

TEST REPORT

OF

FCC Part 15 Subpart C §15.209, §15.231 / IC RSS-210, RSS-Gen

FCC ID / IC Certification	:	CQOFN00040 / 1551E-FN00040
Equipment Under Test Model Name	:	Smart Key FOB FN00040
Serial No.	:	N/A
Applicant	• :	DENSO PS Electronics Corp
Manufacturer	:	DENSO PS Electronics Corp
Date of Test(s)	:	2012.05.29 ~ 2012.06.07
Date of Issue	:	2012.06.22

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	Aw.	Date	2012.07.17	
Approved By	Alvin Kim	Date	2012.07.17	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co, Ltd (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

INDEX

TABLE OF CONTENTS Page

1. General Information	3
2. Field Strength of Fundamental	6
3. Spurious Emission	11
4. Receiver Spurious Emission (Radiated)	14
5. Bandwidth of Operation Frequency	16
6. Transmission Time	18
7. Occupied Bandwidth	20
8. Duty Cycle Correction Factor	22

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory) Wireless Div. 3FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040 www.ee.sgs.com/korea Telephone : +82 31 428 5700

	-	
FAX	:	+82 31 427 2371

1.2. Details of Applicant

Applicant	:	DENSO PS Electronics Corp
Address	:	853-11, Wae-dong, Changwon City, Kyungnam, Korea
Contact Person	:	Cho, Dong-Ki
Phone No.	:	+82 31 349 9864
Fax No.	:	+82 31 349 5251

1.3. Description of EUT

Kind of Product	Smart Key FOB
Model Name	FN00040
Serial Number	N/A
Power Supply	DC 3 V (Lithium type of battery)
Frequency Range	Tx: 314.35 Mz, Rx: 134.2 kz
Modulation Type	FSK
Number of Channels	1
Antenna Type	PCB Antenna

1.4. Details of Modification

- N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory)

1.5. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Signal Generator	R&S	SMBV100A	255834	Jul. 20, 2011	Annual	Jul. 02, 2013
Spectrum Analyzer	R&S	FSL6	100639	Jul. 05, 2011	Annual	Jul. 02, 2013
Preamplifier	H.P.	8447F	2944A03909	Jul. 04, 2011	Annual	Jul. 03, 2013
Preamplifier	R&S	SCU18	10117	Jan. 12, 2012	Annual	Jan. 12, 2013
High Pass Filter	Mini-Circuits	NLP-800	V8207600724	Mar. 30, 2012	Annual	Mar. 30, 2013
Test Receiver	R&S	ESU26	100109	Feb. 21, 2012	Annual	Feb. 21, 2013
Bilog Antenna	SCHWARZBECK MESSELEKTRONIK	VULB9163	396	May. 12, 2011	Biennial	May. 12, 2013
Horn Antenna	R&S	HF906	100326	Nov. 23, 2010	Biennial	Nov. 23, 2012
Antenna Master	INNCO	MM4000	N/A	N/A	N/A	N.C.R.
Turn Table	INNCO	DS 1200S	N/A	N/A	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N/A	N/A	N/A	N.C.R.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co, Ltd. (Gunpo Laboratory)8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

П

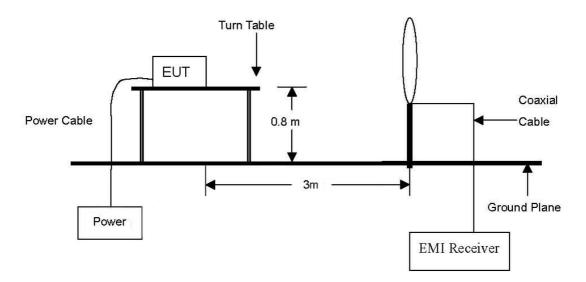
Report Number: F690501/RF-RTL005608-2

1.6. Summary of Test Results

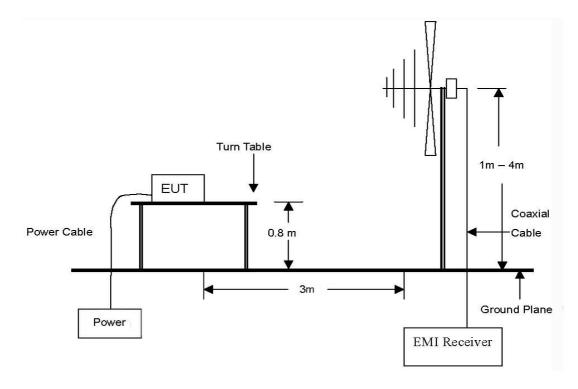
The EUT has been tested according to the following specifications:

APPLIED STANDARD				
Section in FCC 15	Section in RSS-210, RSS-Gen	Test Item	Result	
15.209(a) 15.231(b)	RSS-210, A1.1, Table B	Radiated emission, Spurious Emission and Field Strength of Fundamental	Complied	
15.109(a)	RSS-Gen, 6, Table 2	Receiver Spurious Emission (Radiated)	Complied	
15.231©	RSS-210 A1.1.3	Bandwidth of Operation frequency	Complied	
15.231(a)	RSS-210 A1.1.1	Transmission Time	Complied	
-	RSS-Gen, Issue 3, 4.6.1	Occupied Bandwidth	Complied	

1.7 Test Report Revision


Revision	Report number	Description
0	F690501/RF-RTL005608	Initial
1	F690501/RF-RTL005608-1	Modify EUT's name
2	F690501/RF-RTL005608-2	Add Duty cycle correction factor

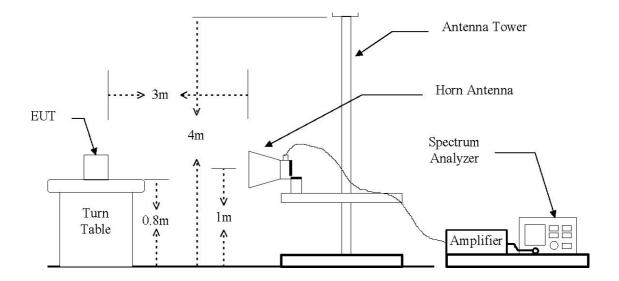
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040



2. Field Strength of Fundamental

2.1. Test Setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz Emissions.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co, Ltd (Gunpo Laboratory)8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \mathbb{G}_2 to 18 \mathbb{G}_2 Emissions.

 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SGS Korea Co, Ltd. (Gunpo Laboratory)
 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

2.2. Limit

2.2.1. Radiated emission limits, general requirements

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (账)	Field Strength (microvolts/meter)	Measurement Distance (meter)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 -88	100**	3
88 -216	150**	3
216 - 960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241

2.2.2. Periodic operation in the band 40.66-40.70 Mz and above 70 Mz

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (쌘)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 – 174	1,250 to 3,750 **	125 to 375 **
174 – 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

** linear interpolations

Where F is the frequency in Mb, the formulas for calculating the maximum permitted fundamental field strengths are as follows : for the band 130-174 Mb, uV/m at 3 meters = 56.81818(F)-6136.3636; for the band 260-470 Mb, uV/m at 3 meters = 41.6667(F)-7083.333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SCSKorea Co, Ltd. (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

2.3. Test Procedures

SGS Korea Co., Ltd. (Gunpo Laboratory)

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

2.3.1. Test Procedures for emission from 9 kt to 30 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from 30 Mb to 1000 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

2.4. Test Result

Ambient temperature	:	(23	3 ± 2) ℃
Relative humidity	:	46	% R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Freq. (\\\!z)	Ant. Pol	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m) AVG	Margin (dB) AVG	Detect Mode
314.35	Н	51.00	14.60	65.60	75.58	7.68	AVG

Remark:

To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis.

Note:

- 1. $3m \text{ Limit}(dBuV/m) = 20log[41.6667(F_{(Mz)})-7083.3333] = 75.58$
- 2. Correction Factor = Antenna Factor + Cable Loss
- 3. Result of peak and average is the same due to the duty cycle is 100%

3. Spurious Emission

3.1. Test Setup

Same as section 2.1 of this report

3.2. Limit

Same as section 2.2 of this report

3.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

3.3.1. Test Procedures for emission from 9 kt to 30 Mb

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- c. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- d. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

3.3.2. Test Procedures for emission from 30 $\,{\rm Mz}\,$ to 1000 $\,{\rm Mz}\,$

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co, Ltd. (Gunpo Laboratory) 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

3.3.3. Test Procedures for emission above 1 GHz

- a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb.
- b. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 Gb.

 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SCSKorea Co, Ltd. (Gunpo Laboratory)
 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

3.4. Test Result

Ambient temperature	:	(23	± 2) ℃
Relative humidity	:	46	% R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Radiated Emissions		Ant	Correctio	on Factors	Total	FCC Limit		
Frequency (毗)	Reading (dBuV)	Detect Mode	Pol.	AF (dB/m)	Amp Gain +CL (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)
633.27	18.10	Quasi-Peak	Н	18.20	-25.40	10.90	55.58	44.72
942.94	20.10	Quasi-Peak	Н	12.50	-24.20	8.40	55.58	47.22
1 257.36	41.89	Average	Н	25.22	-39.10	28.01	55.58	27.61
*1 571.73	49.41	Average	Н	25.21	-38.59	36.03	54.00	17.97
1 886.06	53.58	Average	н	27.31	-38.09	42.80	55.58	12.82
*2 200.43	44.55	Average	Н	27.74	-37.71	34.58	54.00	19.42
2 514.76	47.88	Average	Н	28.33	-37.26	38.95	55.58	16.67
*2 829.12	46.54	Average	Н	28.86	-36.83	38.57	54.00	15.43
3 143.48	54.84	Average	Н	30.20	-36.61	48.43	55.58	7.19
Above 3 200.00	Not Detected	Average	н	-	-	-	-	-

Remark:

1. To get a maximum emission level from the EUT, the EUT was moved throughout the X-axis, Y-axis and Z-axis. Worst case is X-axis.

2. "*" means the restricted band.

SGS Korea Co., Ltd. (Gunpo Laboratory)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

4. Receiver Spurious Emission (Radiated)

4.1. Test Setup

Same as section 2.1 of this report

4.2. Limit

See below for references

Spurious Frequency (쌘)	Field Strength (microvolt/m at 3 meters)
30 - 88	100
88 – 216	150
216 -960	200
Above 960	500

4.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

4.4. Test Result

Ambient temperature	:	(23	± 2) ℃
Relative humidity	:	46	% R.H.

The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical

Radia	ted Emissio	ons	Ant	t Correction Factors		Correction Factors Total		Total	IC Liı	nit
Frequency (脞)	Reading (dBuV)	Detect Mode	Pol.	AF/CL (dB/m)/(dB)	Amp Gain (dB)	Actual (dBuV/m)	Limit (dBuV/m)	Margin (dB)		
Above 30.000	Not Detected	-	-	-	-	-	-	-		

Remark:

To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ and YZ planes. Worst case is X-axis.

Note:

1. Other spurious frequencies were not detected up to 1 000 $\,\text{Mz}$

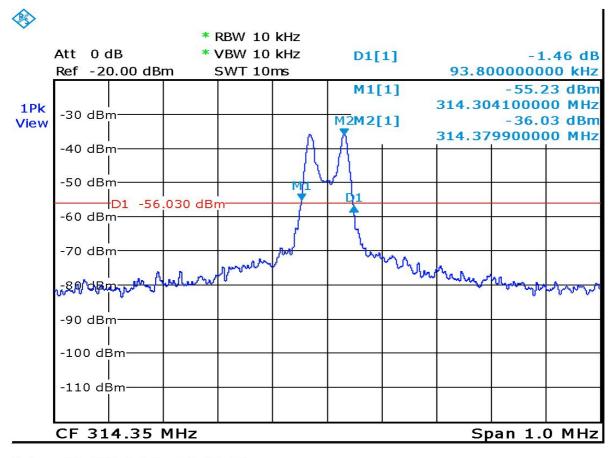
5. Bandwidth of Operation Frequency

5.1. Test Setup

5.2. Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 Mz and below 900 Mz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

5.3. Test Procedure


- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=10 kHz, VBW=10 kHz and Span=1 MHz.
- 3. The bandwidth of fundamental frequency was measured and recorded.

5.4. Test Result

Ambient temperature	:	(23	± 2) ℃
Relative humidity	:	46	% R.H.

Carrier Frequency (쌘)	Bandwidth of the emission (歴)	Limit (朏)	Remark
314.35	93.80	785.88	The point 20 dB down from the modulated carrier

Date: 29.MAY.2012 09:20:02

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. 8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

6. Transmission Time

6.1. Test Setup

6.2. Limit

A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Sweep Time=10 sec
- 3. The bandwidth of fundamental frequency was measured and recorded.

6.4. Test Result

Ambient temperature	:	(23	± 2) ℃
Relative humidity	:	46	% R.H.

Carrier Frequency (쌘)	Transmission Time (sec)	Limit (sec)	Remark
314.35	0.380	Same or less than 5 s	Pass

		* RBW 1 MHz		
	Att 0 dB	* VBW 1 MHz	D1[1]	-0.71 dB
	Ref -20.00 dBm	* SWT 10s		380.00000000 ms
			M1[1]	-44.96 dBm
1Pk Clrw	-30 dBm			1.72000000 s
CITW				
	-40 dBm <u>M1</u>	L		
	-50 dBm			
	-60 dBm			
	-70 dBm			
	- have a high a	mander and the street show a marker was	untime until the decorder	at the the section where we have the
SGL	-80 dBm			
	-90 dBm			
	-100 dBm			
	-110 dBm			
	CF 314.35 M	Hz 1	.0 s/	

Date: 29.MAY.2012 09:27:01

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd (Gunpo Laboratory)8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

7. Occupied Bandwidth

7.1. Test Setup

7.2. Limit

None; for reporting purposed only

7.3. Test Procedure

- 1. The transmitter output is connected to the spectrum analyzer.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using RBW≥1 % of Span, VBW to 3 times RBW.
- 3. The bandwidth of fundamental frequency was measured and recorded.

7.4. Test Result

Ambient temperature	:	(23	± 2) ℃
Relative humidity	:	46	% R.H.

Carrier Frequency (账)	Occupied Bandwidth (啦)	Limit (朏)	Remark	
314.35	89.82	-	99 % Occupied bandwidth	

								1
	Att 0 dB	* VBW 30	kHz	M1[:	1]		-39.2	23 dBm
Ref -20.00 dBm		m SWT 10	SWT 10ms			314.316100000 MHz		
				Occ Bw		89.820359281 kHz		
1Sa View	 -30 dBm			T1[1]		-55.49 dBm		
			M1			314.304091816 MHz		
	-40 dBm		X	T2[1]		-54.74 dBm 314.393912176 MHz		
				$ \Lambda $		314.39	391217	о мн2
	-50 dBm			1-1-2				
			l df ~	Ý				
	-60 dBm							
			1	Y.				
	-70 dBm		N	"L				
		1 sour	كس	24	My M.			
	-70 dBm	mount				Morran	Manna	abe to save
j.	June 1 and 1 and 1					nonen	10000	and the states
	-90 dBm							
	-100 dBm							
	-110 dBm							
CF 314.35 MHz Span 1.0 MHz								

Date: 29.MAY.2012 09:29:43

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd (Gunpo Laboratory)8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

8. Duty cycle correction factor

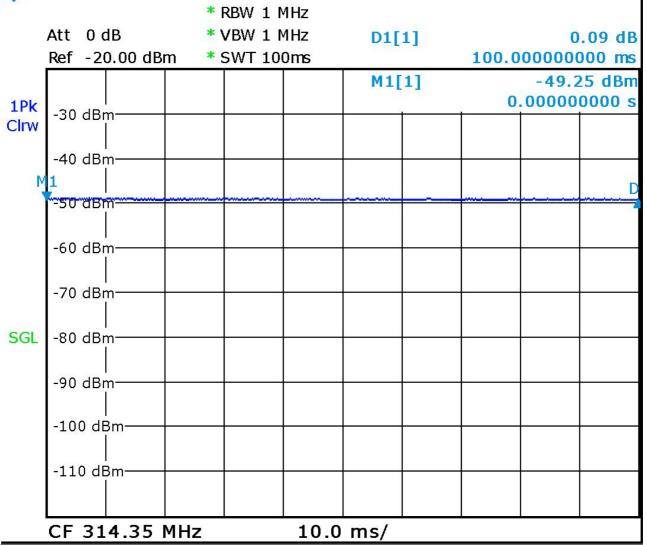
8.1. Test Setup

8.2. Limit

Nil (No dedicated Limit specified in the Rules)

8.3. Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW=1 Mtz, VBW=1 Mtz, Span=0 Hz, Sweep Time=100 ms.
- 5. Repeat above procedures until all frequency measured were complete.



8.4. Test Result

Ambient temperature	:	(23	± 2) ℃
Relative humidity	:	46	% R.H.

 $\begin{array}{l} T_{\text{on+off}} &= 100 \text{ms} \\ T_{\text{on}} &= 100 \text{ms} > T_{\text{on}} \\ \text{Duty Cycle Correction Factor} &= 20 \text{log}(T_{\text{on}} \ / \ T_{\text{on+off}}) = 20 \text{log}(1) = 0 \ \text{dBuV} \end{array}$

Date: 7.JUN.2012 16:45:58

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGSKorea Co, Ltd (Gunpo Laboratory)8-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tel. +82 31 428 5700 / Fax. +82 31 427 2371