

Rothenbuhler Engineering

TEST REPORT FOR

**Controller, 1678-1-V2
Electric Remote, 1678-2-V2
RSTI, 1678-3-V2
Test Box, 1678-4-V2
Mini Controller, 1678-6-V2**

Tested To The Following Standards:

FCC Part 90I

Report No.: 94091-7

Date of issue: April 11, 2013

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Conditions During Testing	5
Equipment Under Test	6
Peripheral Devices	6
FCC Part 90I	7
RF Power Output	7
Occupied Bandwidth	12
Emissions Mask	18
Conducted Spurious Emissions	24
Radiated Spurious Emissions	33
Frequency Stability	54
Transient Frequency Behavior	58
Supplemental Information	66
Measurement Uncertainty	66
Emissions Test Details	66

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Rothenbuhler Engineering
524 Rhodes Rd.
Sedro Woolley, WA 98284-0708

Representative: Tom Jacobson
Customer Reference Number: 22980

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 93918

DATE OF EQUIPMENT RECEIPT:
DATE(S) OF TESTING:

March 19, 2013
March 19-22, 2013

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance & Engineering Services
CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
22116 23rd Drive S.E., Suite A
Bothell, WA 98021-4413

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00.14
Immunity	5.00.07

Site Registration & Accreditation Information

Location	CB #	TAIWAN	CANADA	FCC	JAPAN
Bothell	US0081	SL2-IN-E-1145R	3082C-1	318736	A-0148

SUMMARY OF RESULTS

Standard / Specification: FCC Part 90I

Description	Test Procedure/Method	Results
RF Output Power	FCC Part 90I / 90.205(d) / TIA-603-C 2.2.1	Pass
Occupied Bandwidth	FCC Part 90I / 2.90.209(b)(5) / 2.1049 / ANSI C63.4	Pass
Emissions Mask	FCC Part 90I / 90.210(d) / TIA 603-C 2.2.11	Pass
Conducted Spurious Emissions	FCC Part 90I / 90.210(d) / TIA 603-C 2.2.11	Pass
Radiated Spurious Emissions	FCC Part 90I / 90.210(d) / TIA 603-C 2.2.11	Pass
Frequency Stability	FCC Part 90I / 90.213 / 2.1055 / TIA-603-C 2.2.2 / 2.3.2	Pass
Transient Frequency Behavior	FCC Part 90I / 90.214 / TIA-603-C 2.2.19	Pass

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions
Model 1678-1-V2 is representative of Models: 1678-2-V2, 1678-3-V2 & 1678-6-V2.

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

Controller

Manuf: Rothenbuhler Engineering
Model: 1678-1-V2
Serial: 00001

RSTI

Manuf: Rothenbuhler Engineering
Model: 1678-3-V2
Serial: 00001

Electric Remote

Manuf: Rothenbuhler Engineering
Model: 1678-2-V2
Serial: 00001

Test box

Manuf: Rothenbuhler Engineering
Model: 1678-4-V2
Serial: 00002

Mini Controller

Manuf: Rothenbuhler Engineering
Model: 1678-6-V2
Serial: 00002

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Laptop

Manuf: DELL
Model: Latitude D810
Serial:

Test box

Manuf: Rothenbuhler Engineering
Model: 1678-4-V2
Serial: 00002

Power Supply

Manuf: HQ
Model: PS50050
Serial: 0-50VDC/5A

Controller

Manuf: Rothenbuhler Engineering
Model: 1678-1-V2
Serial: 00001

USB 2.0 Kit

Manuf: S.I. Tech
Model: 2172
Serial: AN03081

Mini Controller

Manuf: Rothenbuhler Engineering
Model: 1678-6-V2
Serial: 00002

Switching Power Adaptor

Manuf: PHIHONG
Model: PSC30R-120
Serial: NA

FCC PART 90I

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR Part 90I requirements for radio communications systems licensed and used in the Public Safety, Industrial/Business Radio Pool, and Radiolocation Radio Services.

RF Power Output

Test Conditions / Setup

Temp: 21°

Humidity: 32%

Pressure: 102.6kPa

Frequency Range: 150-174MHz

EUT's RF output is connected to the Spectrum Analyzer.

EUT is connected to a laptop and to a controller.

EUT is powered by a power supply as a battery replacement.

EUT is in operational mode.

EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.

Engineer Name: S. Pittsford

Test Equipment

Asset #	Description	Model	Manufacturer	Cal Date	Cal Due
02871	Spectrum Analyzer	Agilent	E4440A	4/22/2011	4/22/2013
03227	Cable	Astrolab	32026-29080-29080-84	5/2/2011	5/2/2013
P06219	Attenuator	Narda	768-10	3/22/2012	3/22/2014
01706	Attenuator	HP	8495B	1/11/2012	1/11/2014

Test Data

Frequency (MHz)	RF Output Power (dBm)	90.205 Limit	Result
150.00	29	30dBm	Pass
162.00	28.8	30dBm	Pass
174.00	29	30dBm	Pass

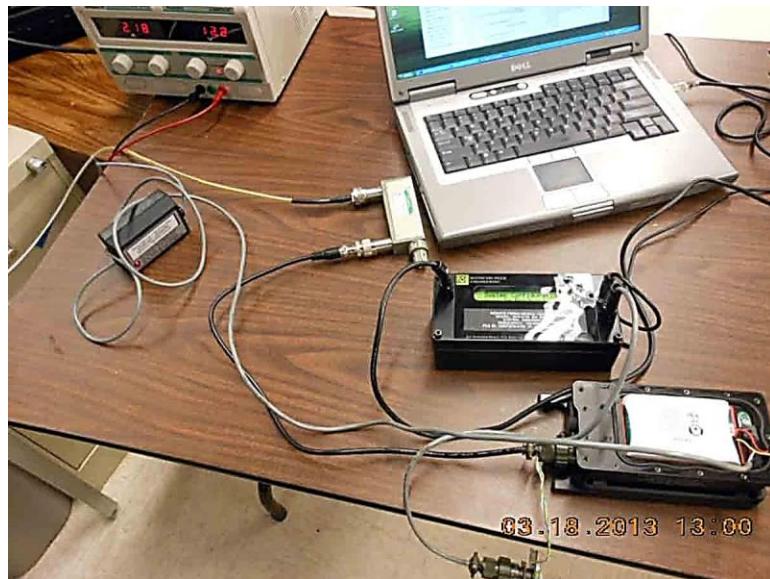
Note: The above table applies to Model: Test Box, 1678-4-V2.

Frequency (MHz)	RF Output Power (dBm)	90.205 Limit	Result
150.00	36.9	44.5dBm	Pass
162.00	36.9	44.5dBm	Pass
174.00	36.9	44.5dBm	Pass

Note: The above table applies to Model: Controller, 1678-1-V2.

Frequency (MHz)	RF Output Power (dBm)	90.205 Limit	Result
150.00	32.9	44.5dBm	Pass
162.00	32.9	44.5dBm	Pass
174.00	33.0	44.5dBm	Pass

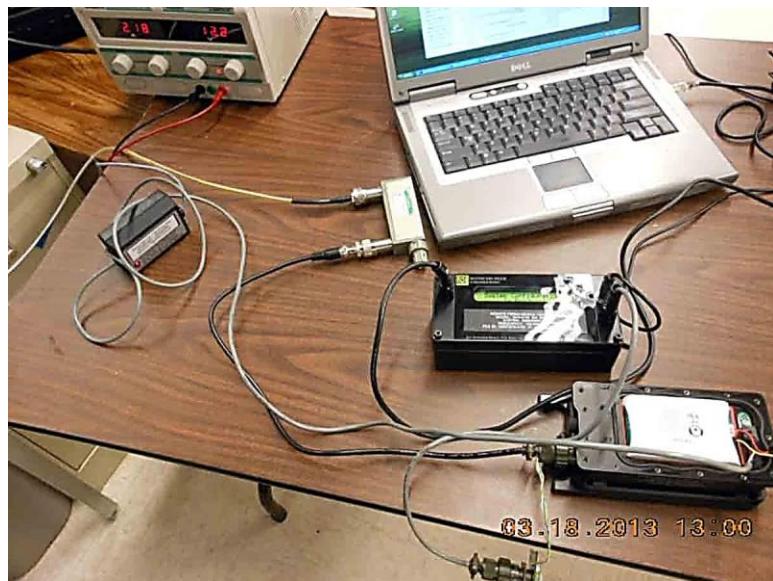
Note: The above table applies to Model: Electric Remote, 1678-2-V2.

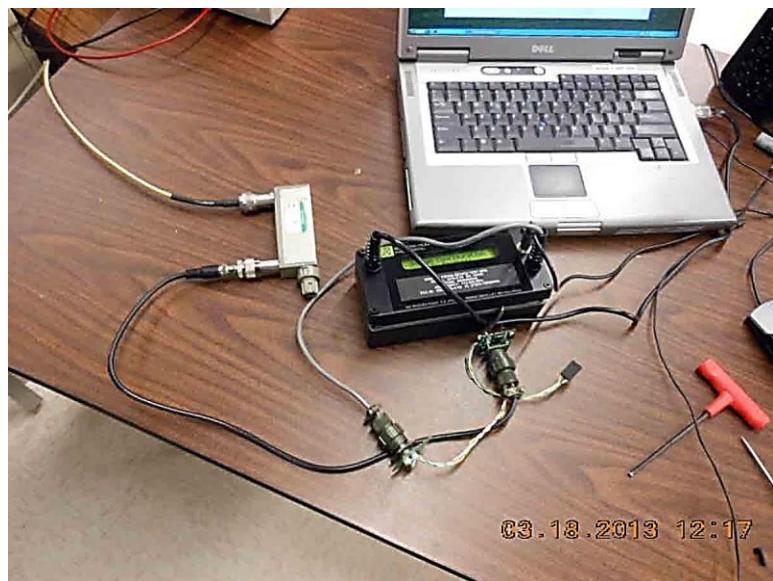

Frequency (MHz)	RF Output Power (dBm)	90.205 Limit	Result
150.00	36.9	44.5dBm	Pass
162.00	36.8	44.5dBm	Pass
174.00	36.0	44.5dBm	Pass

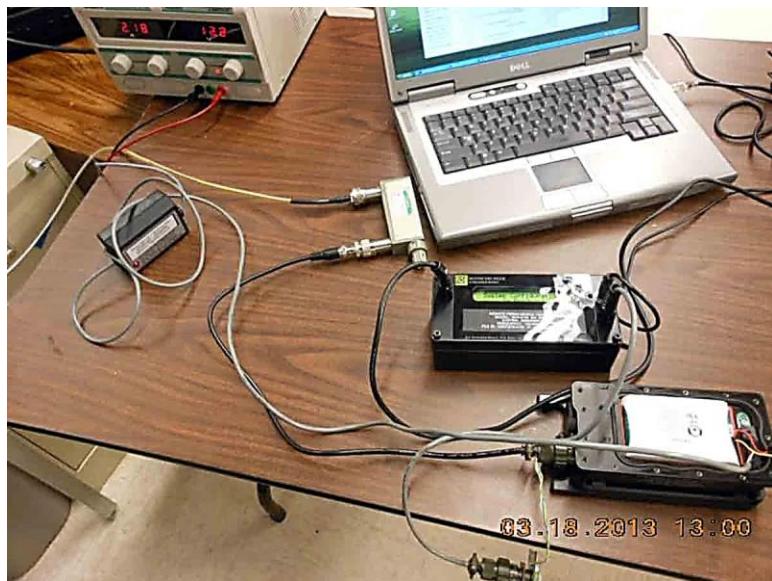
Note: The above table applies to Model: RSTI, 1678-3-V2.

Frequency (MHz)	RF Output Power (dBm)	90.205 Limit	Result
150.00	37.0	44.5dBm	Pass
162.00	36.8	44.5dBm	Pass
174.00	36.9	44.5dBm	Pass

Note: The above table applies to Model: Mini Controller, 1678-6-V2.


Test Setup Photos


1678-1-V2


1678-2-V2

1678-3-V2

1678-4-V2

1678-6-V2

Occupied Bandwidth

Test Conditions / Setup

Temp: 21°

Humidity: 32%

Pressure: 102.7kPa

Frequency Range: 150-174MHz

EUT's RF output is connected to the Spectrum Analyzer.

For 1678-4-V2: EUT is connected to a laptop and to a controller.

For 1678-1-V2: EUT is connected to a laptop and to a Test box

EUT is in operational mode.

EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.

Channel spacing is 12.5kHz: Allowed OBW is 11.25kHz

1678-1-V2 has identical transceiver circuitry as the 1678-2-V2, 1678-3-V2 & 1678-6-V2.

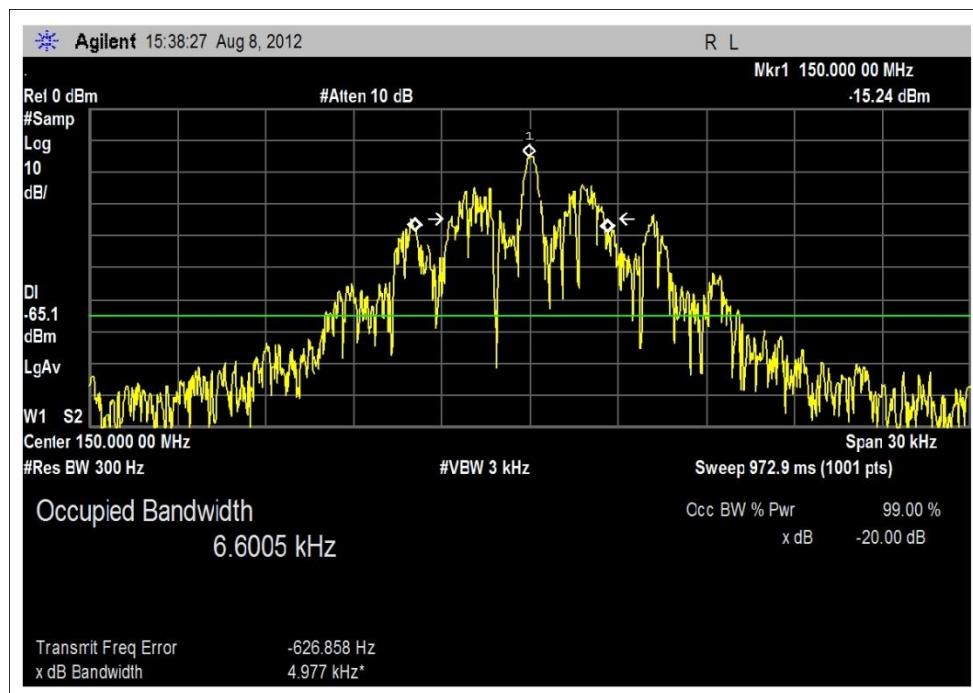
The 1678-1-V2 is worst case of the units and is representative of 1678-2-V2, 1678-3-V2 & 1678-6-V2.

The 1678-1-V2, 1678-2-V2, 1678-3-V2 & 1678-6-V2 have the ability to transmit at 5W or 2W. 5W will be tested.

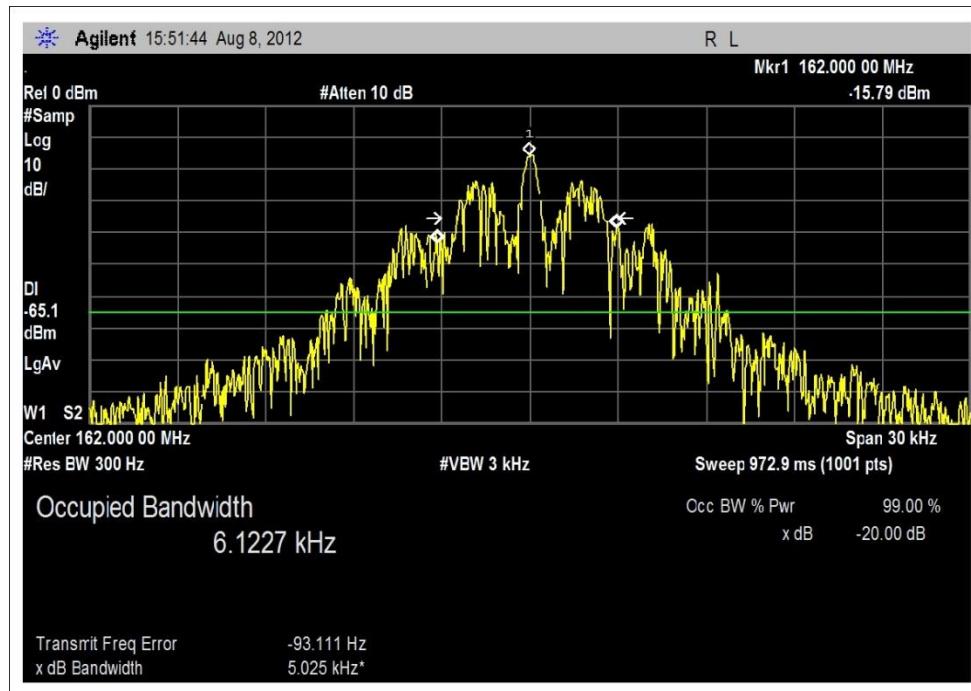
RBW=300Hz

VBW=3kHz

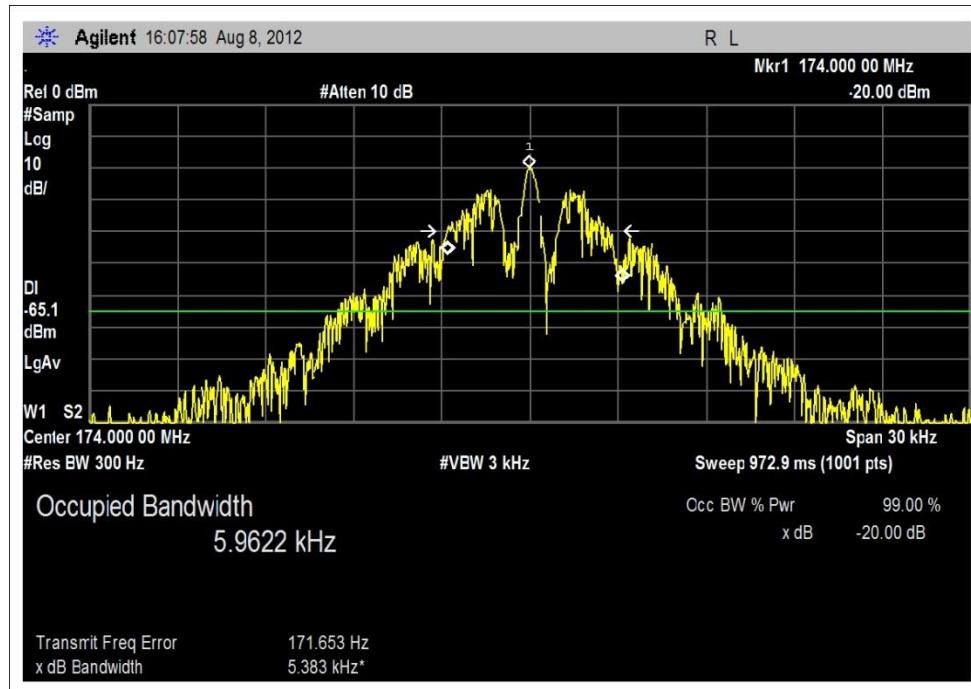
Engineer Name: S. Pittsford


Test Equipment

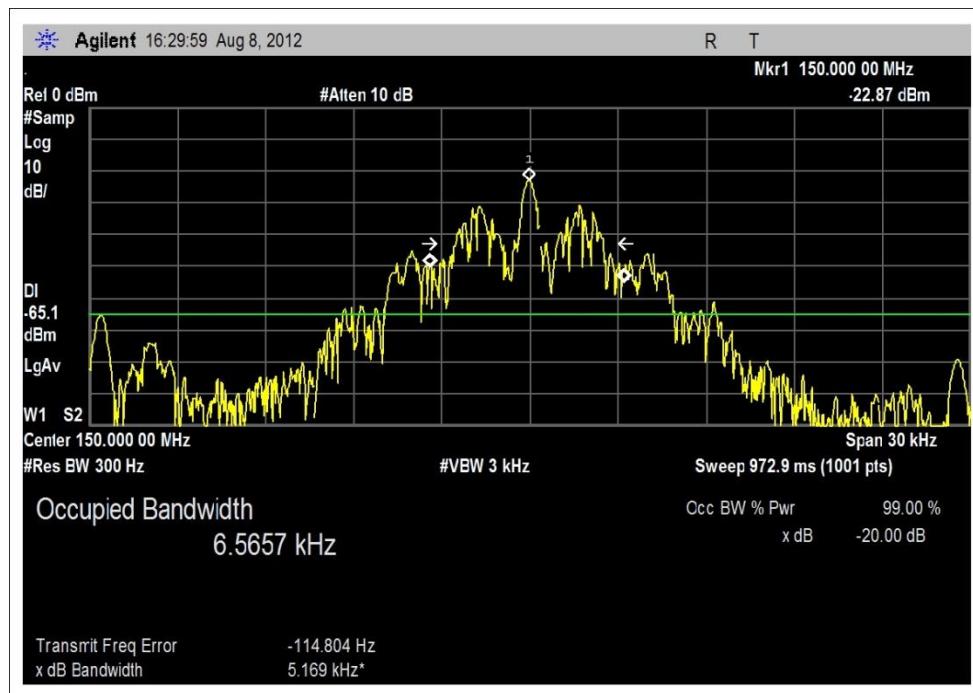
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due
02871	Spectrum Analyzer	Agilent	E4440A	4/22/2011	4/22/2013
03227	Cable	Astrolab	32026-29080-29080-84	5/2/2011	5/2/2013
01706	Attenuator	HP	8495B	1/11/2012	1/11/2014

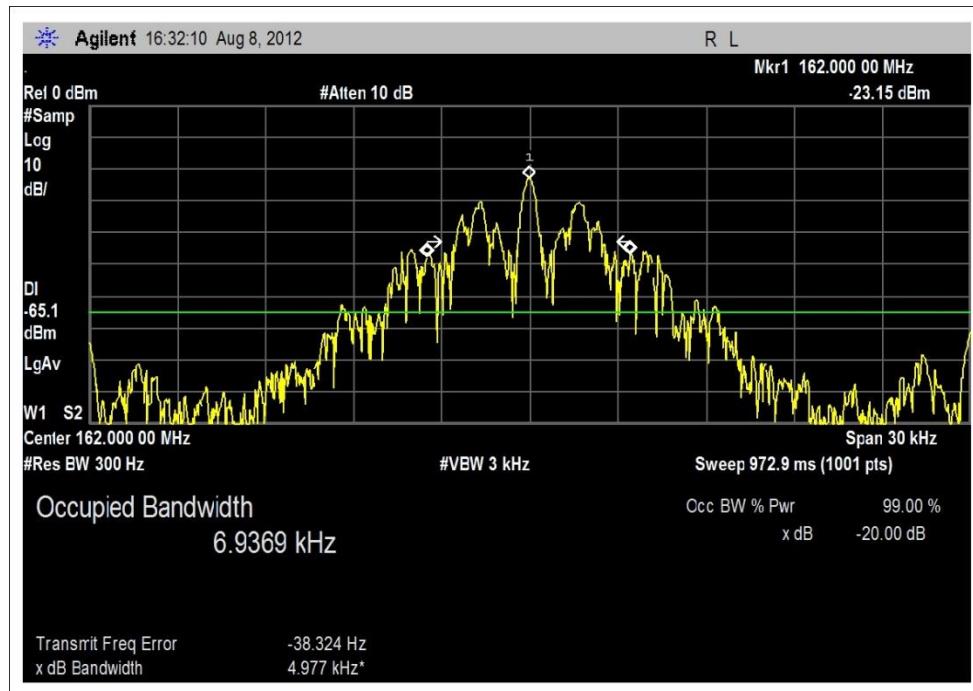

Test Data

Frequency (MHz)	Occupied Bandwidth	99% Bandwidth
150.00	4.98kHz	6.60kHz
162.00	5.03kHz	6.12kHz
174.00	5.38kHz	5.96kHz

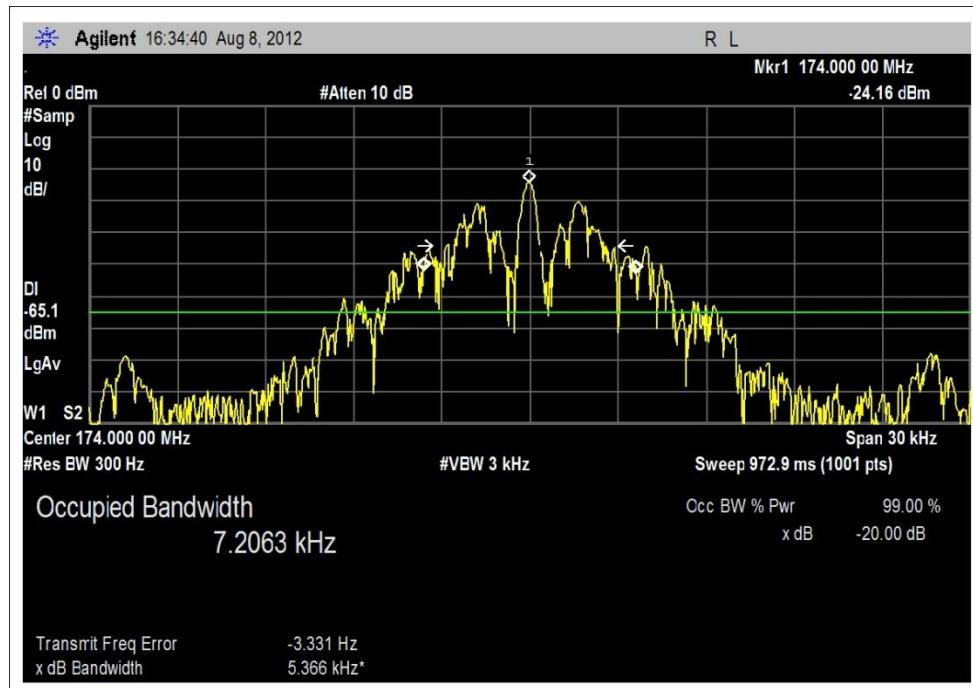

Note: The above table applies to Model: Controller, 1678-1-V2.

Low , 1678-1-V2


Mid, 1678-1-V2

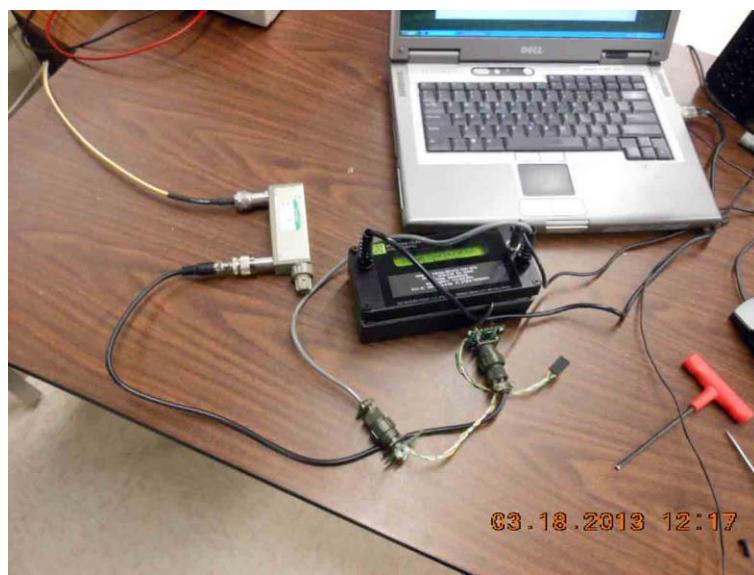

High, 1678-1-V2

Frequency (MHz)	Occupied Bandwidth	99% Bandwidth
150.00	5.17kHz	6.57kHz
162.00	4.98kHz	6.94kHz
174.00	5.37kHz	7.21kHz


Note: The above table applies to Model: Test Box, 1678-4-V2.

Low 1678-4-V2

Mid, 1678-4-V2



High, 1678-4-V2

Test Setup Photos

1678-1-V2

1678-4-V2

Emissions Mask

Test Conditions / Setup

Test Conditions

Temp: 23°

Humidity: 28%

Pressure: 101.7kPa

EUT's RF output is connected to the Spectrum Analyzer.

For 1678-4-V2: EUT is connected to a laptop and to a controller.

For 1678-1-V2: EUT is connected to a laptop and to a test box.

EUT is in operational mode.

EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.

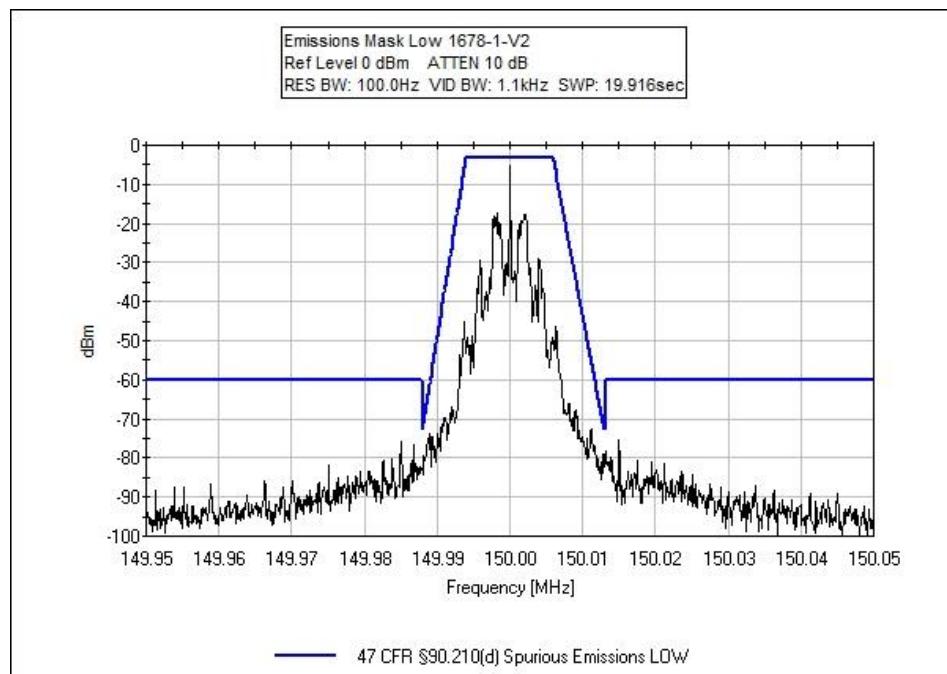
Mask D

1678-1-V2 has identical transceiver circuitry as the 1678-2-V2, 1678-3-V2 & 1678-6-V2.

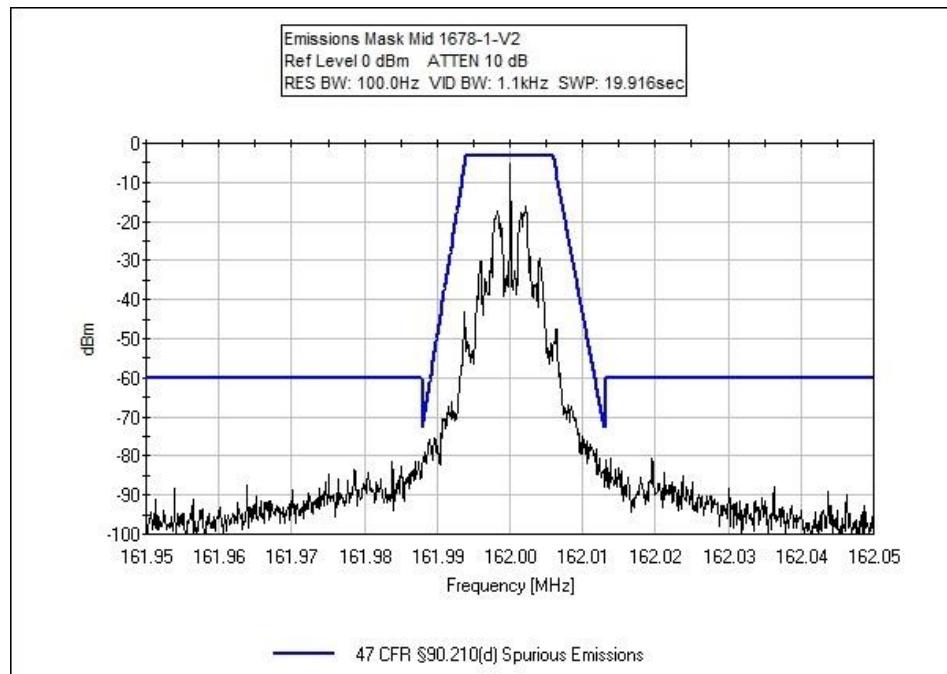
The 1678-1-V2 is worst case of the units and is representative of 1678-2-V2, 1678-3-V2 & 1678-6-V2.

The 1678-1-V2, 1678-2-V2, 1678-3-V2 & 1678-6-V2 have the ability to transmit at 5W or 2W. 5W will be tested.

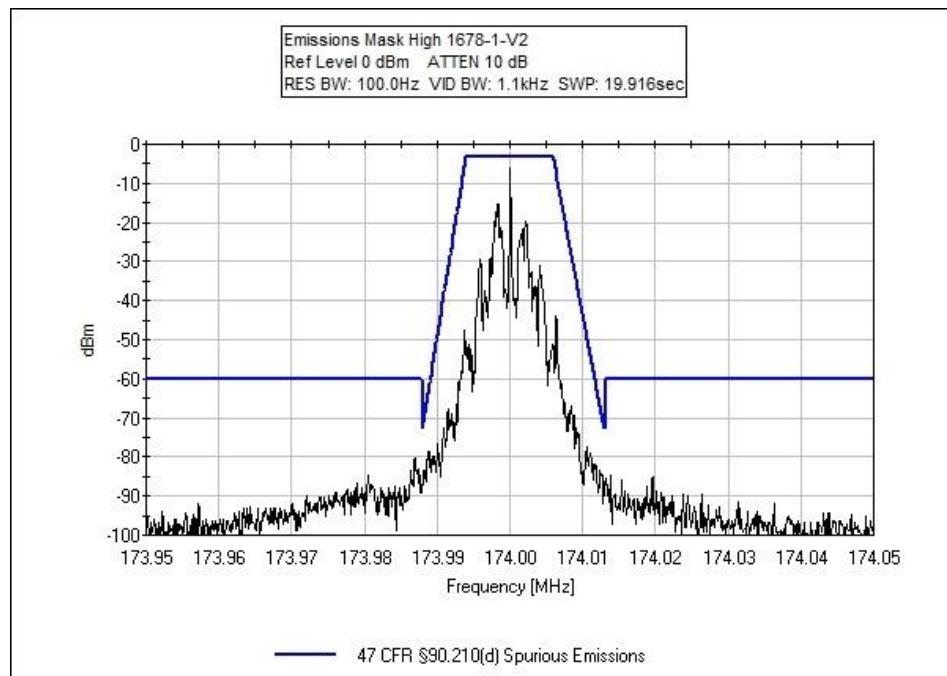
Limit line adjusted to the data.

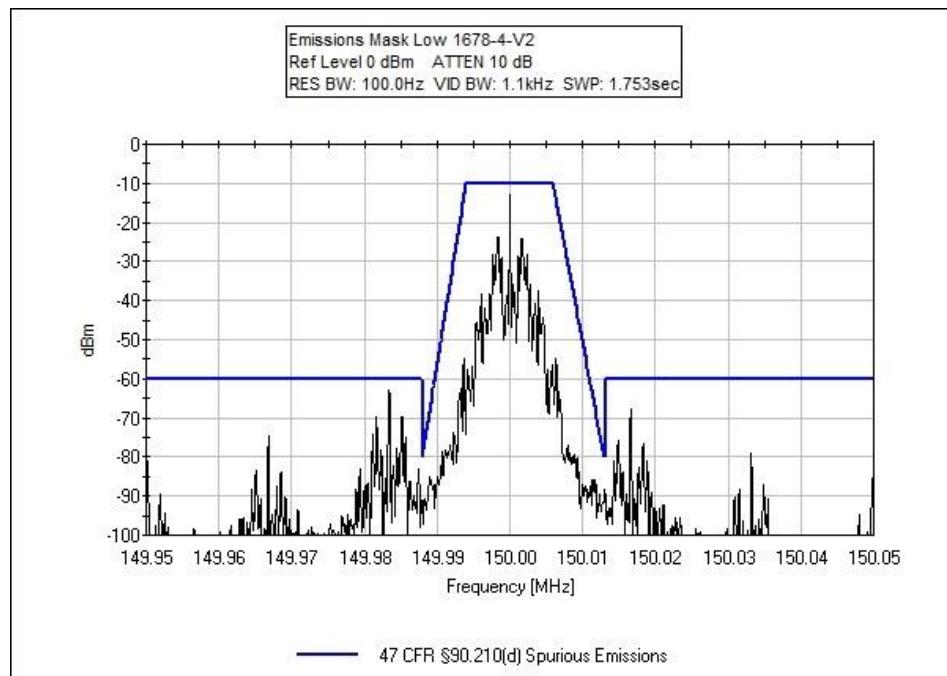

RBW=100Hz

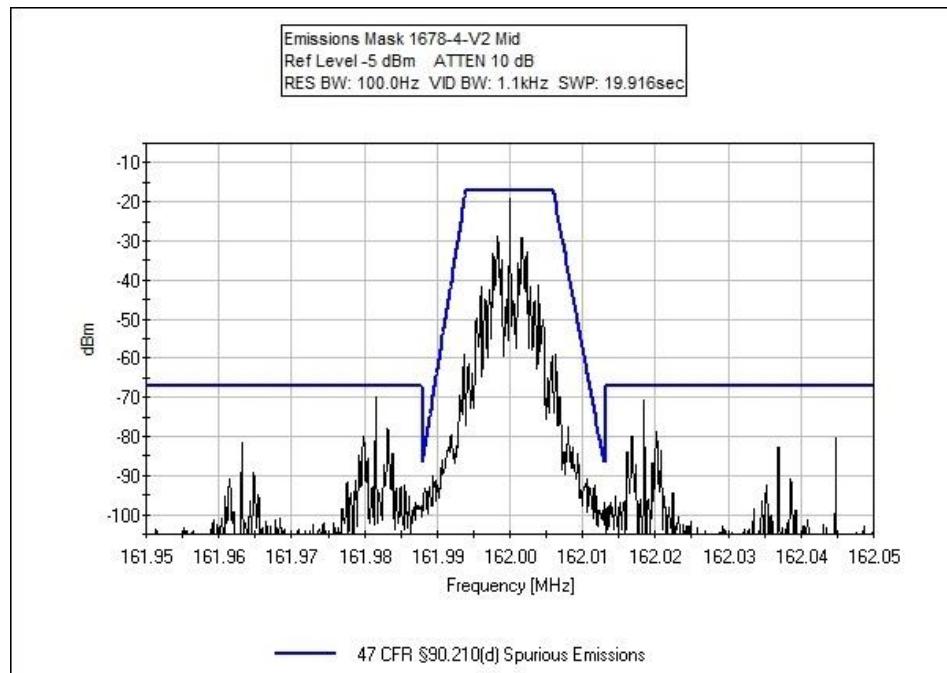
VBW=1.1kHz

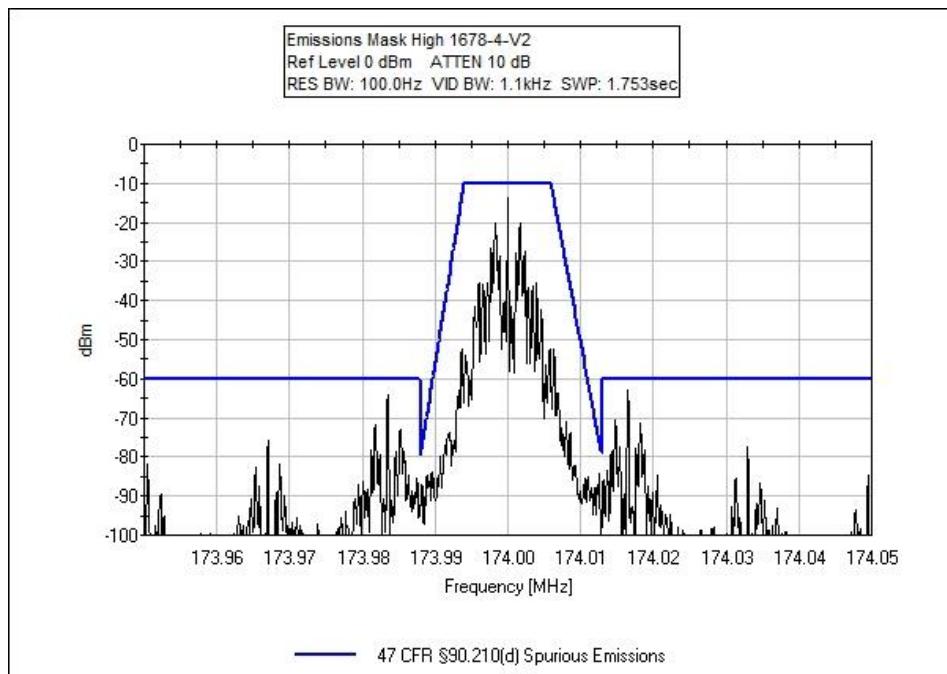

Engineer Name: S. Pittsford

Test Equipment					
Asset #	Description	Model	Manufacturer	Cal Date	Cal Due
02871	Spectrum Analyzer	Agilent	E4440A	4/22/2011	4/22/2013
03227	Cable	Astrolab	32026-29080-29080-84	5/2/2011	5/2/2013
01706	Attenuator	HP	8495B	1/11/2012	1/11/2014

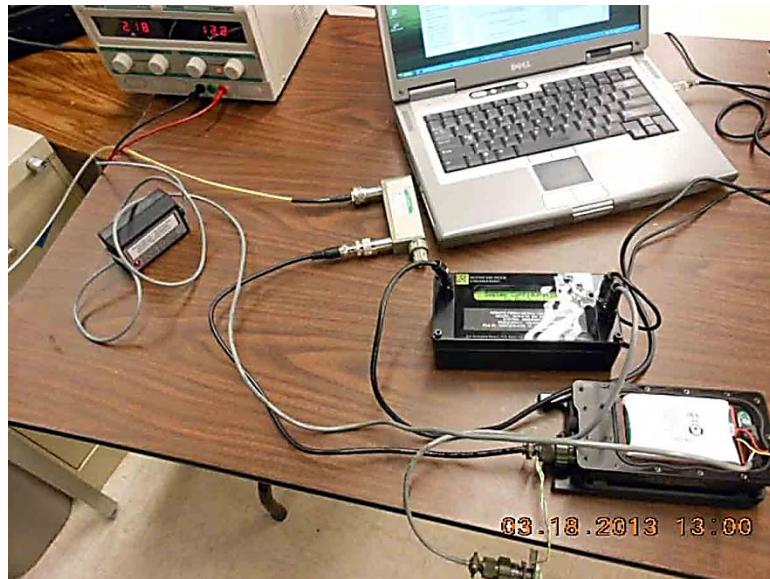

Test Data


1678-1-V2 Low Mask

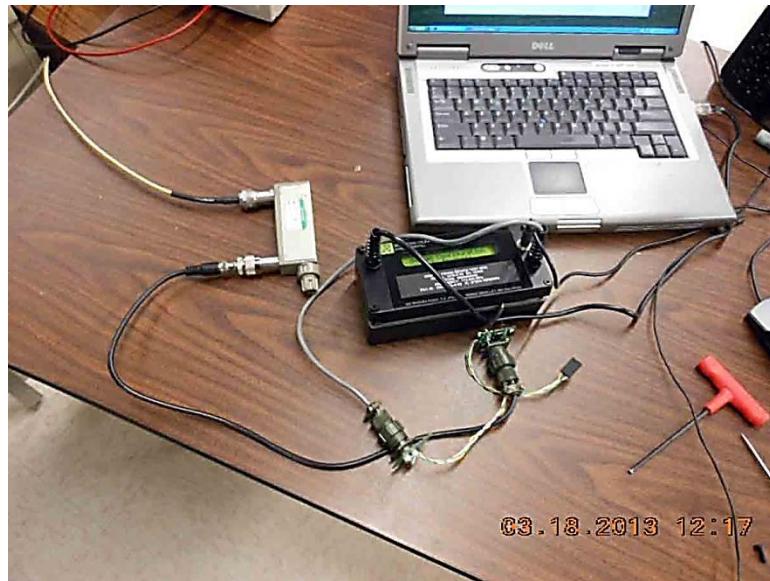

1678-1-V2 Mid Mask


1678-1-V2 High Mask

1678-4-V2 Low Mask



1678-4-V2 Mid Mask



1678-4-V2 High Mask

Test Setup Photos

1678-1-V2

1678-4-V2

Conducted Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Rothenbuhler Engineering**
 Specification: **47 CFR §90.210(d) Spurious Emissions**
 Work Order #: **93918** Date: **3/19/2013**
 Test Type: **Conducted Emissions** Time: **08:23:15**
 Equipment: **Controller** Sequence#: **10**
 Manufacturer: Rothenbuhler Engineering Tested By: Steven Pittsford
 Model: 1678-1-V2 None
 S/N: 00001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080-29080-84	5/2/2011	5/2/2013
	AN02871	Spectrum Analyzer	E4440A	4/22/2011	4/22/2013
T2	AN01706	Attenuator-Factor @ 40dB (dB)	8495B	1/11/2012	1/11/2014

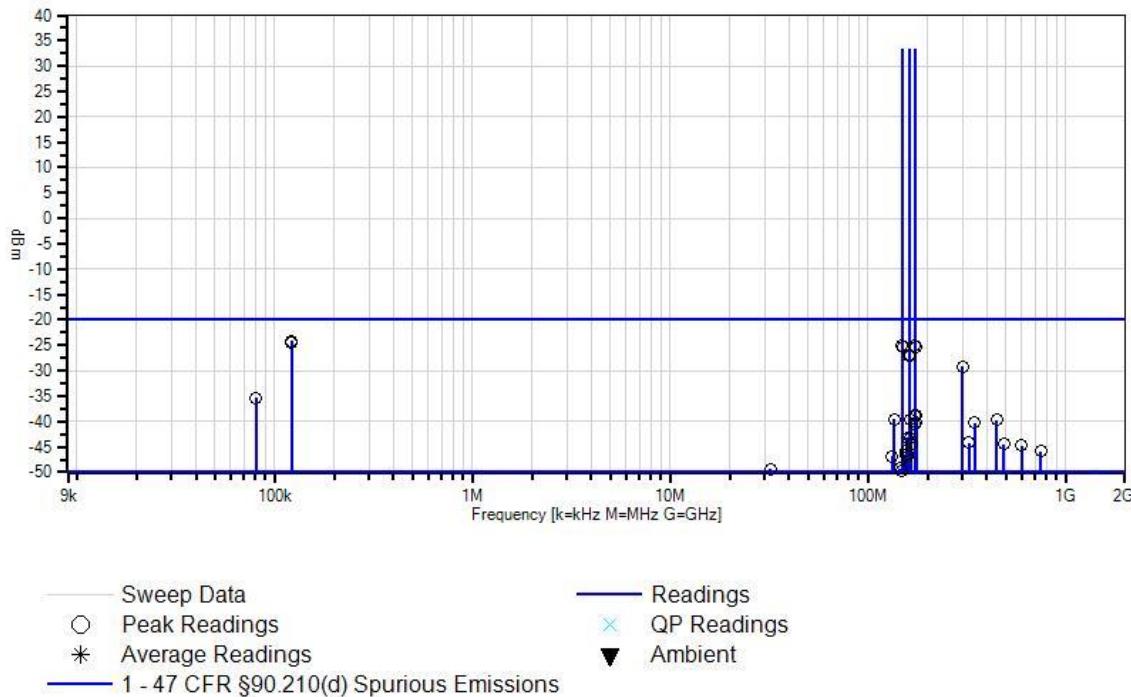
Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Controller*	Rothenbuhler Engineering	1678-1-V2	00001

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	DELL	Latitude D810	NA
Test box	Rothenbuhler Engineering	1678-4-V2	00002
Power Supply	HQ	PS50050	0-50VDC/5A

Test Conditions / Notes:


Temp: 21°C, Humidity: 34%, Pressure: 102.6kPa
Frequency Range: 9k-2GHz
Mask D
EUT's RF output is connected to the Spectrum Analyzer
EUT is connected to a laptop and to a test box
EUT is in operational mode.
EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.
Only highest emissions will be recorded.
1678-1-V2 has identical transceiver circuitry as the 1678-2-V2, 1678-3-V2 & 1678-6-V2.
The 1678-1-V2 is worst case of the units and is representative of 1678-2-V2, 1678-3-V2 & 1678-6-V2.
The 1678-1-V2, 1678-2-V2, 1678-3-V2 & 1678-6-V2 have the ability to transmit at 5W or 2W. 5W will be tested.
RBW: 200Hz 9kHz - 150kHz; 10kHz 150kHz - 30MHz; 100kHz 30MHz - 1GHz; 1MHz; 1-2GHz
VBW: 10x RBW
Sweep: Auto

Ext Attn: 0 dB

Measurement Data: Reading listed by margin.				Test Lead: Antenna						
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	dB	Dist Table	Corr dBm	Spec dBm	Margin dB	Polar Ant
1	122.230k	-64.0	+0.0	+39.8		+0.0	-24.2	-20.0	-4.2	Anten Low
2	122.035k	-64.4	+0.0	+39.8		+0.0	-24.6	-20.0	-4.6	Anten Mid
3	173.215M	-65.2	+0.4	+39.8		+0.0	-25.0	-20.0	-5.0	Anten High
4	149.283M	-65.3	+0.4	+39.8		+0.0	-25.1	-20.0	-5.1	Anten Low
5	150.708M	-65.5	+0.4	+39.8		+0.0	-25.3	-20.0	-5.3	Anten Low
6	174.785M	-65.5	+0.4	+39.8		+0.0	-25.3	-20.0	-5.3	Anten High
7	162.750M	-67.1	+0.4	+39.8		+0.0	-26.9	-20.0	-6.9	Anten Mid
8	161.250M	-67.3	+0.4	+39.8		+0.0	-27.1	-20.0	-7.1	Anten Mid
9	300.000M	-69.4	+0.5	+39.7		+0.0	-29.2	-20.0	-9.2	Anten Low
10	80.675k	-75.2	+0.0	+39.8		+0.0	-35.4	-20.0	-15.4	Anten Mid
11	80.205k	-75.3	+0.0	+39.8		+0.0	-35.5	-20.0	-15.5	Anten Low
12	172.811M	-78.9	+0.4	+39.8		+0.0	-38.7	-20.0	-18.7	Anten High
13	175.213M	-79.0	+0.4	+39.8		+0.0	-38.8	-20.0	-18.8	Anten High
14	135.670M	-79.7	+0.3	+39.8		+0.0	-39.6	-20.0	-19.6	Anten Low
15	450.000M	-79.9	+0.6	+39.6		+0.0	-39.7	-20.0	-19.7	Anten Low
16	164.500M	-79.9	+0.4	+39.8		+0.0	-39.7	-20.0	-19.7	Anten Low
17	348.000M	-80.5	+0.6	+39.7		+0.0	-40.2	-20.0	-20.2	Anten High
18	174.404M	-80.4	+0.4	+39.8		+0.0	-40.2	-20.0	-20.2	Anten High
19	173.596M	-80.8	+0.4	+39.8		+0.0	-40.6	-20.0	-20.6	Anten High
20	158.420M	-83.4	+0.4	+39.8		+0.0	-43.2	-20.0	-23.2	Anten Mid
21	163.590M	-83.5	+0.4	+39.8		+0.0	-43.3	-20.0	-23.3	Anten Mid
22	324.000M	-84.4	+0.5	+39.7		+0.0	-44.2	-20.0	-24.2	Anten Mid
23	486.000M	-84.7	+0.7	+39.6		+0.0	-44.4	-20.0	-24.4	Anten Mid

24	165.580M	-84.7	+0.4	+39.8	+0.0	-44.5	-20.0	-24.5	Anten
25	600.000M	-84.9	+0.7	+39.4	+0.0	-44.8	-20.0	-24.8	Anten
26	156.420M	-85.9	+0.4	+39.8	+0.0	-45.7	-20.0	-25.7	Anten
27	750.000M	-85.8	+0.8	+39.1	+0.0	-45.9	-20.0	-25.9	Anten
28	157.220M	-86.6	+0.4	+39.8	+0.0	-46.4	-20.0	-26.4	Anten
29	154.800M	-86.8	+0.4	+39.8	+0.0	-46.6	-20.0	-26.6	Anten
30	159.570M	-87.0	+0.4	+39.8	+0.0	-46.8	-20.0	-26.8	Anten
31	133.170M	-86.9	+0.3	+39.8	+0.0	-46.8	-20.0	-26.8	Anten
32	145.250M	-89.4	+0.4	+39.8	+0.0	-49.2	-20.0	-29.2	Anten
33	32.170M	-89.4	+0.2	+39.8	+0.0	-49.4	-20.0	-29.4	Anten
34	147.570M	-90.0	+0.4	+39.8	+0.0	-49.8	-20.0	-29.8	Anten
35	1458.000M	-90.7	+1.1	+39.2	+0.0	-50.4	-20.0	-30.4	Anten
36	176.380M	-90.7	+0.4	+39.8	+0.0	-50.5	-20.0	-30.5	Anten
37	1392.000M	-90.8	+1.1	+39.1	+0.0	-50.6	-20.0	-30.6	Anten
38	522.000M	-91.7	+0.7	+39.6	+0.0	-51.4	-20.0	-31.4	Anten
39	648.000M	-93.9	+0.7	+39.4	+0.0	-53.8	-20.0	-33.8	Anten
40	972.000M	-93.6	+0.9	+38.4	+0.0	-54.3	-20.0	-34.3	Anten
41	810.000M	-98.3	+0.8	+38.9	+0.0	-58.6	-20.0	-38.6	Anten
									Mid

CKC Laboratories, Inc. Date: 3/19/2013 Time: 08:23:15 Rothenbuhler Engineering WO#: 93918
 Test Lead: Antenna None Sequence#: 10 Antenna
 Rothenbuhler Engineering Controller P/N: 1678-1-V2

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Rothenbuhler Engineering**
 Specification: **47 CFR §90.210(d) Spurious Emissions**
 Work Order #: **93918** Date: 3/19/2013
 Test Type: **Conducted Emissions** Time: 08:56:03
 Equipment: **Test box** Sequence#: 11
 Manufacturer: Rothenbuhler Engineering Tested By: Steven Pittsford
 Model: 1678-4-V2 None
 S/N: 00002

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN03227	Cable	32026-29080- 29080-84	5/2/2011	5/2/2013
	AN02871	Spectrum Analyzer	E4440A	4/22/2011	4/22/2013
T2	AN01706	Attenuator-Factor @ 40dB (dB)	8495B	1/11/2012	1/11/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Test box*	Rothenbuhler Engineering	1678-4-V2	00002

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	DELL	Latitude D810	NA
Power Supply	HQ	PS50050	0-50VDC/5A
Controller	Rothenbuhler Engineering	1678-1-V2	00001

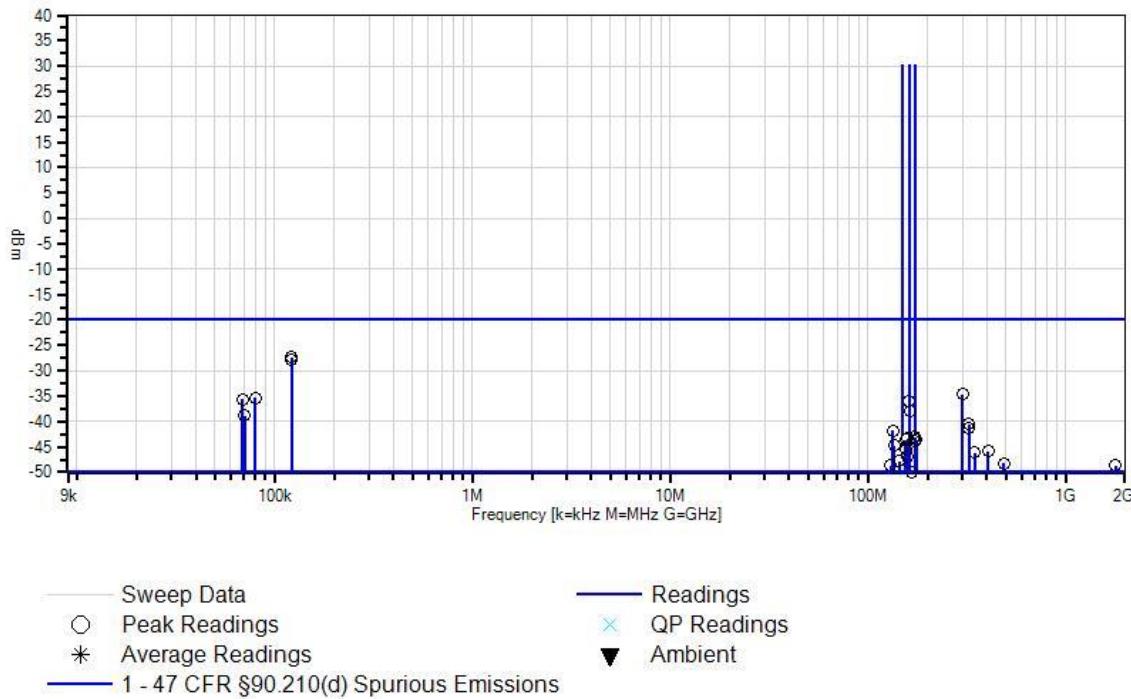
Test Conditions / Notes:

Temp: 21°C
 Humidity: 34%
 Pressure: 102.6kPa
 Frequency Range: 9k-2GHz

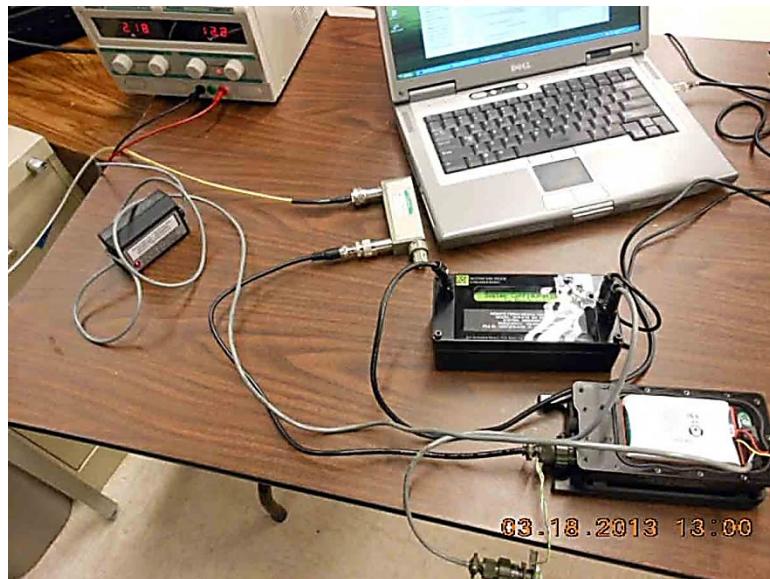
Mask D

EUT's RF output is connected to the Spectrum Analyzer
 EUT is connected to a laptop and to a controller.
 EUT is in operational mode.
 EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.
 Only highest emissions will be recorded.

RBW: 200Hz 9kHz - 150kHz
 10kHz 150kHz - 30MHz
 100kHz 30MHz - 1GHz
 1MHz 1-2GHz


VBW: 10x RBW
 Sweep: Auto

Ext Attn: 0 dB


Measurement Data: Reading listed by margin.				Test Lead: Antenna						
#	Freq MHz	Rdng dB μ V	T1 dB	T2 dB	dB	Dist Table	Corr dBm	Spec dBm	Margin dB	Polar Ant
1	122.223k	-67.1	+0.0	+39.8		+0.0	-27.3	-20.0	-7.3	Anten Mid
2	122.082k	-67.2	+0.0	+39.8		+0.0	-27.4	-20.0	-7.4	Anten Low
3	122.082k	-67.6	+0.0	+39.8		+0.0	-27.8	-20.0	-7.8	Anten High
4	300.000M	-74.9	+0.5	+39.7		+0.0	-34.7	-20.0	-14.7	Anten Low
5	80.064k	-75.1	+0.0	+39.8		+0.0	-35.3	-20.0	-15.3	Anten High
6	69.066k	-75.4	+0.0	+39.8		+0.0	-35.6	-20.0	-15.6	Anten Low
7	161.400M	-76.3	+0.4	+39.8		+0.0	-36.1	-20.0	-16.1	Anten Mid
8	162.660M	-78.1	+0.4	+39.8		+0.0	-37.9	-20.0	-17.9	Anten Mid
9	70.617k	-78.7	+0.0	+39.8		+0.0	-38.9	-20.0	-18.9	Anten Mid
10	323.700M	-80.7	+0.5	+39.7		+0.0	-40.5	-20.0	-20.5	Anten Mid
11	324.030M	-81.4	+0.5	+39.7		+0.0	-41.2	-20.0	-21.2	Anten Mid
12	134.090M	-81.9	+0.3	+39.8		+0.0	-41.8	-20.0	-21.8	Anten Low
13	173.609M	-83.3	+0.4	+39.8		+0.0	-43.1	-20.0	-23.1	Anten High
14	159.600M	-83.5	+0.4	+39.8		+0.0	-43.3	-20.0	-23.3	Anten High
15	174.406M	-83.8	+0.4	+39.8		+0.0	-43.6	-20.0	-23.6	Anten High
16	175.220M	-83.8	+0.4	+39.8		+0.0	-43.6	-20.0	-23.6	Anten High
17	154.800M	-83.8	+0.4	+39.8		+0.0	-43.6	-20.0	-23.6	Anten High
18	172.800M	-84.0	+0.4	+39.8		+0.0	-43.8	-20.0	-23.8	Anten High
19	135.710M	-84.8	+0.3	+39.8		+0.0	-44.7	-20.0	-24.7	Anten Low
20	156.400M	-85.7	+0.4	+39.8		+0.0	-45.5	-20.0	-25.5	Anten High
21	407.500M	-86.2	+0.6	+39.7		+0.0	-45.9	-20.0	-25.9	Anten High
22	348.010M	-86.5	+0.6	+39.7		+0.0	-46.2	-20.0	-26.2	Anten High
23	158.430M	-87.0	+0.4	+39.8		+0.0	-46.8	-20.0	-26.8	Anten Mid
24	143.980M	-88.0	+0.4	+39.8		+0.0	-47.8	-20.0	-27.8	Anten Low

25	486.000M	-88.6	+0.7	+39.6	+0.0	-48.3	-20.0	-28.3	Anten
						Mid			
26	1782.030M	-89.4	+1.3	+39.5	+0.0	-48.6	-20.0	-28.6	Anten
						Mid			
27	130.810M	-88.7	+0.3	+39.8	+0.0	-48.6	-20.0	-28.6	Anten
						Low			
28	166.000M	-90.1	+0.4	+39.8	+0.0	-49.9	-20.0	-29.9	Anten
						Low			
29	164.390M	-90.3	+0.4	+39.8	+0.0	-50.1	-20.0	-30.1	Anten
						Low			
30	156.020M	-90.6	+0.4	+39.8	+0.0	-50.4	-20.0	-30.4	Anten
						Low			
31	648.000M	-90.6	+0.7	+39.4	+0.0	-50.5	-20.0	-30.5	Anten
						Mid			
32	149.600M	-90.8	+0.4	+39.8	+0.0	-50.6	-20.0	-30.6	Anten
						Low			
33	150.400M	-90.8	+0.4	+39.8	+0.0	-50.6	-20.0	-30.6	Anten
						Low			
34	696.010M	-90.6	+0.8	+39.2	+0.0	-50.6	-20.0	-30.6	Anten
						High			
35	810.060M	-90.9	+0.8	+38.9	+0.0	-51.2	-20.0	-31.2	Anten
						Mid			
36	129.300M	-91.4	+0.3	+39.8	+0.0	-51.3	-20.0	-31.3	Anten
						Low			
37	870.010M	-91.5	+0.9	+38.6	+0.0	-52.0	-20.0	-32.0	Anten
						High			
38	522.010M	-92.4	+0.7	+39.6	+0.0	-52.1	-20.0	-32.1	Anten
						High			
39	450.000M	-92.7	+0.6	+39.6	+0.0	-52.5	-20.0	-32.5	Anten
						Low			
40	1495.400M	-93.3	+1.1	+39.3	+0.0	-52.9	-20.0	-32.9	Anten
						Low			
41	1044.010M	-92.6	+0.9	+38.5	+0.0	-53.2	-20.0	-33.2	Anten
						High			
42	600.000M	-94.6	+0.7	+39.4	+0.0	-54.5	-20.0	-34.5	Anten
						Low			


CKC Laboratories, Inc. Date: 3/19/2013 Time: 08:56:03 Rothenbuhler Engineering WO#: 93918
 Test Lead: Antenna None Sequence#: 11 Antenna
 Rothenbuhler Engineering Testbox P/N: 1678-4-V2

Test Setup Photos

1678-1-V2

1678-4-V2

Radiated Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Rothenbuhler Engineering**
 Specification: **47 CFR §90.210(d) Spurious Emissions**
 Work Order #: **93918** Date: **3/20/2013**
 Test Type: **Radiated Scan** Time: **10:05:27**
 Equipment: **Controller** Sequence#: **13**
 Manufacturer: Rothenbuhler Engineering Tested By: Steven Pittsford
 Model: 1678-1-V2
 S/N: 00001

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	4/3/2012	4/3/2014
T2	AN01993	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014
T3	AN03227	Cable	32026-29080-29080-84	5/2/2011	5/2/2013
T4	ANP05360	Cable	RG214	12/3/2012	12/3/2014
T5	ANP05366	Cable	RG-214	10/14/2011	10/14/2013
T6	AN02871	Spectrum Analyzer	E4440A	4/22/2011	4/22/2013
T7	AN00052	Loop Antenna	6502	5/16/2012	5/16/2014
T8	ANP05965	Cable	Various	8/26/2011	8/26/2013
T9	AN01271	Preamp	83017A	8/18/2011	8/18/2013
T10	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	10/19/2011	10/19/2013
T11	AN03123	Cable	32026-2-29801-12	10/14/2011	10/14/2013
T12	ANP05435	Attenuator	PE7015-10	10/5/2012	10/5/2014
T13	ANP06219	Attenuator	768-10	3/22/2012	3/22/2014
T14	ANP06217	Attenuator	768-10	3/22/2012	3/22/2014

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Controller*	Rothenbuhler Engineering	1678-1-V2	00001

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	DELL	Latitude D810	NA
USB 2.0 Kit	S.I. Tech	2172	AN03081
Test box	Rothenbuhler Engineering	1678-4-V2	00002
Power Supply	HQ	PS50050	0-50VDC/5A

Test Conditions / Notes:

Temp: 23°C
 Humidity: 28%
 Pressure: 101.7kPa
 Frequency Range: 9k-2GHz
 Test Method: ANSI 63.4 (2003)

Mask D

EUT is in the center of the turntable 80cm above the ground plane
 EUT is connected to a laptop and to a test box
 EUT is communicating with laptop through USB to fiber adaptor
 EUT is powered by power supply (on the ground plane) as a battery replacement for 1-2GHz and freshly charged battery powered for 9k-1000MHz
 EUT is in operational mode.
 EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.
 Only highest emissions will be recorded.

1678-1-V2 has identical transceiver circuitry as the 1678-2-V2, 1678-3-V2 & 1678-6-V2.
 The 1678-1-V2 is worst case of the units and is representative of 1678-2-V2, 1678-3-V2 & 1678-6-V2.
 The 1678-1-V2, 1678-2-V2, 1678-3-V2 & 1678-6-V2 have the ability to transmit at 5W or 2W. 5W will be tested.

RBW: 200Hz 9kHz - 150kHz
 10kHz 150kHz - 30MHz
 100kHz 30MHz - 1GHz
 1MHz 1-2GHz

VBW: 10x RBW

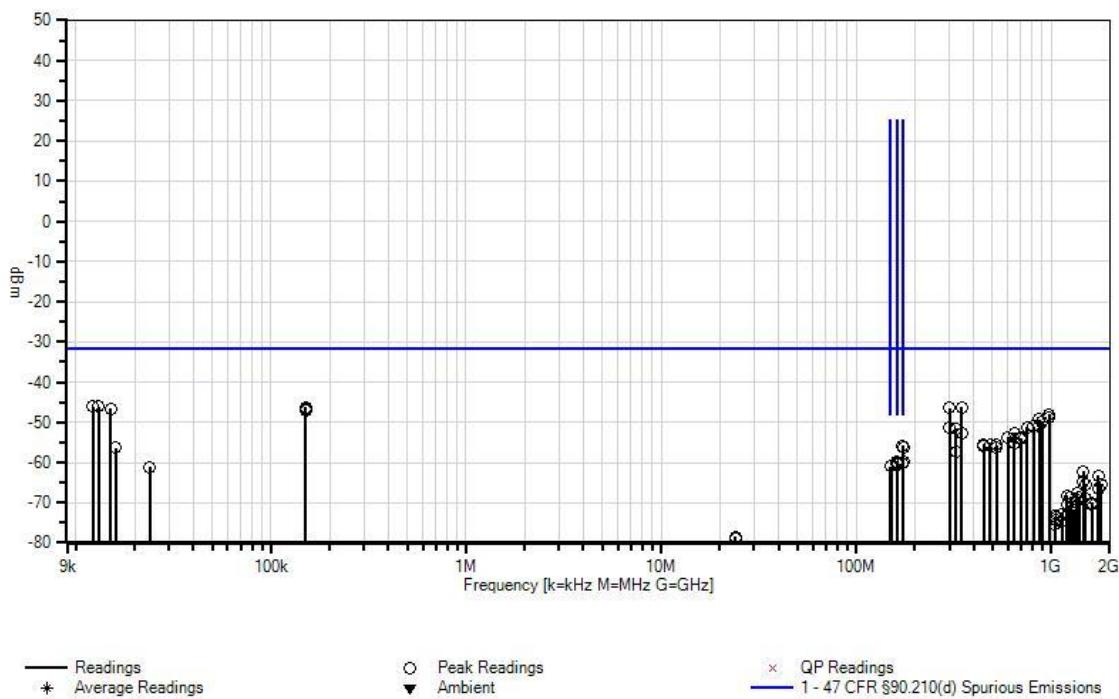
Sweep: Auto

Ext Attn: 0 dB

Measurement Data:			Reading listed by margin.				Test Distance: 3 Meters				
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14							
	MHz	dB μ V	dB	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	13.089k	-60.9	+0.0	+0.0	+0.0	+0.0	+0.0	-46.0	-31.8	-14.2	Perpe
			+0.0	+0.0	+14.9	+0.0	360				129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
2	12.243k	-61.4	+0.0	+0.0	+0.0	+0.0	+0.0	-46.1	-31.8	-14.3	Perpe
			+0.0	+0.0	+15.3	+0.0					101
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
3	12.243k	-61.4	+0.0	+0.0	+0.0	+0.0	+0.0	-46.1	-31.8	-14.3	Paral
			+0.0	+0.0	+15.3	+0.0	184				101
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
4	347.988M	-66.5	-27.4	+14.9	+0.6	+1.1	+0.0	-46.2	-31.8	-14.4	Horiz
			+1.2	+0.0	+0.0	+0.0					99
			+0.0	+0.0	+0.0	+9.7					
			+10.0	+10.2							

5	150.000k	-55.7	+0.0	+0.0	+0.0	+0.0	+0.0	-46.2	-31.8	-14.4	Paral
			+0.0	+0.0	+9.5	+0.0	360		Mid		129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
6	150.000k	-55.7	+0.0	+0.0	+0.0	+0.0	+0.0	-46.2	-31.8	-14.4	Perpe
			+0.0	+0.0	+9.5	+0.0			Mid		129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
7	299.998M	-65.4	-27.1	+13.5	+0.5	+1.1	+0.0	-46.4	-31.8	-14.6	Horiz
			+1.1	+0.0	+0.0	+0.0	359		Low		99
			+0.0	+0.0	+0.0	+9.7					
			+10.0	+10.2							
8	15.063k	-60.8	+0.0	+0.0	+0.0	+0.0	+0.0	-46.7	-31.8	-14.9	Perpe
			+0.0	+0.0	+14.1	+0.0	360		Mid		129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
9	150.000k	-56.3	+0.0	+0.0	+0.0	+0.0	+0.0	-46.8	-31.8	-15.0	Perpe
			+0.0	+0.0	+9.5	+0.0			High		129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
10	150.000k	-56.5	+0.0	+0.0	+0.0	+0.0	+0.0	-47.0	-31.8	-15.2	Perpe
			+0.0	+0.0	+9.5	+0.0	360		Low		129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
11	150.000k	-56.6	+0.0	+0.0	+0.0	+0.0	+0.0	-47.1	-31.8	-15.3	Paral
			+0.0	+0.0	+9.5	+0.0	360		High		129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
12	150.000k	-56.7	+0.0	+0.0	+0.0	+0.0	+0.0	-47.2	-31.8	-15.4	Paral
			+0.0	+0.0	+9.5	+0.0	35		Low		101
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
13	972.204M	-80.1	-27.2	+24.0	+0.9	+2.1	+0.0	-48.0	-31.8	-16.2	Horiz
			+2.4	+0.0	+0.0	+0.0			Mid		105
			+0.0	+0.0	+0.0	+9.6					
			+10.1	+10.2							
14	971.984M	-80.9	-27.2	+24.0	+0.9	+2.1	+0.0	-48.8	-31.8	-17.0	Vert
			+2.4	+0.0	+0.0	+0.0	360		Mid		115
			+0.0	+0.0	+0.0	+9.6					
			+10.1	+10.2							
15	869.602M	-79.6	-27.5	+22.8	+0.9	+2.0	+0.0	-49.3	-31.8	-17.5	Horiz
			+2.2	+0.0	+0.0	+0.0	360		High		101
			+0.0	+0.0	+0.0	+9.7					
			+10.1	+10.1							
16	900.060M	-80.7	-27.4	+23.0	+0.9	+2.0	+0.0	-50.0	-31.8	-18.2	Vert
			+2.3	+0.0	+0.0	+0.0	360		Low		100
			+0.0	+0.0	+0.0	+9.6					
			+10.1	+10.2							
17	900.060M	-80.7	-27.4	+23.0	+0.9	+2.0	+0.0	-50.0	-31.8	-18.2	Horiz
			+2.3	+0.0	+0.0	+0.0			Low		100
			+0.0	+0.0	+0.0	+9.6					
			+10.1	+10.2							

18	870.036M	-81.1	-27.5 +2.2 +0.0 +10.1	+22.8 +0.0 +0.0 +10.1	+0.9 +0.0 +0.0 +10.1	+2.0 +0.0 +0.0 +9.7	+0.0 -50.8 360	-51.0	-31.8 High	-31.8	-19.0	Vert 101
19	810.080M	-80.5	-27.8 +2.1 +0.0 +10.1	+22.5 +0.0 +0.0 +10.2	+0.8 +0.0 +0.0 +10.2	+1.9 +0.0 +0.0 +9.7	+0.0 360	-51.0	-31.8 Mid	-31.8	-19.2	Horiz 105
20	810.080M	-80.5	-27.8 +2.1 +0.0 +10.1	+22.5 +0.0 +0.0 +10.2	+0.8 +0.0 +0.0 +10.2	+1.9 +0.0 +0.0 +9.7	+0.0 -51.0	-51.0	-31.8 Mid	-31.8	-19.2	Vert 117
21	750.105M	-79.4	-28.0 +2.0 +0.0 +10.1	+21.5 +0.0 +0.0 +10.2	+0.8 +0.0 +0.0 +10.2	+1.9 +0.0 +0.0 +9.7	+0.0 360	-51.2	-31.8 Low	-31.8	-19.4	Horiz 100
22	749.805M	-79.5	-28.0 +2.0 +0.0 +10.1	+21.5 +0.0 +0.0 +10.2	+0.8 +0.0 +0.0 +10.2	+1.9 +0.0 +0.0 +9.7	+0.0 -51.3	-51.3	-31.8 Low	-31.8	-19.5	Vert 100
23	300.004M	-70.4	-27.1 +1.1 +0.0 +10.0	+13.5 +0.0 +0.0 +10.2	+0.5 +0.0 +0.0 +10.2	+1.1 +0.0 +0.0 +9.7	+0.0 -10	-51.4	-31.8 Low	-31.8	-19.6	Vert 187
24	323.986M	-71.2	-27.2 +1.2 +0.0 +10.0	+14.2 +0.0 +0.0 +10.2	+0.5 +0.0 +0.0 +10.2	+1.1 +0.0 +0.0 +9.7	+0.0 -51.5	-51.5	-31.8 Mid	-31.8	-19.7	Horiz 99
25	348.004M	-73.0	-27.4 +1.2 +0.0 +10.0	+14.9 +0.0 +0.0 +10.2	+0.6 +0.0 +0.0 +10.2	+1.1 +0.0 +0.0 +9.7	+0.0 360	-52.7	-31.8 High	-31.8	-20.9	Vert 190
26	648.042M	-78.8	-28.3 +1.8 +0.0 +10.1	+20.2 +0.0 +0.0 +10.2	+0.7 +0.0 +0.0 +10.2	+1.7 +0.0 +0.0 +9.7	+0.0 -52.7	-52.7	-31.8 Mid	-31.8	-20.9	Horiz 99
27	600.115M	-79.4	-28.3 +1.7 +0.0 +10.1	+20.0 +0.0 +0.0 +10.2	+0.7 +0.0 +0.0 +10.2	+1.6 +0.0 +0.0 +9.7	+0.0 -16	-53.7	-31.8 Low	-31.8	-21.9	Horiz 105
28	600.220M	-79.6	-28.3 +1.7 +0.0 +10.1	+20.0 +0.0 +0.0 +10.2	+0.7 +0.0 +0.0 +10.2	+1.6 +0.0 +0.0 +9.7	+0.0 376	-53.9	-31.8 Low	-31.8	-22.1	Vert 105
29	696.036M	-80.5	-28.2 +1.9 +0.0 +10.0	+20.5 +0.0 +0.0 +10.2	+0.8 +0.0 +0.0 +10.2	+1.7 +0.0 +0.0 +9.7	+0.0 360	-53.9	-31.8 High	-31.8	-22.1	Vert 101
30	696.024M	-80.7	-28.2 +1.9 +0.0 +10.0	+20.5 +0.0 +0.0 +10.2	+0.8 +0.0 +0.0 +10.2	+1.7 +0.0 +0.0 +9.7	+0.0 -54.1	-54.1	-31.8 High	-31.8	-22.3	Horiz 99


31	648.016M	-81.3	-28.3	+20.2	+0.7	+1.7	+0.0	-55.2	-31.8	-23.4	Vert
			+1.8	+0.0	+0.0	+0.0	360		Mid		120
			+0.0	+0.0	+0.0	+9.7					
			+10.1	+10.2							
32	449.968M	-78.2	-28.1	+17.3	+0.6	+1.4	+0.0	-55.5	-31.8	-23.7	Vert
			+1.5	+0.0	+0.0	+0.0	360		Low		99
			+0.0	+0.0	+0.0	+9.7					
			+10.1	+10.2							
33	485.992M	-79.2	-28.2	+18.0	+0.7	+1.4	+0.0	-55.7	-31.8	-23.9	Horiz
			+1.6	+0.0	+0.0	+0.0	360		Mid		101
			+0.0	+0.0	+0.0	+9.7					
			+10.1	+10.2							
34	485.992M	-79.2	-28.2	+18.0	+0.7	+1.4	+0.0	-55.7	-31.8	-23.9	Vert
			+1.6	+0.0	+0.0	+0.0			Mid		99
			+0.0	+0.0	+0.0	+9.7					
			+10.1	+10.2							
35	522.004M	-79.9	-28.2	+18.6	+0.7	+1.5	+0.0	-55.7	-31.8	-23.9	Horiz
			+1.7	+0.0	+0.0	+0.0	360		High		103
			+0.0	+0.0	+0.0	+9.7					
			+10.0	+10.2							
36	450.030M	-78.5	-28.1	+17.3	+0.6	+1.4	+0.0	-55.8	-31.8	-24.0	Horiz
			+1.5	+0.0	+0.0	+0.0	360		Low		108
			+0.0	+0.0	+0.0	+9.7					
			+10.1	+10.2							
37	173.250M	-69.9	-27.4	+9.7	+0.4	+0.8	+0.0	-55.9	-31.8	-24.1	Horiz
			+0.8	+0.0	+0.0	+0.0	376		High		132
			+0.0	+0.0	+0.0	+9.5					
			+10.0	+10.2							
38	522.004M	-80.4	-28.2	+18.6	+0.7	+1.5	+0.0	-56.2	-31.8	-24.4	Vert
			+1.7	+0.0	+0.0	+0.0			High		140
			+0.0	+0.0	+0.0	+9.7					
			+10.0	+10.2							
39	16.050k	-70.0	+0.0	+0.0	+0.0	+0.0	+0.0	-56.3	-31.8	-24.5	Paral
			+0.0	+0.0	+13.7	+0.0			High		129
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0							
40	174.740M	-70.2	-27.4	+9.5	+0.4	+0.8	+0.0	-56.4	-31.8	-24.6	Horiz
			+0.8	+0.0	+0.0	+0.0	376		High		132
			+0.0	+0.0	+0.0	+9.5					
			+10.0	+10.2							
41	323.968M	-77.1	-27.2	+14.2	+0.5	+1.1	+0.0	-57.4	-31.8	-25.6	Vert
			+1.2	+0.0	+0.0	+0.0	360		Mid		99
			+0.0	+0.0	+0.0	+9.7					
			+10.0	+10.2							
42	161.225M	-74.7	-27.5	+10.8	+0.4	+0.8	+0.0	-59.8	-31.8	-28.0	Horiz
			+0.8	+0.0	+0.0	+0.0	344		Mid		99
			+0.0	+0.0	+0.0	+9.4					
			+10.0	+10.2							
43	174.768M	-73.7	-27.4	+9.5	+0.4	+0.8	+0.0	-59.9	-31.8	-28.1	Vert
			+0.8	+0.0	+0.0	+0.0			High		192
			+0.0	+0.0	+0.0	+9.5					
			+10.0	+10.2							

44	173.264M	-74.0	-27.4 +0.8 +0.0 +10.0	+9.7 +0.0 +0.0 +10.2	+0.4 +0.0 +0.0	+0.8 +0.0 +0.0	+0.0 +0.0	-60.0 157	-31.8 Mid	-28.2 -31.8	Vert 192 99
45	161.285M	-75.1	-27.5 +0.8 +0.0 +10.0	+10.8 +0.0 +0.0 +10.2	+0.4 +0.0 +0.0	+0.8 +0.0 +0.0	+0.0 +0.0	-60.2 344	-31.8 Mid	-28.4 -28.4	Vert 99 99
46	162.765M	-74.9	-27.5 +0.8 +0.0 +10.0	+10.6 +0.0 +0.0 +10.2	+0.4 +0.0 +0.0	+0.8 +0.0 +0.0	+0.0 +0.0	-60.2 -60.4	-31.8 -31.8	-28.4 -28.6	Horiz 99
47	162.775M	-75.1	-27.5 +0.8 +0.0 +10.0	+10.6 +0.0 +0.0 +10.2	+0.4 +0.0 +0.0	+0.8 +0.0 +0.0	+0.0 +0.0	-60.4 157	-31.8 Mid	-28.6 -28.6	Vert 99
48	150.755M	-76.4	-27.6 +0.7 +0.0 +10.0	+11.5 +0.0 +0.0 +10.2	+0.4 +0.0 +0.0	+0.8 +0.0 +0.0	+0.0 +0.0	-61.0 360	-31.8 Low	-29.2 -29.2	Vert 99
49	149.295M	-76.4	-27.6 +0.7 +0.0 +10.0	+11.5 +0.0 +0.0 +10.2	+0.4 +0.0 +0.0	+0.8 +0.0 +0.0	+0.0 +0.0	-61.0	-31.8 Low	-29.2 -29.2	Vert 99
50	23.946k	-72.4	+0.0 +0.0 +0.0 +0.0	+0.0 +11.3 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0	-61.1 360	-31.8 Mid	-29.3 -29.3	Paral 129
51	1457.920M	-51.2	+0.0 +0.0 -35.2 +0.0	+0.0 +0.0 +21.3 +0.0	+1.1 +0.0 +0.3	+0.0 +1.5 +0.0	+0.0 +0.0	-62.2	-31.8 Mid	-30.4 -30.4	Vert 99
52	1740.050M	-55.7	+0.0 +0.0 -34.7 +0.0	+0.0 +0.0 +24.0 +0.0	+1.3 +0.0 +0.3	+0.0 +1.6 +0.0	+0.0 139	-63.2 High	-31.8 -31.8	-31.4 -31.4	Vert 99
53	1457.920M	-53.8	+0.0 +0.0 -35.2 +0.0	+0.0 +0.0 +21.3 +0.0	+1.1 +0.0 +0.3	+0.0 +1.5 +0.0	+0.0 360	-64.8 Mid	-31.8 -31.8	-33.0 -33.0	Horiz 99
54	1500.000M	-54.5	+0.0 +0.0 -35.1 +0.0	+0.0 +0.0 +21.4 +0.0	+1.1 +0.0 +0.3	+0.0 +1.5 +0.0	+0.0 +0.0	-65.3	-31.8 Low	-33.5 -33.5	Vert 99
55	1800.050M	-58.6	+0.0 +0.0 -34.6 +0.0	+0.0 +0.0 +24.6 +0.0	+1.3 +0.0 +0.3	+0.0 +1.6 +0.0	+0.0 360	-65.4 Mid	-31.8 -31.8	-33.6 -33.6	Vert 128
56	1739.925M	-59.1	+0.0 +0.0 -34.7 +0.0	+0.0 +0.0 +24.0 +0.0	+1.3 +0.0 +0.3	+0.0 +1.6 +0.0	+0.0 +0.0	-66.6	-31.8 High	-34.8 -34.8	Horiz 124

57	1349.945M	-55.9	+0.0	+0.0	+1.1	+0.0	+0.0	-67.6	-31.8	-35.8	Vert
			+0.0	+0.0	+0.0	+1.4	360		Low		99
		-35.4	+20.9	+0.3	+0.0						
		+0.0	+0.0								
58	1200.125M	-55.1	+0.0	+0.0	+1.0	+0.0	+0.0	-68.2	-31.8	-36.4	Vert
		+0.0	+0.0	+0.0	+1.3			Low			99
		-35.9	+20.2	+0.3	+0.0						
		+0.0	+0.0								
59	1391.960M	-57.1	+0.0	+0.0	+1.1	+0.0	+0.0	-68.6	-31.8	-36.8	Horiz
		+0.0	+0.0	+0.0	+1.4			High			113
		-35.3	+21.0	+0.3	+0.0						
		+0.0	+0.0								
60	1259.985M	-56.0	+0.0	+0.0	+1.0	+0.0	+0.0	-68.6	-31.8	-36.8	Vert
		+0.0	+0.0	+0.0	+1.3	360		Low			99
		-35.7	+20.5	+0.3	+0.0						
		+0.0	+0.0								
61	1500.000M	-58.2	+0.0	+0.0	+1.1	+0.0	+0.0	-69.0	-31.8	-37.2	Horiz
		+0.0	+0.0	+0.0	+1.5	302		Low			124
		-35.1	+21.4	+0.3	+0.0						
		+0.0	+0.0								
62	1350.000M	-57.8	+0.0	+0.0	+1.1	+0.0	+0.0	-69.5	-31.8	-37.7	Horiz
		+0.0	+0.0	+0.0	+1.4			Low			132
		-35.4	+20.9	+0.3	+0.0						
		+0.0	+0.0								
63	1619.840M	-60.9	+0.0	+0.0	+1.2	+0.0	+0.0	-70.0	-31.8	-38.2	Vert
		+0.0	+0.0	+0.0	+1.5	360		Mid			100
		-34.9	+22.8	+0.3	+0.0						
		+0.0	+0.0								
64	1619.805M	-61.2	+0.0	+0.0	+1.2	+0.0	+0.0	-70.3	-31.8	-38.5	Horiz
		+0.0	+0.0	+0.0	+1.5			Mid			101
		-34.9	+22.8	+0.3	+0.0						
		+0.0	+0.0								
65	1217.755M	-57.7	+0.0	+0.0	+1.0	+0.0	+0.0	-70.6	-31.8	-38.8	Vert
		+0.0	+0.0	+0.0	+1.3			High			104
		-35.8	+20.3	+0.3	+0.0						
		+0.0	+0.0								
66	1296.030M	-59.4	+0.0	+0.0	+1.0	+0.0	+0.0	-71.7	-31.8	-39.9	Vert
		+0.0	+0.0	+0.0	+1.3	360		Mid			103
		-35.5	+20.6	+0.3	+0.0						
		+0.0	+0.0								
67	1295.975M	-60.1	+0.0	+0.0	+1.0	+0.0	+0.0	-72.4	-31.8	-40.6	Horiz
		+0.0	+0.0	+0.0	+1.3			Mid			100
		-35.5	+20.6	+0.3	+0.0						
		+0.0	+0.0								
68	1134.040M	-59.3	+0.0	+0.0	+1.0	+0.0	+0.0	-72.9	-31.8	-41.1	Vert
		+0.0	+0.0	+0.0	+1.3			Mid			109
		-36.2	+20.0	+0.3	+0.0						
		+0.0	+0.0								
69	1217.960M	-60.1	+0.0	+0.0	+1.0	+0.0	+0.0	-73.0	-31.8	-41.2	Horiz
		+0.0	+0.0	+0.0	+1.3	360		High			108
		-35.8	+20.3	+0.3	+0.0						
		+0.0	+0.0								

70	1199.760M	-60.2	+0.0	+0.0	+1.0	+0.0	+0.0	-73.3	-31.8	-41.5	Horiz
			+0.0	+0.0	+0.0	+1.3	360		Low		99
		-35.9	+20.2	+0.3	+0.0						
		+0.0	+0.0								
71	1044.170M	-58.5	+0.0	+0.0	+0.9	+0.0	+0.0	-73.3	-31.8	-41.5	Horiz
		+0.0	+0.0	+0.0	+1.2				High		99
		-36.6	+19.5	+0.2	+0.0						
		+0.0	+0.0								
72	1050.075M	-59.0	+0.0	+0.0	+0.9	+0.0	+0.0	-73.6	-31.8	-41.8	Vert
		+0.0	+0.0	+0.0	+1.2	193			Low		99
		-36.5	+19.6	+0.2	+0.0						
		+0.0	+0.0								
73	1049.950M	-59.7	+0.0	+0.0	+0.9	+0.0	+0.0	-74.3	-31.8	-42.5	Horiz
		+0.0	+0.0	+0.0	+1.2				Low		99
		-36.5	+19.6	+0.2	+0.0						
		+0.0	+0.0								
74	1133.950M	-61.2	+0.0	+0.0	+1.0	+0.0	+0.0	-74.8	-31.8	-43.0	Horiz
		+0.0	+0.0	+0.0	+1.3	360			Mid		125
		-36.2	+20.0	+0.3	+0.0						
		+0.0	+0.0								
75	1044.170M	-60.7	+0.0	+0.0	+0.9	+0.0	+0.0	-75.5	-31.8	-43.7	Vert
		+0.0	+0.0	+0.0	+1.2	360			High		99
		-36.6	+19.5	+0.2	+0.0						
		+0.0	+0.0								
76	24.000M	-85.0	+0.0	+0.0	+0.1	+0.0	+0.0	-78.5	-31.8	-46.7	Paral
		+0.0	+0.0	+6.2	+0.2				Low		101
		+0.0	+0.0	+0.0	+0.0						
		+0.0	+0.0								
77	24.000M	-85.1	+0.0	+0.0	+0.1	+0.0	+0.0	-78.6	-31.8	-46.8	Paral
		+0.0	+0.0	+6.2	+0.2	360			Mid		129
		+0.0	+0.0	+0.0	+0.0						
		+0.0	+0.0								
78	24.000M	-85.4	+0.0	+0.0	+0.1	+0.0	+0.0	-78.9	-31.8	-47.1	Paral
		+0.0	+0.0	+6.2	+0.2	360			High		129
		+0.0	+0.0	+0.0	+0.0						
		+0.0	+0.0								
79	24.000M	-87.1	+0.0	+0.0	+0.1	+0.0	+0.0	-80.6	-31.8	-48.8	Perpe
		+0.0	+0.0	+6.2	+0.2				Mid		129
		+0.0	+0.0	+0.0	+0.0						
		+0.0	+0.0								
80	24.000M	-87.4	+0.0	+0.0	+0.1	+0.0	+0.0	-80.9	-31.8	-49.1	Perpe
		+0.0	+0.0	+6.2	+0.2	360			Low		129
		+0.0	+0.0	+0.0	+0.0						
		+0.0	+0.0								
81	24.000M	-88.7	+0.0	+0.0	+0.1	+0.0	+0.0	-82.2	-31.8	-50.4	Perpe
		+0.0	+0.0	+6.2	+0.2				High		129
		+0.0	+0.0	+0.0	+0.0						
		+0.0	+0.0								

CKC Laboratories, Inc. Date: 3/20/2013 Time: 10:05:27 Rothenbuhler Engineering WO#: 93918
Test Distance: 3 Meters Sequence#: 13 Perpendicular
Rothenbuhler Engineering Controller P/N: 1678-1-V2

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • (425) 402-1717

Customer: **Rothenbuhler Engineering**
 Specification: **47 CFR 90.210(d) Spurious Emissions**
 Work Order #: **93918** Date: 3/19/2013
 Test Type: **Radiated Scan** Time: 14:21:38
 Equipment: **Test box** Sequence#: 12
 Manufacturer: Rothenbuhler Engineering Tested By: Steven Pittsford
 Model: 1678-4-V2
 S/N: 00002

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02308	Preamp	8447D	4/3/2012	4/3/2014
T2	AN01993	Biconilog Antenna	CBL6111C	3/2/2012	3/2/2014
T3	AN03227	Cable	32026-29080-29080-84	5/2/2011	5/2/2013
T4	ANP05360	Cable	RG214	12/3/2012	12/3/2014
T5	ANP05366	Cable	RG-214	10/14/2011	10/14/2013
	AN02871	Spectrum Analyzer	E4440A	4/22/2011	4/22/2013
T6	AN00052	Loop Antenna	6502	5/16/2012	5/16/2014
T7	ANP05965	Cable	Various	8/26/2011	8/26/2013
T8	AN01271	Preamp	83017A	8/18/2011	8/18/2013
T9	AN01467	Horn Antenna-ANSI C63.5 Calibration	3115	10/19/2011	10/19/2013
T10	AN03123	Cable	32026-2-29801-12	10/14/2011	10/14/2013

Equipment Under Test (* = EUT):

Function	Manufacturer	Model #	S/N
Test box*	Rothenbuhler Engineering	1678-4-V2	00002

Support Devices:

Function	Manufacturer	Model #	S/N
Laptop	DELL	Latitude D810	NA
Mini Controller	Rothenbuhler Engineering	1678-6-V2	00002
USB 2.0 Kit	S.I. Tech	2172	AN03081
Power Supply	HQ	PS50050	0-50VDC/5A

Test Conditions / Notes:

Temp: 21°C, Humidity: 34%, Pressure: 102.6kPa
Frequency Range: 9k-2GHz
Test Method: ANSI 63.4 (2003)
Mask D
EUT is in the center of the turntable 80cm above the ground plane
EUT is communicating with laptop through USB to fiber adaptor
EUT is in operational mode.
EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.
Only highest emissions will be recorded.
RBW: 200Hz 9kHz - 150kHz; 10kHz 150kHz - 30MHz; 100kHz 30MHz - 1GHz, 1MHz; 1-2GHz
VBW: 10x RBW
Sweep: Auto

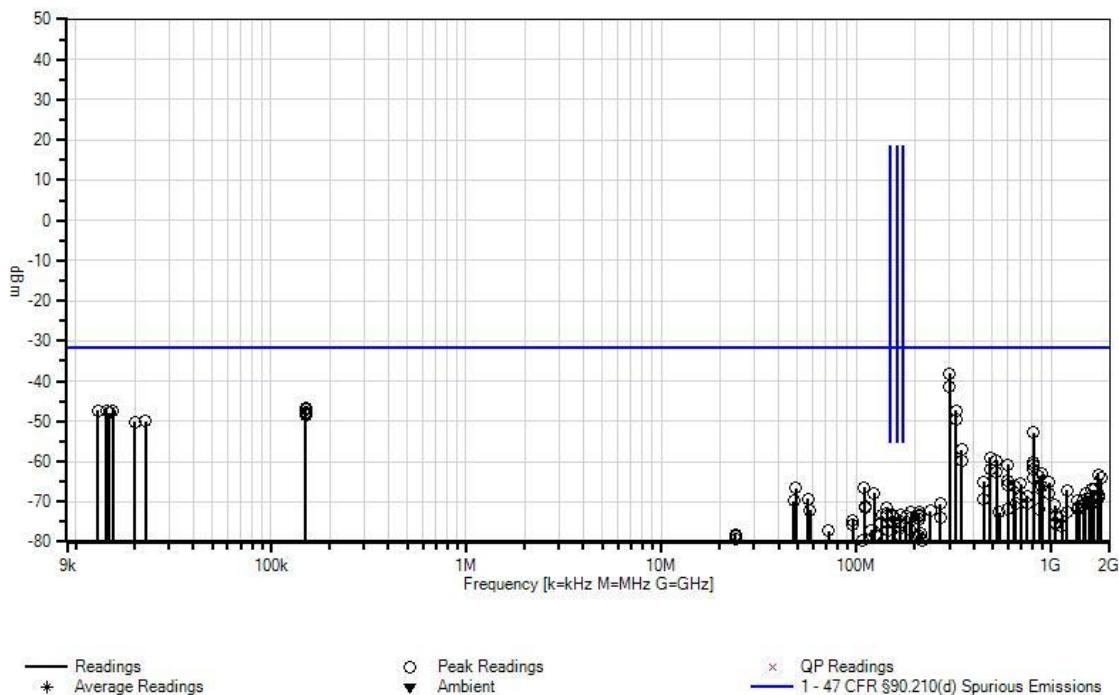
Ext Attn: 0 dB

Measurement Data:			Reading listed by margin.				Test Distance: 3 Meters					
#	Freq	Rdng	T1 T5 T9	T2 T6 T10	T3 T7	T4 T8	Dist	Corr	Spec	Margin	Polar	
			MHz	dB μ V	dB	dB	dB	Table	dBm	dBm	dB	Ant
1	299.995M	-27.2	-27.1 +1.1 +0.0	+13.5 +0.0 +0.0	+0.5 +0.0 +0.0	+1.1 +0.0 +0.0	+0.0 243	-38.1	-31.8	-6.3	Vert	
2	299.995M	-30.5	-27.1 +1.1 +0.0	+13.5 +0.0 +0.0	+0.5 +0.0 +0.0	+1.1 +0.0 +0.0	+0.0	-41.4	-31.8	-9.6	Horiz	
3	150.000k	-56.3	+0.0 +0.0 +0.0	+0.0 +9.5 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-46.8	-31.8	-15.0	Perpe	
4	150.000k	-56.7	+0.0 +0.0 +0.0	+0.0 +9.5 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-47.2	-31.8	-15.4	Paral	
5	15.486k	-61.2	+0.0 +0.0 +0.0	+0.0 +13.9 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-47.3	-31.8	-15.5	Paral	
6	324.010M	-37.1	-27.2 +1.2 +0.0	+14.2 +0.0 +0.0	+0.5 +0.0 +0.0	+1.1 +0.0 +0.0	+0.0 89	-47.3	-31.8	-15.5	Vert	
7	12.948k	-62.3	+0.0 +0.0 +0.0	+0.0 +15.0 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-47.3	-31.8	-15.5	Perpe	
8	14.358k	-61.8	+0.0 +0.0 +0.0	+0.0 +14.4 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-47.4	-31.8	-15.6	Perpe	
9	150.000k	-57.1	+0.0 +0.0 +0.0	+0.0 +9.5 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-47.6	-31.8	-15.8	Paral	
10	150.000k	-57.4	+0.0 +0.0 +0.0	+0.0 +9.5 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-47.9	-31.8	-16.1	Perpe	
11	14.781k	-62.1	+0.0 +0.0 +0.0	+0.0 +14.2 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-47.9	-31.8	-16.1	Perpe	
12	150.000k	-57.6	+0.0 +0.0 +0.0	+0.0 +9.5 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-48.1	-31.8	-16.3	Paral	
13	150.000k	-58.1	+0.0 +0.0 +0.0	+0.0 +9.5 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-48.6	-31.8	-16.8	Perpe	
14	324.002M	-39.2	-27.2 +1.2 +0.0	+14.2 +0.0 +0.0	+0.5 +0.0 +0.0	+1.1 +0.0 +0.0	+0.0 342	-49.4	-31.8	-17.6	Horiz	
15	22.818k	-61.5	+0.0 +0.0 +0.0	+0.0 +11.6 +0.0	+0.0 +0.0 +0.0	+0.0 +0.0 +0.0	+0.0	-49.9	-31.8	-18.1	Paral	
											117	

16	20.139k	-62.5	+0.0	+0.0	+0.0	+0.0	+0.0	-50.1	-31.8	-18.3	Paral
		+0.0	+12.4	+0.0	+0.0	360			High		117
		+0.0	+0.0								
17	810.002M	-52.4	-27.8	+22.5	+0.8	+1.9	+0.0	-52.9	-31.8	-21.1	Horiz
		+2.1	+0.0	+0.0	+0.0	360			Mid		99
		+0.0	+0.0								
18	347.990M	-47.5	-27.4	+14.9	+0.6	+1.1	+0.0	-57.1	-31.8	-25.3	Vert
		+1.2	+0.0	+0.0	+0.0				High		149
		+0.0	+0.0								
19	486.005M	-52.6	-28.2	+18.0	+0.7	+1.4	+0.0	-59.1	-31.8	-27.3	Vert
		+1.6	+0.0	+0.0	+0.0	330			Mid		129
		+0.0	+0.0								
20	521.990M	-54.0	-28.2	+18.6	+0.7	+1.5	+0.0	-59.7	-31.8	-27.9	Vert
		+1.7	+0.0	+0.0	+0.0	360			High		99
		+0.0	+0.0								
21	347.990M	-50.3	-27.4	+14.9	+0.6	+1.1	+0.0	-59.9	-31.8	-28.1	Horiz
		+1.2	+0.0	+0.0	+0.0	360			High		108
		+0.0	+0.0								
22	810.005M	-59.6	-27.8	+22.5	+0.8	+1.9	+0.0	-60.1	-31.8	-28.3	Vert
		+2.1	+0.0	+0.0	+0.0	360			Mid		136
		+0.0	+0.0								
23	599.995M	-56.5	-28.3	+20.0	+0.7	+1.6	+0.0	-60.8	-31.8	-29.0	Vert
		+1.7	+0.0	+0.0	+0.0	360			Low		104
		+0.0	+0.0								
24	810.048M	-60.4	-27.8	+22.5	+0.8	+1.9	+0.0	-60.9	-31.8	-29.1	Horiz
		+2.1	+0.0	+0.0	+0.0	360			High		99
		+0.0	+0.0								
25	810.010M	-61.5	-27.8	+22.5	+0.8	+1.9	+0.0	-62.0	-31.8	-30.2	Vert
		+2.1	+0.0	+0.0	+0.0				High		124
		+0.0	+0.0								
26	486.002M	-55.6	-28.2	+18.0	+0.7	+1.4	+0.0	-62.1	-31.8	-30.3	Horiz
		+1.6	+0.0	+0.0	+0.0	84			Mid		99
		+0.0	+0.0								
27	521.990M	-56.9	-28.2	+18.6	+0.7	+1.5	+0.0	-62.6	-31.8	-30.8	Horiz
		+1.7	+0.0	+0.0	+0.0				High		109
		+0.0	+0.0								
28	900.018M	-63.9	-27.4	+23.0	+0.9	+2.0	+0.0	-63.1	-31.8	-31.3	Vert
		+2.3	+0.0	+0.0	+0.0	360			Low		125
		+0.0	+0.0								
29	1739.895M	-55.8	+0.0	+0.0	+1.3	+0.0	+0.0	-63.3	-31.8	-31.5	Vert
		+0.0	+0.0	+1.6	-34.7				High		99
		+24.0	+0.3								
30	870.000M	-64.1	-27.5	+22.8	+0.9	+2.0	+0.0	-63.7	-31.8	-31.9	Horiz
		+2.2	+0.0	+0.0	+0.0	351			High		99
		+0.0	+0.0								
31	1799.928M	-57.3	+0.0	+0.0	+1.3	+0.0	+0.0	-64.1	-31.8	-32.3	Vert
		+0.0	+0.0	+1.6	-34.6				Low		108
		+24.6	+0.3								
32	810.030M	-63.6	-27.8	+22.5	+0.8	+1.9	+0.0	-64.1	-31.8	-32.3	Vert
		+2.1	+0.0	+0.0	+0.0	360			Mid		116
		+0.0	+0.0								

33	600.040M	-60.6	-28.3 +1.7 +0.0	+20.0 +0.0 +0.0	+0.7 +0.0 +0.0	+1.6 +0.0 +0.0	+0.0 360	-64.9	-31.8 Mid	-33.1	Vert 116
34	449.995M	-57.8	-28.1 +1.5 +0.0	+17.3 +0.0 +0.0	+0.6 +0.0 +0.0	+1.4 +0.0 +0.0	+0.0 +0.0	-65.1	-31.8 Low	-33.3	Vert 141
35	972.005M	-67.4	-27.2 +2.4 +0.0	+24.0 +0.0 +0.0	+0.9 +0.0 +0.0	+2.1 +0.0 +0.0	+0.0 169	-65.2	-31.8 Mid	-33.4	Vert 116
36	696.000M	-62.3	-28.2 +1.9 +0.0	+20.5 +0.0 +0.0	+0.8 +0.0 +0.0	+1.7 +0.0 +0.0	+0.0 360	-65.6	-31.8 High	-33.8	Vert 99
37	599.995M	-61.4	-28.3 +1.7 +0.0	+20.0 +0.0 +0.0	+0.7 +0.0 +0.0	+1.6 +0.0 +0.0	+0.0 +0.0	-65.7	-31.8 Low	-33.9	Horiz 147
38	648.005M	-62.2	-28.3 +1.8 +0.0	+20.2 +0.0 +0.0	+0.7 +0.0 +0.0	+1.7 +0.0 +0.0	+0.0 80	-66.1	-31.8 Mid	-34.3	Vert 99
39	648.002M	-62.3	-28.3 +1.8 +0.0	+20.2 +0.0 +0.0	+0.7 +0.0 +0.0	+1.7 +0.0 +0.0	+0.0 339	-66.2	-31.8 Mid	-34.4	Horiz 125
40	899.968M	-67.0	-27.4 +2.3 +0.0	+23.0 +0.0 +0.0	+0.9 +0.0 +0.0	+2.0 +0.0 +0.0	+0.0 +0.0	-66.2	-31.8 Low	-34.4	Horiz 176
41	110.250M	-50.8	-27.9 +0.6 +0.0	+10.7 +0.0 +0.0	+0.3 +0.0 +0.0	+0.7 +0.0 +0.0	+0.0 +0.0	-66.4	-31.8 Mid	-34.6	Vert 139
42	49.250M	-48.6	-28.0 +0.3 +0.0	+9.0 +0.0 +0.0	+0.2 +0.0 +0.0	+0.4 +0.0 +0.0	+0.0 +0.0	-66.7	-31.8 Mid	-34.9	Vert 139
43	870.000M	-67.1	-27.5 +2.2 +0.0	+22.8 +0.0 +0.0	+0.9 +0.0 +0.0	+2.0 +0.0 +0.0	+0.0 +0.0	-66.7	-31.8 High	-34.9	Vert 99
44	1649.984M	-58.3	+0.0 +0.0 +23.1	+0.0 +0.0 +0.3	+1.2 +1.6 +0.3	+0.0 -34.8 +0.0	+0.0 360	-66.9	-31.8 Low	-35.1	Vert 108
45	1619.945M	-57.9	+0.0 +0.0 +22.8	+0.0 +0.0 +0.3	+1.2 +1.5 +0.3	+0.0 -34.9 +0.0	+0.0 360	-67.0	-31.8 Mid	-35.2	Vert 113
46	1200.000M	-54.0	+0.0 +0.0 +20.2	+0.0 +0.0 +0.3	+1.0 +1.3 +0.3	+0.0 -35.9 +0.0	+0.0 +0.0	-67.1	-31.8 Low	-35.3	Vert 99
47	123.980M	-53.2	-27.8 +0.6 +0.0	+11.6 +0.0 +0.0	+0.3 +0.0 +0.0	+0.7 +0.0 +0.0	+0.0 +0.0	-67.8	-31.8 Mid	-36.0	Vert 139
48	1499.768M	-57.0	+0.0 +0.0 +21.4	+0.0 +0.0 +0.3	+1.1 +1.5 +0.3	+0.0 -35.1 +0.0	+0.0 4	-67.8	-31.8 Low	-36.0	Vert 125
49	972.002M	-70.0	-27.2 +2.4 +0.0	+24.0 +0.0 +0.0	+0.9 +0.0 +0.0	+2.1 +0.0 +0.0	+0.0 +0.0	-67.8	-31.8 Mid	-36.0	Horiz 99

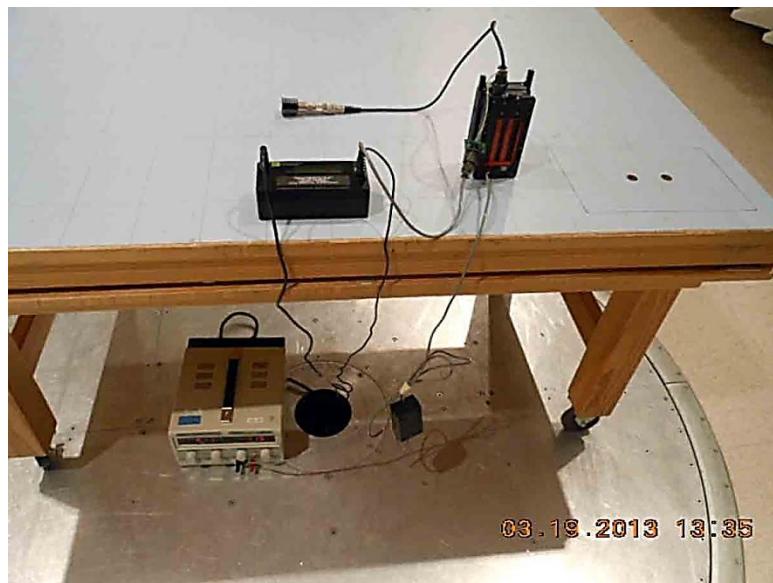
50	1740.010M	-60.7	+0.0	+0.0	+1.3	+0.0	+0.0	-68.2	-31.8	-36.4	Horiz
			+0.0	+0.0	+1.6	-34.7	360		High		99
		+24.0	+0.3								
51	750.030M	-66.8	-28.0	+21.5	+0.8	+1.9	+0.0	-68.6	-31.8	-36.8	Vert
		+2.0	+0.0	+0.0	+0.0	+0.0			Low		178
		+0.0	+0.0								
52	1740.105M	-61.4	+0.0	+0.0	+1.3	+0.0	+0.0	-68.9	-31.8	-37.1	Vert
		+0.0	+0.0	+1.6	-34.7	5			Low		108
		+24.0	+0.3								
53	1650.096M	-60.3	+0.0	+0.0	+1.2	+0.0	+0.0	-68.9	-31.8	-37.1	Horiz
		+0.0	+0.0	+1.6	-34.8				Low		99
		+23.1	+0.3								
54	696.000M	-65.7	-28.2	+20.5	+0.8	+1.7	+0.0	-69.0	-31.8	-37.2	Horiz
		+1.9	+0.0	+0.0	+0.0	+0.0	154		High		128
		+0.0	+0.0								
55	56.390M	-49.5	-28.0	+7.3	+0.2	+0.4	+0.0	-69.2	-31.8	-37.4	Vert
		+0.4	+0.0	+0.0	+0.0	+0.0			Mid		139
		+0.0	+0.0								
56	449.995M	-62.1	-28.1	+17.3	+0.6	+1.4	+0.0	-69.4	-31.8	-37.6	Horiz
		+1.5	+0.0	+0.0	+0.0	+0.0	360		Low		99
		+0.0	+0.0								
57	1457.770M	-58.8	+0.0	+0.0	+1.1	+0.0	+0.0	-69.8	-31.8	-38.0	Vert
		+0.0	+0.0	+1.5	-35.2	52			Mid		116
		+21.3	+0.3								
58	48.000M	-52.6	-28.0	+9.8	+0.2	+0.4	+0.0	-69.9	-31.8	-38.1	Vert
		+0.3	+0.0	+0.0	+0.0	+0.0	360		Low		99
		+0.0	+0.0								
59	1350.232M	-58.2	+0.0	+0.0	+1.1	+0.0	+0.0	-69.9	-31.8	-38.1	Vert
		+0.0	+0.0	+1.4	-35.4	360			Low		99
		+20.9	+0.3								
60	1566.050M	-60.3	+0.0	+0.0	+1.2	+0.0	+0.0	-70.1	-31.8	-38.3	Vert
		+0.0	+0.0	+1.5	-35.0	205			High		112
		+22.2	+0.3								
61	660.010M	-66.7	-28.3	+20.3	+0.8	+1.7	+0.0	-70.3	-31.8	-38.5	Vert
		+1.9	+0.0	+0.0	+0.0	+0.0			Mid		116
		+0.0	+0.0								
62	749.995M	-68.5	-28.0	+21.5	+0.8	+1.9	+0.0	-70.3	-31.8	-38.5	Horiz
		+2.0	+0.0	+0.0	+0.0	+0.0	360		Low		163
		+0.0	+0.0								
63	1620.075M	-61.3	+0.0	+0.0	+1.2	+0.0	+0.0	-70.4	-31.8	-38.6	Horiz
		+0.0	+0.0	+1.5	-34.9				Mid		112
		+22.8	+0.3								
64	270.048M	-59.1	-27.1	+12.9	+0.5	+1.1	+0.0	-70.6	-31.8	-38.8	Horiz
		+1.1	+0.0	+0.0	+0.0	+0.0			High		99
		+0.0	+0.0								
65	1500.144M	-59.8	+0.0	+0.0	+1.1	+0.0	+0.0	-70.6	-31.8	-38.8	Horiz
		+0.0	+0.0	+1.5	-35.1	339			Low		99
		+21.4	+0.3								
66	1457.875M	-59.9	+0.0	+0.0	+1.1	+0.0	+0.0	-70.9	-31.8	-39.1	Horiz
		+0.0	+0.0	+1.5	-35.2	360			Mid		99
		+21.3	+0.3								


67	1043.925M	-56.1	+0.0	+0.0	+0.9	+0.0	+0.0	-70.9	-31.8	-39.1	Vert
		+0.0	+0.0	+1.2	-36.6	-15			High		99
		+19.5	+0.2								
68	110.880M	-55.5	-27.9	+10.8	+0.3	+0.7	+0.0	-71.0	-31.8	-39.2	Vert
		+0.6	+0.0	+0.0	+0.0	360			Low		99
		+0.0	+0.0								
69	1392.050M	-59.9	+0.0	+0.0	+1.1	+0.0	+0.0	-71.4	-31.8	-39.6	Vert
		+0.0	+0.0	+1.4	-35.3	19			High		99
		+21.0	+0.3								
70	143.904M	-57.4	-27.6	+11.6	+0.4	+0.7	+0.0	-71.6	-31.8	-39.8	Vert
		+0.7	+0.0	+0.0	+0.0				High		99
		+0.0	+0.0								
71	110.928M	-56.1	-27.9	+10.8	+0.3	+0.7	+0.0	-71.6	-31.8	-39.8	Vert
		+0.6	+0.0	+0.0	+0.0				High		99
		+0.0	+0.0								
72	870.000M	-72.1	-27.5	+22.8	+0.9	+2.0	+0.0	-71.7	-31.8	-39.9	Vert
		+2.2	+0.0	+0.0	+0.0	360			Mid		116
		+0.0	+0.0								
73	600.040M	-67.4	-28.3	+20.0	+0.7	+1.6	+0.0	-71.7	-31.8	-39.9	Horiz
		+1.7	+0.0	+0.0	+0.0	137			Mid		177
		+0.0	+0.0								
74	1349.912M	-60.0	+0.0	+0.0	+1.1	+0.0	+0.0	-71.7	-31.8	-39.9	Horiz
		+0.0	+0.0	+1.4	-35.4				Low		125
		+20.9	+0.3								
75	58.224M	-52.2	-28.0	+7.0	+0.2	+0.5	+0.0	-72.1	-31.8	-40.3	Vert
		+0.4	+0.0	+0.0	+0.0				High		99
		+0.0	+0.0								
76	239.952M	-59.5	-27.1	+11.8	+0.5	+1.0	+0.0	-72.3	-31.8	-40.5	Horiz
		+1.0	+0.0	+0.0	+0.0				High		99
		+0.0	+0.0								
77	1200.032M	-59.4	+0.0	+0.0	+1.0	+0.0	+0.0	-72.5	-31.8	-40.7	Horiz
		+0.0	+0.0	+1.3	-35.9	359			Low		103
		+20.2	+0.3								
78	191.980M	-56.5	-27.3	+9.0	+0.4	+0.9	+0.0	-72.7	-31.8	-40.9	Horiz
		+0.8	+0.0	+0.0	+0.0				Mid		149
		+0.0	+0.0								
79	210.000M	-57.3	-27.3	+9.7	+0.4	+0.9	+0.0	-72.7	-31.8	-40.9	Horiz
		+0.9	+0.0	+0.0	+0.0				Low		151
		+0.0	+0.0								
80	539.970M	-67.3	-28.3	+19.0	+0.7	+1.5	+0.0	-72.7	-31.8	-40.9	Vert
		+1.7	+0.0	+0.0	+0.0	360			Mid		116
		+0.0	+0.0								
81	144.000M	-58.7	-27.6	+11.6	+0.4	+0.7	+0.0	-72.9	-31.8	-41.1	Vert
		+0.7	+0.0	+0.0	+0.0	360			Low		99
		+0.0	+0.0								
82	168.580M	-57.8	-27.4	+10.1	+0.4	+0.8	+0.0	-73.1	-31.8	-41.3	Horiz
		+0.8	+0.0	+0.0	+0.0				Mid		149
		+0.0	+0.0								
83	210.000M	-57.9	-27.3	+9.7	+0.4	+0.9	+0.0	-73.3	-31.8	-41.5	Horiz
		+0.9	+0.0	+0.0	+0.0				High		99
		+0.0	+0.0								

84	153.120M	-59.1	-27.6	+11.3	+0.4	+0.8	+0.0	-73.4	-31.8	-41.6	Vert
			+0.8	+0.0	+0.0	+0.0			High		99
			+0.0	+0.0							
85	135.830M	-59.1	-27.7	+11.7	+0.3	+0.7	+0.0	-73.4	-31.8	-41.6	Vert
			+0.7	+0.0	+0.0	+0.0			Mid		139
			+0.0	+0.0							
86	209.920M	-58.1	-27.3	+9.7	+0.4	+0.9	+0.0	-73.5	-31.8	-41.7	Horiz
			+0.9	+0.0	+0.0	+0.0			Mid		149
			+0.0	+0.0							
87	1134.040M	-60.0	+0.0	+0.0	+1.0	+0.0	+0.0	-73.6	-31.8	-41.8	Vert
			+0.0	+0.0	+1.3	-36.2	360		Mid		108
			+20.0	+0.3							
88	179.960M	-57.3	-27.4	+9.1	+0.4	+0.8	+0.0	-73.6	-31.8	-41.8	Horiz
			+0.8	+0.0	+0.0	+0.0	333		Mid		163
			+0.0	+0.0							
89	153.960M	-59.5	-27.6	+11.3	+0.4	+0.8	+0.0	-73.8	-31.8	-42.0	Vert
			+0.8	+0.0	+0.0	+0.0	360		Low		151
			+0.0	+0.0							
90	1050.152M	-59.2	+0.0	+0.0	+0.9	+0.0	+0.0	-73.8	-31.8	-42.0	Vert
			+0.0	+0.0	+1.2	-36.5	360		Low		106
			+19.6	+0.2							
91	144.010M	-59.6	-27.6	+11.6	+0.4	+0.7	+0.0	-73.8	-31.8	-42.0	Horiz
			+0.7	+0.0	+0.0	+0.0			Mid		203
			+0.0	+0.0							
92	269.970M	-62.5	-27.1	+12.9	+0.5	+1.1	+0.0	-74.0	-31.8	-42.2	Vert
			+1.1	+0.0	+0.0	+0.0			Mid		99
			+0.0	+0.0							
93	189.000M	-57.9	-27.3	+9.0	+0.4	+0.9	+0.0	-74.1	-31.8	-42.3	Vert
			+0.8	+0.0	+0.0	+0.0	360		Low		151
			+0.0	+0.0							
94	210.050M	-59.1	-27.3	+9.7	+0.4	+0.9	+0.0	-74.5	-31.8	-42.7	Horiz
			+0.9	+0.0	+0.0	+0.0	7		Mid		222
			+0.0	+0.0							
95	96.000M	-57.7	-27.9	+9.6	+0.3	+0.6	+0.0	-74.6	-31.8	-42.8	Horiz
			+0.5	+0.0	+0.0	+0.0			Low		125
			+0.0	+0.0							
96	167.950M	-59.5	-27.5	+10.1	+0.4	+0.8	+0.0	-74.9	-31.8	-43.1	Vert
			+0.8	+0.0	+0.0	+0.0			Mid		99
			+0.0	+0.0							
97	155.970M	-60.9	-27.5	+11.1	+0.4	+0.8	+0.0	-75.3	-31.8	-43.5	Horiz
			+0.8	+0.0	+0.0	+0.0			Mid		203
			+0.0	+0.0							
98	134.160M	-61.1	-27.7	+11.7	+0.3	+0.7	+0.0	-75.4	-31.8	-43.6	Horiz
			+0.7	+0.0	+0.0	+0.0			Low		125
			+0.0	+0.0							
99	1049.760M	-60.8	+0.0	+0.0	+0.9	+0.0	+0.0	-75.4	-31.8	-43.6	Horiz
			+0.0	+0.0	+1.2	-36.5			Low		99
			+19.6	+0.2							
100	1043.925M	-60.7	+0.0	+0.0	+0.9	+0.0	+0.0	-75.5	-31.8	-43.7	Horiz
			+0.0	+0.0	+1.2	-36.6	369		High		99
			+19.5	+0.2							

101	96.096M	-58.7	-27.9	+9.6	+0.3	+0.6	+0.0	-75.6	-31.8	-43.8	Horiz
			+0.5	+0.0	+0.0	+0.0	360		High		162
			+0.0	+0.0							
102	1134.040M	-62.5	+0.0	+0.0	+1.0	+0.0	+0.0	-76.1	-31.8	-44.3	Horiz
			+0.0	+0.0	+1.3	-36.2	39		Mid		99
			+20.0	+0.3							
103	168.096M	-61.1	-27.5	+10.1	+0.4	+0.8	+0.0	-76.5	-31.8	-44.7	Horiz
			+0.8	+0.0	+0.0	+0.0	349		High		162
			+0.0	+0.0							
104	188.256M	-60.5	-27.3	+9.0	+0.4	+0.8	+0.0	-76.8	-31.8	-45.0	Vert
			+0.8	+0.0	+0.0	+0.0	360		High		99
			+0.0	+0.0							
105	144.580M	-63.0	-27.6	+11.6	+0.4	+0.7	+0.0	-77.2	-31.8	-45.4	Vert
			+0.7	+0.0	+0.0	+0.0			Mid		139
			+0.0	+0.0							
106	120.000M	-62.4	-27.8	+11.4	+0.3	+0.7	+0.0	-77.2	-31.8	-45.4	Horiz
			+0.6	+0.0	+0.0	+0.0			Low		125
			+0.0	+0.0							
107	71.990M	-57.4	-28.0	+6.9	+0.3	+0.5	+0.0	-77.3	-31.8	-45.5	Horiz
			+0.4	+0.0	+0.0	+0.0			Mid		203
			+0.0	+0.0							
108	214.320M	-62.7	-27.2	+10.0	+0.4	+0.9	+0.0	-77.7	-31.8	-45.9	Vert
			+0.9	+0.0	+0.0	+0.0	360		High		99
			+0.0	+0.0							
109	124.250M	-63.7	-27.8	+11.7	+0.3	+0.7	+0.0	-78.2	-31.8	-46.4	Horiz
			+0.6	+0.0	+0.0	+0.0			Mid		203
			+0.0	+0.0							
110	24.000M	-84.7	+0.0	+0.0	+0.1	+0.0	+0.0	-78.2	-31.8	-46.4	Paral
			+0.0	+6.2	+0.2	+0.0	360		Mid		117
			+0.0	+0.0							
111	24.000M	-84.8	+0.0	+0.0	+0.1	+0.0	+0.0	-78.3	-31.8	-46.5	Paral
			+0.0	+6.2	+0.2	+0.0			High		117
			+0.0	+0.0							
112	167.952M	-63.1	-27.5	+10.1	+0.4	+0.8	+0.0	-78.5	-31.8	-46.7	Vert
			+0.8	+0.0	+0.0	+0.0	21		High		99
			+0.0	+0.0							
113	24.000M	-85.0	+0.0	+0.0	+0.1	+0.0	+0.0	-78.5	-31.8	-46.7	Perpe
			+0.0	+6.2	+0.2	+0.0			Mid		117
			+0.0	+0.0							
114	168.000M	-63.2	-27.5	+10.1	+0.4	+0.8	+0.0	-78.6	-31.8	-46.8	Vert
			+0.8	+0.0	+0.0	+0.0	360		Low		151
			+0.0	+0.0							
115	210.030M	-63.2	-27.3	+9.7	+0.4	+0.9	+0.0	-78.6	-31.8	-46.8	Vert
			+0.9	+0.0	+0.0	+0.0			Mid		99
			+0.0	+0.0							
116	24.000M	-85.2	+0.0	+0.0	+0.1	+0.0	+0.0	-78.7	-31.8	-46.9	Paral
			+0.0	+6.2	+0.2	+0.0			Low		117
			+0.0	+0.0							
117	24.000M	-85.8	+0.0	+0.0	+0.1	+0.0	+0.0	-79.3	-31.8	-47.5	Perpe
			+0.0	+6.2	+0.2	+0.0	360		High		117
			+0.0	+0.0							

118	217.440M	-64.8	-27.2	+10.2	+0.4	+0.9	+0.0	-79.6	-31.8	-47.8	Vert
		+0.9	+0.0	+0.0	+0.0	+0.0	360		Low		151
		+0.0	+0.0								
119	106.830M	-63.7	-27.9	+10.5	+0.3	+0.6	+0.0	-79.6	-31.8	-47.8	Horiz
		+0.6	+0.0	+0.0	+0.0	+0.0			Mid		203
		+0.0	+0.0								
120	270.048M	-69.1	-27.1	+12.9	+0.5	+1.1	+0.0	-80.6	-31.8	-48.8	Vert
		+1.1	+0.0	+0.0	+0.0	+0.0	360		High		99
		+0.0	+0.0								
121	24.000M	-87.6	+0.0	+0.0	+0.1	+0.0	+0.0	-81.1	-31.8	-49.3	Perpe
		+0.0	+6.2	+0.2	+0.0	+0.0	360		Low		117
		+0.0	+0.0								
122	72.000M	-62.5	-28.0	+6.9	+0.3	+0.5	+0.0	-82.4	-31.8	-50.6	Horiz
		+0.4	+0.0	+0.0	+0.0	+0.0			Low		125
		+0.0	+0.0								


CKC Laboratories, Inc. Date: 3/19/2013 Time: 14:21:38 Rothenbuhler Engineering WO#: 93918
 Test Distance: 3 Meters Sequence#: 12 Vert
 Rothenbuhler Engineering Testbox P/N: 1678-4-V2

Test Setup Photos

1678-1-V2 Battery Setup

1678-1-V2, PS1

1678-1-V2, PS1

1678-4-V2, PS1

1678-4-V2, PS2

Frequency Stability

Test Conditions / Setup

Temp: 21°

Humidity: 34%

Pressure: 102.3kPa

Frequency Range: 150-174MHz

EUT's RF output is connected to the Spectrum Analyzer.

For 1678-4-V2: EUT is connected to a laptop and to a controller.

For 1678-1-V2: EUT is connected to a laptop and to a test box.

EUT is in operational mode.

2 EUTs are located inside the Temperature chamber.

EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.

1678-1-V2 has identical transceiver circuitry as the 1678-2-V2, 1678-3-V2 & 1678-6-V2.

The 1678-1-V2 is worst case of the units and is representative of 1678-2-V2, 1678-3-V2 & 1678-6-V2.

The 1678-1-V2, 1678-2-V2, 1678-3-V2 & 1678-6-V2 have the ability to transmit at 5W or 2W. 5W will be tested.

EUTs are Mobile stations with 12.5kHz channels.

Engineer Name: S. Pittsford

Test Equipment

Asset #	Description	Model	Manufacturer	Cal Date	Cal Due
03029	Thermometer, Digital Infrared	Fluke	566	2/1/2013	2/1/2015
02757	Temperature Chamber	Bemco	F100/350-8	1/22/2013	1/22/2015
02872	Spectrum Analyzer	Agilent	E4440A	7/23/2011	7/23/2013
P06219	Attenuator	Narda	768-10	3/22/2012	3/22/2014
P06217	Attenuator	Narda	768-10	3/22/2012	3/22/2014
P05759	Attenuator	Pasternack	PE7010-20	2/6/2012	2/6/2014

Test Data

Customer:		Rothenbuhler Engineering							
WO#:		94091							
Date:		21-Mar-13							
Test Engineer:		S. Pittsford							
Test Specification		FCC Part 90.213 & RSS 119 Issue 11 para 5.3							
Device Model #:		Model 1678-1-V2 is a representative of Models: 1678-2-V2, 1678-3-V2 & 1678-6-V2							
Operating Voltage:			8.5	VDC/VAC					
Frequency Limit:			5	PPM					
Temperature Variations									
		Channel 1 (MHz)	Dev. (PPM)	Channel 2 (MHz)	Dev. (PPM)	Channel 3 (MHz)	Dev. (PPM)		
Channel Frequency:		150		162		174			
Temp (C)	Voltage								
-30	8.5	150.00007	0.44667	162.00000	0.00000	174.00000	0.00000		
-20	8.5	150.00007	0.46667	162.00008	0.48148	174.00006	0.32759		
-10	8.5	150.00008	0.50000	162.00000	0.00000	174.00000	0.00000		
0	8.5	150.00000	0.00000	162.00007	0.41975	174.00006	0.35632		
10	8.5	150.00007	0.45333	162.00008	0.47531	174.00007	0.38506		
20	8.5	150.00006	0.40000	162.00007	0.41975	174.00006	0.32759		
30	8.5	150.00005	0.32000	162.00005	0.32716	174.00003	0.18966		
40	8.5	150.00006	0.38667	162.00006	0.38272	174.00004	0.20115		
50	8.5	150.00009	0.56667	162.00010	0.58642	174.00008	0.47701		
60	8.5	150.00012	0.81333	162.00013	0.81481	174.00012	0.67816		
Voltage Variations ($\pm 15\%$)									
20	7.2	150.00006	0.40000	162.00007	0.40123	174.00005	0.30460		
20	8.5	150.00006	0.40000	162.00007	0.41975	174.00057	3.27586		
20	9.8	150.00006	0.40000	162.00007	0.45062	174.00006	0.35632		
Max Deviation (PPM)			0.81333		0.81481		3.27586		
			PASS		PASS		PASS		

Customer:		Rothenbuhler Engineering						
WO#:		94091						
Date:		21-Mar-13						
Test Engineer:		S. Pittsford						
Test Specification		FCC Part 90.213 & RSS 119 Issue 11 para 5.3						
Device Model #:		1678-4-V2						
Operating Voltage:			115	VDC/VAC				
Frequency Limit:			5	PPM				
Temperature Variations								
		Channel 1 (MHz)	Dev. (PPM)	Channel 2 (MHz)	Dev. (PPM)	Channel 3 (MHz)	Dev. (PPM)	
Channel Frequency:		150		162		174		
Temp (C)	Voltage							
-30	115	149.99990	0.68667	162.00000	0.00000	173.99989	0.64943	
-20	115	149.99990	0.65333	161.99990	0.64815	173.99988	0.68966	
-10	115	149.99992	0.54667	161.99991	0.57407	173.99990	0.57471	
0	115	150.00000	0.00000	161.99989	0.67901	173.99988	0.68966	
10	115	150.00000	0.00000	162.00000	0.00000	173.99987	0.72989	
20	115	149.99997	0.18000	161.99997	0.18519	173.99997	0.18391	
30	115	149.99997	0.22000	161.99997	0.21605	173.99996	0.21839	
40	115	149.99995	0.33333	161.99995	0.30864	173.99995	0.31609	
50	115	149.99999	0.10000	161.99998	0.11111	173.99998	0.11494	
60	115	149.99998	0.14667	161.99998	0.13580	173.99998	0.14368	
Voltage Variations ($\pm 15\%$)								
20	97.8	149.99997	0.18667	161.99997	0.17284	173.99997	0.17241	
20	115	149.99997	0.18000	161.99997	0.18519	173.99997	0.18391	
20	132.3	149.99997	0.18000	161.99997	0.18519	173.99997	0.17241	
Max Deviation (PPM)			0.68667		0.67901		0.72989	
			PASS		PASS		PASS	

Test Setup Photos

Transient Frequency Behavior

Test Conditions / Setup

Temp: 21°

Humidity: 34%

Pressure: 102.3kPa

Frequency Range: 150-174MHz

EUT's RF output and Signal Generator output are connected to the 4 port splitter.

The Output of the splitter is connected to the demodulator input and the spectrum analyzer through a step attenuator.

The spectrum analyzer is only being used to be sure that the sig-gen output is 20dB lower than the EUT's output.

The Output of the demodulator is connected to an oscilloscope.

For 1678-4-V2: EUT is connected to a laptop and to a controller.

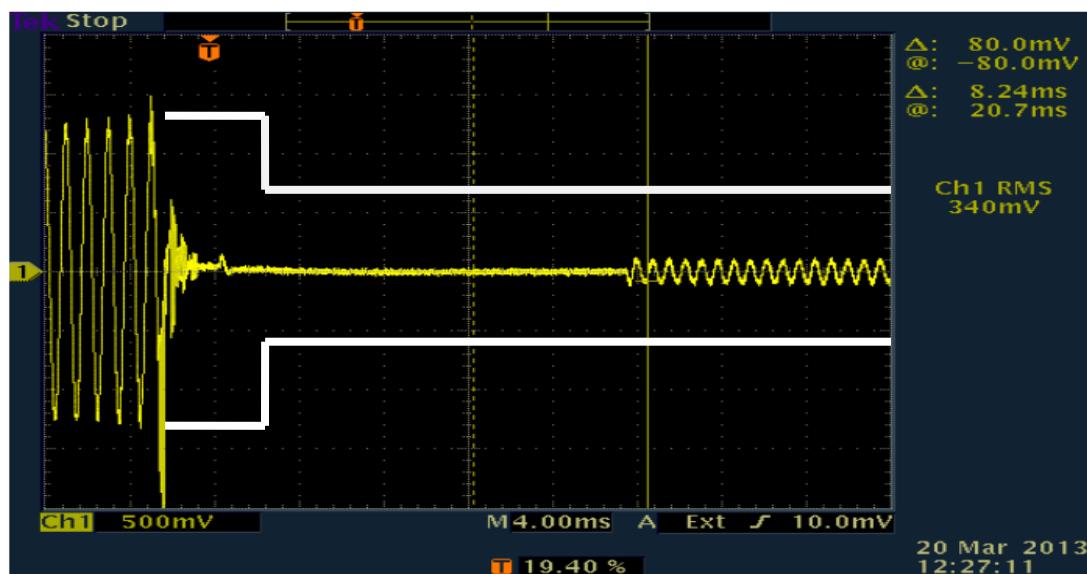
For 1678-1-V2: EUT is connected to a laptop and to a test box.

EUT is in operational mode.

EUT will be transmitting at LOW (150MHz), MID (162MHz), and HIGH (174MHz) Channels.

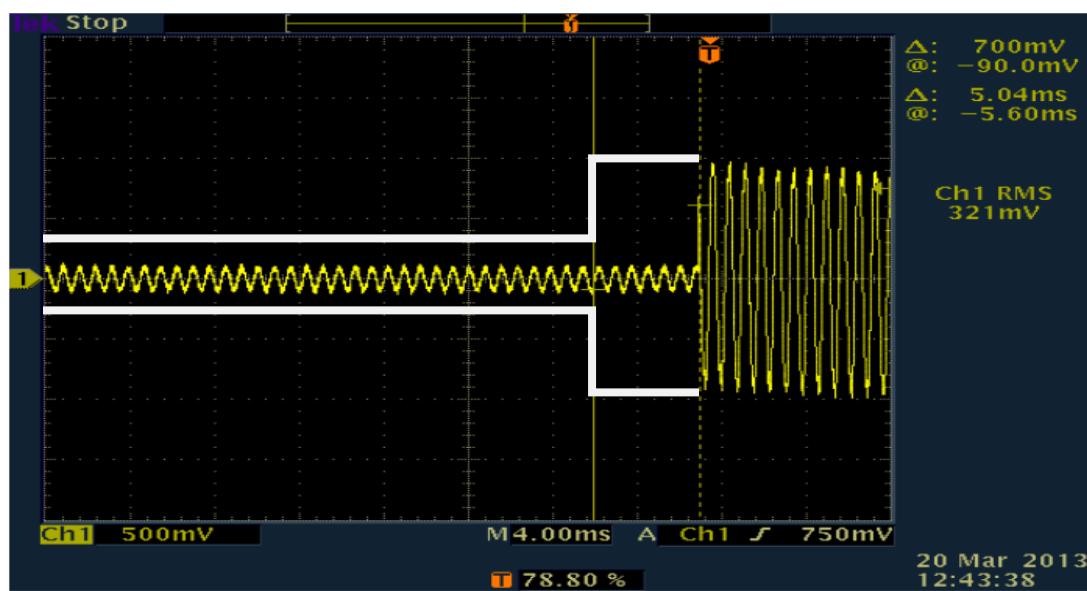
Engineer Name: S. Pittsford

Test Equipment


Asset #	Description	Manufacturer	Model	Cal Date	Cal Due
P06219	Attenuator	Narda	768-10	3/22/2012	3/22/2014
P06217	Attenuator	Narda	768-10	3/22/2012	3/22/2014
P06124	Attenuator	Aeroflex	18N-6	7/8/2011	7/8/2013
01977	Directional Coupler	Werlatone Inc.	C5571	3/5/2013	3/5/2015
01496	RF Generator	Marconi	2022-0003X	11/30/2011	11/30/2013
01706	Attenuator	HP	8495B	1/11/2012	1/11/2014
02072	RF Characteristics Analyzer	HP	8901A	4/14/2011	4/14/2013
03331	Oscilloscope	Tektronix	TDS3052A	8/1/2012	8/1/2014
00784	Spectrum Analyzer	HP	8596E	11/12/2012	11/12/2014

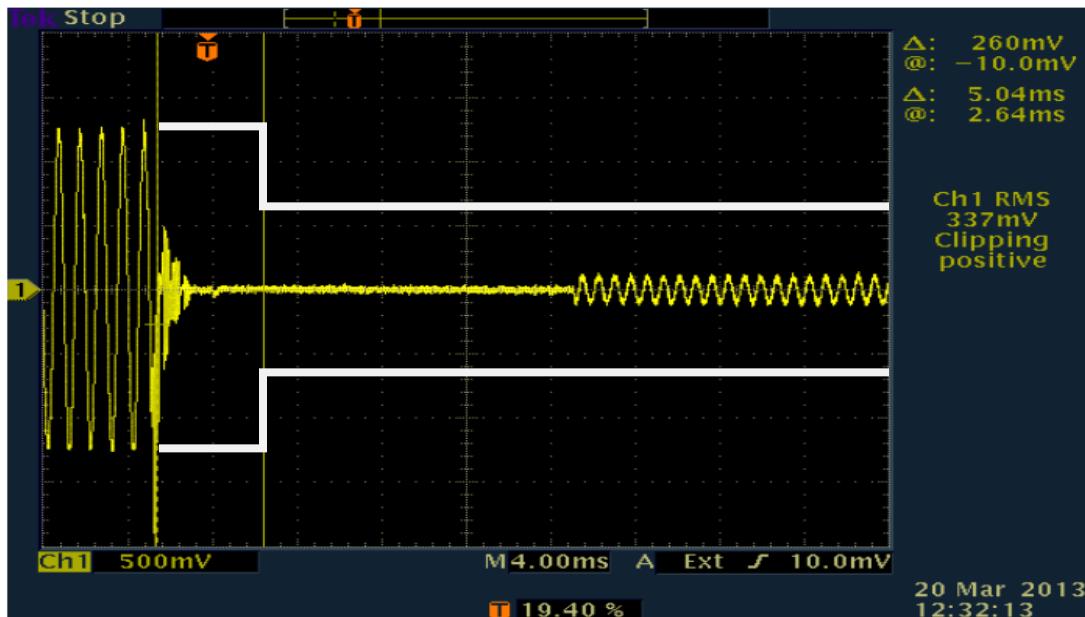
Test Data

Model: 1678-4-V2, SN: 00002

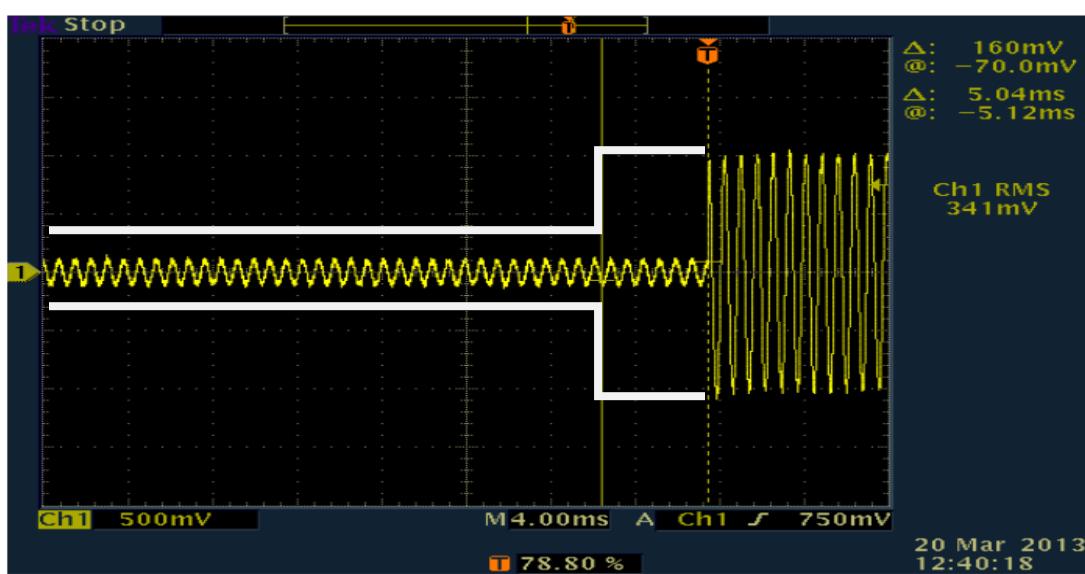

150MHz

ON time

TDS 3052 - 1:29:22 PM 3/20/2013

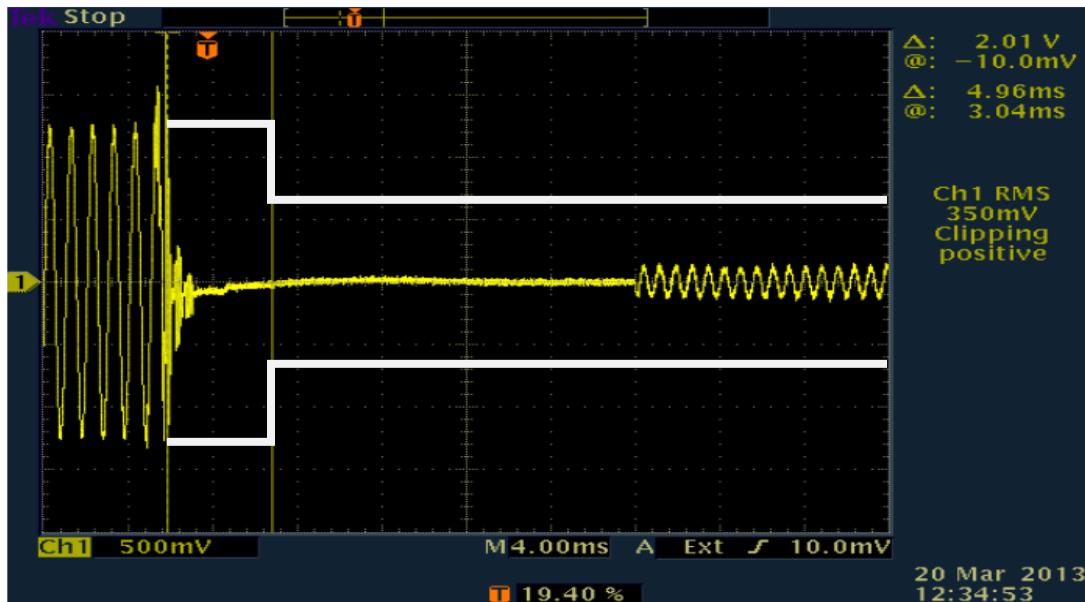

OFF time

TDS 3052 - 1:45:49 PM 3/20/2013

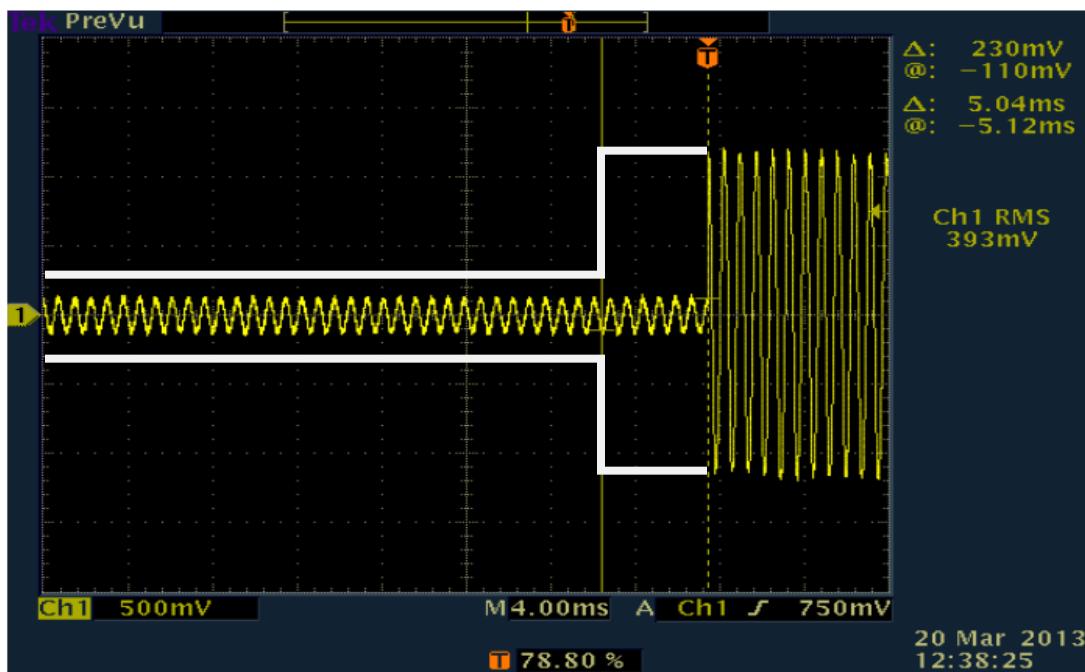

162MHz

ON time

TDS 3052 - 1:34:24 PM 3/20/2013


OFF time

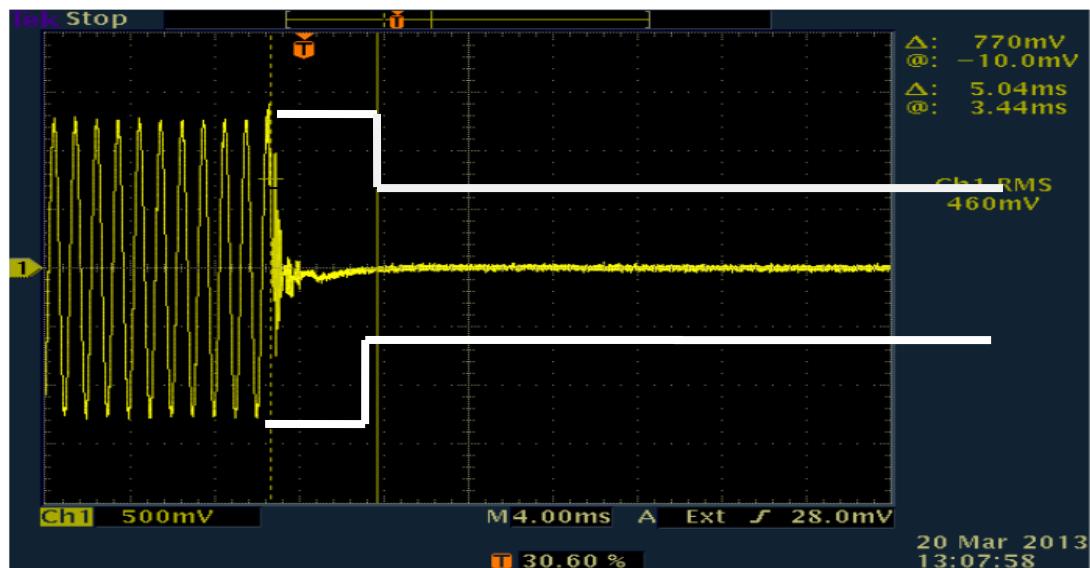
TDS 3052 - 1:42:29 PM 3/20/2013


174MHz

ON time

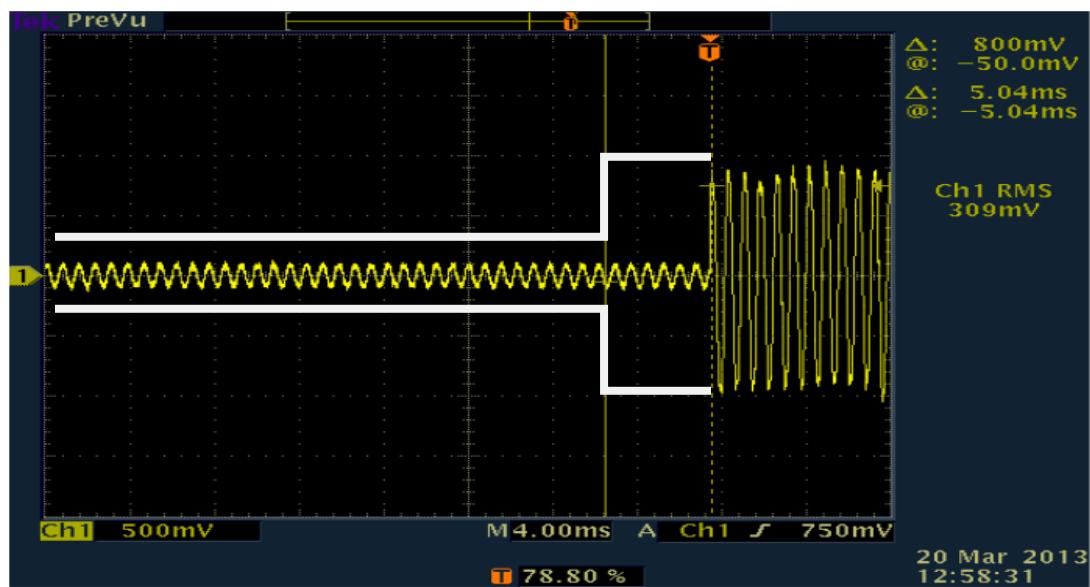
TDS 3052 - 1:37:04 PM 3/20/2013

OFF time



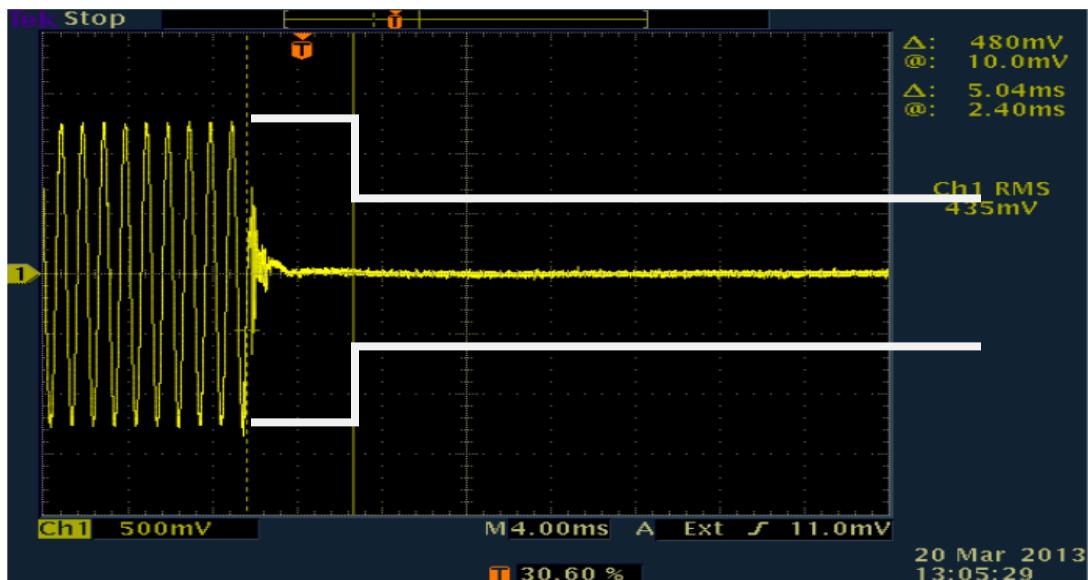
TDS 3052 - 1:40:36 PM 3/20/2013

Model: 1678-1-V2, SN: 00001

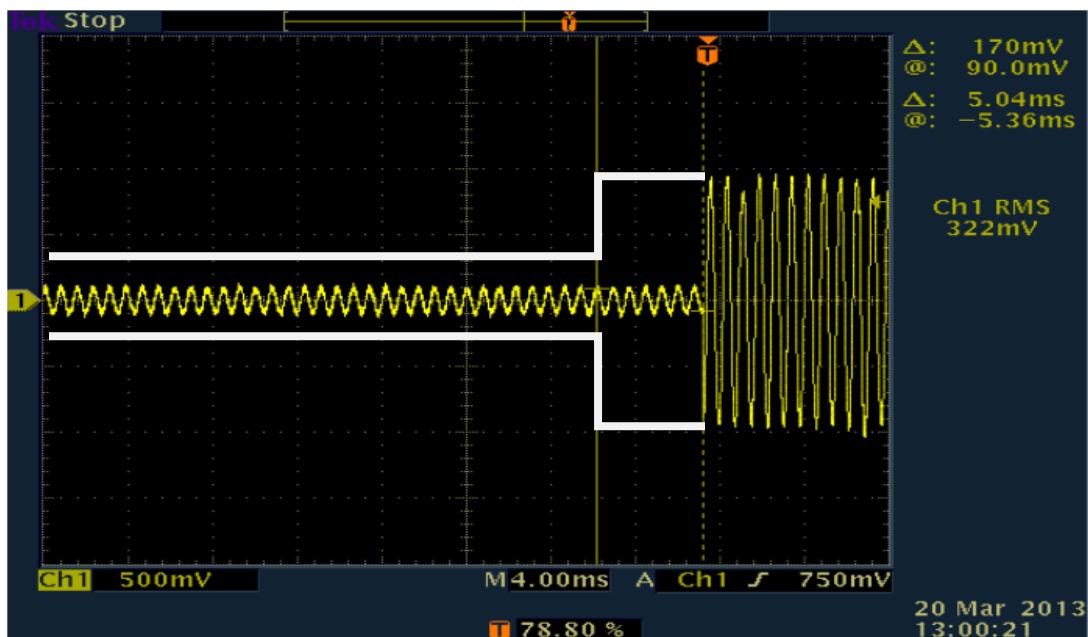

150MHz

ON time

TDS 3052 - 2:10:09 PM 3/20/2013

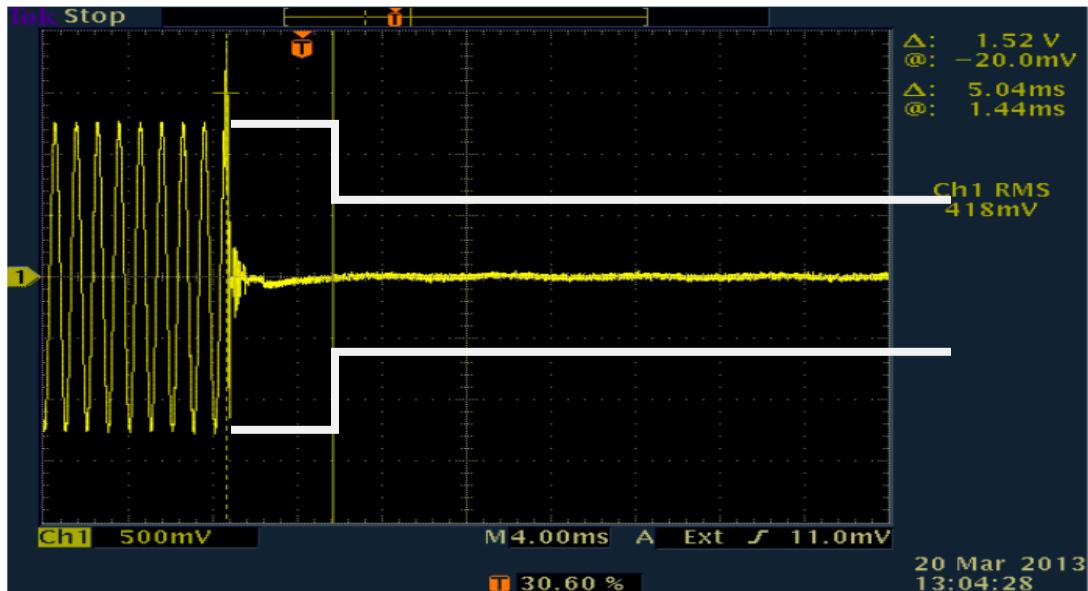

OFF time

TDS 3052 - 2:00:42 PM 3/20/2013

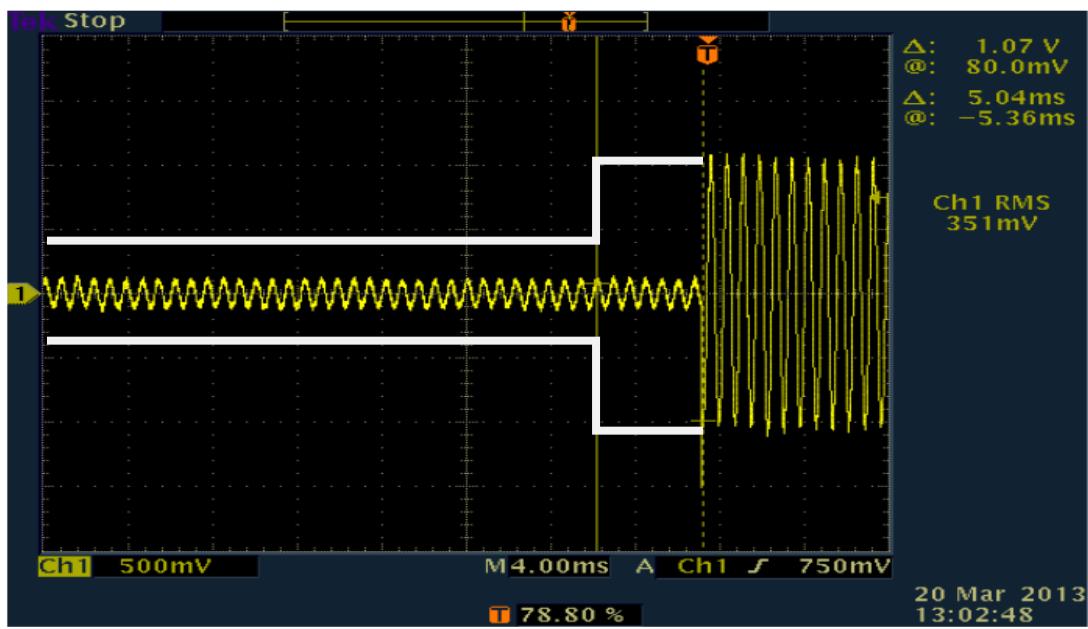

162MHz

ON time

TDS 3052 - 2:07:40 PM 3/20/2013


OFF time

TDS 3052 - 2:02:32 PM 3/20/2013


174MHz

ON time

TDS 3052 - 2:06:39 PM 3/20/2013

OFF time

TDS 3052 - 2:04:59 PM 3/20/2013

Test Setup Photos

1678-4-V2

1678-1-V2

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\text{dB}\mu\text{V}/\text{m}$, the spectrum analyzer reading in $\text{dB}\mu\text{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS	
Meter reading	(dB μ V)
+ Antenna Factor	(dB)
+ Cable Loss	(dB)
- Distance Correction	(dB)
- Preamplifier Gain	(dB)
= Corrected Reading	(dB μ V/m)

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.