 46.2           | 40. 3<br>46. 4                                                                     | 41,4                                                | 00.0                    | 1.4                                  | 0.0        | 00.0              | 05.0           | 1 <b>1</b> . U | 14.0                     | 14.4         |

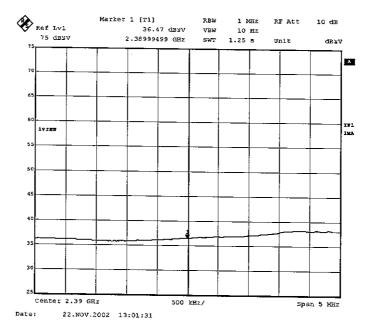
CALCULATION: READING [dB $\mu$ V] + ANT. FACTOR [dB/m] + CABLE LOSS [dB] - AMP. GAIN [dB] + ATTEN [dB].


■ ANTENNA: KHA-01 (SAS-200 571) 1-18GHz/KHA-03 (3160-09) 18-26. 5GHz ■ CABLE: KCC-D3 ■ PREAMP: KAF-02 (8449B) ■ EMI RECEIVER: KTR-01 (ESI40)

### 2.39GHz (Ch :2402MHz)

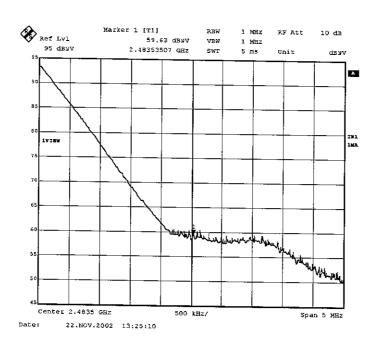

1. Horizontal/PK




2. Vertical/PK

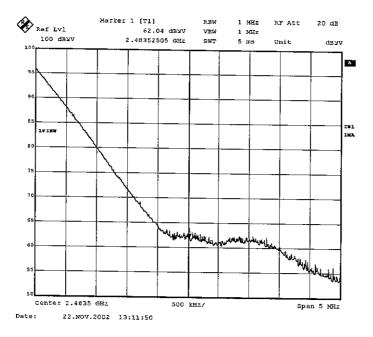


### 3. Horizontal/ AV

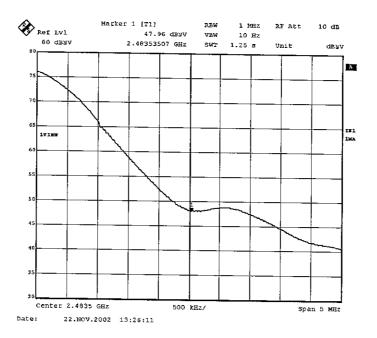



#### 4. Vertical/ AV

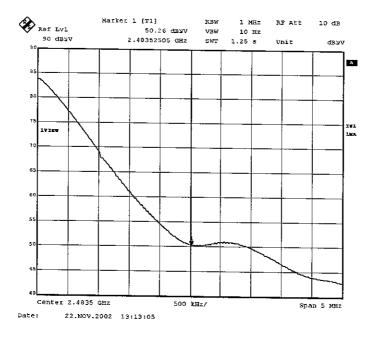



### 2.4835GHz (Ch :2480MHz)

1. Horizontal/PK

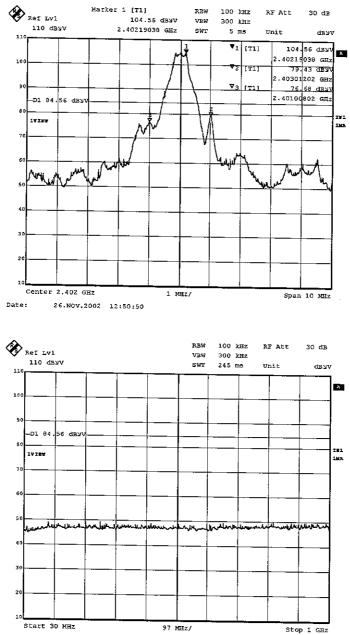



### 2. Vertical/PK

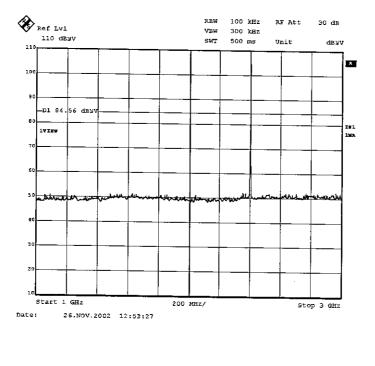

.,

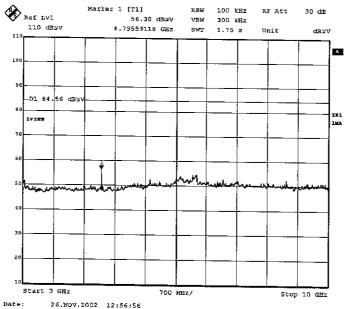


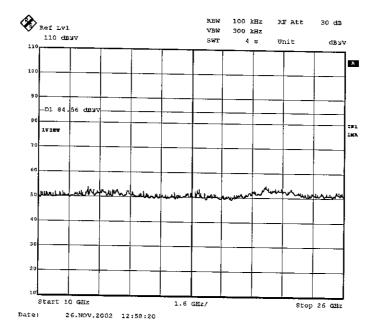
### 3. Horizontal/ AV




### 4. Vertical/ AV

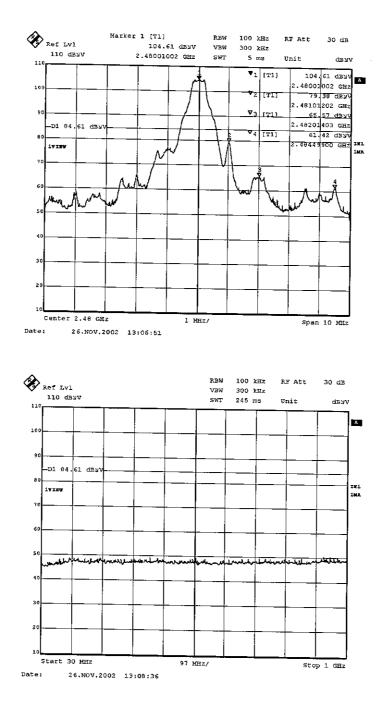


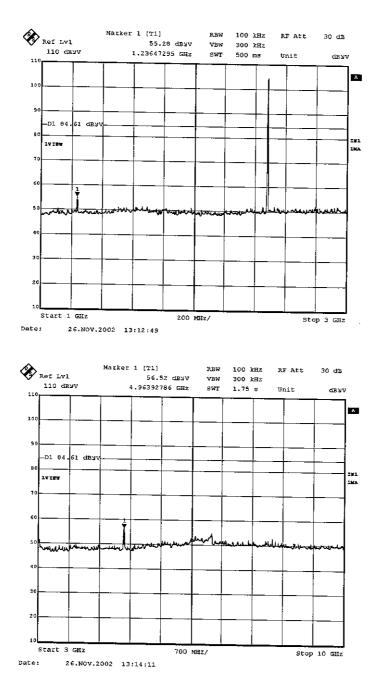


## <u>Ch Low: 2402MHz</u> 1.


2.



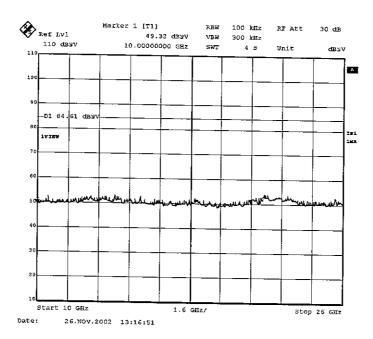
26.NOV.2002 12:52:13 Date:






### Ch High: 2480MHz


1.











### Test Report No : 23DE0002-YK-1

#### APPENDIX 3

Test Instruments

#### EMI test equipment

| Control No. | Instrument                      | Manufacturer        | Model No                                      | Test Item | Calibration Date * |
|-------------|---------------------------------|---------------------|-----------------------------------------------|-----------|--------------------|
|             |                                 |                     |                                               |           | Interval(month)    |
| KAF-01      | Pre Amplifier                   | Hewlett Packard     | 8447D                                         | RE        | 2002/08/03 * 12    |
| KAF-02      | Pre Amplifier                   | Hewlett Packard     | 8449B                                         | RE        | 2002/05/07 * 12    |
| KAT6-01     | Attenuator                      | INMET               | 18N-6dB                                       | RE        | 2002/06/20 * 12    |
| KBA-01      | Biconical Antenna               | Schwarzbeck         | BBA9106                                       | RE        | 2002/08/17 * 12    |
| 3/18        | Coaxial Cable                   | Fujikura/Suhner     | 8D-2W/12D-SF<br>A/S04272B/S0<br>4272B/S04272B | RE        | 2002/08/17 * 12    |
| 8/KPL-01    | Coaxial Cable/Pulse<br>Limitter | Fujikura/Suhner/PMM | 5D-2W/8D-2W/<br>S04272B/S0427<br>2B/PL01      | CE        | 2002/08/17 * 12    |
| KCC-D3      | Coaxial Cable                   | Rosenberger         | 2201                                          | RE        | 2002/06/28 * 12    |
| KCC-D5      | Coaxial Cable                   | Storm               | 421-011(2m)                                   | AT        | 2002/04/16 * 12    |
| KDT-01      | Coaxial Crystal Detector        | Agilent             | 8573C                                         | AT        | 2002/04/22 * 12    |
| KHA-01      | Horn Antenna                    | A.H.Systems         | SAS-200/571                                   | RE        | 2002/07/14 * 12    |
| KHA~03      | Horn Antenna                    | EMCO                | 3160-09                                       | RE        | 2002/04/27 * 12    |
| KLA-01      | Logperiodic Antenna             | Schwarzbeck         | USLP9143                                      | RE        | 2002/03/08 * 12    |
| KLS-01      | LISN                            | Schwarzbeck         | NSLK8126                                      | CE        | 2002/08/16 * 12    |
| KOTS-01     | Open Test Site                  | JSE                 | 30m                                           | RE        | 2002/08/18 * 12    |
| KPM-05      | Power meter                     | Agilent             | E4417A                                        | AT        | 2002/02/15 * 12    |
| KPSS-01     | Power sensor                    | Agilent             | E9327A                                        | AT        | 2002/02/13 + 12    |
| KSA-01      | Spectrum Analyzer               | Advantest           | R3365                                         | CE/RE     | 2002/06/20 * 12    |
| KTR-01      | Test Receiver                   | Rohde & Schwarz     | ESI40                                         | CE/RE/AT  | 2002/07/22 * 12    |
| KST-01      | Digitizing Oscilloscope         | Tektronix           | TDS420A                                       | AT        | 2002/08/21 * 12    |
|             |                                 |                     |                                               |           |                    |

All equipment is calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

Test Item:

CE: Conducted emission test,

RE: Radiated emission test,

AT: Antenna terminal conducted test