

EMC EMISSIONS - TEST REPORT (Full)

Test Report No.	3166782DEN-003b Rev. 1 Iss	sue Date: Wednesday 19/Nov/08
Model / Serial No.	MN: TAD/SN: 9800021	
Product Type	Transdermal Alcohol Detector	
Client	BI Inc.	
Manufacturer	BI Inc.	
License holder	BI Inc.	
Address	6400 Lookout Rd	
	Boulder CO 80301	
Test Criteria Applied	FCC 47 CFR Part 15.231(e) IC RSS-210 issue 7	Title 47 CFR 15: RADIO FREQUENCY DEVICES
Test Result	PASS	Subpart C – Intentional Radiators
Test Project Number References	3166782	Low-power License-exempt Radio Communication Devices (All Frequency Bands):
Total Pages Including Appendices:	33	Category I Equipment
30		Midwl Spata
Reviewed By : Ty	Orosco Revie	wed By : Michael Spataro

REVISION SUMMARY - The following changes have been made to this Report:

Rev.	Revision Statement	Author	Revision Date	Reviewer
	Initial Release of Document	See above	See above	
1	Updated Fundamental limits on page 18 and Minimum limit margin on pate 3	МН	11/24/08	MS

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government. Measurement uncertainty is not incorporated in to the PASS/FAIL results as stated above. A statement of uncertainty is made on page 2 and is for informational purposes.

Fax: 303 449 6160

DIRECTORY

Documentation	Page(s)
Test report	1 – 33
Directory	2
Test Regulations	3
General Remarks	4
Test-setup Photographs	5
Appendix A	
Test Data Sheets and Test Equipment Used	9 - 22
Appendix B	
Test Plan/Constructional Data Form	23 - 28
Appendix C	
Measurement Protocol/Test Procedures	29 - 33

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150 kHz - 30 MHz is calculated to be $\pm 3.14 \text{dB}$ and for Radiated Emissions is calculated to be $\pm 4.4 \text{dB}$ in the frequency range of 10 kHz - 1000 MHz at 3m and $\pm 4.9 \text{dB}$ in the frequency range of 1 - 18 GHz at 3m. For testing at $10 \text{m} \pm 4.8 \text{dB}$ in the frequency range of 30 - 1000 MHz. For Disturbance Power, $\pm 3.3 \text{dB}$ in the frequency range of 30 - 1000 MHz. For Flicker and Harmonics testing the equipment used is calibrated by the manufacture and is with in the tolerances specified in 61000-3-2/3. These uncertainties have been calculated using CISPR 16-4-2:2003 and represent a 95% confidence level (k=2).

EUT Received Date: 29-October-2008

Testing Start Date: 29-October-2008

Testing End Date: 31-October-2008

Project File: 3166782 Page 2 of 33 Voice: 303 786 7999 Fax: 303 449 6160

The tests were performed according to following regulations:

- 1. FCC CFR47 Part 15 subpart C
- 2. IC RSS-210e Issue 7 2007
- 3. IC RSS-GEN Issue 2 2007

Emission Test Results:

Conducted Emissions 1	5.207	-	NA
-----------------------	-------	---	----

Test Result

Minimum limit margin 0.0 dB at 0.0 MHz

Remarks: EUT is battery powered

Radiated Unintentional and Spurious Emissions 15.231(b)(3) /15.205/209 - PASS

Test Result

Minimum limit margin -8.1 dB at 1807.96 MHz

Remarks: Covers RSS-210 tables 1 and 2.

Field Strength of the Fundamental 15.231(e) - PASS

Test Result

Minimum limit margin -1.2 dB at 314.25 MHz

Remarks: Covers RSS-210 table 5.

Field Strength of Harmonics 15.231(e) - PASS

Test Result

Minimum limit margin -16.3 dB at 942.49 MHz

Remarks: Covers RSS-210 table 5.

20dB Bandwidth 15.231(c) - PASS

Test Result

Remarks: Covers RSS-210 A1.1.3.

Project File: 3166782 Page 3 of 33

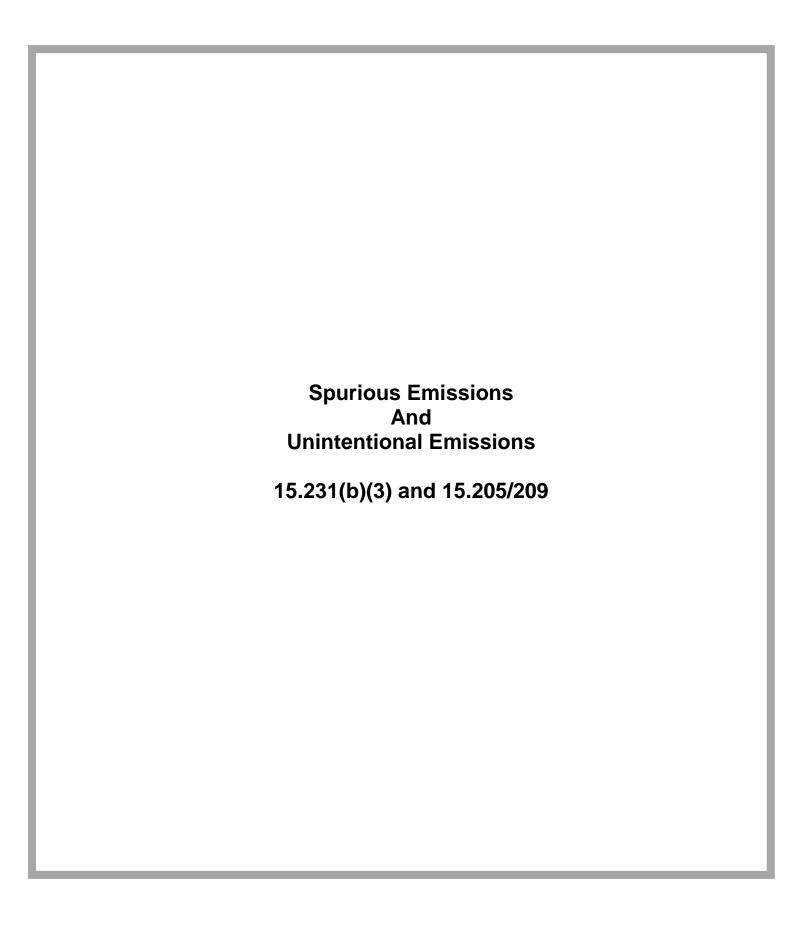
Fax: 303 449 6160

GENERAL REMARKS:
The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at Intertek.
Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.
FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.
FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.
<u>Sample:</u> ⊠Production
Modifications required to pass: None
Test Specification Deviations: Additions to or Exclusions from: None

Test-setup photo(s):
Radiated Intentional Emissions:

Project File: 3166782 Page 6 of 33 Voice: 303 786 7999 Fax: 303 449 6160

Project File: 3166782 Page 7 of 33 Voice: 303 786 7999 Fax: 303 449 6160



Project File: 3166782 Page 8 of 33 Voice: 303 786 7999 Fax: 303 449 6160

Appendix A
Appointed
Test Data Sheets
and
Test Equipment Used
Tool Equipment Cood

Project File: 3166782 Page 9 of 33 Voice: 303 786 7999 Fax: 303 449 6160

Radiated Electromagnetic Emissions

Test Report #:	3166782	Test Area:	Pinewood Site 1 (3m)	Temperature:	24.9	°C
Test Method:	FCC Part 15.209	Test Date:	30-Oct-2008	Relative Humidity:	17.3	%
EUT Model #:	Homebase HB100; TAD	EUT Power:	120VAC; 60Hz; 3.3VDC	Air Pressure:	81	kPa
EUT Serial #:	6100021; 9800021					_
Manufacturer:	BI			Leve	el Key	
EUT Description:	Alcohol Monitoring System; Tr	ansdermal Alcohol	Detector	Pk – Peak	Nb – N	arrow Band
Notes: Both ur	nits were on the table at time of te	sting.		Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
200.00	30.6 Qp	1.5 / 11.3 / 27.3	16.0	V / 1.0 / 0.0	-27.5	N/A
959.98	25.8 Qp	3.7 / 22.4 / 27.3	24.6	V / 1.0 / 0.0	-21.4	N/A
224.29	31.4 Qp	1.6 / 10.4 / 27.3	16.0	V / 1.0 / 0.0	-30.0	N/A
254.30	35.0 Qp	1.8 / 11.8 / 27.1	21.4	V / 1.0 / 0.0	-24.6	N/A
408.26	38.1 Qp	2.2 / 18.0 / 27.8	30.5	V / 1.0 / 0.0	-15.5	N/A
234.00	34.0 Qp	1.7 / 10.6 / 27.2	19.1	V / 1.0 / 0.0	-26.9	N/A
313.57	33.0 Qp	1.9 / 14.2 / 27.2	22.1	V / 1.0 / 0.0	-23.9	N/A
408.26	39.2 Qp	2.2 / 18.0 / 27.8	31.6	V / 1.0 / 90.0	-14.4	N/A
959.98	25.9 Qp	3.7 / 22.4 / 27.3	24.7	V / 1.0 / 90.0	-21.3	N/A
254.30	35.6 Qp	1.8 / 11.8 / 27.1	22.0	V / 1.0 / 180.0	-24.0	N/A
250.00	37.2 Qp	1.7 / 11.6 / 27.2	23.4	V / 1.0 / 180.0	-22.6	N/A
620.91	30.5 Qp	2.9 / 18.9 / 28.2	24.1	V / 1.0 / 180.0	-21.9	N/A
818.47	28.8 Qp	3.3 / 21.4 / 27.8	25.7	V / 1.0 / 180.0	-20.3	N/A
846.70	32.2 Qp	3.4 / 21.7 / 27.7	29.6	V / 1.0 / 180.0	-16.4	N/A
620.91	30.7 Qp	2.9 / 18.9 / 28.2	24.3	V / 1.0 / 270.0	-21.7	N/A
290.19	34.2 Qp	1.9 / 13.3 / 27.0	22.4	V / 1.0 / 270.0	-23.6	N/A
299.82	31.2 Qp	1.9 / 13.8 / 27.1	19.7	V / 1.0 / 270.0	-26.3	N/A
338.67	31.5 Qp	2.0 / 14.1 / 27.2	20.3	V / 1.0 / 270.0	-25.7	N/A
339.81	31.2 Qp	2.0 / 14.1 / 27.3	20.0	V / 1.0 / 270.0	-26.0	N/A
790.25	27.3 Qp	3.3 / 20.6 / 27.8	23.4	V / 1.0 / 270.0	-22.6	N/A
The following	are maximize	d.		-		
408.26	38.8 Qp	2.2 / 18.0 / 27.8	31.2	V / 1.0 / 87.1	-14.8	N/A
818.47	35.1 Qp	3.3 / 21.4 / 27.8	32.1	V / 1.1 / 49.1	-13.9	N/A
846.70	39.6 Qp	3.4 / 21.7 / 27.7	36.9	V / 1.6 / 15.5	-9.1	N/A
	1	,		,	,	
278.92	35.4 Qp	1.8 / 12.7 / 27.0	22.9	H / 1.6 / 0.0	-23.1	N/A
299.82	32.6 Qp	1.9 / 13.8 / 27.1	21.2	H / 1.6 / 0.0	-24.8	N/A
339.81	33.3 Qp	2.0 / 14.1 / 27.3	22.1	H / 1.6 / 0.0	-23.9	N/A
790.25	28.3 Qp	3.3 / 20.6 / 27.8	24.4	H / 2.5 / 0.0	-21.6	N/A

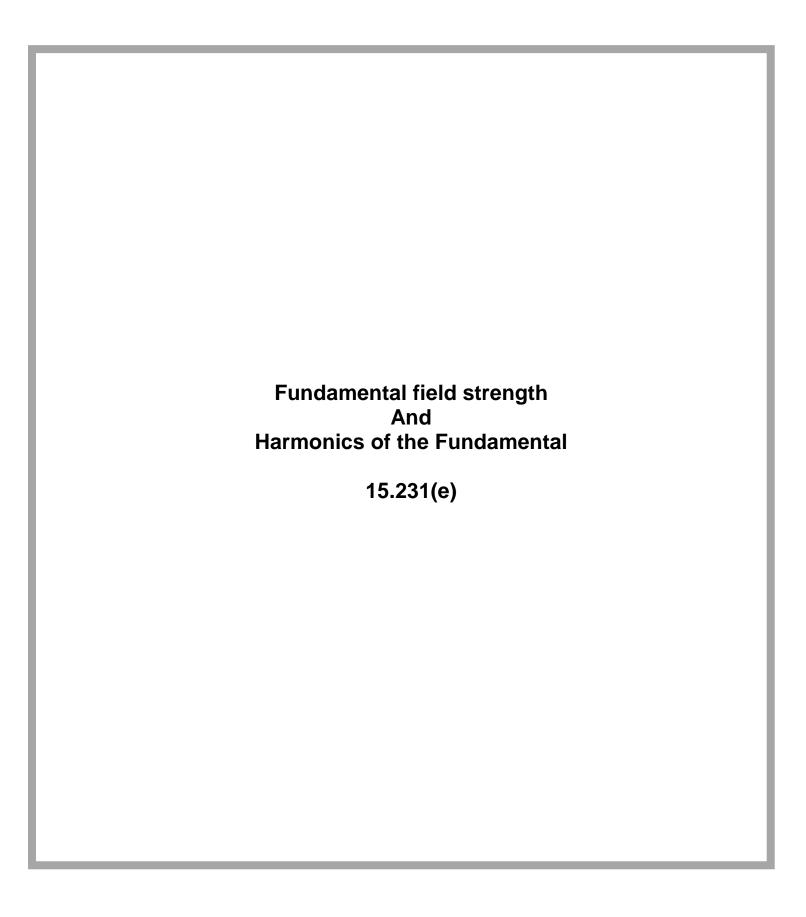
Project File: 3166782 Page 11 of 33

Voice: 303 786 7999

Fax: 303 449 6160

	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
359.81	31.1 Qp	2.1 / 16.5 / 27.3	22.4	H / 2.5 / 0.0	-23.6	N/A
219.87	31.8 Qp	1.6 / 10.3 / 27.2	16.5	H / 2.5 / 0.0	-29.5	N/A
329.84	27.1 Qp	2.0 / 13.7 / 27.2	15.6	H / 2.5 / 0.0	-30.4	N/A
219.87	36.0 Qp	1.6 / 10.3 / 27.2	20.6	H / 2.5 / 90.0	-25.4	N/A
224.29	32.5 Qp	1.6 / 10.4 / 27.3	17.1	H / 2.5 / 90.0	-28.9	N/A
359.81	34.4 Qp	2.1 / 16.5 / 27.3	25.7	H / 2.5 / 90.0	-20.3	N/A
200.00	34.3 Qp	1.5 / 11.3 / 27.3	19.7	H / 1.6 / 90.0	-23.8	N/A
959.59	26.8 Qp	3.7 / 22.5 / 27.3	25.6	H / 1.6 / 90.0	-20.4	N/A
	T					
299.82	33.0 Qp	1.9 / 13.8 / 27.1	21.6	H / 2.5 / 180.0	-24.4	N/A
329.84	30.8 Qp	2.0 / 13.7 / 27.2	19.3	H / 2.5 / 180.0	-26.7	N/A
	ı	,		,		
200.00	38.9 Qp	1.5 / 11.3 / 27.3	24.3	H / 1.6 / 270.0	-19.2	N/A
250.00	41.1 Qp	1.7 / 11.6 / 27.2	27.2	H / 1.6 / 270.0	-18.8	N/A
254.30	39.1 Qp	1.8 / 11.8 / 27.1	25.5	H / 1.6 / 270.0	-20.5	N/A
278.92	37.9 Qp	1.8 / 12.7 / 27.0	25.4	H / 1.6 / 270.0	-20.6	N/A
299.82	34.0 Qp	1.9 / 13.8 / 27.1	22.5	H / 1.6 / 270.0	-23.5	N/A
339.81	36.0 Qp	2.0 / 14.1 / 27.3	24.8	H / 1.6 / 270.0	-21.2	N/A
329.84	31.3 Qp	2.0 / 13.7 / 27.2	19.8	H / 2.5 / 270.0	-26.2	N/A
he following	are maximize	d.				
250.00	47.0 Qp	1.7 / 11.6 / 27.2	33.1	H / 1.0 / 86.4	-12.9	N/A
200.00	47.0 Qp 39.8 Qp	1.5 / 11.3 / 27.3	25.2	H / 1.7 / 274.9	-18.3	N/A
	 			ł – – – – – – – – – – – – – – – – – – –		
200.00 359.81	39.8 Qp 37.0 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3	25.2 28.3	H / 1.7 / 274.9 H / 2.5 / 44.1	-18.3 -17.7	N/A N/A
200.00 359.81 30.00	39.8 Qp 37.0 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2	25.2 28.3 20.9	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0	-18.3 -17.7	N/A N/A N/A
200.00 359.81 30.00 52.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2	25.2 28.3 20.9 25.9	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1	N/A N/A N/A N/A
200.00 359.81 30.00 52.56 69.99	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2	25.2 28.3 20.9 25.9 20.8	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2	N/A N/A N/A N/A N/A
200.00 359.81 30.00 52.56 69.99 79.95	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1	25.2 28.3 20.9 25.9 20.8 14.6	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4	N/A N/A N/A N/A N/A N/A N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7	25.2 28.3 20.9 25.9 20.8 14.6 21.3	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2	N/A N/A N/A N/A N/A N/A N/A N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 33.7 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7	25.2 28.3 20.9 25.9 20.8 14.6 21.3	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2	N/A N/A N/A N/A N/A N/A N/A N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 33.7 Qp 37.2 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp 37.6 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp 37.6 Qp 41.8 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4 1.4 / 12.3 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3 23.4 29.0	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/180.0 V/1.0/180.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp 37.6 Qp 41.8 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3 23.4 29.0	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/180.0 V/1.0/180.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp 37.6 Qp 41.8 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4 between 30 and 200MHz at 2	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3 23.4 29.0	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/180.0 V/1.0/180.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp 37.6 Qp 41.8 Qp nissions found	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 between 30 and 200MHz at 2	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3 23.4 29.0	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/180.0 V/1.0/180.0 ertical.	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2 -20.1 -14.5	N/A
200.00 359.81 30.00 52.56 69.99 79.95 148.22 169.33 197.56 30.00 52.56 179.90 169.33 197.56	39.8 Qp 37.0 Qp 35.8 Qp 44.0 Qp 39.7 Qp 35.0 Qp 35.4 Qp 37.2 Qp 36.2 Qp 45.8 Qp 30.0 Qp 37.6 Qp 41.8 Qp	1.5 / 11.3 / 27.3 2.1 / 16.5 / 27.3 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 0.8 / 8.5 / 28.2 0.9 / 6.8 / 28.1 1.3 / 12.3 / 27.7 1.4 / 12.0 / 27.6 1.5 / 13.2 / 27.4 0.5 / 12.8 / 28.2 0.7 / 9.4 / 28.2 1.4 / 12.3 / 27.4 between 30 and 200MHz at 2	25.2 28.3 20.9 25.9 20.8 14.6 21.3 19.5 24.5 21.3 27.8 16.3 23.4 29.0	H/1.7/274.9 H/2.5/44.1 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0 V/1.0/90.0	-18.3 -17.7 -19.1 -14.1 -19.2 -25.4 -22.2 -24.0 -19.0 -18.7 -12.2 -27.2	N/A

Fax: 303 449 6160


	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
159.99	33.4 Qp	1.4 / 12.0 / 27.7	19.1	H / 2.5 / 0.0	-24.4	N/A
la himban an	::	h atuus a 20 and 200MH = at 0	0 danuara ba			
no nigner em	issions lound	between 30 and 200MHz at 9	u degrees no	nzontai.		
No higher em	issions found	between 30 and 200MHz at 1	80 degrees h	orizontal.		
to riigitor oiti		botwoon oo ana zoowi iz at 1	oo dogrooo n	onzonia.		
No higher em	issions found	between 30 and 200MHz at 2	70 degrees h	orizontal.		
			<u>-</u>			
The following	emission is m	aximized.				
159.99	42.0 Qp	1.4 / 12.0 / 27.7	27.7	H / 2.5 / 267.4	-15.8	N/A
The following	are noise floo	r between 30 and 200MHz ho	rizontal.			
35.00	28.2 Qp	0.6 / 12.0 / 28.2	12.6	H / 2.5 / 0.0	-27.4	N/A
185.00	30.1 Qp	1.4 / 12.5 / 27.5	16.6	H / 2.5 / 0.0	-26.9	N/A
		<u> </u>				
1128.93	40.1 Av	2.1 / 23.7 / 38.3	27.6	V / 1.0 / 0.0	N/A	-26.4
1185.37	38.2 Av	2.2 / 23.9 / 38.3	26.1	V / 1.0 / 0.0	N/A	-27.9
1213.99	36.8 Av	2.2 / 24.2 / 38.2	24.9	V / 1.0 / 0.0	N/A	-29.1
1241.83	38.0 Av	2.2 / 24.3 / 38.1	26.4	V / 1.0 / 0.0	N/A	-27.6
1298.27	36.6 Av	2.3 / 24.2 / 37.9	25.3	V / 1.0 / 0.0	N/A	-28.7
1354.71	40.3 Av	2.4 / 24.1 / 37.7	29.1	V / 1.0 / 0.0	N/A	-24.9
1580.50	35.9 Av	2.6 / 24.6 / 37.4	25.7	V / 1.0 / 0.0	N/A	-28.3
1608.72 1665.17	35.8 Av 35.6 Av	2.6 / 24.8 / 37.4	25.7	V / 1.0 / 0.0 V / 1.0 / 0.0	N/A N/A	-28.3 -27.9
1693.40	35.6 AV 35.9 Av	2.7 / 25.3 / 37.5 2.7 / 25.5 / 37.6	26.1	V / 1.0 / 0.0	N/A N/A	-27.9
1807.96	47.6 Av	2.8 / 26.5 / 38.1	38.9	V / 1.0 / 0.0	N/A	-15.1
2333.45	37.0 Av	3.2 / 27.4 / 38.4	29.1	V / 1.0 / 0.0	N/A	-24.9
2344.01	37.5 Av	3.2 / 27.5 / 38.5	29.7	V / 1.0 / 0.0	N/A	-24.3
2731.49	38.4 Av	3.5 / 28.2 / 38.1	32.0	V / 1.0 / 0.0	N/A	-22.0
		5.57 = 5.57		1 1 1 1 1 1 1 1	1 77 1	
1693.40	36.2 Av	2.7 / 25.5 / 37.6	26.8	V / 1.0 / 90.0	N/A	-27.2
1072.48	38.2 Av	2.1 / 23.9 / 38.4	25.8	V / 1.0 / 90.0	N/A	-28.2
1128.93	40.5 Av	2.1 / 23.7 / 38.3	28.0	V / 1.0 / 180.0	N/A	-26.0
1580.50	36.5 Av	2.6 / 24.6 / 37.4	26.4	V / 1.0 / 180.0	N/A	-27.6
1665.17	36.4 Av	2.7 / 25.3 / 37.5	26.8	V / 1.0 / 180.0	N/A	-27.2
1693.40	37.8 Av	2.7 / 25.5 / 37.6	28.4	V / 1.0 / 180.0	N/A	-25.6
1807.96	51.8 Av	2.8 / 26.5 / 38.1	43.0	V / 1.0 / 180.0	N/A	-11.0
1016.04	35.8 Av	2.0 / 23.4 / 38.2	23.0	V / 1.0 / 180.0	N/A	-31.0
	36.0 Av	2.6 / 25.1 / 37.5	26.3	V / 1.0 / 180.0	N/A	-27.7
1636.95		2.7 / 26.3 / 37.9	27.2	V / 1.0 / 180.0	N/A	-26.8
	36.0 Av				N/A	

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
1807.96	54.6 Av	2.8 / 26.5 / 38.1	45.9	V / 1.0 / 175.6	N/A	-8.1
2344.01	39.1 Av	3.2 / 27.5 / 38.5	31.3	V / 1.5 / 207.5	N/A	-22.7
2731.49	41.6 Av	3.5 / 28.2 / 38.1	35.3	V / 1.6 / 356.6	N/A	-18.7
1072.48	38.4 Av	2.1 / 23.9 / 38.4	25.9	H / 1.0 / 0.0	N/A	-28.1
2124.50	33.6 Av	3.1 / 26.7 / 38.2	25.2	H / 1.0 / 0.0	N/A	-28.8
2427.99	37.1 Av	3.2 / 27.6 / 38.6	29.4	H / 1.0 / 0.0	N/A	-24.6
No higher em	nissions found	between 1 and 4GHz at 90 de	egrees horizoi	ntal.		
1298.27	36.6 Av	2.3 / 24.2 / 37.9	25.2	H / 1.0 / 180.0	N/A	-28.8
No higher em	nissions found	between 1 and 4GHz at 270 c	legrees horizo	ontal.		
The following	. oro movimizo	al .				
THE TOHOWING	are maximize	u.				
		3 2 / 27 6 / 38 6	33.5	H / 1 8 / 3/6 3	Ν/Δ	-20.5
2427.99	41.2 Av	3.2 / 27.6 / 38.6	33.5	H / 1.8 / 346.3	N/A	-20.5
2427.99 1072.48 1298.27	41.2 Av 39.0 Av 37.2 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9	33.5 26.5 25.9	H / 1.8 / 346.3 H / 1.1 / 16.6 H / 1.0 / 220.7	N/A N/A N/A	-20.5 -27.5 -28.1
2427.99 1072.48 1298.27 No emissions The following	41.2 Av 39.0 Av 37.2 Av s found between are noise floor	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz.	26.5 25.9	H/1.1/16.6 H/1.0/220.7	N/A N/A	-27.5 -28.1
2427.99 1072.48 1298.27 No emissions The following 4500.00	41.2 Av 39.0 Av 37.2 Av s found between are noise floor 34.4 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7	26.5 25.9 30.2	H/1.1/16.6 H/1.0/220.7	N/A N/A	-27.5 -28.1 -23.8
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00	39.0 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9	26.5 25.9 30.2 28.9	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0	N/A N/A N/A N/A	-27.5 -28.1 -23.8 -25.1
2427.99 1072.48 1298.27 No emissions The following 4500.00	41.2 Av 39.0 Av 37.2 Av s found between are noise floor 34.4 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7	26.5 25.9 30.2	H/1.1/16.6 H/1.0/220.7	N/A N/A	-27.5 -28.1 -23.8
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00	41.2 Av 39.0 Av 37.2 Av s found betwee are noise floo 34.4 Av 32.6 Av 33.6 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1	26.5 25.9 30.2 28.9 31.8	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 H/1.0/0.0	N/A N/A N/A N/A N/A N/A N/A	-27.5 -28.1 -23.8 -25.1 -22.2
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00	41.2 Av 39.0 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av 33.6 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1	26.5 25.9 30.2 28.9 31.8	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0	N/A N/A N/A N/A N/A N/A N/A	-27.5 -28.1 -23.8 -25.1 -22.2
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00	41.2 Av 39.0 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av 33.6 Av 34.0 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8	26.5 25.9 30.2 28.9 31.8 29.3 30.0	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0	N/A N/A N/A N/A N/A N/A N/A N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00	41.2 Av 39.0 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av 33.6 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1	26.5 25.9 30.2 28.9 31.8	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0	N/A N/A N/A N/A N/A N/A N/A	-27.5 -28.1 -23.8 -25.1 -22.2
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00 4100.00 4600.00 4900.00	39.0 Av 39.0 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av 33.6 Av 33.5 Av 34.0 Av 33.6 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8 5.7 / 32.4 / 40.5	26.5 25.9 30.2 28.9 31.8 29.3 30.0 31.2	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0 -22.8
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00 4100.00 4600.00 4900.00	41.2 Av 39.0 Av 37.2 Av s found between are noise floor 34.4 Av 32.6 Av 33.6 Av 34.0 Av 33.6 Av 31.5 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8 5.7 / 32.4 / 40.5	26.5 25.9 30.2 28.9 31.8 29.3 30.0 31.2	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 H/1.0/0.0	N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0 -22.8
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00 4100.00 4600.00 4900.00	39.0 Av 39.0 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av 33.6 Av 33.5 Av 34.0 Av 33.6 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8 5.7 / 32.4 / 40.5	26.5 25.9 30.2 28.9 31.8 29.3 30.0 31.2	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0 -22.8
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00 4100.00 4600.00 4900.00 7900.00	41.2 Av 39.0 Av 37.2 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av 33.6 Av 34.0 Av 34.0 Av 31.5 Av 32.1 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8 5.7 / 32.4 / 40.5 8.5 / 34.9 / 39.1 8.3 / 36.9 / 39.9	26.5 25.9 30.2 28.9 31.8 29.3 30.0 31.2 35.8 37.3	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 H/1.0/0.0 H/1.0/0.0	N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0 -22.8 -18.2 -16.7
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00 4100.00 4600.00 4900.00 7900.00	41.2 Av 39.0 Av 37.2 Av 8 found between are noise floor 34.4 Av 32.6 Av 33.6 Av 34.0 Av 31.5 Av 32.1 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8 5.7 / 32.4 / 40.5 8.5 / 34.9 / 39.1 8.3 / 36.9 / 45.5	26.5 25.9 30.2 28.9 31.8 29.3 30.0 31.2 35.8 37.3	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 H/1.0/0.0 H/1.0/0.0 H/1.0/0.0	N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0 -22.8 -18.2 -16.7
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00 4100.00 4600.00 4900.00 7900.00	41.2 Av 39.0 Av 37.2 Av 37.2 Av s found between are noise flood 34.4 Av 32.6 Av 33.6 Av 34.0 Av 34.0 Av 31.5 Av 32.1 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8 5.7 / 32.4 / 40.5 8.5 / 34.9 / 39.1 8.3 / 36.9 / 39.9	26.5 25.9 30.2 28.9 31.8 29.3 30.0 31.2 35.8 37.3	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 H/1.0/0.0 H/1.0/0.0	N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0 -22.8 -18.2 -16.7
2427.99 1072.48 1298.27 No emissions The following 4500.00 4000.00 5000.00 4100.00 4600.00 4900.00 7900.00	41.2 Av 39.0 Av 37.2 Av 8 found between are noise floor 34.4 Av 32.6 Av 33.6 Av 34.0 Av 31.5 Av 32.1 Av	2.1 / 23.9 / 38.4 2.3 / 24.2 / 37.9 en 4 and 10GHz. or. 5.2 / 31.3 / 40.7 4.8 / 31.4 / 39.9 5.8 / 32.5 / 40.1 4.8 / 31.4 / 40.4 5.3 / 31.4 / 40.8 5.7 / 32.4 / 40.5 8.5 / 34.9 / 39.1 8.3 / 36.9 / 45.5	26.5 25.9 30.2 28.9 31.8 29.3 30.0 31.2 35.8 37.3	H/1.1/16.6 H/1.0/220.7 H/1.0/0.0 H/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 H/1.0/0.0 H/1.0/0.0 H/1.0/0.0	N/A	-27.5 -28.1 -23.8 -25.1 -22.2 -24.7 -24.0 -22.8 -18.2 -16.7

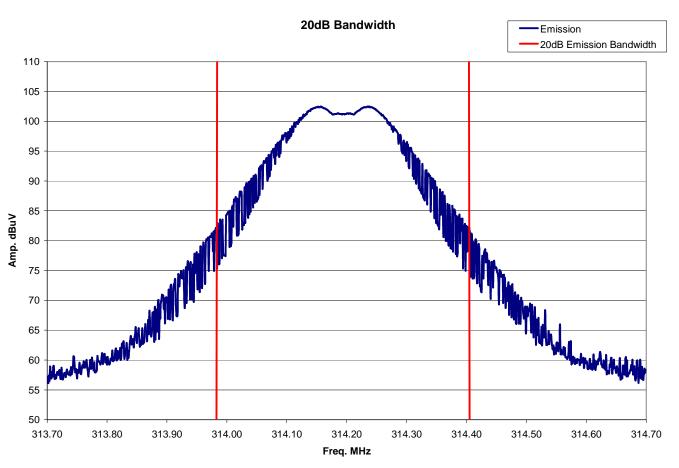
Project File: 3166782 Page 14 of 33 Voice: 303 786 7999 Fax: 303 449 6160

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
		****** M	easurem	ent Summar	y ******	
1807.96	54.6 Av	2.8 / 26.5 / 38.1	45.9	V / 1.0 / 175.6	N/A	-8.1
846.70	39.6 Qp	3.4 / 21.7 / 27.7	36.9	V / 1.6 / 15.5	-9.1	N/A
8500.00	42.0 Av	8.5 / 37.2 / 45.0	42.7	V / 1.0 / 0.0	N/A	-11.3
52.56	46.0 Qp	0.7 / 9.4 / 28.2	27.9	V / 1.0 / 144.8	-12.1	N/A
10000.0	42.3 Av	9.5 / 38.4 / 48.3	41.9	V / 1.0 / 0.0	N/A	-12.1
9500.00	42.4 Av	9.4 / 37.9 / 47.8	41.9	H / 1.0 / 0.0	N/A	-12.1
250.00	47.0 Qp	1.7 / 11.6 / 27.2	33.1	H / 1.0 / 86.4	-12.9	N/A
8000.00	41.0 Av	8.3 / 36.9 / 45.5	40.7	H / 1.0 / 0.0	N/A	-13.3
197.56	42.4 Qp	1.5 / 13.2 / 27.4	29.6	V / 1.0 / 175.1	-13.9	N/A
818.47	35.1 Qp	3.3 / 21.4 / 27.8	32.1	V / 1.1 / 49.1	-13.9	N/A
408.26	39.2 Qp	2.2 / 18.0 / 27.8	31.6	V / 1.0 / 90.0	-14.4	N/A
159.99	42.0 Qp	1.4 / 12.0 / 27.7	27.7	H / 2.5 / 267.4	-15.8	N/A
7900.00	32.1 Av	8.3 / 36.9 / 39.9	37.3	H / 1.0 / 0.0	N/A	-16.7
359.81	37.0 Qp	2.1 / 16.5 / 27.3	28.3	H / 2.5 / 44.1	-17.7	N/A
6500.00	31.5 Av	8.5 / 34.9 / 39.1	35.8	H / 1.0 / 0.0	N/A	-18.2
200.00	39.8 Qp	1.5 / 11.3 / 27.3	25.2	H / 1.7 / 274.9	-18.3	N/A
30.00	36.5 Qp	0.5 / 12.8 / 28.2	21.6	V / 1.0 / 105.3	-18.4	N/A
2731.49	41.6 Av	3.5 / 28.2 / 38.1	35.3	V / 1.6 / 356.6	N/A	-18.7
69.99	39.7 Qp	0.8 / 8.5 / 28.2	20.8	V / 1.0 / 0.0	-19.2	N/A
169.33	37.6 Qp	1.4 / 12.0 / 27.6	23.4	V / 1.0 / 180.0	-20.1	N/A
959.59	26.8 Qp	3.7 / 22.5 / 27.3	25.6	H / 1.6 / 90.0	-20.4	N/A
254.30	39.1 Qp	1.8 / 11.8 / 27.1	25.5	H / 1.6 / 270.0	-20.5	N/A
2427.99	41.2 Av	3.2 / 27.6 / 38.6	33.5	H / 1.8 / 346.3	N/A	-20.5
278.92	37.9 Qp	1.8 / 12.7 / 27.0	25.4	H / 1.6 / 270.0	-20.6	N/A
339.81	36.0 Qp	2.0 / 14.1 / 27.3	24.8	H / 1.6 / 270.0	-21.2	N/A
959.98	25.9 Qp	3.7 / 22.4 / 27.3	24.7	V / 1.0 / 90.0	-21.3	N/A
790.25	28.3 Qp	3.3 / 20.6 / 27.8	24.4	H / 2.5 / 0.0	-21.6	N/A
620.91	30.7 Qp	2.9 / 18.9 / 28.2	24.3	V / 1.0 / 270.0	-21.7	N/A
148.22	35.4 Qp	1.3 / 12.3 / 27.7	21.3	V / 1.0 / 0.0	-22.2	N/A
5000.00	33.6 Av	5.8 / 32.5 / 40.1	31.8	H / 1.0 / 0.0	N/A	-22.2
2344.01	39.1 Av	3.2 / 27.5 / 38.5	31.3	V / 1.5 / 207.5	N/A	-22.7
4900.00	33.6 Av	5.7 / 32.4 / 40.5	31.2	V / 1.0 / 0.0	N/A	-22.8
299.82	34.0 Qp	1.9 / 13.8 / 27.1	22.5	H / 1.6 / 270.0	-23.5	N/A
290.19	34.2 Qp	1.9 / 13.3 / 27.0	22.4	V / 1.0 / 270.0	-23.6	N/A
4500.00	34.4 Av	5.2 / 31.3 / 40.7	30.2	H / 1.0 / 0.0	N/A	-23.8
313.57	33.0 Qp	1.9 / 14.2 / 27.2	22.1	V / 1.0 / 0.0	-23.9	N/A
4600.00	34.0 Av	5.3 / 31.4 / 40.8	30.0	V / 1.0 / 0.0	N/A	-24.0
4100.00	33.5 Av	4.8 / 31.4 / 40.4	29.3	V / 1.0 / 0.0	N/A	-24.7
1354.71	40.3 Av	2.4 / 24.1 / 37.7	29.1	V / 1.0 / 0.0	N/A	-24.9
2333.45	37.0 Av	3.2 / 27.4 / 38.4	29.1	V / 1.0 / 0.0	N/A	-24.9
4000.00	32.6 Av	4.8 / 31.4 / 39.9	28.9	H/1.0/0.0	N/A	-25.1
79.95	35.0 Qp	0.9 / 6.8 / 28.1	14.6	V / 1.0 / 0.0	-25.4	N/A
219.87	36.0 Qp	1.6 / 10.3 / 27.2	20.6	H / 2.5 / 90.0	-25.4 N/A	N/A
1693.40	37.8 Av	2.7 / 25.5 / 37.6	28.4	V / 1.0 / 180.0	N/A	-25.6

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
338.67	31.5 Qp	2.0 / 14.1 / 27.2	20.3	V / 1.0 / 270.0	-25.7	N/A
1128.93	40.5 Av	2.1 / 23.7 / 38.3	28.0	V / 1.0 / 180.0	N/A	-26.0
329.84	31.3 Qp	2.0 / 13.7 / 27.2	19.8	H / 2.5 / 270.0	-26.2	N/A
1806.30	36.5 Av	2.8 / 26.5 / 38.1	27.8	V / 1.0 / 180.0	N/A	-26.2
1749.84	36.0 Av	2.7 / 26.3 / 37.9	27.2	V / 1.0 / 180.0	N/A	-26.8
185.00	30.1 Qp	1.4 / 12.5 / 27.5	16.6	H / 2.5 / 0.0	-26.9	N/A
234.00	34.0 Qp	1.7 / 10.6 / 27.2	19.1	V / 1.0 / 0.0	-26.9	N/A
179.90	30.0 Qp	1.4 / 12.3 / 27.4	16.3	V / 1.0 / 90.0	-27.2	N/A
1665.17	36.4 Av	2.7 / 25.3 / 37.5	26.8	V / 1.0 / 180.0	N/A	-27.2
35.00	28.2 Qp	0.6 / 12.0 / 28.2	12.6	H / 2.5 / 0.0	-27.4	N/A
1072.48	39.0 Av	2.1 / 23.9 / 38.4	26.5	H / 1.1 / 16.6	N/A	-27.5
1241.83	38.0 Av	2.2 / 24.3 / 38.1	26.4	V / 1.0 / 0.0	N/A	-27.6
1580.50	36.5 Av	2.6 / 24.6 / 37.4	26.4	V / 1.0 / 180.0	N/A	-27.6
1636.95	36.0 Av	2.6 / 25.1 / 37.5	26.3	V / 1.0 / 180.0	N/A	-27.7
1185.37	38.2 Av	2.2 / 23.9 / 38.3	26.1	V / 1.0 / 0.0	N/A	-27.9
1298.27	37.2 Av	2.3 / 24.2 / 37.9	25.9	H / 1.0 / 220.7	N/A	-28.1
1608.72	35.8 Av	2.6 / 24.8 / 37.4	25.7	V / 1.0 / 0.0	N/A	-28.3
2124.50	33.6 Av	3.1 / 26.7 / 38.2	25.2	H / 1.0 / 0.0	N/A	-28.8
224.29	32.5 Qp	1.6 / 10.4 / 27.3	17.1	H / 2.5 / 90.0	-28.9	N/A
1213.99	36.8 Av	2.2 / 24.2 / 38.2	24.9	V / 1.0 / 0.0	N/A	-29.1
1016.04	35.8 Av	2.0 / 23.4 / 38.2	23.0	V / 1.0 / 180.0	N/A	-31.0

Field Strength Measurements Fundamental and Spurious of the Transmitter

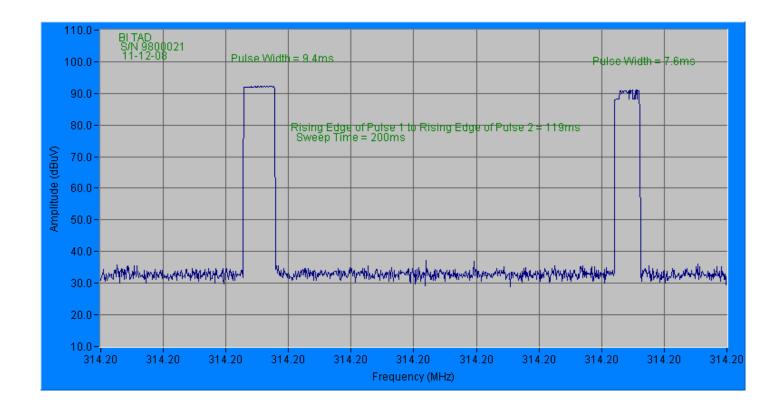
Test Re	port #:	3166782	-	Test Area:	Pinewood Site 1 (3m)			Tempera	ture: 2	23.9	°C
Test M	lethod:	FCC CFR47 Part 15.231		Test Date:	30-Oct-2008		_	Relative Hum	idity: 2	20.6	%
EUT M	odel #:	TAD		JT Power:	3.3VDC		_	Air Press	sure: 8	30	kPa
EUT S	erial #:	9800021					_	Page:			
Manufa	cturer:	BI					_		Level I	Key	
EUT Desc	ription:	Transdermal Alcohol Dete	ctor					Pk – Peak		Nb –	Narrow Band
Notes:	•						_	Qp – QuasiPe	eak	Bb –	Broad Band
_							_	Av - Average			
FREQ	LEVE	CABLE / ANT / PREAMP	FINAL	POL / H	GT / AZ	Duty Cycle Correction	Fii	nal Corrected	Limi	t	DELTA
(MHz)	(dBu	V) (dB) (dB\m) (dB)	(dBuV)	(m)	(DEG)	(dB)		(dBuV/m)	(dBuV	/m)	(dB)
The followi	ing duty	I cycle was measured for this	device.								
10ms		,									
		d for pulsed signals and c	alculation i	n accorda	nce to FCC	CFR47 Part 15.3	35 uti	lized to calcul	ate field	stre	ngth
emissions			CD 47 Dawl	45 005 (***	ما ام مد	do of openstions) on	1 4 5	004	الملم لمسم		
calculated	, ,	ned in accordance to FCC C vs:	гкч/ Рап	15.205 (res	incted band	us or operation) ar	10 15	.231 emissions	and den	a iimi	ts were
Final Corre	ected Pe	ak Measurement – Duty Cy	cle Correction	on Factor* =	= Final Cald	culated Emission					
		ed Emission was then comp					and	the emission/lir	nit delta	was c	alculated,
		ated as follows 20*log ₁₀ (duty	cycle in 10	00mS) "not t	o exceed 2	20dB"					
314.25	69.2	cal on the table. Pk 1.9 / 14.2 / 0.0	85.3	V / 1.4	/17.0	-20	1	65.3	67.6	2	-2.3
314.15	69.8		86.0	H / 1.0		-20		66.0	67.6		-1.6
		n the table.	00.0	117 1.07	120.7	20		00.0	07.0	,	1.0
314.25	68.2		84.3	H / 1.0	/ 156.9	-20		64.3	67.6	3	-3.3
314.25	68.3	Pk 1.9 / 14.2 / 0.0	84.4	V / 1.6	/ 76.4	-20		64.4	67.6	3	-3.2
Axis 3 EU7	Γis on \	ertical on the table rotated	90deg.	•							
314.16	66.1		82.2	V / 1.7		-20		62.2	67.6	6	-5.4
314.25	70.2		86.4	H / 1.0	/ 61.1	-20		66.4	67.6	3	-1.2
		be the worst case orientati	on.								
		e measured in axis 3.	45.0	11/44	/ 400 4	00	1	05.0	5 4		00.0
628.37	52.2	0.0./.0.0./.00./	45.8	H / 1.1		-20		25.8	54		-28.2
942.46	54.0		41.4 52.5	V / 1.0 / V / 1.0 /		-20 -20		21.4 32.5	54 54		-32.6 -21.5
942.49	59.2		57.7	H / 1.5		-20		37.7	54		-16.3
1256.78	39.9		28.4	H / 1.5		-20		8.4	54		-45.6
1256.79	40.4		28.9	V / 1.0		-20		8.9	54		-45.1
1570.96	57.8		47.6	V / 1.2		-20		27.6	54		-26.4
1570.97	55.9		45.6	H / 1.6		-20		25.6	54		-28.4
1885.17	50.2		41.7	V / 1.0		-20		21.7	54		-32.3
1885.18	47.1		38.7	H / 1.0		-20		18.7	54		-35.3
2199.37	58.6		50.3	V / 1.0		-20		30.3	54		-23.7
2199.37	48.1	Pk 3.1 / 27.0 / 38.3	39.9	H / 1.2		-20		19.9	54		-34.1
2513.56	51.5		43.8	H / 2.3		-20		23.8	54		-30.2
2513.61	49.6		42.0	V / 1.0		-20		22.0	54		-32.0
2827.79	44.1		38.2	V / 1.0		-20		18.2	54		-35.8
2827.79	47.2		41.4	H / 1.8		-20	1	21.4	54		-32.6
3141.98	42.0		37.8	H / 1.0		-20	1	17.8	54		-36.2
3141.99	42.4	Pk 3.9 / 30.1 / 38.3	38.1	V / 2.2	202.2	-20	1	18.1	54		-35.9

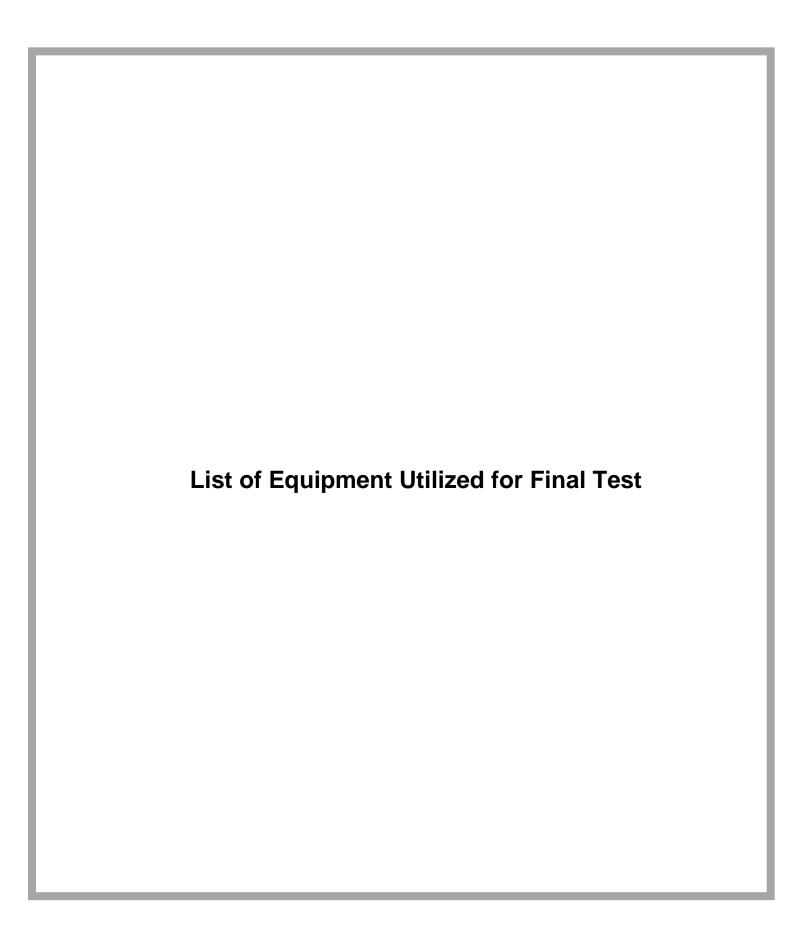

Project File: 3166782 Page 18 of 33

5541 Central Avenue, Suite 110 Boulder, Colorado 80301 Voice: 303 786 7999 Fax: 303 449 6160

20dB Bandwidth

Test Report #:	3166782	Test Area:	Pinewood Site 1 (3m)	Temperature:	23.7	°C
Test Method:	FCC 15.231/RSS-210	Test Date:	30-Oct-2008	Relative Humidity:	19.9	<u>~</u> %
EUT Model #:	TAD	EUT Power:	3.3VDC	Air Pressure:	101	kPa
EUT Serial #:	9800021	-		•		_
Manufacturer:	BI					
EUT Description:	Transdermal Alcohol Detector			Pk – Peak	Nb – Na	arrow Band
Notes:				Qp – QuasiPeak	Bb – Br	oad Band
				Av - Average		


The 20dB bandwidth is 420kHz



Fax: 303 449 6160

Duty Cycle Justification

Test Report #:	3166782	Test Area:	Pinewood Site 1 (3m)	Temperature:	23.7	°C
Test Method:	FCC 15.231/RSS-210	Test Date:	30-Oct-2008	Relative Humidity:	19.9	%
EUT Model #:	TAD	EUT Power:	3.3VDC	Air Pressure:	101	kPa
EUT Serial #:	9800021	-		-		
Manufacturer:	ВІ					
EUT Description:	Transdermal Alcohol Detector			Pk – Peak	Nb – Na	rrow Band
Notes:				Qp – QuasiPeak	Bb – Bro	oad Band
				Av - Average		

Project Report

Technician Ty Orosco **Project** 3166782

Capital Asset I	DManufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
18880	Hewlett-Packard	85650A	2811A01300	Q.P Adapter	R Radiated Emissions	For Cal	11/15/2007	11/15/2008
18882	Hewlett-Packard	8566B	2410A00154	Spectrum Analyzer (dc-22 GHz)	R Radiated Emissions	For Cal	11/13/2007	11/13/2008
18886	TENSOR	4105	2020	Ridged Guide Antenna 1-18GHz	R Radiated Emissions	For Cal	3/6/2008	3/6/2009
18888	EMCO	3146	9402-3775	Log Periodic Antenna (200-1000MHz)	R Radiated Emissions	For Cal	11/8/2007	11/8/2008
18889	EMC TEST SYSTEMS	3109	3142	Biconical Antenna 30-300MHz	R Radiated Emissions	For Cal	11/11/2007	11/11/2008
18900	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	5/2/2008	5/2/2009
18901	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	5/2/2008	5/2/2009
18906	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	5/2/2008	5/2/2009
18912	Hewlett-Packard	8447F	3113A05545	9 kHz- 1.3GHz Pre Amp	R Radiated Emissions	For Ver	5/2/2008	5/2/2009

Voice: 303 786 7999

Fax: 303 449 6160

Begin Date: 10/29/2008

End Date: 10/31/2008

Project File: 3166782 Page 22 of 33

Appendix B	
Test Plan	
and	
Constructional Data Form	
Constructional Bata Form	

Project File: 3166782 Page 23 of 33

Fax: 303 449 6160

Request for Quotation and Test Plan (Non Medical Devices)

Contact Information:

-	
Company:	BI
Address:	6400 Lookout Road, Boulder, CO 80301
Contact:	HIGHTec Consulting, Inc., Kevin J. Hight
Title:	President
Phone Number:	303-633-5444
Fax Number:	720-304-8724
Email Address:	Kevin@HIGHTecConsulting.com

Date samples and documentation will	Requested	
be ready for testing:	completion date:	

Please fill out the pertinent pages within this document and email this form to Bryant Hart at Bryant.Hart@Intertek.com for a quotation. Pages that do not pertain to your device can be left blank.

This document is compiled as a WORD FORM. To enable the FORM tool, right click on the tool bar and select FORMS. You will then be able to add attachments, drawings etc by clicking on the "Lock" Graphic to unlock the FORM document. To make all the check boxes work within the FORM, the "Lock" graphic must be selected.

Estimates Requested:

Estimates Requested:	
EMC Testing and Services	
□ Compliance Testing	Compliance testing at your location
☐ Pre-Compliance Scans / Engineering testing	☐ Pre-Compliance testing at your location
Badia Davisa Tasting and Cartification	
Radio Device Testing and Certification	
	□ Canada Certification (Transmitters and Receivers)
☐ Europe	□ TCB Services
Safety Testing and Certification	
☐ ETL Listing For US	ETL Listing for Canada
☐ Preliminary Design Review	☐ CB Report and Certificate
☐ CE Testing for Europe	Other:
Additional Services	
Global Market Access Program	☐ Energy Star Compliance
☐ IntertekCheck Performance Mark	Green Services (RoHS, WEEE, REACH, Prop. 65)
☐ Environmental Testing	☐ Hazardous Location (Intrinsic Safety, Ex-Proof,
Ĭ	ATEX)
Shock and Vibration Testing	Other:

Project File: 3166782 Page 24 of 33

Voice: 303 786 7999

Fax: 303 449 6160

General Product Information: (Required for all Devices)

Ochician i roddot iiii	, , , , , , , , , , , , , , , , , , ,					
Product/Model Number(s):	Dual Mode FMD (Fixed Monitoring Device) & TAD (Transthermic Alcohol Device)					
Description of product(s): Please provide product literature if available.	The Dual Mode FMD is the Home based box which interfaces with the TAD. The FMD receives data in the 310 MHz to 320 MHz range and in the 902 MHz to 928 MHz. The frequencies will operate at one fixed frequency within these ranges, depending on location. The TAD receives in the range of 902 MHz to 928 MHz. It also transmits data to the FMD in this same frequency range. The TAD also Transmits in the 310 MHz to 320 MHz range.					
Intended Use:						
Intended Location:	☑ Dry ☐ Damp ☐ Wet ☐ Hazardous Location					
Product Type:	☐ Prototype ☐ Production Sample ☐ Revision of already listed product					
If part of a system, please of	describe system parts and accessories:					
If there is more than one pr	oduct/model what are the differences?					
Is the Product Enclosure:	☐ Metal ☐ Plastic ☐ Both					
Size: FMD is a deskto	p unit TAD is an ankle braclet: Weight: TBD					
	# of Phases/Conductors: single					
Are their multiple suppliers power supplies?	of ☐ Yes ☐ No If Yes Please Describe:					
Are there Multiple Modes of Operation? ☐ Yes ☐ No If Yes Please Describe:						
Is there programmable software? ☑ Yes ☐ No						
Can all modes of operation be operated simultaneously? ☐ Yes ☐ No Explain: TBD						
In which countries will you be selling the product? USA and Canada						

Project File: 3166782 Page 25 of 33 Voice: 303 786 7999 Fax: 303 449 6160

EMC Specific Information: (Required	l only if EMC work is requested)
What EMC certifications are desired?	·
☐ FCC/ICES (US & Canada)☐ CE (Europe)☐ BSMI (Taiwan)☐ VCCI (Japan)	SII (Israel) AS/NZS (Australia/New Zealand) Korea MIC Certification / RRL Other: Please Specify
Highest frequency utilized for device operation: 928 MHz	
List of Clock Frequencies: unknown	
For each mode of operation, please list the amount time) immediate/realtime	ount of time required to notice degradation of performance (cycle
Total Number of I/O Cables: # Greater than 3m (9.75 feet) in Length # Greater than 30m (97.5 feet) in Length # of cables at a longer length (specify)	1
Number of Earth Ground Connections (Do NOT	include AC Mains Ground):
Please list all Ethernet, USB, Parallel and/or Tel	lecommunications Ports and their function
One TELCO RG68 and One Cellular Module.	
When the device is a compilation of subsystems greater than 1 meter in length between the Subs	s (in separate chassis) how many interconnecting I/O cables are system chassis?
Please list any specific test requirements or star	ndards:
Unknown	

Project File: 3166782 Page 26 of 33

General Safety Information: (Required only if Safety Listing/Certification/Testing is requested) Please provide product literature or photos if possible.

What Safety certifications are desired? Listing US/Canada CB Certification (Worldwide outside of US/Canada EU Investigation (EU – LVD/MDD)	GS Mark
Field Label (Onsite Inspection) Please list all applicable safety standards that you w	Other: Please Specify /ould like your device certified under:
Has the device been tested and certified for product before?	safety Yes No Standard tested to:
A. If it has been previously tested, to which star and by which organization?	
B. Can you provide the test report?	☐ Yes ☐ No
Can you provide manuals, installation instructions of sheets at this time?	r data
Power Supply Safety Information: A. Is the Power Supply Listed or Recognized? B. Can you provide the test report/CB Report?	☐ Yes ☐ No Standard tested to: Tested by: ☐ Yes ☐ No
Does the device contain batteries?	Yes
What technology is used? (i.e., lasers, X Ray, resistance heating, etc.)	
If Laser: Class: Output Power:	Beam Divergence Angle: Wavelength:
Preferred testing location:	al Lab
NEMA Rating:	
IP Rating:	

Project File: 3166782 Page 27 of 33

Fax: 303 449 6160

Radio Specific Information: (Required only if the device contains an intentional transmitter) What Radio certifications are desired? □ FCC (USA) Notified or Competent Body TCF Review Other: Please Specify ETSI (R&TTE) Please list the particular radio standards that apply. Operating Frequency: 314 MHz and 904 MHz RF Output Power: unknown Is there an RF Conducted Port? Description: Antenna Number of Antennas & Description: Three internal (Internal, External, Known Gain, etc.) Modulation Technique: Half-Duplex FSK Number of Channels/Number of Discrete Only one will be used in each range and approved cellular frequencies per Channel: module Can the device be operated in CW Mode? 7 Yes No Unknown What is the lowest utilized frequency Unknown

Notes: Please ensure to bring a notch filter covering your fundamental operating frequency.

Project File: 3166782 Page 28 of 33

Voice: 303 786 7999

Fax: 303 449 6160

within the device?

Appendix C	
Massaurement Dretess	
Measurement Protocol And	
Test Procedures	

Project File: 3166782 Page 29 of 33

Voice: 303 786 7999

Fax: 303 449 6160

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB\mu V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

- $dB\mu V = 20(log \mu V)$
- $\mu V = Inverse log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB\mu V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB\mu V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B.

Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB μ V:

Measured Level	+	& Cab	Transducer & Cable Loss factor	Corrected Reading	Specification Limit	-	Corrected Reading	=	Delta Specification
(dBµV)		(dB)	(dBµV/m)	(dBµV/m)		(dBµV/m)			
14.0		14.9	28.9	40.0		28.9		-11.1	

Project File: 3166782 Page 30 of 33 Voice: 303 786 7999 Fax: 303 449 6160

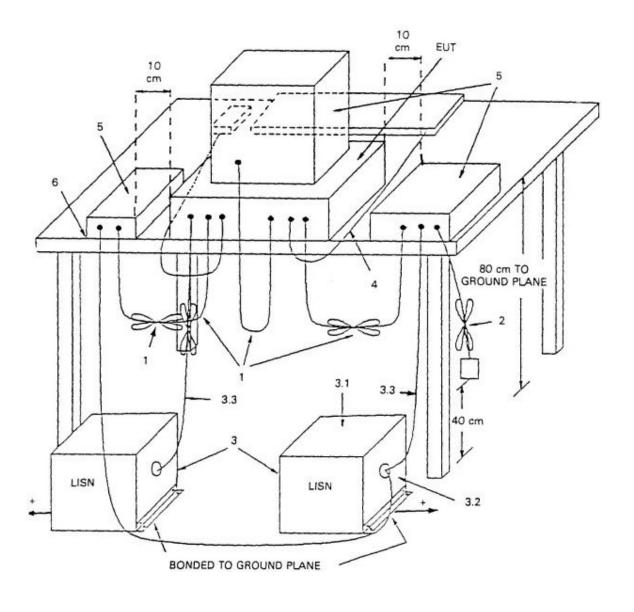
DETAILS OF TEST PROCEDURES

General Standard Information

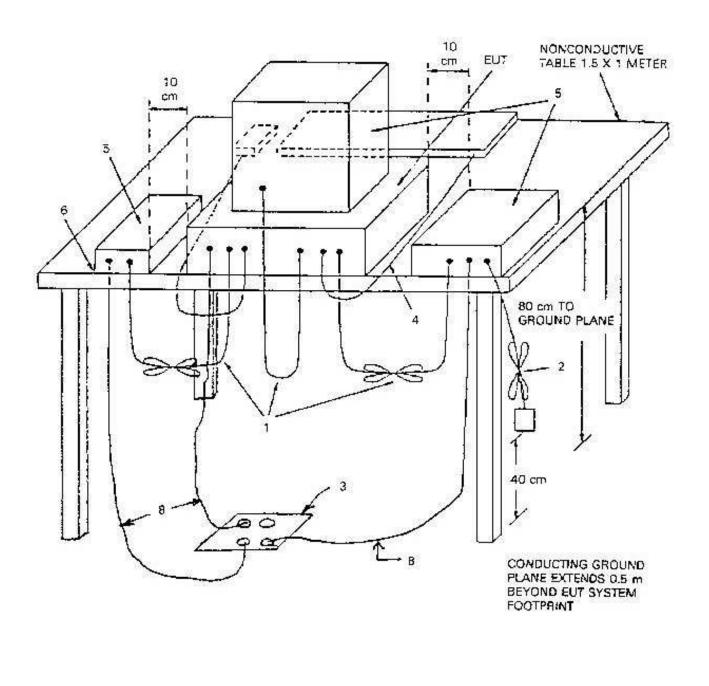
The test methods used comply with ANSI C63.4-2003 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with 50 Ω /50 μ H (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.


Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.


Project File: 3166782 Page 31 of 33

Fax: 303 449 6160

Conducted Emissions Diagram:

Radiated Emissions Diagram:

Voice: 303 786 7999

Fax: 303 449 6160