

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation

914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CA 95054 • PHONE (408) 748-3585 • FAX (510) 489-6372 13301 MCCALLEN PASS • AUSTIN, TX 78753 • PHONE (512) 287-2500 • FAX (512) 287-2513

April 17, 2012

Moseley Associates, Inc. 111 Castilian Drive Santa Barbara, CA 93117

Dear Howard Friedenberg,

Enclosed is the EMC Wireless test report for compliance testing of the Moseley Associates, Inc., Event 5800 as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Part 15, Subpart B, ICES-003, Issue 4 February 2004 for a Class A Digital Device and FCC Part 15 Subpart C, RSS-210, Issue 8, Dec. 2010 for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours,

MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\Moseley Associates, Inc.\EMCS34183-FCC247)

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

Electromagnetic Compatibility Criteria Test Report

for the

Moseley Associates, Inc. Event 5800

Tested under

the FCC Certification Rules
contained in

Title 47 of the CFR, Parts 15 Subpart B & ICES-003
for Class A Digital Devices
&

15.247 Subpart C & RSS-210, Issue 8, Dec. 2010
for Intentional Radiators

MET Report: EMCS34183-FCC247

April 17, 2012

Prepared For:

Moseley Associates, Inc. 111 Castilian Drive Santa Barbara, CA 93117

> Prepared By: MET Laboratories, Inc. 3162 Belick St. Santa Clara, CA 95054

Electromagnetic Compatibility Criteria Test Report

for the

Moseley Associates, Inc. Event 5800

Tested under

the FCC Certification Rules
contained in

Title 47 of the CFR, Parts 15 Subpart B & ICES-003
for Class A Digital Devices
&

15.247 Subpart C & RSS-210, Issue 8, Dec. 2010
for Intentional Radiators

Lionel Gabrillo, Project Engineer Electromagnetic Compatibility Lab Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules Parts 15B, 15.247 and Industry Canada standards ICES-003, Issue 4 February 2004, RSS-210, Issue 8, Dec. 2010 under normal use and maintenance.

Shawn McMillen, Wireless Manager, Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	April 17, 2012	Initial Issue.

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	2
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	4
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	6
	E. Equipment Configuration	10
	F. Support Equipment	10
	G. Ports and Cabling Information	11
	H. Mode of Operation	
	I. Method of Monitoring EUT Operation	12
	J. Modifications	12
	a) Modifications to EUT	12
	b) Modifications to Test Standard	
	K. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Unintentional Radiators	
	§ 15.107(a) Conducted Emissions Limits.	
	§ 15.109(a) Radiated Emissions Limits	20
IV.	Electromagnetic Compatibility Criteria for Intentional Radiators	
	§ 15.203 Antenna Requirement	
	§ 15.207(a) Conducted Emissions Limits	
	§ 15.247(a)(a) 6 dB and 99% Bandwidth	33
	§ 15.247(b) Peak Power Output	
	§ 15.247(d) Radiated Spurious Emissions Requirements	49
	§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge	68
	§ 15.247(e) Peak Power Spectral Density	78
	§ 15.247(i) Maximum Permissible Exposure	84
	RSS-GEN Receiver Spurious Emissions	85
V.	Test Equipment	88
VI.	Certification & User's Manual Information	
	A. Certification Information	91
	B. Label and User's Manual Information	
VII.	ICES-003 Procedural & Labeling Requirements	97

List of Tables

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting	2
Table 2. EUT Summary Table	4
Table 3. References	
Table 4. Equipment Configuration	10
Table 5. Support Equipment	
Table 6. Ports and Cabling Information	
Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a) (b) and	
15.207(a)	
Table 8. Conducted Emissions - Voltage, AC Power, Phase Line (120 VAC, 60 Hz)	
Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line (120 VAC, 60 Hz)	
Table 10. Conducted Emissions - Voltage, AC Power, Phase Line (230 VAC, 50 Hz)	
Table 11. Conducted Emissions - Voltage, AC Power, Neutral Line (230 VAC, 50 Hz)	
Table 12. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)	
Table 13. Radiated Emissions Limits, Test Results, 30 MHz – 1 GHz, FCC Limits	
Table 14. Radiated Emissions Limits, Test Results, Above 1 GHz, FCC Limits	
Table 15. Radiated Emissions Limits, Test Results, ICES-003 Limits	
Table 16. Antenna List	
Table 17. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	
Table 18. Conducted Emissions, 15.207(a), Phase Line, Test Results, 120 VAC, 60 Hz	
Table 19. Conducted Emissions, 15.207(a), Neutral Line, Test Results, 120 VAC, 60 Hz	
Table 20. Conducted Emissions, 15.207(a), Phase Line, Test Results, 230 VAC, 50 Hz	
Table 21. Conducted Emissions, 15.207(a), Neutral Line, Test Results, 230 VAC, 50 Hz	
Table 22. 6 dB Occupied Bandwidth, Test Results	
Table 24. Output Power Requirements from §15.247(b)	
Table 25. Peak Power Output, Test Results	
Table 26. Restricted Bands of Operation	
Table 27. Rediated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)	
Table 28. Peak Power Spectral Density, Test Results	
Table 29. Spurious Emission Limits for Receivers	
Table 30. Test Equipment List	
Tuble 50. Test Equipment Elst	
List of Plots	
Plot 1. Conducted Emission, Phase Line Plot (120 VAC, 60 Hz)	
Plot 2. Conducted Emission, Neutral Line Plot (120 VAC, 60 Hz)	
Plot 3. Conducted Emission, Phase Line Plot (230 VAC, 50 Hz)	
Plot 4. Conducted Emission, Neutral Line Plot (230 VAC, 50 Hz)	
Plot 5. Radiated Emissions, 30 MHz - 1 GHz, FCC Limits	
Plot 6. Radiated Emissions, Above 1 GHz, FCC Limits	
Plot 7. Radiated Emissions, ICES-003 Limits	
Plot 8. Conducted Emissions, 15.207(a), Phase Line, 120 VAC, 60 Hz	
Plot 9. Conducted Emissions, 15.207(a), Neutral Line, 120 VAC, 60 Hz	
Plot 10. Conducted Emissions, 15.207(a), Phase Line, 230 VAC, 50 Hz	
Plot 11. Conducted Emissions, 15.207(a), Neutral Line, 230 VAC, 50 Hz	
Plot 12. 6 dB Occupied Bandwidth, 10 MHz, Low Channel, 5730 MHz	
Plot 13. 6 dB Occupied Bandwidth, 10 MHz, Mid Channel, 5770 MHz	
Plot 14. 6 dB Occupied Bandwidth, 10 MHz, Mid Channel, 5805 MHz	
Plot 15. 6 dB Occupied Bandwidth, 10 MHz, High Channel, 5805 MHz	
Plot 16. 6 dB Occupied Bandwidth, 25 MHz, Low Channel, 5738 MHz	30

D1 . 4.5	CIRCLE I III AND	
	6 dB Occupied Bandwidth, 25 MHz, Mid Channel, 5762 MHz	
	6 dB Occupied Bandwidth, 25 MHz, Mid Channel, 5813 MHz	
	6 dB Occupied Bandwidth, 25 MHz, High Channel, 5837 MHz	
	6 dB Occupied Bandwidth, 50 MHz, Low Channel, 5750 MHz	
	6 dB Occupied Bandwidth, 50 MHz, High Channel, 5825 MHz	
	99% Occupied Bandwidth, 10 MHz, Low Channel, 5730 MHz	
	99% Occupied Bandwidth, 10 MHz, Mid Channel, 5770 MHz	
	99% Occupied Bandwidth, 10 MHz, Mid Channel, 5805 MHz	
	99% Occupied Bandwidth, 10 MHz, High Channel, 5805 MHz	
	99% Occupied Bandwidth, 25 MHz, Low Channel, 5738 MHz	
	99% Occupied Bandwidth, 25 MHz, Mid Channel, 5762 MHz	
	99% Occupied Bandwidth, 25 MHz, Mid Channel, 5813 MHz	
	99% Occupied Bandwidth, 25 MHz, High Channel, 5837 MHz	
	99% Occupied Bandwidth, 50 MHz, Low Channel, 5750 MHz	
	99% Occupied Bandwidth, 50 MHz, High Channel, 5825 MHz	
	Peak Power Output, 10 MHz, Low Channel, 5730 MHz	
	Peak Power Output, 10 MHz, Mid Channel, 5770 MHz	
	Peak Power Output, 10 MHz, Mid Channel, 5805 MHz	
	Peak Power Output, 10 MHz, High Channel, 5845 MHz	
	Peak Power Output, 25 MHz, Low Channel, 5738 MHz	
	Peak Power Output, 25 MHz, Mid Channel, 5762 MHz	
Plot 38.	Peak Power Output, 25 MHz, Mid Channel, 5813 MHz	47
	Peak Power Output, 25 MHz, High Channel, 5837 MHz	
	Peak Power Output, 50 MHz, Low Channel, 5750 MHz	
Plot 41.	Peak Power Output, 50 MHz, High Channel, 5825 MHz	48
	Radiated Spurious Emissions, RADIO OFF, 30 MHz – 1 GHz	
Plot 43.	Radiated Spurious Emissions, RADIO OFF, 1 GHz – 7 GHz	51
Plot 44.	Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 30 MHz – 1 GHz	52
Plot 45.	Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 1 GHz – 7 GHz	52
	Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 7 GHz – 18 GHz, Average	
Plot 47.	Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 7 GHz – 18 GHz, Peak	53
Plot 48.	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 30 MHz – 1 GHz	53
Plot 49.	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 1 GHz – 7 GHz	53
Plot 50.	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 7 GHz – 18 GHz, Average	54
	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 7.8 GHz – 8.1 GHz, Average	
Plot 52.	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 7 GHz – 18 GHz, Peak	54
	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 7.2 GHz – 8.1 GHz, Average	
	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 7 GHz – 18 GHz, Peak	
- 100 07.		

Plot 70.	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 30 MHz – 1 GHz	60
Plot 71.	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 1 GHz – 7 GHz	61
	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 7 GHz – 18 GHz, Average	
Plot 73.	Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 7 GHz – 18 GHz, Peak	61
	Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 7 GHz – 18 GHz, Peak	
	Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 30 MHz – 1 GHz	
	Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 1 GHz – 7 GHz	
	Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 7 GHz – 18 GHz, Average	
	Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 7 GHz – 18 GHz, Peak	
	Conducted Spurious Emissions, 30 MHz, Low Channel, 5730 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 1 GHz – 1 GHz	
	Conducted Spurious Emissions, 10 MHz, Low Channel, 5770 MHz, 1 GHz – 40 GHz	
	Conducted Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 1 GHz – 1 GHz	
	Conducted Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 1 GHz – 1 GHz	
	Conducted Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 1 GHz – 40 GHz	
	Conducted Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 1 GHz – 40 GHz	
	Conducted Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 1 GHz – 40 GHz	
	Conducted Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 1 GHz – 40 GHz	
	Conducted Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 1 GHz – 40 GHz	
	Conducted Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 30 MHz – 1 GHz	
	Conducted Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 1 GHz – 40 GHz	
	. Conducted Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 30 MHz – 1 GHz	
	. Conducted Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 1 GHz – 40 GHz	
	Conducted Band Edge, 10 MHz, Low Channel, 5730 MHz	
	Conducted Band Edge, 10 MHz, High Channel, 5845 MHz	
Plot 108	Conducted Band Edge, 25 MHz, Low Channel, 5738 MHz	/6
	Conducted Band Edge, 25 MHz, High Channel, 5837 MHz	
	. Conducted Band Edge, 50 MHz, Low Channel, 5750 MHz	
	Conducted Band Edge, 50 MHz, High Channel, 5825 MHz	
	Power Spectral Density, 10 MHz, Low Channel, 5730 MHz	
	. Power Spectral Density, 10 MHz, Mid Channel, 5770 MHz	
	Power Spectral Density, 10 MHz, Mid Channel, 5805 MHz	
	Power Spectral Density, 10 MHz, High Channel, 5845 MHz	
	. Power Spectral Density, 25 MHz, Low Channel, 5738 MHz	
	Power Spectral Density, 25 MHz, Mid Channel, 5762 MHz	
	Power Spectral Density, 25 MHz, Mid Channel, 5813 MHz	
	Power Spectral Density, 25 MHz, High Channel, 5837 MHz	
	. Power Spectral Density, 50 MHz, Low Channel, 5750 MHz	
	Power Spectral Density, 50 MHz, High Channel, 5825 MHz	
Plot 122	. Receiver Spurious Emission, HT Unit, 30 MHz – 1 GHz	86

Plot 123. Receiver Spurious Emission, HT Unit, 1 GHz – 18 GHz	86
Plot 124. Receiver Spurious Emission, LT Unit, 30 MHz – 1 GHz	
Plot 125. Receiver Spurious Emission, LT Unit, 1 GHz – 18 GHz	87
List of Figures	
Figure 1. Block Diagram of Test Configuration, Link Test Setup	7
Figure 2. Block Diagram of Test Configuration, IDU and ODU Connections	
Figure 3. Block Diagram of Test Configuration, Alternate Bench Link Setup without Antenna	9
Figure 4. Block Diagram, Occupied Bandwidth Test Setup	33
Figure 5. Peak Power Output Test Setup	
Figure 6. Block Diagram, Conducted Spurious Emissions Test Setup	68
Figure 7. Block Diagram, Peak Power Spectral Density Test Setup	78
Figure 8. Block Diagram, Conducted Receiver Spurious Emissions Test Setup	85
List of Photographs	
Photograph 1. Moseley Associates, Inc. Event 5800	6
Photograph 2. Conducted Emissions, Test Setup	
Photograph 3. Radiated Emissions, Test Setup, 1 GHz – 10 GHz	24
Photograph 4. Radiated Emission, Test Setup, 30 MHz – 1 GHz	24
Photograph 5. Conducted Emissions, 15.207(a), Test Setup	
Photograph 6. Radiated Spurious Emissions, Test Setup, 30 MHz – 1 GHz	
Photograph 7. Radiated Spurious Emissions, Test Setup, 1 GHz – 18 GHz	
Photograph 8. Radiated Spurious Emissions, Test Setup, 18 GHz – 26 GHz	67

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
d	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
$dB\mu V/m$	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
DSL	Digital Subscriber Line
ESD	Electrostatic Discharge
EUT	Equipment Under Test
f	Frequency
FCC	Federal Communications Commission
GRP	Ground Reference Plane
H	Magnetic Field
НСР	Horizontal Coupling Plane
Hz	H ert z
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μ H	microhenry microhenry
μ	microf arad
μs	microseconds en
NEBS	Network Equipment-Building System
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
TWT	Traveling Wave Tube
V/m	Volts per meter
VCP	Vertical Coupling Plane

I. Executive Summary

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 1 of 98

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Moseley Associates, Inc. Event 5800, with the requirements of Part 15, §15.247. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the Event 5800. Moseley Associates, Inc. should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Event 5800, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.247, in accordance with Moseley Associates, Inc., purchase order number P101317. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference 47 CFR Part 15.247:2005	IC Reference RSS-210 Issue 8: 2010; RSS-GEN Issue 3: 2010	Description	Compliance
47 CFR Part 15.107 (a)	ICES-003 Issue 4 February 2004	Conducted Emission Limits for a Class A Digital Device	Compliant
47 CFR Part 15.109 (a)	ICES-003 Issue 4 February 2004	Radiated Emission Limits for a Class A Digital Device	Compliant
Title 47 of the CFR, Part 15 §15.203	N/A	Antenna Requirement	Compliant
Title 47 of the CFR, Part 15 §15.207(a)	RSS-GEN (7.2.4)	Conducted Emission Limits	Compliant
Title 47 of the CFR, Part 15	RSS-Gen(4.6)	6dB Occupied Bandwidth	Compliant
§15.247(a)(2)	RSS Gen(4.0)	99% Occupied Bandwidth	Compliant
Title 47 of the CFR, Part 15 §15.247(b)	RSS-210(A8.4)	Peak Power Output	Compliant
Title 47 of the CFR, Part 15 §15.247(d); §15.209; §15.205	RSS-210(A8.5)	Radiated Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15 §15.247(d)	RSS-210(A8.5)	RF Conducted Spurious Emissions Requirements	Compliant
Title 47 of the CFR, Part 15 §15.247(d)	RSS-210(A8.5)	RF Conducted Band Edge	Compliant
Title 47 of the CFR, Part 15; §15.247(e)	RSS-210(A8.2)	Peak Power Spectral Density	Compliant
Title 47 of the CFR, Part 15 §15.247(i)	RSS-Gen(5.6)	Maximum Permissible Exposure (MPE)	Compliant
N/A	RSS-Gen(4.10)	Receiver Spurious Emissions	Compliant

Table 1. Executive Summary of EMC Part 15.247 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Moseley Associates, Inc. to perform testing on the Event 5800, under Moseley Associates, Inc.'s purchase order number P101317.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Moseley Associates, Inc., Event 5800.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	Event 5800		
Model(s) Covered:	Event 5800		
	Primary Power: 120 VAC, 60 Hz and 230 VAC, 50 Hz		
	FCC ID: CSU-EVENT5800		
EUT	Type of Modulations:	OFDM	
Specifications:	Equipment Code:	DTS	
	Peak RF Output Power:	29.87 dBm	
	EUT Frequency Ranges:	5730 – 5845 MHz	
Analysis:	The results obtained relate only to the item(s) tested.		
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%		
	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Lionel Gabrillo		
Report Date(s):	April 17, 2012		

Table 2. EUT Summary Table

B. References

CFR 47, Part 15, Subpart C Federal Communication Commission, Code of Federal Regulation Part 15: General Rules and Regulations, Allocation, Assignment Radio Frequencies	
CFR 47, Part 15, Subpart B	Electromagnetic Compatibility: Criteria for Radio Frequency Devices
RSS-210, Issue 8, Dec. 2010 Low-power Licence-exempt Radiocommunications Devices (All Bands): Category I Equipment	
RSS-GEN, Issue 3, Dec. 2010 General Requirements and Information for the Certification of Radio Apparatus	
ICES-003, Issue 4 February 2004	Electromagnetic Compatibility: Criteria for Radio Frequency Devices
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI/NCSL Z540-1-1994	Calibration Laboratories and Measuring and Test Equipment - General Requirements
ANSI/ISO/IEC 17025:2000	General Requirements for the Competence of Testing and Calibration Laboratories
ANSI C63.10-2009	American National Standard for Testing Unlicensed Wireless Devices

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 3162 Belick St., Santa Clara, CA 95054. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 10 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The Moseley Associates, Inc. Event 5800, Equipment Under Test (EUT), is a high-capacity wireless Ethernet link. It operates as a dedicated point-to-point (local and remote) radio link in the unlicensed 5.8 GHz ISM band. The EUT is one half of the complete transmission link, either local or remote side.

The EUT is composed of two units, an indoor unit (IDU) and outdoor unit (ODU) interconnected by a coax cable. The indoor unit provides the RJ45 Ethernet data and NMS user control interfaces as well as the high speed modem TNC coaxial interface that communicates with the ODU. While the IDU remains safely indoors the ODU resides outdoors close to the antenna to maintain short cabling distance between radio and antenna at 5.8 GHz. The IDU and ODU communicate over the TNC coax cable that multiplexes transmit uplink to the ODU at 350 MHz, receive downlink at 140 MHz, telemetry and control up/down link at 5 & 10 MHz, and dc power at -48V.

The link operates only in frequency division duplex (FDD) mode. The transmitter in the local and the remote unit transmit continuously at different channel frequencies that are separated by the fixed duplexer spacing of 75 MHz.

The EUT is configured via a webpage interface that is accessed over a separate Ethernet NMS port. Through this interface the user may configure frequency, modulation type, three channel plans ($3 \times 10 \text{ MHz}$, $2 \times 25 \text{ MHz}$ and $1 \times 50 \text{ MHz}$ channels), and Ethernet throughput. Modulation types are QPSK, 16QAM, and 32QAM. The maximum transmit power at the antenna port that may be configured is +27 dBm.

Photograph 1. Moseley Associates, Inc. Event 5800

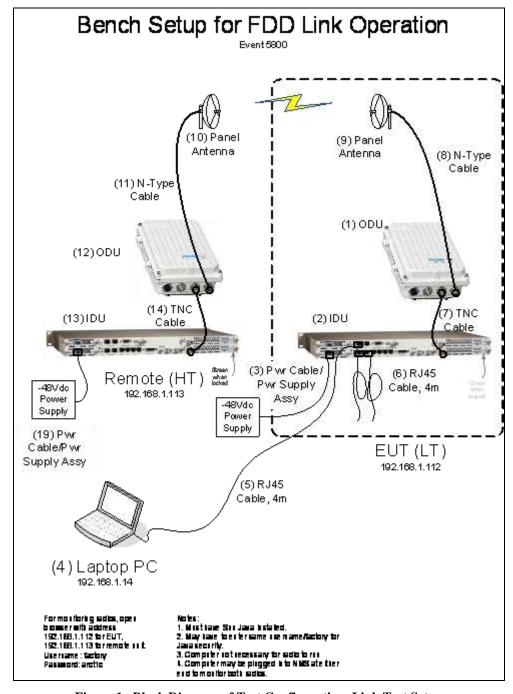


Figure 1. Block Diagram of Test Configuration, Link Test Setup

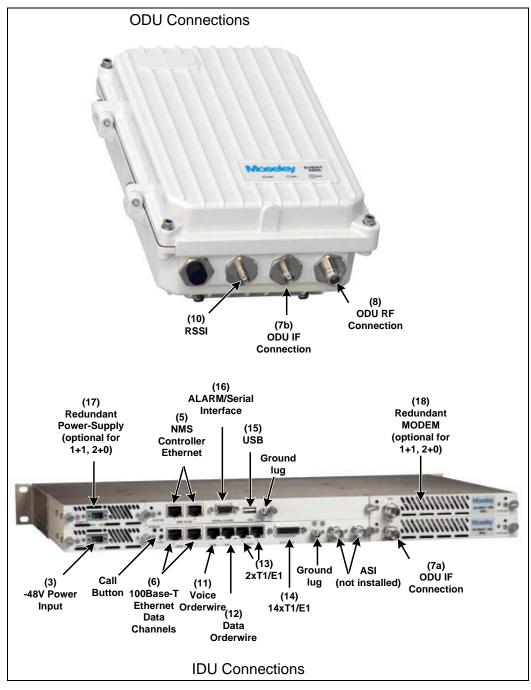


Figure 2. Block Diagram of Test Configuration, IDU and ODU Connections

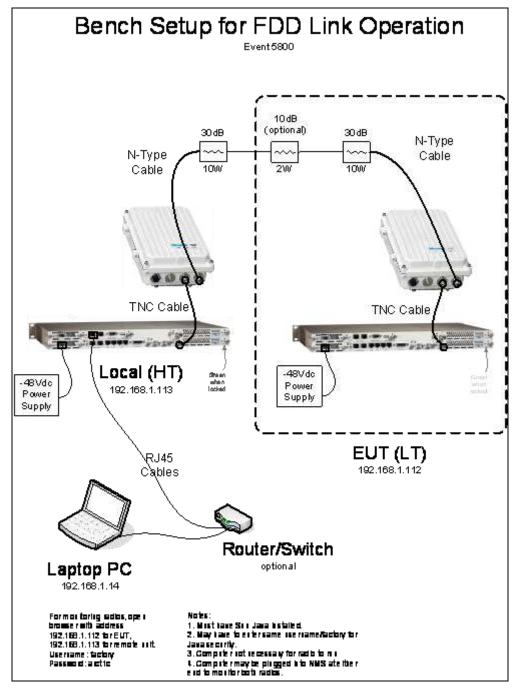


Figure 3. Block Diagram of Test Configuration, Alternate Bench Link Setup without Antenna

E. Equipment Configuration

The EUT was set up as outlined in Figure 1, Block Diagram of Test Setup. All cards, racks, etc., incorporated as part of the EUT is included in the following list.

Ref. ID	Name / Description	Model Number	Serial Number
1	Outdoor Unit (ODU)	Event 5800	MO-40000653
2	Indoor Unit (IDU)	Event 5800	MO-40000576
3	Power Supply/Cable Assy (Cincon)	TRG150A480	150480-001469
19	Power Supply/Cable Assy (Cincon)	TRG150A480	150480-001649
9	Panel Antenna (MTI)	MT-486001	09099
10	Panel Antenna (MTI)	MT-486001	08950

Table 4. Equipment Configuration

F. Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	Serial Number
4	Laptop Computer	Lenovo	0769	L3-TM909 08/06
12	Outdoor Unit (ODU), remote	Moseley	Event 5800	MO-40000648
13	Indoor Unit (SDIDU), remote	Moseley	Event 5800	MO-40000574

Table 5. Support Equipment

G. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
4	PWR/FLT	-48V power cable, bundled 8 conductor, integral with power supply	1	1	N	N
5	NMS 10/100 1-2	RJ45 CAT6	1	2	N	
6	USER 10/100 1-2	RJ45 CAT6	2	2	N	N
7a	ODU	TNC, coax LMR194	1	2	Y	N
7b	IDU	TNC, coax LMR194	1	2	Y	N
8	ANT	N-type, coax SB-142	1	2	Y	N
10	RSL	For alignment only, normally not connected				
11	VOW	Feature not installed				
12	AUX	Feature not installed				
13	E1/T1 1-2	Feature disabled				
14	E1/T1 3-16	Feature disabled				
15	USB	Feature not installed				
16	SERIAL/ALARM	Factory Use Only				
17	PWR/FLT, redundant option	Option not installed				
18	ODU, redundant option	Option not Installed				

Table 6. Ports and Cabling Information

H. Mode of Operation

When -48V dc power is applied to the local EUT and remote unit their respective ODUs will begin transmitting continuously at RF on the N-connector following a boot up time of approximately 2 minutes. The frequency of transmission will be the last frequency configured prior to shut down.

There is only one mode of operation: continuous FDD, frequency division duplex. Both local EUT and remote ODU transmitters will operate continuously unless otherwise manually muted or disabled via the web interface or dc power is removed.

The local EUT and remote ODU N-type connector must both be property terminated with either the supplied 30 dB power attenuators or antennas prior to applying dc power to the IDU. If attenuators are utilized the final RF link may be completed by connecting the supplied N-type coaxial cable between the ODU units.

I. Method of Monitoring EUT Operation

- 1. Visual indication the units are properly linked (either a. or b. or both):
 - a. On the IDU chassis, when the RF link is operating properly the "STATUS" indicator (to the right of the TNC connector) illuminates solid GREEN.
 - b. The webpage status panel (right pane) indicates ALARM as GREEN, and MODEM as LOCKED
- 2. Visual indication the units are NOT properly linked (either a or b or both):
 - a. On the IDU chassis the "STATUS" indicator (to the right of the TNC connector) blinks either ORANGE or RED. Blinking GREEN means low SNR or signal level.
 - b. The webpage status panel (right pane) indicates ALARM as RED, and/or MODEM as UNLOCKED
- 3. Physical measurement the unit is performing properly, the RF power at the N-type connector measured with a power meter is within 1 dB of configured level at the configured frequency of operation.

J. Modifications

a) Modifications to EUT

Added a Cover that is screwed into the back of the vent socket to pass Radiated Spurious.

b) Modifications to Test Standard

No modifications were made to the test standard.

K. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Moseley Associates, Inc. upon completion of testing.

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 12 of 98

III. Electromagnetic Compatibility Criteria for Unintentional Radiators

Electromagnetic Compatibility Criteria

§ 15.107 Conducted Emissions Limits

Test Requirement(s):

15.107 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

15.107 (b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals. The lower limit applies at the band edges.

15.207(a), Except as shown in paragraphs (b) and (c) of this section*, charging, AC adapters or battery eliminators the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the Table 7, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency range	Class A Cond (dB)		*Class B Conducted Limits (dBµV)		
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	
* 0.15- 0.45	79	66	66 - 56	56 - 46	
0.45 - 0.5	79	66	56	46	
0.5 - 30	73	60	60	50	

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — The limit decreases linearly with the logarithm if the frequency in the range 0.15 MHz to 0.5 MHz.

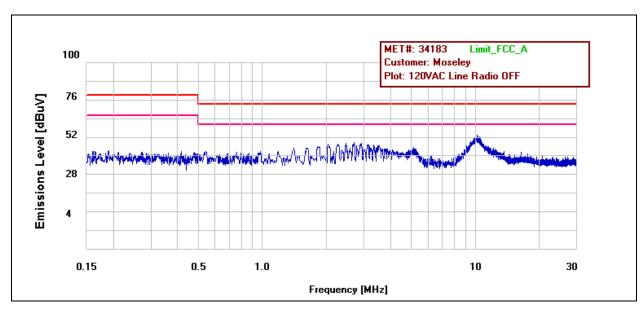
Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a) (b) and 15.207(a)

Test Procedures:

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. The method of testing, test conditions, and test procedures of ANSI C63.4 were used. The EUT was powered through a $50\Omega/50\mu H$ LISN. An EMI receiver, connected to the measurement port of the LISN, scanned the frequency range from 150 kHz to 30 MHz in order to find the peak conducted emissions. All peak emissions within 6 dB of the limit were re-measured using a quasi-peak and/or average detector as appropriate.

Test Results: The EUT was compliant with the Class A requirement(s) of this section.

Test Engineer(s): Lionel Gabrillo

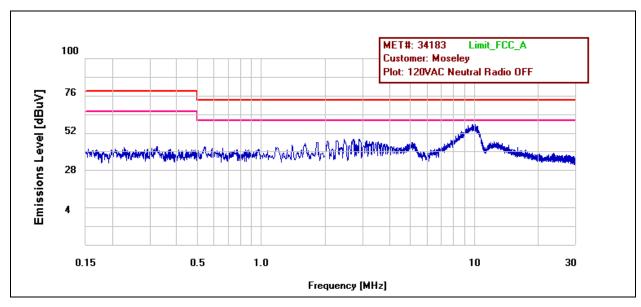

Test Date(s): 02/15/12

^{* --} Limits per Subsection 15.207(a).

Conducted Emissions - Voltage, AC Power, Phase Line (120 VAC, 60 Hz)

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
120VAC Line Radio OFF	10.22	46.22	73	-26.78	Pass	37.32	60	-22.68	Pass
120VAC Line Radio OFF	2.65	38.21	73	-34.79	Pass	24.32	60	-35.68	Pass
120VAC Line Radio OFF	5.145	40.51	73	-32.49	Pass	31.13	60	-28.87	Pass

Table 8. Conducted Emissions - Voltage, AC Power, Phase Line (120 VAC, 60 Hz)

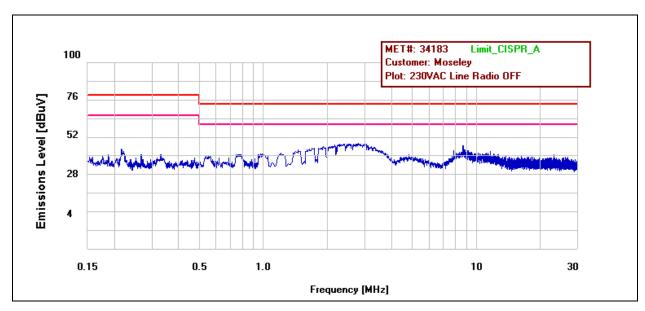


Plot 1. Conducted Emission, Phase Line Plot (120 VAC, 60 Hz)

Conducted Emissions - Voltage, AC Power, Neutral Line (120 VAC, 60 Hz)

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
120VAC									
Neutral	9.82	50.97	73	-22.03	Pass	41.63	60	-18.37	Pass
Radio OFF									
120VAC									
Neutral	2.953	33.49	73	-39.51	Pass	22.42	60	-37.58	Pass
Radio OFF									
120VAC									
Neutral	5.115	37.04	73	-35.96	Pass	27.65	60	-32.35	Pass
Radio OFF									

Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line (120 VAC, 60 Hz)

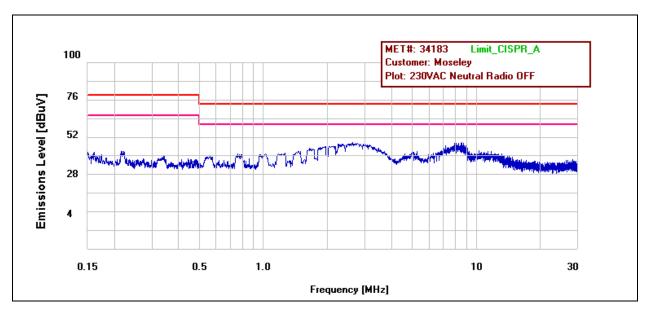


Plot 2. Conducted Emission, Neutral Line Plot (120 VAC, 60 Hz)

Conducted Emissions - Voltage, AC Power, Phase Line (230 VAC, 50 Hz)

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC Line Radio OFF	2.53	43.23	73	-29.77	Pass	27.98	60	-32.02	Pass
230VAC Line Radio OFF	0.220	37.78	79	-41.22	Pass	26.46	66	-39.54	Pass
230VAC Line Radio OFF	8.528	38.04	73	-34.96	Pass	27.62	60	-32.38	Pass

Table 10. Conducted Emissions - Voltage, AC Power, Phase Line (230 VAC, 50 Hz)



Plot 3. Conducted Emission, Phase Line Plot (230 VAC, 50 Hz)

Conducted Emissions - Voltage, AC Power, Neutral Line (230 VAC, 50 Hz)

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC									
Neutral	0.1639	32.37	79	-46.63	Pass	23.26	66	-42.74	Pass
Radio OFF									
230VAC									
Neutral	2.77	43.89	73	-29.11	Pass	29.73	60	-30.27	Pass
Radio OFF									
230VAC									
Neutral	8.125	43.85	73	-29.15	Pass	31.68	60	-28.32	Pass
Radio OFF									

Table 11. Conducted Emissions - Voltage, AC Power, Neutral Line (230 VAC, 50 Hz)

Plot 4. Conducted Emission, Neutral Line Plot (230 VAC, 50 Hz)

Conducted Emission Limits Test Setup

Photograph 2. Conducted Emissions, Test Setup

Radiated Emission Limits

§ 15.109 Radiated Emissions Limits

Test Requirement(s):

15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the Class B limits expressed in Table 12.

15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the Class A limits expressed in Table 12.

	Field Strength (dBµV/m)							
Frequency (MHz)	§15.109 (b), Class A Limit (dBμV) @ 10m	§15.109 (a),Class B Limit (dBμV) @ 3m						
30 - 88	39.00	40.00						
88 - 216	43.50	43.50						
216 - 960	46.40	46.00						
Above 960	49.50	54.00						

Table 12. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)

Test Procedures:

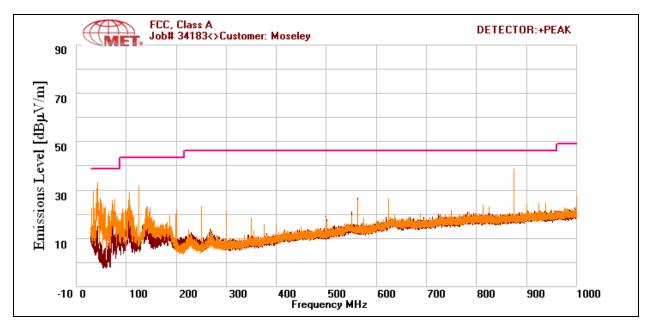
The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.4 were used. An antenna was located 3 m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz bandwidth.

Test Results:

The EUT was compliant with the Class A requirement(s) of this section.

Test Engineer(s):

Lionel Gabrillo

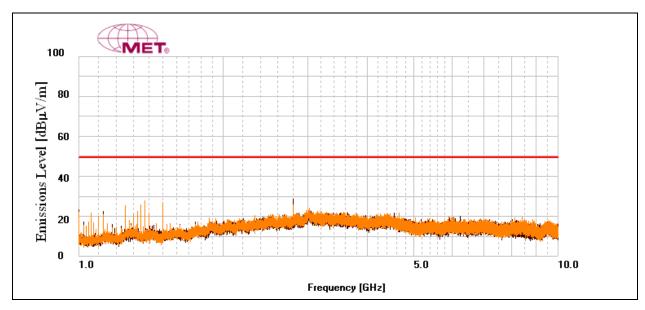

Test Date(s):

02/18/12

Radiated Emissions Limits Test Results, Class A

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBuV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
36.16	V	151	100.82	23.53	15.136	0	1.426	-10.46	29.632	39	-9.368
47.8	V	198	100	27.89	8.9	0	1.757	-10.46	28.087	39	-10.913
562.48	V	0	106.88	14.15	17.95	0	5.007	-10.46	26.647	46.4	-19.753
562.52	Н	211	214.29	14.56	17.95	0	5.008	-10.46	27.058	46.4	-19.342
875	V	152	108.41	27.91	20.1	0	6.455	-10.46	44.005	46.4	-2.395
875	Н	76	181.58	21.17	20.1	0	6.455	-10.46	37.265	46.4	-9.135

Table 13. Radiated Emissions Limits, Test Results, 30 MHz - 1 GHz, FCC Limits

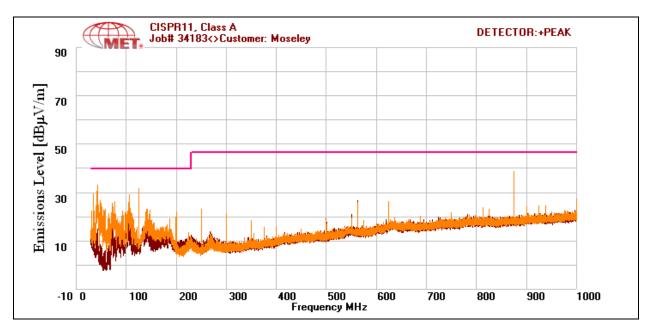


Plot 5. Radiated Emissions, 30 MHz - 1 GHz, FCC Limits

Radiated Emissions Limits Test Results, Class A

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBuV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
1375	V	0	100	87.69	28.93	76.217	8.647	-10.46	38.59	49.5	-10.91
2800	Н	210.0	165.05	69.91	32.297	75.086	13.08	-10.46	29.741	49.5	-19.759

Table 14. Radiated Emissions Limits, Test Results, Above 1 GHz, FCC Limits

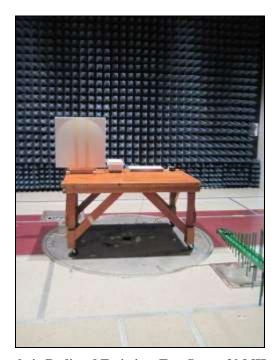


Plot 6. Radiated Emissions, Above 1 GHz, FCC Limits

Radiated Emissions Limits Test Results, Class A

Frequency (MHz)	Antenna Polarity	EUT Azimuth (Degrees)	Antenna Height (cm)	Uncorrected Amplitude (dBuV)	ACF (dB/m)	Pre Amp Gain (dB)	CBL (dB)	DCF (dB)	Corrected Amplitude (dBuV)	Limit (dBuV)	Margin (dB)
36.16	V	151	100.82	23.53	15.136	0	1.426	-10.46	29.632	40	-10.368
47.8	V	198	100	27.89	8.9	0	1.757	-10.46	28.087	40	-11.913
562.48	V	0	106.88	14.15	17.95	0	5.007	-10.46	26.647	47	-20.353
562.52	Н	211	214.29	14.56	17.95	0	5.008	-10.46	27.058	47	-19.942
875	V	152	108.41	27.91	20.1	0	6.455	-10.46	44.005	47	-2.995
875	Н	76	181.58	21.17	20.1	0	6.455	-10.46	37.265	47	-9.735

Table 15. Radiated Emissions Limits, Test Results, ICES-003 Limits


Plot 7. Radiated Emissions, ICES-003 Limits

Radiated Emission Limits Test Setup

Photograph 3. Radiated Emissions, Test Setup, 1 GHz - 10 GHz

Photograph 4. Radiated Emission, Test Setup, 30 MHz - 1 GHz

IV. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15,203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant the criteria of §15.203. The EUT is a professional install.

Test Engineer(s): Lionel Gabrillo

Test Date(s): 02/24/12

Gain	Type	Model	Manufacturer
28 dBi	Panel	MT-486001	MTI

Table 16. Antenna List

§ 15.207(a) Conducted Emissions Limits

Test Requirement(s):

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

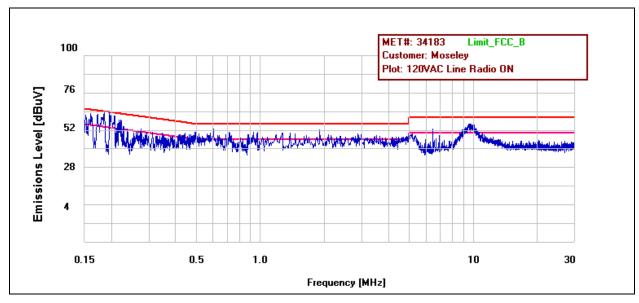
Frequency range	§ 15.207(a), Conducted Limit (dBμV)			
(MHz)	Quasi-Peak	Average		
* 0.15- 0.45	66 - 56	56 - 46		
0.45 - 0.5	56	46		
0.5 - 30	60	50		

Table 17. Conducted Limits for Intentional Radiators from FCC Part 15 § 15,207(a)

Test Procedure:

The EUT was placed on a 0.8 m-high wooden table inside a screen room. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-2003 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter. For the purpose of this testing, the transmitter was turned on. Scans were performed with the transmitter on.

Test Results: The EUT was compliant with this requirement.

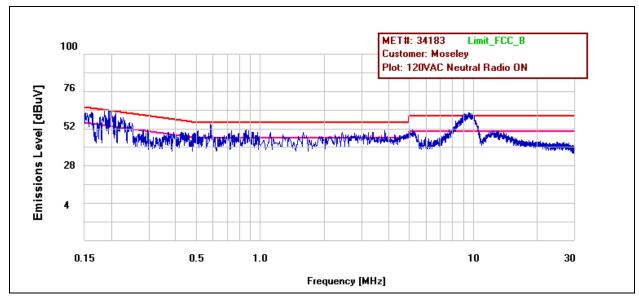

Test Engineer(s): Lionel Gabrillo

Test Date(s): 05/15/12

15.207(a) Conducted Emissions Test Results, 120 VAC, 60 Hz

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
120VAC Line Radio ON	0.1709	50.02	64.92	-14.9	Pass	24.93	54.92	-29.99	Pass
120VAC Line Radio ON	0.1838	50.6	64.317	-13.717	Pass	25.21	54.317	-29.107	Pass
120VAC Line Radio ON	0.2128	44.38	63.103	-18.723	Pass	24.84	53.103	-28.263	Pass
120VAC Line Radio ON	0.7862	36.3	56	-19.7	Pass	22.91	46	-23.09	Pass
120VAC Line Radio ON	1.492	37.52	56	-18.48	Pass	25.55	46	-20.45	Pass
120VAC Line Radio ON	2.96	40.59	56	-15.41	Pass	27.87	46	-18.13	Pass
120VAC Line Radio ON	6.6	34.54	60	-25.46	Pass	23.36	50	-26.64	Pass
120VAC Line Radio ON	9.613	49.72	60	-10.28	Pass	39.28	50	-10.72	Pass

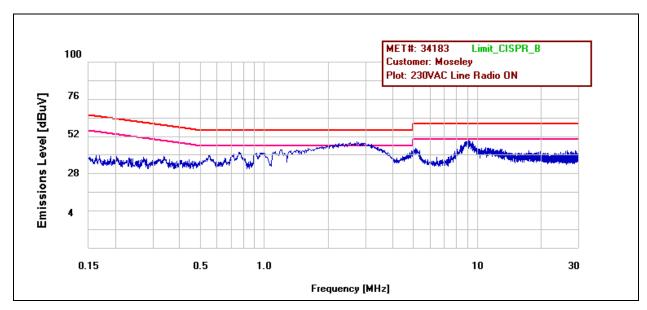
Table 18. Conducted Emissions, 15.207(a), Phase Line, Test Results, 120 VAC, 60 Hz


Plot 8. Conducted Emissions, 15.207(a), Phase Line, 120 VAC, 60 Hz

15.207(a) Conducted Emissions Test Results, 120 VAC, 60 Hz

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
120VAC Neutral Radio ON	9.32	55.2	60	-4.8	Pass	45.13	50	-4.87	Pass
120VAC Neutral Radio ON	9.6	56.4	60	-3.6	Pass	46.17	50	-3.83	Pass
120VAC Neutral Radio ON	12.95	43.84	60	-16.16	Pass	33.79	50	-16.21	Pass
120VAC Neutral Radio ON	0.1512	53.29	65.934	-12.644	Pass	26.49	55.934	-29.444	Pass
120VAC Neutral Radio ON	0.2225	49.02	62.734	-13.714	Pass	24.83	52.734	-27.904	Pass
120VAC Neutral Radio ON	0.5972	35.69	56	-20.31	Pass	22.9	46	-23.1	Pass
120VAC Neutral Radio ON	0.941	37.05	56	-18.95	Pass	24.94	46	-21.06	Pass
120VAC Neutral Radio ON	2.85	39.23	56	-16.77	Pass	27.56	46	-18.44	Pass
120VAC Neutral Radio ON	4.933	44.65	56	-11.35	Pass	33.04	46	-12.96	Pass

Table 19. Conducted Emissions, 15.207(a), Neutral Line, Test Results, 120 VAC, 60 Hz

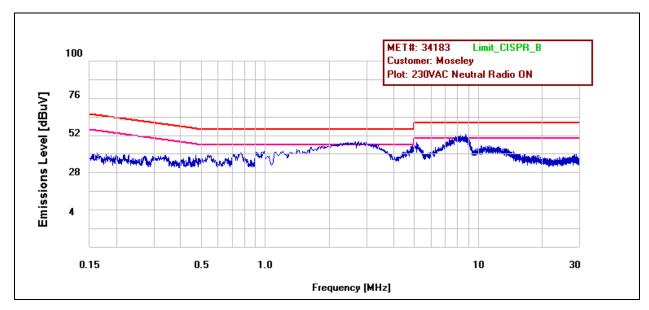


Plot 9. Conducted Emissions, 15.207(a), Neutral Line, 120 VAC, 60 Hz

15.207(a) Conducted Emissions Test Results, 230 VAC, 50 Hz

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC Line Radio ON	2.53	43.67	56	-12.33	Pass	27.72	46	-18.28	Pass
230VAC Line Radio ON	5.15	37.5	60	-22.5	Pass	26.69	50	-23.31	Pass
230VAC Line Radio ON	9.145	44.17	60	-15.83	Pass	31.99	50	-18.01	Pass

Table 20. Conducted Emissions, 15.207(a), Phase Line, Test Results, 230 VAC, 50 Hz



Plot 10. Conducted Emissions, 15.207(a), Phase Line, 230 VAC, 50 Hz

15.207(a) Conducted Emissions Test Results, 230 VAC, 50 Hz

Line	Freq. (MHz)	QP Amplitude	QP Limit	Delta	Pass	Average Amplitude	Average Limit	Delta	Pass
230VAC Neutral Radio ON	1.948	41.26	56	-14.74	Pass	25.43	46	-20.57	Pass
230VAC Neutral Radio ON	2.91	42.71	56	-13.29	Pass	31.92	46	-14.08	Pass
230VAC Neutral Radio ON	2.595	43.27	56	-12.73	Pass	27.54	46	-18.46	Pass
230VAC Neutral Radio ON	4.942	40.95	56	-15.05	Pass	28.79	46	-17.21	Pass
230VAC Neutral Radio ON	8.74	46.54	60	-13.46	Pass	34.21	50	-15.79	Pass

Table 21. Conducted Emissions, 15.207(a), Neutral Line, Test Results, 230 VAC, 50 Hz

Plot 11. Conducted Emissions, 15.207(a), Neutral Line, 230 VAC, 50 Hz

15.207(a) Conducted Emissions Test Setup Photo

Photograph 5. Conducted Emissions, 15.207(a), Test Setup

§ 15.247(a)(2) 6 dB and 99% Bandwidth

Test Requirements: § 15.247(a)(2): Operation under the provisions of this section is limited to frequency hopping

and digitally modulated intentional radiators that comply with the following provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least

500 kHz.

Test Procedure: The transmitter was on and transmitting at the highest output power. The bandwidth of the

fundamental frequency was measured with the spectrum analyzer using a RBW approximately 1% of the total emission bandwidth, VBW > RBW. The 6 dB Bandwidth was measured and

recorded. The measurements were performed on the low, mid and high channels.

Test Results The EUT was compliant with § 15.247 (a)(2).

The 6 dB and 99% Bandwidth was determined from the plots on the following pages.

Test Engineer(s): Lionel Gabrillo

Test Date(s): 02/13/12

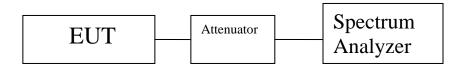
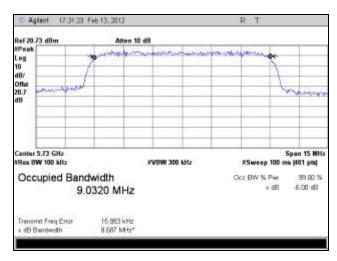


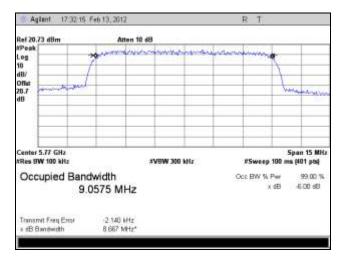
Figure 4. Block Diagram, Occupied Bandwidth Test Setup

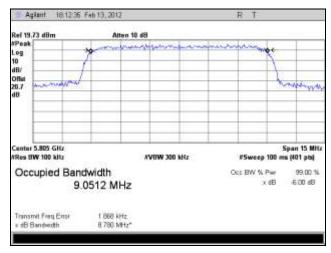
Occupied Bandwidth Test Results

	Occupied Bandwidth					
	Carrier Channel	Frequency (MHz)	Measured 6 dB Bandwidth (MHz)			
	Low	5730	8.687			
10 MH-	Mid	5770	8.667			
10 MHz	Mid	5805	8.780			
	High	5845	8.763			
	Low	5738	21.792			
25 MHz	Mid	5762	21.715			
25 MHZ	Mid	5813	21.646			
	High	5837	21.796			
50 MHz	Low	5750	42.442			
50 MHz	High	5825	42.091			

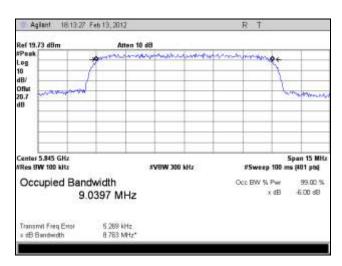

Table 22. 6 dB Occupied Bandwidth, Test Results

Occupied Bandwidth					
	Carrier Channel	Frequency (MHz)	Measured 99% Bandwidth (MHz)		
	Low	5730	8.9024		
10 MHz	Mid	5770	9.1402		
10 MHZ	Mid	5805	9.1983		
	High	5845	8.9584		
	Low	5738	22.4368		
25 MHz	Mid	5762	22.3355		
23 MITZ	Mid	5813	22.2396		
	High	5837	22.6626		
50 MHz	Low	5750	44.7789		
	High	5825	45.0820		

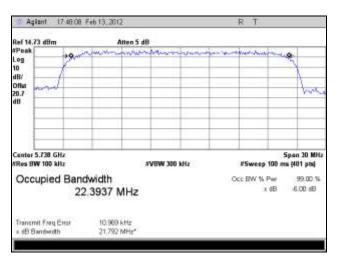

Table 23. 99% Occupied Bandwidth, Test Results


6 dB Occupied Bandwidth Test Results

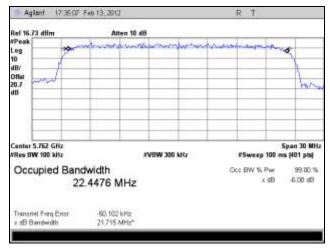
Plot 12. 6 dB Occupied Bandwidth, 10 MHz, Low Channel, 5730 MHz

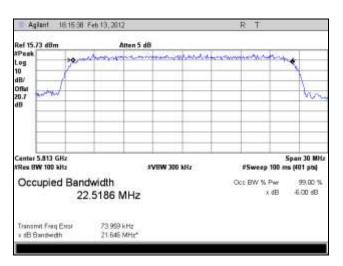


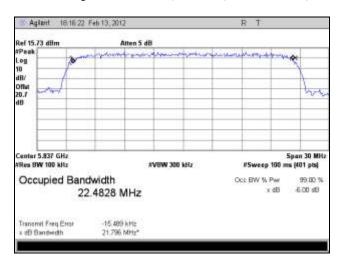
Plot 13. 6 dB Occupied Bandwidth, 10 MHz, Mid Channel, 5770 MHz

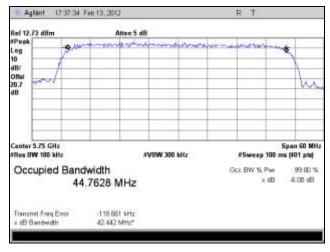


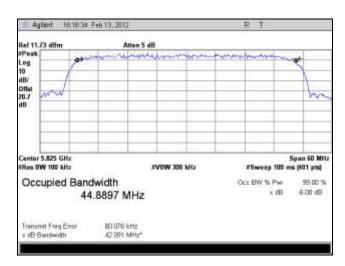
Plot 14. 6 dB Occupied Bandwidth, 10 MHz, Mid Channel, 5805 MHz



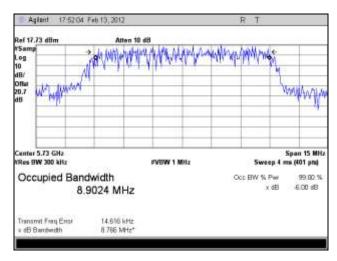

Plot 15. 6 dB Occupied Bandwidth, 10 MHz, High Channel, 5805 MHz

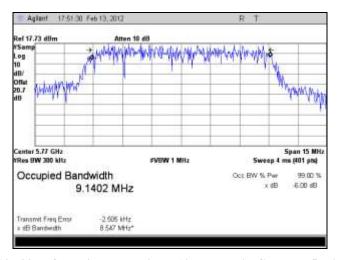

Plot 16. 6 dB Occupied Bandwidth, 25 MHz, Low Channel, 5738 MHz

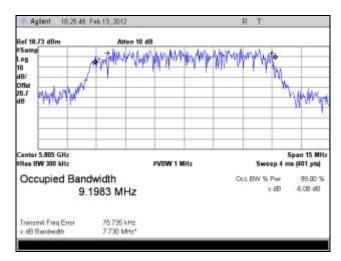

Plot 17. 6 dB Occupied Bandwidth, 25 MHz, Mid Channel, 5762 MHz

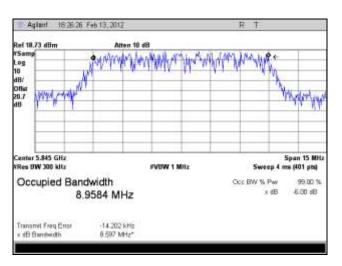

Plot 18. 6 dB Occupied Bandwidth, 25 MHz, Mid Channel, 5813 MHz

Plot 19. 6 dB Occupied Bandwidth, 25 MHz, High Channel, 5837 MHz

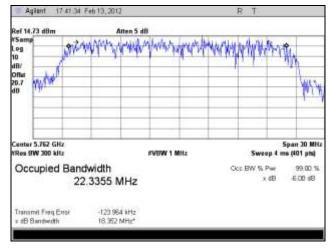

Plot 20. 6 dB Occupied Bandwidth, 50 MHz, Low Channel, 5750 MHz


Plot 21. 6 dB Occupied Bandwidth, 50 MHz, High Channel, 5825 MHz

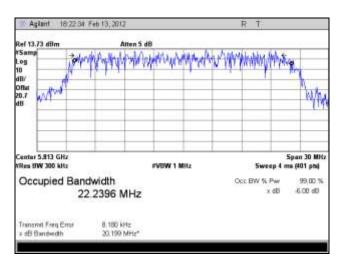

99% Occupied Bandwidth Test Results


Plot 22. 99% Occupied Bandwidth, 10 MHz, Low Channel, 5730 MHz

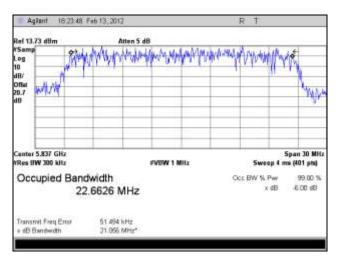

Plot 23. 99% Occupied Bandwidth, 10 MHz, Mid Channel, 5770 MHz


Plot 24. 99% Occupied Bandwidth, 10 MHz, Mid Channel, 5805 MHz

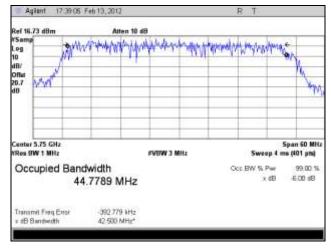
Plot 25. 99% Occupied Bandwidth, 10 MHz, High Channel, 5805 MHz

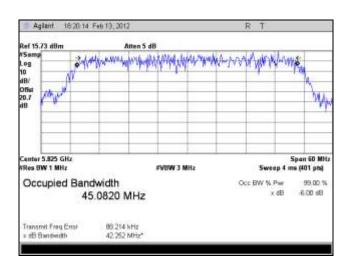


Plot 26. 99% Occupied Bandwidth, 25 MHz, Low Channel, 5738 MHz



Plot 27. 99% Occupied Bandwidth, 25 MHz, Mid Channel, 5762 MHz




Plot 28. 99% Occupied Bandwidth, 25 MHz, Mid Channel, 5813 MHz

Plot 29. 99% Occupied Bandwidth, 25 MHz, High Channel, 5837 MHz

Plot 30. 99% Occupied Bandwidth, 50 MHz, Low Channel, 5750 MHz

Plot 31. 99% Occupied Bandwidth, 50 MHz, High Channel, 5825 MHz

§ 15.247(b) Peak Power Output

Test Requirements:

§15.247(b): The maximum peak output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (Watts)
902-928	1.000
2400–2483.5	1.000
5725– 5850	1.000

Table 24. Output Power Requirements from §15.247(b)

§15.247(c): if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in the Table 24, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400 – 2483.5 MHz band and using a point to point application may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 5725 - 5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Fixed, point-to-point operation excludes the use of point-to-multipoint systems, Omnidirectional applications, and multiple co-located intentional radiators transmitting the same information. The operator of the spread spectrum intentional radiator or, if the equipment is professionally installed, the installer is responsible for ensuring that the system is used exclusively for fixed, point-to-point operations. The instruction manual furnished with the intentional radiator shall contain language in the installation instructions informing the operator and the installer of this responsibility.

Test Procedure: The transmitter was connected to a calibrated spectrum analyzer. The EUT was measured at the

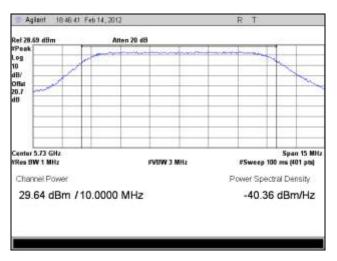
low, mid and high channels of each band at the maximum power level.

Test Results: The EUT was compliant with the Peak Power Output limits of §15.247(b).

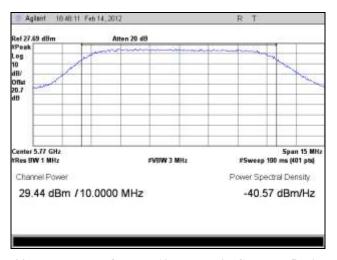
Test Engineer(s): Lionel Gabrillo

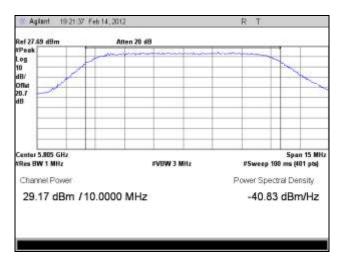
Test Date(s): 02/14/12

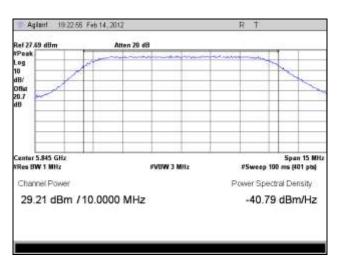
Figure 5. Peak Power Output Test Setup

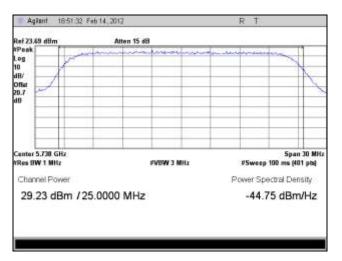

Peak Power Output Test Results

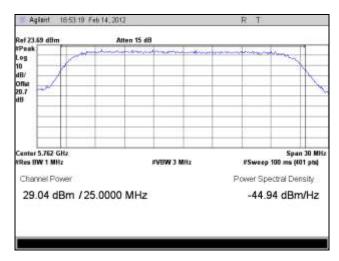
	Peak Conducted Output Power					
	Carrier Channel	Frequency (MHz)	Measured Peak Output Power dBm			
	Low	5730	29.64			
	Mid	5770	29.44			
10 MHz	Mid	5805	29.17			
	High	5845	29.21			
	Low	5738	29.23			
25 MHz	Mid	5762	29.04			
23 MITZ	Mid	5813	29.61			
	High	5837	29.14			
50 MHz	Low	5750	29.87			
JU IVITIZ	High	5825	29.77			


Table 25. Peak Power Output, Test Results

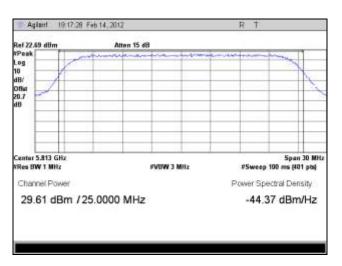

Peak Power Output Test Results


Plot 32. Peak Power Output, 10 MHz, Low Channel, 5730 MHz

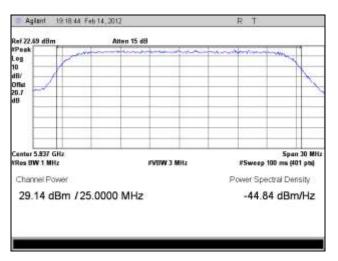

Plot 33. Peak Power Output, 10 MHz, Mid Channel, 5770 MHz


Plot 34. Peak Power Output, 10 MHz, Mid Channel, 5805 MHz

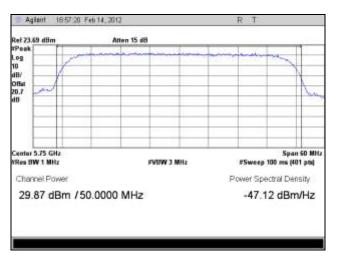
Plot 35. Peak Power Output, 10 MHz, High Channel, 5845 MHz

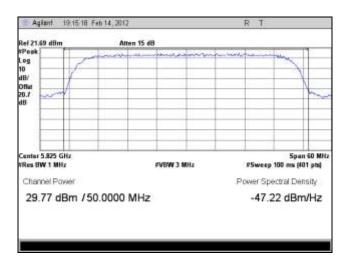


Plot 36. Peak Power Output, 25 MHz, Low Channel, 5738 MHz



Plot 37. Peak Power Output, 25 MHz, Mid Channel, 5762 MHz




Plot 38. Peak Power Output, 25 MHz, Mid Channel, 5813 MHz

Plot 39. Peak Power Output, 25 MHz, High Channel, 5837 MHz

Plot 40. Peak Power Output, 50 MHz, Low Channel, 5750 MHz

Plot 41. Peak Power Output, 50 MHz, High Channel, 5825 MHz

§ 15.247(d) Radiated Spurious Emissions Requirements

Test Requirements: §15.247(d); §15.205: Emissions outside the frequency band.

§15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425-16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300-1427	8.025-8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)

Table 26. Restricted Bands of Operation

MET Report: EMCS34183-FCC247

¹ Until February 1, 1999, this restricted band shall be 0.490 - 0.510 MHz.

² Above 38.6

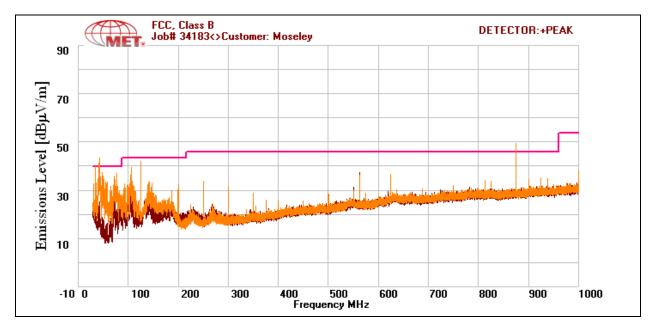
Test Requirement(s):

§ 15.209 (a): Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in Table 27.

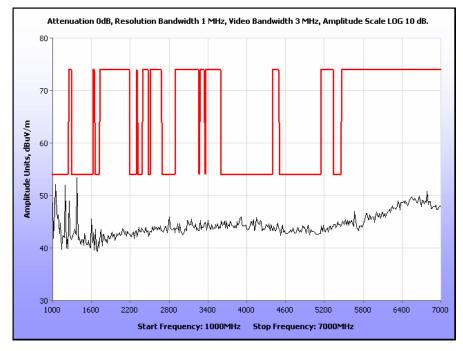
Frequency (MHz)	§ 15.209(a),Radiated Emission Limits
	(dBµV) @ 3m
30 - 88	40.00
88 - 216	43.50
216 - 960	46.00
Above 960	54.00

Table 27. Radiated Emissions Limits Calculated from FCC Part 15, § 15.209 (a)

Test Procedures: The transmitter was turned on. Measurements were performed of the low, mid and high


Channels. The EUT was rotated orthogonally through all three axes. Plots shown are corrected for both antenna correction factor and distance and compared to a 3 m limit line. Only noise

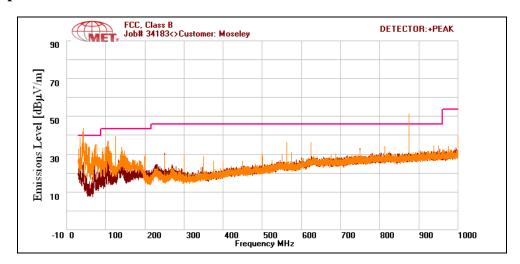
floor was measured above 18 GHz.


Test Results: The EUT was compliant with the Radiated Spurious Emission limits of § 15.247(d).

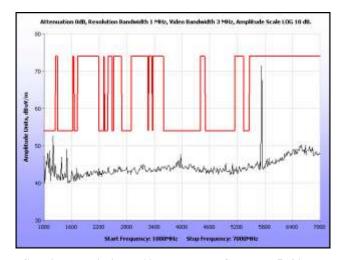
Test Engineer(s): Lionel Gabrillo

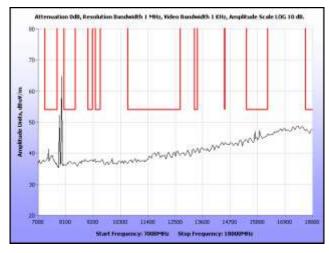
Test Date(s): 03/22/12

Plot 42. Radiated Spurious Emissions, RADIO OFF, 30 MHz - 1 GHz

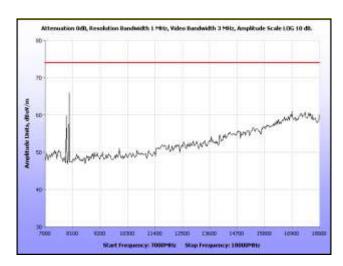


Plot 43. Radiated Spurious Emissions, RADIO OFF, 1 GHz - 7 GHz

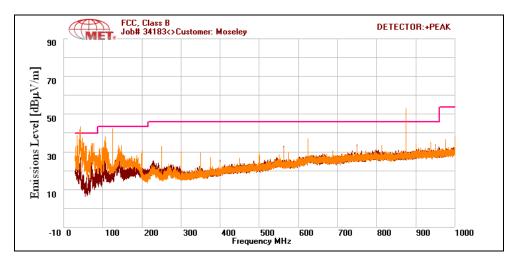

Note: Peaks at ~47MHz, 875MHz, 1.045GHz, 1.19GHz, and 1.375GHz are Digital Emissions and are not from the Radio.


Radiated Spurious Emissions Test Results

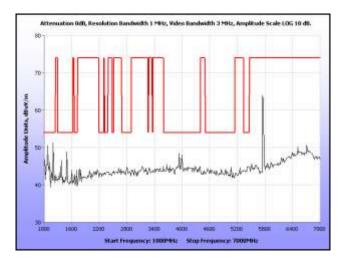
Plot 44. Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 30 MHz - 1 GHz



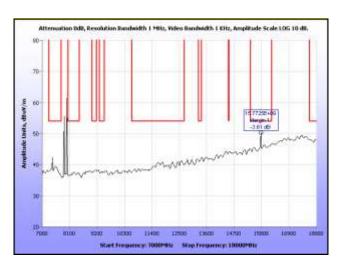
Plot 45. Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 1 GHz - 7 GHz



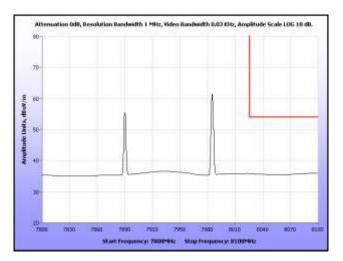
Plot 46. Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 7 GHz – 18 GHz, Average



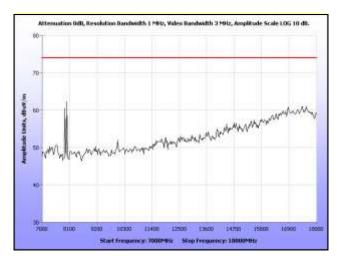
Plot 47. Radiated Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 7 GHz - 18 GHz, Peak



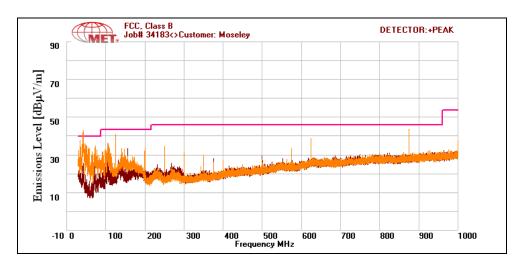
Plot 48. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 30 MHz - 1 GHz



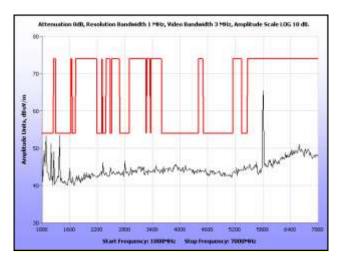
Plot 49. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 1 GHz - 7 GHz



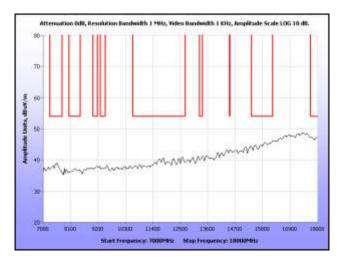
Plot 50. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 7 GHz - 18 GHz, Average



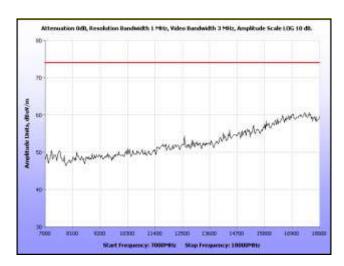
Plot 51. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 7.8 GHz - 8.1 GHz, Average



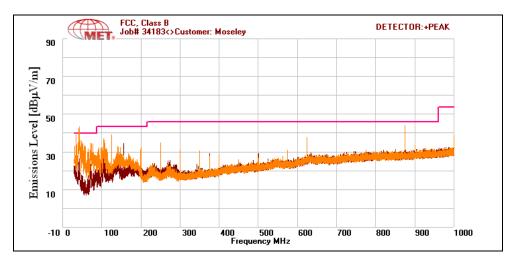
Plot 52. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 7 GHz – 18 GHz, Peak



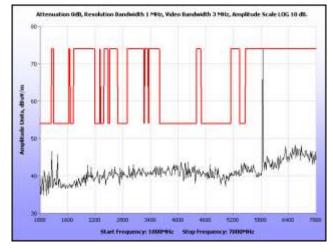
Plot 53. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 30 MHz - 1 GHz

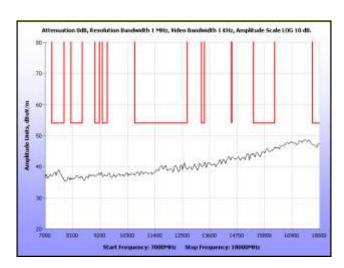


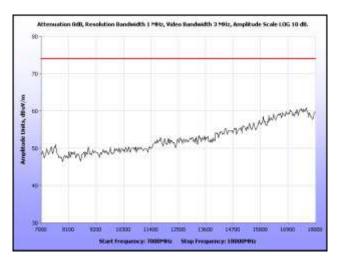
Plot 54. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 1 GHz - 7 GHz

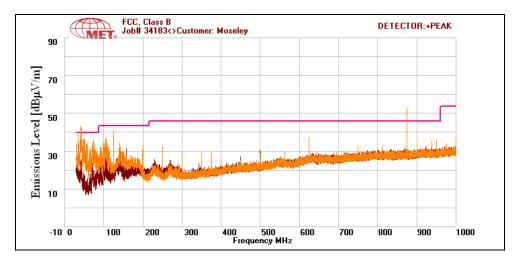


Plot 55. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 7 GHz – 18 GHz, Average

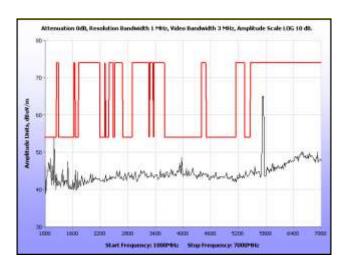



Plot 56. Radiated Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 7 GHz - 18 GHz, Peak


Plot 57. Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 30 MHz - 1 GHz

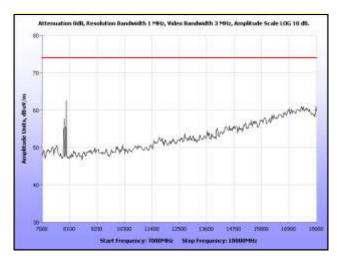

Plot 58. Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 1 GHz - 7 GHz

Plot 59. Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 7 GHz - 18 GHz, Average

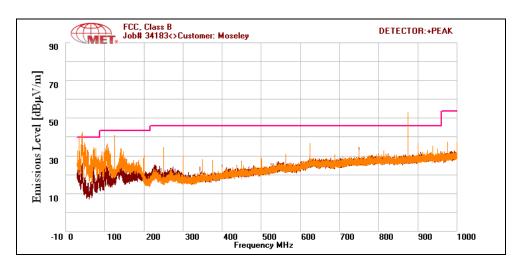


Plot 60. Radiated Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 7 GHz - 18 GHz, Peak

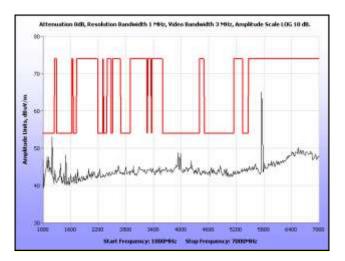
Plot 61. Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 30 MHz – 1 GHz



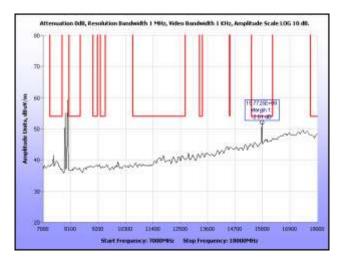
Plot 62. Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 1 GHz – 7 GHz

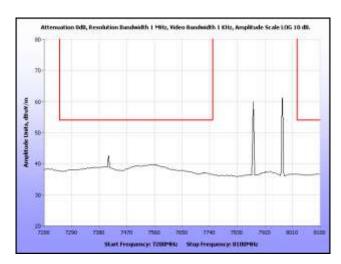


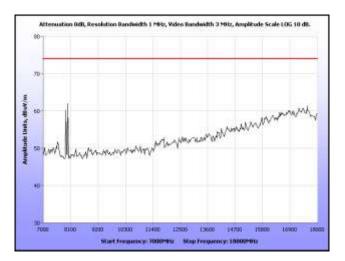
Plot 63. Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 7 GHz – 18 GHz, Average

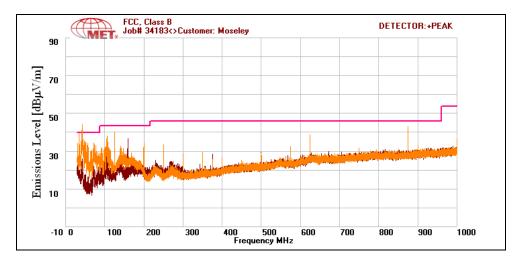


Plot 64. Radiated Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 7 GHz – 18 GHz, Peak

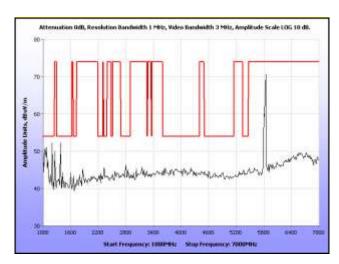



Plot 65. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 30 MHz – 1 GHz

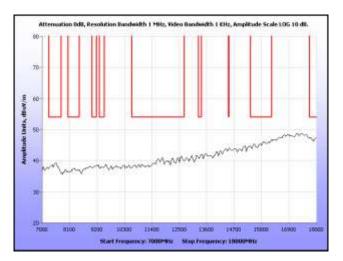

Plot 66. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 1 GHz – 7 GHz


Plot 67. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 7 GHz – 18 GHz, Average

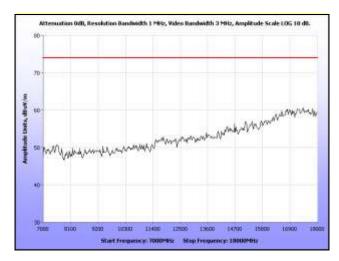
Plot 68. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 7.2 GHz - 8.1 GHz, Average



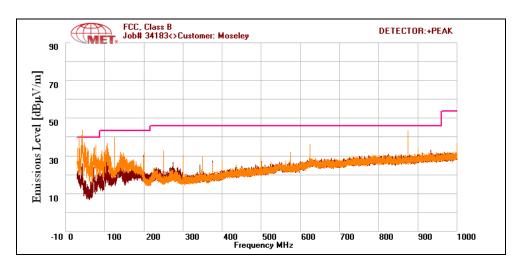
Plot 69. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 7 GHz - 18 GHz, Peak



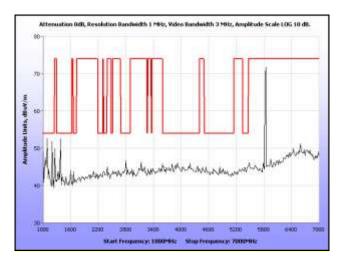
Plot 70. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 30 MHz – 1 GHz



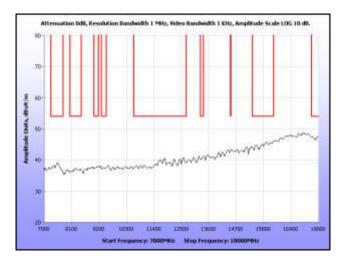
Plot 71. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 1 GHz – 7 GHz

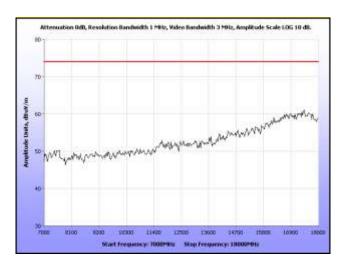


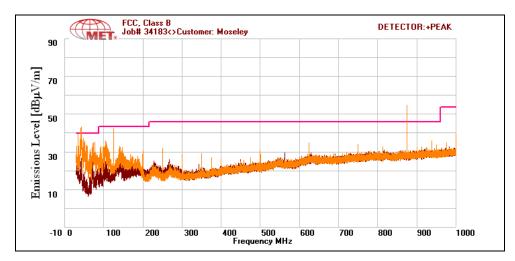
Plot 72. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 7 GHz - 18 GHz, Average

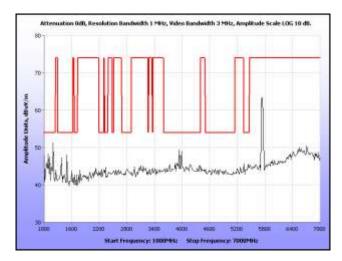


Plot 73. Radiated Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 7 GHz - 18 GHz, Peak

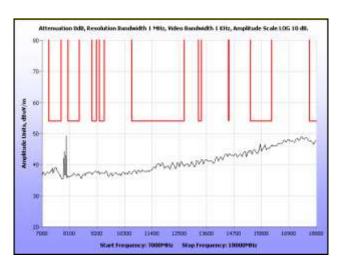



Plot 74. Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 30 MHz - 1 GHz

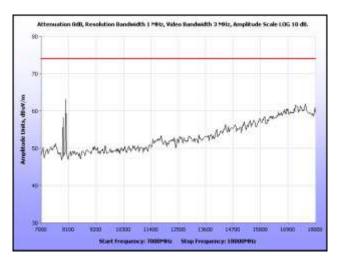

Plot 75. Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 1 GHz - 7 GHz


Plot 76. Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 7 GHz – 18 GHz, Average

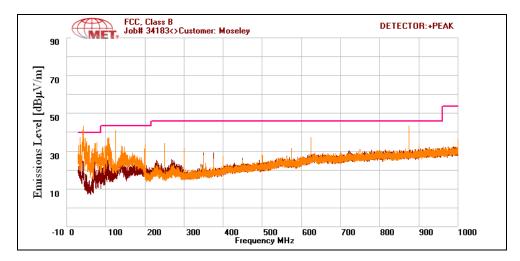
Plot 77. Radiated Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 7 GHz - 18 GHz, Peak



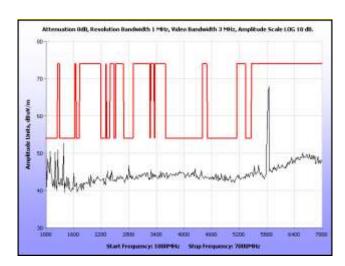
Plot 78. Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 30 MHz - 1 GHz



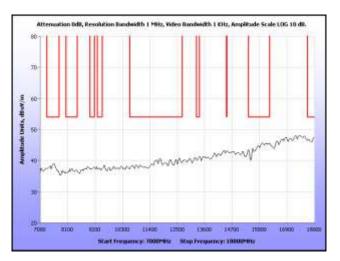
Plot 79. Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 1 GHz - 7 GHz



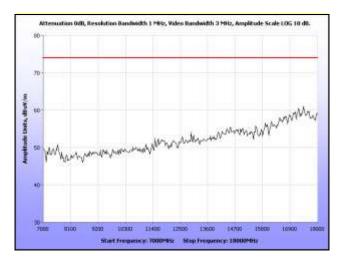
Plot 80. Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 7 GHz - 18 GHz, Average



Plot 81. Radiated Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 7 GHz - 18 GHz, Peak



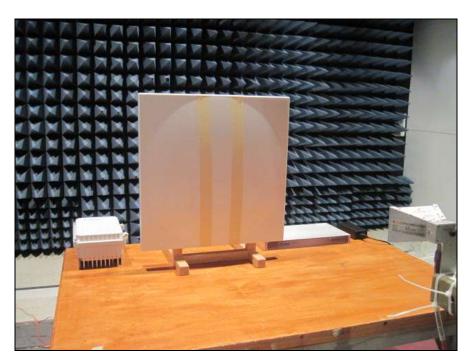
Plot 82. Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 30 MHz - 1 GHz



Plot 83. Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 1 GHz - 7 GHz

Plot 84. Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 7 GHz - 18 GHz, Average

Plot 85. Radiated Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 7 GHz – 18 GHz, Peak



Photograph 6. Radiated Spurious Emissions, Test Setup, $30\,\mathrm{MHz} - 1\,\mathrm{GHz}$

Photograph 7. Radiated Spurious Emissions, Test Setup, 1 GHz – 18 GHz

Photograph 8. Radiated Spurious Emissions, Test Setup, 18 GHz – 26 GHz

§ 15.247(d) RF Conducted Spurious Emissions Requirements and Band Edge

Test Requirement:

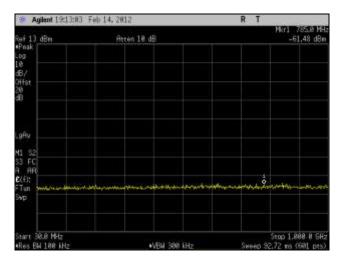
15.247(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure:

For intentional radiators with a digital device portion which operates below 10 GHz, the spectrum was investigated as per §15.33(a)(1) and §15.33(a)(4); i.e., the lowest RF signal generated or used in the device up to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

See following pages for detailed test results with RF Conducted Spurious Emissions.

Test Results: The EUT was compliant with the Conducted Spurious Emission limits of §15.247(d).


Test Engineer(s): Lionel Gabrillo

Test Date(s): 02/15/12

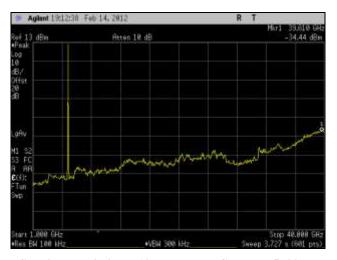
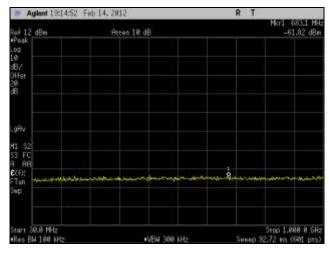
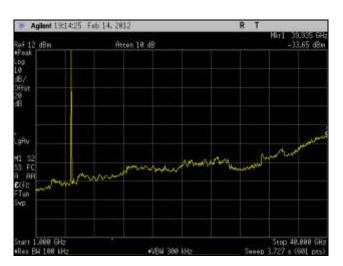
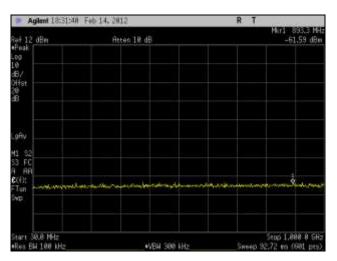
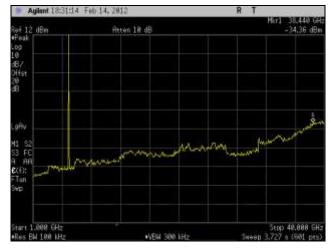


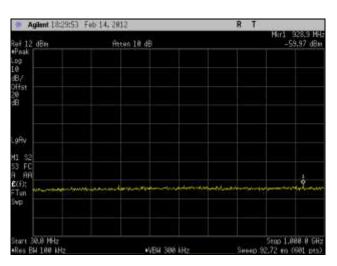
Figure 6. Block Diagram, Conducted Spurious Emissions Test Setup

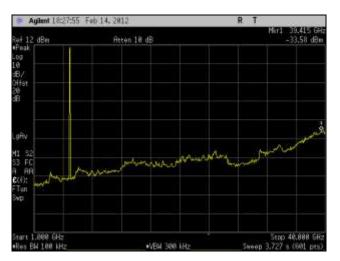

Conducted Spurious Emissions Test Results

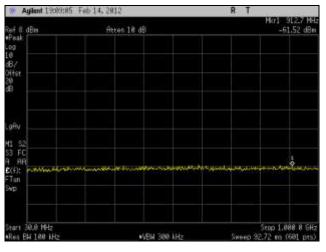

Plot 86. Conducted Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 30 MHz - 1 GHz

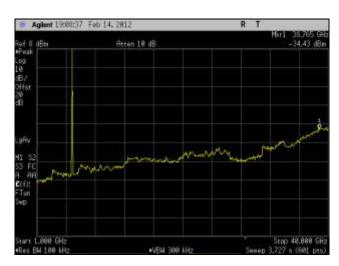

Plot 87. Conducted Spurious Emissions, 10 MHz, Low Channel, 5730 MHz, 1 GHz - 40 GHz

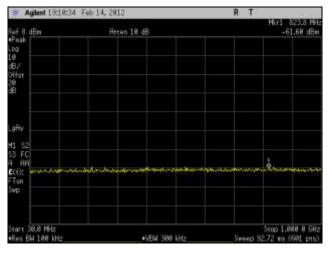

Plot 88. Conducted Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 30 MHz - 1 GHz

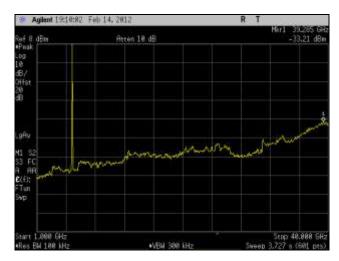

Plot 89. Conducted Spurious Emissions, 10 MHz, Mid Channel, 5770 MHz, 1 GHz - 40 GHz


Plot 90. Conducted Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 30 MHz - 1 GHz

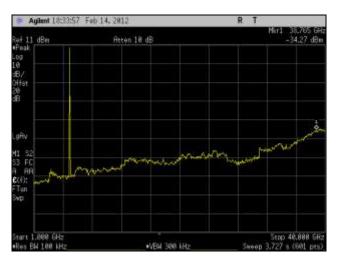

Plot 91. Conducted Spurious Emissions, 10 MHz, Mid Channel, 5805 MHz, 1 GHz – 40 GHz

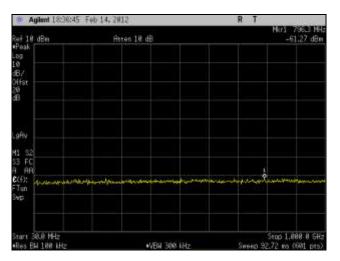

Plot 92. Conducted Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 30 MHz - 1 GHz

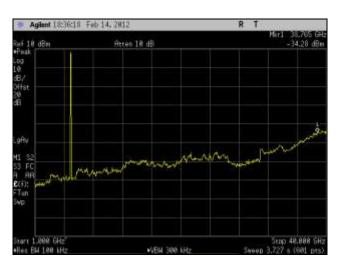

Plot 93. Conducted Spurious Emissions, 10 MHz, High Channel, 5845 MHz, 1 GHz - 40 GHz

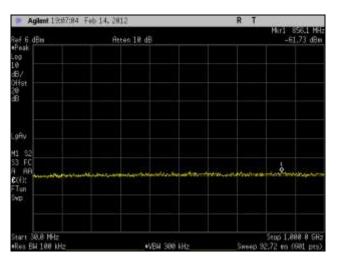

Plot 94. Conducted Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 30 MHz - 1 GHz

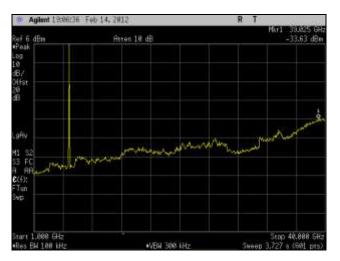

Plot 95. Conducted Spurious Emissions, 25 MHz, Low Channel, 5738 MHz, 1 GHz - 40 GHz

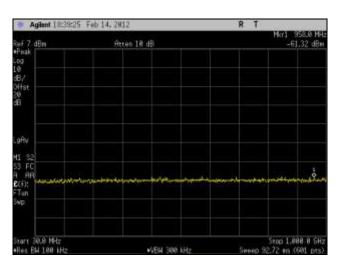

Plot 96. Conducted Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 30 MHz - 1 GHz

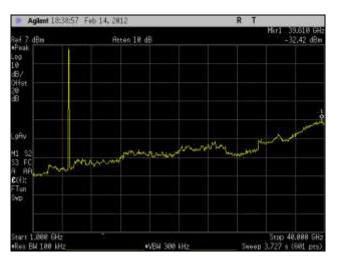

Plot 97. Conducted Spurious Emissions, 25 MHz, Mid Channel, 5762 MHz, 1 GHz – 40 GHz


Plot 98. Conducted Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 30 MHz – 1 GHz

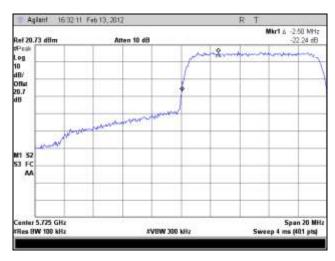

Plot 99. Conducted Spurious Emissions, 25 MHz, Mid Channel, 5813 MHz, 1 GHz - 40 GHz

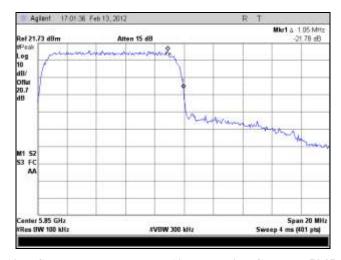

Plot 100. Conducted Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 30 MHz - 1 GHz

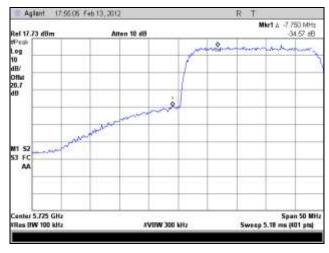

Plot 101. Conducted Spurious Emissions, 25 MHz, High Channel, 5837 MHz, 1 GHz - 40 GHz


Plot 102. Conducted Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 30 MHz - 1 GHz

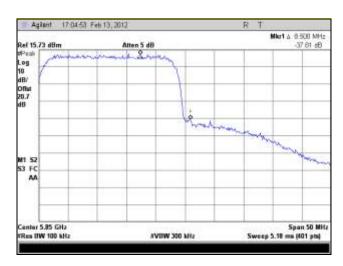
Plot 103. Conducted Spurious Emissions, 50 MHz, Low Channel, 5750 MHz, 1 GHz – 40 GHz


Plot 104. Conducted Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 30 MHz – 1 GHz

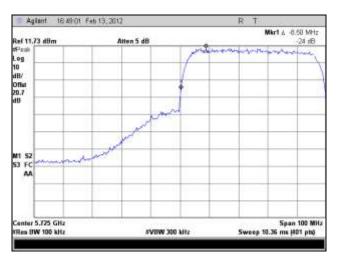

Plot 105. Conducted Spurious Emissions, 50 MHz, High Channel, 5825 MHz, 1 GHz - 40 GHz


Conducted Band Edge Test Results

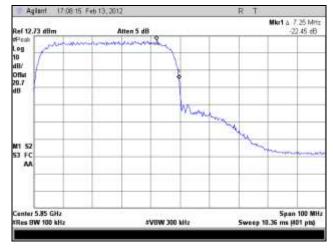
Plot 106. Conducted Band Edge, 10 MHz, Low Channel, 5730 MHz



Plot 107. Conducted Band Edge, 10 MHz, High Channel, 5845 MHz



Plot 108. Conducted Band Edge, 25 MHz, Low Channel, 5738 MHz



Plot 109. Conducted Band Edge, 25 MHz, High Channel, 5837 MHz

Plot 110. Conducted Band Edge, 50 MHz, Low Channel, 5750 MHz

Plot 111. Conducted Band Edge, 50 MHz, High Channel, 5825 MHz

§ 15.247(e) Peak Power Spectral Density

Test Procedure: The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The

power level was set to the maximum level. A RBW of 1 MHz and VBW of 3 MHz were used to determine the peak emissions within the band. The Spectrum analyzer was then set to a RBW of 3 kHz and VBW was set to 10 kHz. The SPAN of the analyzer was set to 1 MHz with a 333.3 second sweep. Measurements were carried out at the low, mid and high channels.

Test Results: The EUT was compliant with the peak power spectral density limits of § 15.247 (e).

The peak power spectral density was determined from plots on the following page(s).

Test Engineer: Lionel Gabrillo

Test Date: 02/13/12

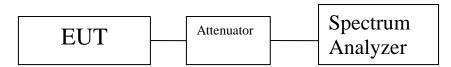
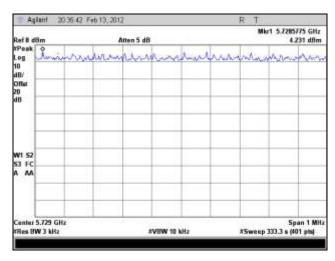
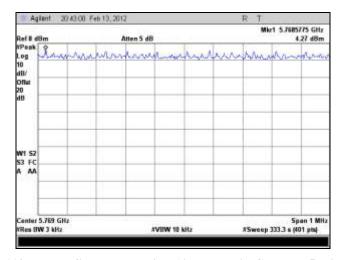


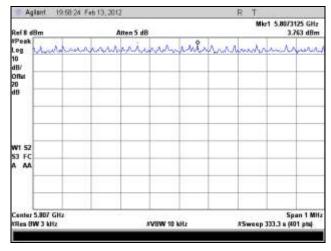
Figure 7. Block Diagram, Peak Power Spectral Density Test Setup

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 78 of 98

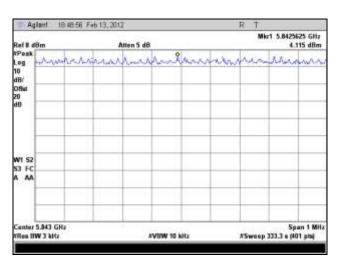

Peak Power Spectral Density Test Results

Peak Power Spectral Density								
	Carrier	Frequency	Measured PPSD	Limit	Margin			
	Channel	(MHz)	(dBm)	(dBm)	(dB)			
10 MHz	Low	5730	4.231	8	-3.769			
	Mid	5770	4.270	8	-3.73			
	Mid	5805	3.763	8	-4.237			
	High	5845	4.115	8	-3.885			
25 MHz	Low	5738	5.728	8	-2.272			
	Mid	5762	0.093	8	-7.907			
	Mid	5813	-0.849	8	-8.849			
	High	5837	-0.443	8	-8.443			
50 MHz	Low	5750	-2.670	8	-10.67			
	High	5825	-3.007	8	-11.007			

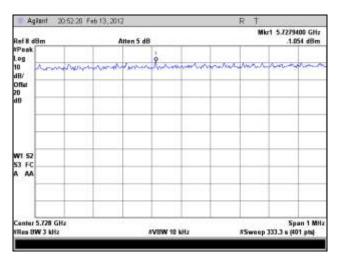

Table 28. Peak Power Spectral Density, Test Results


Peak Power Spectral Density

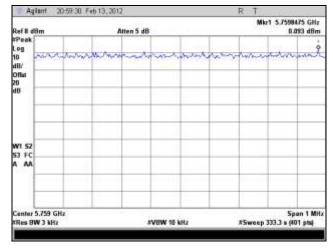
Plot 112. Power Spectral Density, 10 MHz, Low Channel, 5730 MHz



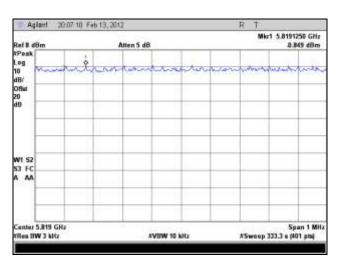
Plot 113. Power Spectral Density, 10 MHz, Mid Channel, 5770 MHz



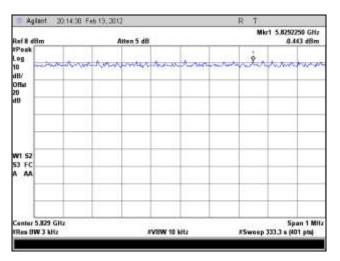
Plot 114. Power Spectral Density, 10 MHz, Mid Channel, 5805 MHz



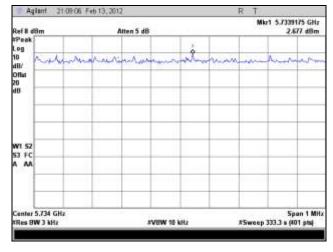
Plot 115. Power Spectral Density, 10 MHz, High Channel, 5845 MHz

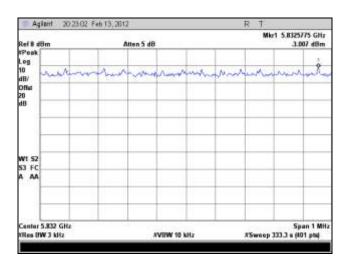


Plot 116. Power Spectral Density, 25 MHz, Low Channel, 5738 MHz



Plot 117. Power Spectral Density, 25 MHz, Mid Channel, 5762 MHz




Plot 118. Power Spectral Density, 25 MHz, Mid Channel, 5813 MHz

Plot 119. Power Spectral Density, 25 MHz, High Channel, 5837 MHz

Plot 120. Power Spectral Density, 50 MHz, Low Channel, 5750 MHz

Plot 121. Power Spectral Density, 50 MHz, High Channel, 5825 MHz

§ 15.247(i) Maximum Permissible Exposure

RF Exposure Requirements: §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this

section shall be operated in a manner that ensures that the public is not exposed to

radio frequency energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure (MPE)

Limit shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of Sec. 2.1093 of

this chapter.

MPE Limit Calculation: EUT's operating frequencies @ 5725 - 5850 MHz; highest conducted power = 29.87dBm (peak) therefore, **Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²**

EUT maximum antenna gain = 28 dBi.

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \sqrt{PG / 4\pi S}$

where, $S = Power Density (1 mW/cm^2)$

P = Power Input to antenna (970.51 mW)

G = Antenna Gain (630.96 numeric)

R = Minimum Distance between User and Antenna (20 cm)

 $S = (970.51 *630.96)/(4*3.14*20^2) = 612350.39/5024 = 121.88 \text{mW/cm}^2$

Since $S > 1 \text{ mW/cm}^2$, the minimum distance (R) should be

 $R = (970.51 *630.96/4*3.14*1.0)^{1/2} = (612350.39/12.56)^{1/2} = 220.80cm$

RSS-GEN Receiver Spurious Emissions Requirements

Test Requirements: The follow

The following receiver spurious emission limits shall be complied with:

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 29.

Spurious Frequency (MHz)	Field Strength (microvolt/m at 3 metres)
30 – 88	100
88 – 216	150
216 – 960	200
Above 960	500

Table 29. Spurious Emission Limits for Receivers

(b) If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

Test Procedures:

The EUT was programmed for receive mode only. Conducted measurements were taken at the antenna port of the EUT. 100 kHz resolution bandwidth was used from 30 MHz - 1 GHz and 1 MHz resolution was used for measurements done above 1 GHz. All plots are corrected for cable loss.

Test Results:

Equipment is compliant with the Receiver Spurious Emissions Requirements of RSS-GEN.

Test Engineer(s):

Lionel Gabrillo

Test Date(s):

02/14/12

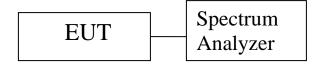
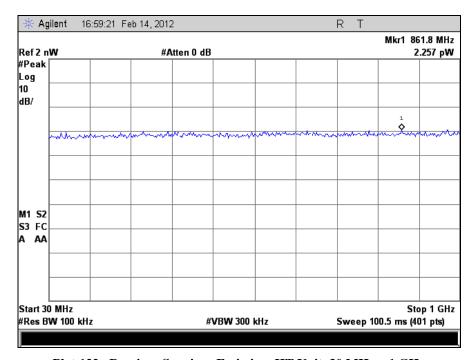
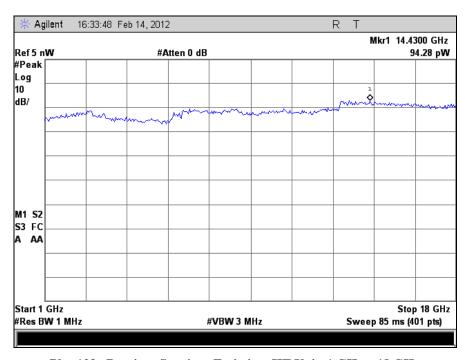
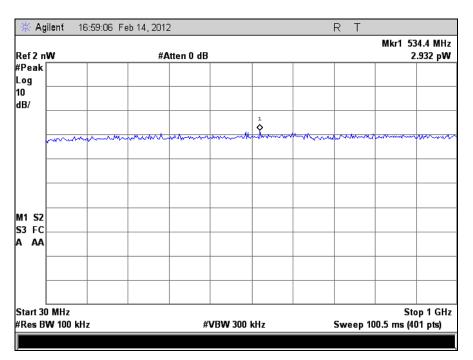
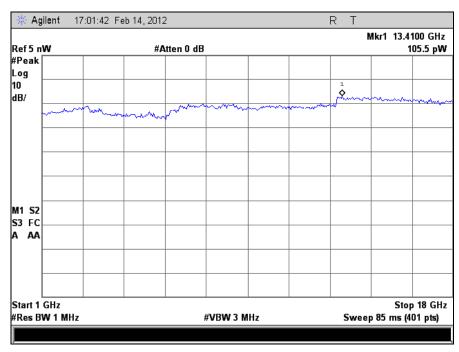




Figure 8. Block Diagram, Conducted Receiver Spurious Emissions Test Setup


Conducted Receiver Spurious Emissions


Plot 122. Receiver Spurious Emission, HT Unit, 30 MHz - 1 GHz

Plot 123. Receiver Spurious Emission, HT Unit, 1 GHz - 18 GHz

Plot 124. Receiver Spurious Emission, LT Unit, 30 MHz - 1 GHz

Plot 125. Receiver Spurious Emission, LT Unit, 1 GHz – 18 GHz

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2607	SPECTRUM ANALYZER	AGILENT/HP	E4407B	8/9/2011	8/9/2012
1S2691	DUAL-LINE V-LISN	TESEQ	NNB-51	3/31/2011	3/31/2012
1S2633	TRANSIENT LIMITER	FISCHER CUSTOM COMMUNICATIONS INC.	FCC-450B-2.4-N	2/18/2011	2/18/2012
1S2399	TURNTABLE CONTROLLER	SUNOL SCIENCE	SC99V	CAL NOT REQUIRED	
1S2501	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESU40	06/09/2011	06/09/2012
1S2482	5 METER CHAMBER	PANASHIELD	641431	11/18/2011	11/18/2012
1S2657	SCREEN ROOM	ETS LINDGREN	14W-2/2-0	CAL NOT REQUIRED	
1S2460	SPECTRUM ANALYZER	AGILENT	E4407B	7/12/2011	7/12/2012
1S2583	SPECTRUM ANALYZER	AGILENT/HP	E4447A	3/18/2011	3/18/2012
1S2600	BILOG ANTENNA	TESEQ	CBL6112D	4/14/2010	4/14/2013
1S2501	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESU40	06/09/2011	06/09/2012
1S2198	HORN ANTENNA	EMCO	3115	9/29/2011	9/29/2012
N/A	HIGH PASS FILTER	MICRO-TRONICS	HPM13147	SEE NOTE	
1S2714	THERM/CLOCK/HUMIDITY MONITOR	CONTROL COMPANY	06-662-4, FB7025B	11/9/2011	11/9/2013
1S2202	HORN ANTENNA (18GHZ – 26GHZ)	EMCO	3116	4/23/2010	4/23/2013
1S2698	DOUBLE RIDGE GUIDE HORN ANTENNA (26GHZ – 40GHZ)	A.H. SYSTEMS, INC.	SAS-574	5/24/2011	5/24/2012
1S2523	PREAMP (1-26.5GHZ)	AGILENT	8449B	SEE NOTE	
NA	5725MHZ-5875MHZ BAND REJECT FILTER	MICRO-TRONICS	BRC50705-02	SEE NOTE	
NA	7-18GHZ HIGH PASS FILTER	MICRO-TRONICS	HPM13147	SEE NOTE	

Table 30. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements provided that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 91 of 98

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device:
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 92 of 98

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

- (a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.
- (b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

MET Report: EMCS34183-FCC247

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 94 of 98

1. Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 95 of 98

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 4, February 2004:

Section 6.1: A record of the measurements and results, showing the date that the measurements

were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination

on the request of the Minister.

Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus

to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the user's

manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class [²] digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [1] est conforme à la norme NMB-003 du Canada.

MET Report: EMCS34183-FCC247

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report

MET Report: EMCS34183-FCC247 © 2012, MET Laboratories, Inc. Page 98 of 98