

FCC SAR TEST REPORT

Report No.: SET2015-10511

Product: mobile phone

Model No.: I62S

FCC ID: COY I62S

Applicant: JSR Limited.

Address: Room 8, 12/F, Lucida Industrial Building, No. 43-4 Wang

Lung Street, Tsuen Wan New Terroteris Hong Kong.

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan

District, Shenzhen, 518055, P. R. China

Tel: 86 755 26627338 Fax: 86 755 26627238

Mail: manager@ccic-set.com Website: http://www.ccic-set.com

This test report consists of **118** pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

CCIC-SET/T-I (00) Page 1 of 118

Test Report

Product. mobile phone

 Model No.
 162S

 Brand Name.
 OWN

FCC ID.....: COYI62S
Applicant....: JSR Limited.

Applicant Address......:

Room 8, 12/F, Lucida Industrial Building, No. 43-4 Wang Lung

Street, Tsuen Wan New Terroteris Hong Kong

Manufacturer.....: JSR Limited.

Manufacturer Address: Room 8, 12/F, Lucida Industrial Building, No. 43-4 Wang Lung

Street, Tsuen Wan New Terroteris Hong Kong

Test Standards.........: 47CFR § 2.1093- Radiofrequency Radiation Exposure

Evaluation: Portable Devices;

ANSI C95.1–1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz –

300 GHz.(IEEE Std C95.1-1991)

IEEE 1528–2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless

Communications Devices: Measurement Techniques

Test Result..... Pass

Chun Mei, Test Engineer

Shuangwen Zhang, Senior Egineer

Approved by...... War lien

2015-07-31

Wu Li'an, Manager

CCIC-SET/T-I (00) Page 2 of 118

Contents

1.	GENERAL CONDITIONS	4
2.	ADMINISTRATIVE DATA	5
	2.1. Identification of the Responsible Testing Laboratory	5
	2.2. Identification of the Responsible Testing Location(s)	5
	2.3. Organization Item	5
	2.4. Identification of Applicant	5
	2.5. Identification of Manufacture	5
3.	EQUIPMENT UNDER TEST (EUT)	6
4.	SAR SUMMAY	7
5.	Specific Absorption Rate(SAR)	8
	5.1. Introduction	8
	5.2. SAR Definition	8
	5.3. Phantoms	9
	5.4. Device Holder	9
	5.5. Probe Specification	-10
6.	OPERATIONAL CONDITIONS DURING TEST	
	6.1. Schematic Test Configuration	
	6.2. SAR Measurement System	11
	6.3. Equipments and results of validation testing	
	6.4. SAR measurement procedure	15
	6.5. Antennas position and test position	17
7.	CHARACTERISTICS OF THE TEST	
	7.1. Applicable Limit Regulations	18
	7.2. Applicable Measurement Standards	18
8.	LABORATORY ENVIRONMENT	
9.	CONDUCTED RF OUTPUT POWER	19
10.	TEST RESULTS	33
11.	MEASUREMENT UNCERTAINTY	39
12.	MAIN TEST INSTRUMENTS	42
Th	is Test Report consists of the following Annexes:	
	Annex A: Test Layout	-43
	Annex B: Sample Photographs	-51
	Annex C: System Performance Check Data and Highest SAR Plots	-53
	Annex D: Calibration Certificate of Probe and Dipoles	-96

1. GENERAL CONDITIONS

- 1.1 This report only refers to the item that has undergone the test.
- 1.2 This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.
- 1.3 This document is only valid if complete; no partial reproduction can be made without written approval of CCIC-SET
- 1.4 This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of CCIC-SET and the Accreditation Bodies, if it applies.

CCIC-SET/T-I (00) Page 4 of 118

2. Administrative Date

2.1. Identification of the Responsible Testing Laboratory

Company Name: CCIC-SET

Department: EMC & RF Department

Address: Electronic Testing Building, Shahe Road, Nanshan District,

ShenZhen, P. R. China

Telephone: +86-755-26629676 **Fax:** +86-755-26627238

Responsible Test Lab

Managers:

Mr. Wu Li'an

2.2. Identification of the Responsible Testing Location(s)

Company Name: CCIC-SET

Address: Electronic Testing Building, Shahe Road, Nanshan District,

Shenzhen, P. R. China

2.3. Organization Item

CCIC-SET Report No.: SET2015-10511
CCIC-SET Project Leader: Mr. Li Sixiong

CCIC-SET Responsible

Mr. Wu Li'an

for accreditation scope:

Start of Testing: 2015-07-27

End of Testing: 2015-07-31

2.4. Identification of Applicant

Company Name: JSR Limited.

Address: Room 8, 12/F, Lucida Industrial Building, No. 43-4 Wang

Lung Street, Tsuen Wan New Terroteris Hong Kong

2.5. Identification of Manufacture

Company Name: JSR Limited.

Address: Room 8, 12/F, Lucida Industrial Building, No. 43-4 Wang

Lung Street, Tsuen Wan New Terroteris Hong Kong

Notes: This data is based on the information by the applicant.

CCIC-SET/T-I (00) Page 5 of 118

3. Equipment Under Test (EUT)

3.1.Identification of the Equipment under Test

Sample Name: mobile phone

Type Name: 162S

Brand Name: OWN

GSM850MHz/1900MHz

Support Band WCDMA 850MHz/900MHz/1900MHz

WIFI 802.11b/g/n-20/n-40,BT

GSM 850MHz/ GSM 1900MHz,

Test Band WCDMA 850MHz/ 1900MHz

WIFI 802.11b

Multislot Class GPRS: Class 12; EGPRS: Class 12

(E)GPRS Class Class B

General

description:

Accessories Power Supply

Battery type BL-5N-I 3.8V 2500mAh

Antenna type Inner Antenna

Operation mode GSM / GPRS/EDGE/WCDMA

Modulation mode GMSK, QPSK

Max. RF Power 31.64dBm

Max. SAR Value Head: 0.328 W/kg; Body: 0.718 W/kg;

Hotspot: 0.797W/Kg

NOTE:

a. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

b. This device supports GPRS and EDGE operation up to class12(max.uplin:4, max.downlink:4, total timeslots:5)

CCIC-SET/T-I (00) Page 6 of 118

4 SAR SUMMARY

Highest Standalone SAR Summary

Exposure	Frequency	Scaled	Highest Scaled
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)
	GSM850	0.328	
	GSM1900	0.259	
Head	WCDMA Band II	0.190	0.328
	WCDMA Band V	0.203	
	WIFI	0.177	
	GSM850	0.393	
Body-worn	GSM1900	0.405	
Accessory	WCDMA Band II	0.718	0.718
(10mm Gap)	WCDMA Band V	0.488	
	WIFI	0.077	
	GSM850		
Hotspot	Hotspot GSM1900		
Accessory	ccessory WCDMA Band II		0.797
(10mm Gap)	WCDMA Band V	0.488	
WIFI		0.077	

Highest Simultaneous SAR Summary

Exposure	Frequency	Scaled	Highest Scaled		
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)		
	GSM850&WIFI	0.328+0.167			
Head	GSM1900&WIFI	0.259+0.167	0.495		
пеац	WCDMA Band II &WIFI	0.190+0.167	0.495		
	WCDMA Band V&WIFI	0.203+0.177			
Dody worn	GSM850&WIFI	0.393+0.077			
Body-worn Accessory	GSM1900&WIFI	0.392+0.077	0.795		
(10mm Gap)	WCDMA Band II &WIFI	0.718+0.077	0.795		
(Tomin Gap)	WCDMA Band V&WIFI	0.488+0.077			
Exposure	Frequency	Scaled	Highest Scaled		
Position	Band	1g-SAR(W/kg)	1g-SAR(W/kg)		
	GSM850&WIFI	0.525+0.077			
Hotspot (10mm Gap)	GSM1900&WIFI	0.506+0	0.707		
	WCDMA Band II &WIFI	0.797+0	0.797		
	WCDMA Band V&WIFI	0.488+0.077			

CCIC-SET/T-I (00) Page 7 of 118

5 Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C \frac{\delta T}{\delta t}$$

where C is the specific head capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

CCIC-SET/T-I (00) Page 8 of 118

SAM Twin Phantom

5.4 Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder

5.5 Probe Specification

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration ISO/IEC 17025 calibration service available.

CCIC-SET/T-I (00) Page 9 of 118

Frequency 700 MHz to 3 GHz;

Linearity: ± 0.5 dB (700 MHz to 3 GHz)

Directivity ± 0.25 dB in HSL (rotation around probe axis)

± 0.5 dB in tissue material (rotation normal to probe

axis)

Dynamic Range 1.5 μ W/g to 100 mW/g;

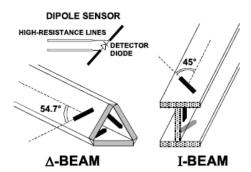
Linearity: ± 0.5 dB

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 5 mm

Distance from probe tip to dipole centers: <2.7 mm

Application General dosimetry up to 3 GHz


Dosimetry in strong gradient fields Compliance tests of mobile phones

Compatibility COMOSAR

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

6 OPERATIONAL CONDITIONS DURING TEST

6.1 Schematic Test Configuration

During SAR test, EUT was operating in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) was allocated to 128, 189 and 251 respectively in the case of GSM 850MHz, or to 512, 661 and 810 respectively in the case of PCS 1900MHz, or to 4132, 4182 and 4233 respectively in the case of WCDMA 850MHz, or to 9262, 9400 and 9538 respectively in the case of WCDMA 1900MHz, and

CCIC-SET/T-I (00) Page 10 of 118

WIFI 802.11b. The EUT was commanded to operate at maximum transmitting power.

The EUT should use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link was used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point should be lower than the output power level of the handset by at least 35 dB

6.2 SAR Measurement System

The SAR measurement system being used is the SATIMO system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

6.2.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Table 1: Recommended Dielectric Performance of Tissue

Ingredients	Frequency (MHz)									
(% by weight)	4	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.46	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (Nacl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton x-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7

CCIC-SET/T-I (00) Page 11 of 118

Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (s/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Table 2 Recommended Tissue Dielectric Parameters

Eroguepov (MHz)	Head	Tissue	Body Tissue		
Frequency (MHz)	$\boldsymbol{\mathcal{E}}_{r}$	σ (S/m)	ε _r	σ(S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800-2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5800	35.3	5.27	48.2	6.00	

6.2.2 Simulant liquids

For measurements against the phantom head, the "cheek" and "tilt" position on both the left hand and the right hand sides of the phantom. For body-worn measurements, the EUT was tested against flat phantom representing the user body. The EUT was put on in the belt holder. Simulant liquids that are used for testing at frequencies of GSM 850MHz/1900MHz, WCDMA850MHz/1900MHz, and Wi-Fi 2.4GHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms.

Table 3: Dielectric Performance of Head Tissue Simulating Liquid

Temperature: 23.2°C; Humidity: 64%;						
/	Frequency	Permittivity ε	Conductivity σ (S/m)			
Target value	835MHz	41.5±5%	0.90±5%			
Validation value (July 27th, 2015)	835MHz	41.18	0.88			
Target value	1900MHz	40.0±5%	1.40±5%			
Validation value (July 29th, 2015)	1900MHz	39.59	1.39			
Target value	2450MHz	39.2±5%	1.80±5%			
Validation value (July 31th, 2015)	2450MHz	38.65	1.78			

CCIC-SET/T-I (00) Page 12 of 118

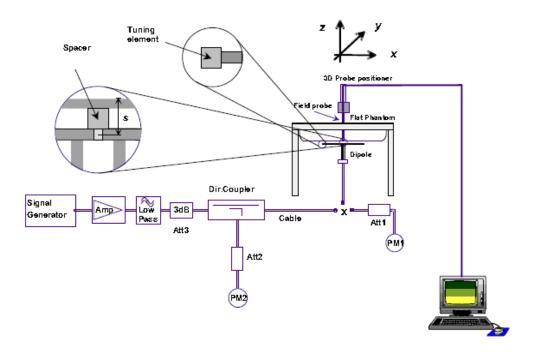

Temperature: 23.2°C; Humidity: 64%;						
/	Frequency	Permittivity ε	Conductivity σ (S/m)			
Target value	835MHz	55.2±5%	0.97±5%			
Validation value (July 28th, 2015)	835MHz	54.68	0.95			
Target value	1900MHz	53.3±5%	1.52±5%			
Validation value (July 30th, 2015)	1900MHz	52.72	1.50			
Target value	2450MHz	52.7±5%	1.95±5%			
Validation value	2450MHz	52.27	1.93			

Table 4: Dielectric Performance of Body Tissue Simulating Liquid

6.3 Results of validation testing

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below:

With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.25W (24 dBm). If this level is too high to read directly with the power meter sensor, insert

CCIC-SET/T-I (00) Page 13 of 118

a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

- Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.
- Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.
- Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The humidity and ambient temperature of test facility were 64% and 23.2°C respectively. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

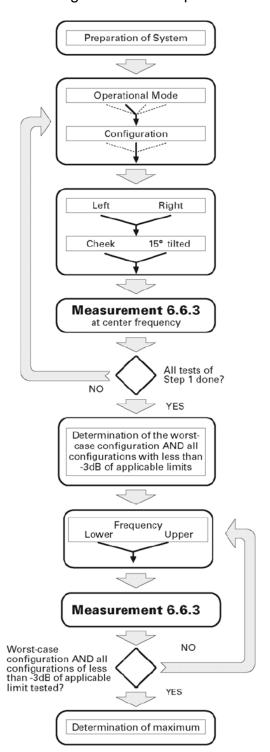
The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

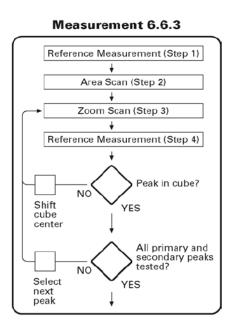
Table 5: Head SAR system validation (1g)

Гистипа	Duty syste	Target value	Test value (W/kg)	
Frequency	Duty cycle	(W/kg)	250 mW	1W
835MHz(July 27th, 2015)	1:1	9.77±10%	2.40	9.60
1900MHz(July 29th, 2015)	1:1	40.37±10%	9.84	39.36
2450MHz(July 31th, 2015)	1:1	53.60±10%	12.97	51.88

Table 6: Body SAR system validation (1g)

F	Durtus avala	Target value	Test value (W/kg)		
Frequency	Duty cycle	(W/kg)	250 mW	1W	
835MHz(July 28th, 2015)	1:1	$10.31 \pm 10\%$	2.52	10.08	
1900MHz(July 30th, 2015)	1:1	$40.81 \pm 10\%$	10.06	40.24	
2450MHz(July 31th, 2015)	1:1	52.66±10%	12.95	51.80	


^{*} Note: Target value was referring to the measured value in the calibration certificate of reference dipole. Note: All SAR values are normalized to 1W forward power.


CCIC-SET/T-I (00) Page 14 of 118

6.4 SAR measurement procedure

The SAR test against the head phantom was carried out as follow:

Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a

CCIC-SET/T-I (00) Page 15 of 118

second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behaviour are tested.

For body-worn measurement, the EUT was tested under two position: face upward and back upward.

6.5 Transmitting antenna information

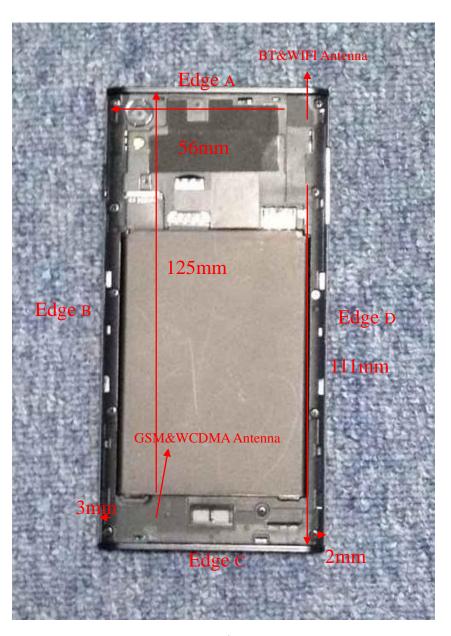


Fig. 3 Position of the antennas

CCIC-SET/T-I (00) Page 16 of 118

The Body SAR measurement positions of each band are as below:

Antenna	Front	Back	Edge A	Edge B	Edge C	Edge D
2G 3G Antenna Body-worn	Yes	Yes	No	No	No	No
2G 3G Antenna hotspot	Yes	Yes	No	Yes	Yes	Yes
WIFI Antenna Body-worn	Yes	Yes	No	No	No	No
WIFI Antenna hotspot	Yes	Yes	Yes	No	No	Yes

Note: According to KDB941225 antenna-to-edge>2.5cm, SAR is not required.

7 CHARACTERISTICS OF THE TEST

7.1 Applicable Limit Regulations

47CFR § 2.1093- Radiofrequency Radiation Exposure Evaluation: Portable Devices;

ANSI C95.1–1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz. (IEEE Std C95.1-1991)

IEEE 1528–2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques;

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

7.2 Applicable Measurement Standards

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this is in accordance with the following standards:

FCC 47 CFR Part2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r01

FCC KDB 447498 D01 v05r02 General RF Exposure Guidance

FCC KDB 648474 D04 v01r02 Handset SAR

FCC KDB 865664 D01 v01r03 SAR Measurement 100MHz to 6GHz

FCC KDB 865664 D02 v01r01 SAR Exposure Reporting

FCC KDB 941225 D01 v03 3G SAR Procedures

FCC KDB 941225 D05 v02r03 SAR for LTE Devices

FCC KDB 941225 D06 v02 Hotspot Mode

CCIC-SET/T-I (00) Page 17 of 118

8 LABORATORY ENVIRONMENT

Table 9: The Ambient Conditions during SAR Test

Temperature	Min. = 22 °C, Max. = 25 °C
Atmospheric pressure	Min.=86 kPa, Max.=106 kPa
Relative humidity	Min. = 45%, Max. = 75%
Ground system resistance	< 0.5 Ω

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

9. Conducted RF Output Power

9.1 GSM Conducted Power

Table 10: GSM Conducted Power

	Table 10. GSW Conducted Fower							
I	Band	Burst Average Power (dBm)			Frame-Average Power (dBm)			
	TX Channel	128	190	251	128	190	251	
	Frequency(MHz)	824.2	836.4	848.8	824.2	836.4	848.8	
	GSM	31.60	31.64	31.48	22.41	22.45	22.29	
	GPRS (Slot 1)	31.49	31.57	31.45	22.30	22.38	22.26	
	GPRS (Slot 2)	29.52	29.58	29.46	23.39	23.45	23.33	
GSM850	GPRS (Slot 3)	27.56	27.63	27.65	23.14	23.21	23.23	
	GPRS (Slot 4)	25.36	25.39	25.37	22.18	22.21	22.19	
	EDGE (Slot 1)	31.46	31.51	31.44	22.27	22.32	22.25	
	EDGE (Slot 2)	29.23	29.18	29.12	23.10	23.05	22.99	
	EDGE (Slot 3)	26.47	26.39	26.45	22.05	21.97	22.03	
	EDGE (Slot 4)	25.09	25.12	25.06	21.91	21.94	21.88	
	TX Channel	512	661	810	512	661	810	
	Frequency(MHz)	1850.2	1880	1909.8	1850.2	1880	1909.8	
	GSM	28.93	28.89	28.84	19.74	19.70	19.65	
	GPRS (Slot 1)	28.87	28.79	28.75	19.68	19.60	19.56	
	GPRS (Slot 2)	27.53	27.46	27.42	21.40	21.33	21.29	
GSM1900	GPRS (Slot 3)	25.34	25.35	25.33	20.92	20.93	20.91	
	GPRS (Slot 4)	23.54	23.52	23.49	20.36	20.34	20.31	
	EDGE (Slot 1)	28.67	28.7	28.65	19.48	19.51	19.46	
	EDGE (Slot 2)	27.05	27.11	27.12	20.92	20.98	20.99	
	EDGE (Slot 3)	25.43	25.37	25.35	21.01	20.95	20.93	
	EDGE (Slot 4)	23.22	23.23	23.17	20.04	20.05	19.99	

Note:Per KDB 447498 D01 v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

For Head SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850 and GSM1900 due to its highest frame-average power.

For Body worn SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850 and GSM 1900 due to its highest frame-average power.

CCIC-SET/T-I (00) Page 18 of 118

For hotspot mode SAR testing, GPRS and EDGE should be evaluated, therefore the EUT was set in GPRS850 (2Tx slots) and GPRS1900 (2Tx slots) due to its highest frame-average power.

Table 11: Timeslot consignations

No. Of Slots	Slot 1	Slot 2	Slot 3	Slot 4
Slot Consignation	1Up4Down	2Up3Down	3Up2Down	4Up1Down
Duty Cycle	1:8	1:4	1:267	1:2
Crest Factor	-9.03dB	-6.02dB	-4.26dB	-3.01dB

9.2 WCDMA Conducted peak output Power

Table 12: WCDMA conducted peak output power

1.

	band	W	CDMA 8	50	W	CDMA 19	900
Item	Frequency	4132	4183	4233	9262	9400	9538
	Subtest	dBm				dBm	
WCDMA	RMC 12.2Kbps	24.65	24.60	24.64	24.45	24.35	24.23
	1	22.79	22.88	22.84	22.75	22.80	22.77
HSDPA	2	22.63	22.72	22.61	22.57	22.61	22.55
HODEA	3	22.48	22.37	22.46	22.44	22.39	22.51
	4	22.11	22.15	22.06	22.17	22.09	22.05
	1	22.18	22.09	22.11	22.04	22.15	22.10
	2	22.61	22.75	22.72	22.64	22.61	22.65
HSUPA	3	22.71	22.60	22.63	22.59	22.54	22.61
	4	22.46	22.55	22.50	22.32	22.29	22.41
	5	22.35	22.24	22.33	22.41	22.30	22.35
Note:	The Conducted RF	Output Po	wer test of	WCDMA	/HSDPA /I	HSUPA we	ere tested
NOIG.	by power meter.						

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_o and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
 - iii. Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - v. Set UE Target Power
 - vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

CCIC-SET/T-I (00) Page 19 of 118

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βο	βα	β _d (SF)	βο/βα	βнs (Note1)	βεα	βed (Note 5) (Note 6)	βed (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{kg} = 30/15 * β_c .
- Note 2: CM = 1 for β_d/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_d/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_0/β_0 ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_0 = 14/15$ and $\beta_0 = 15/15$.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: Bed can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting:
 - i. Set Gain Factors (β_c and β_d) and parameters were set according to each
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - v. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- d. The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βe	βd	β _d (SF)	βe/βd	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β _{Int} = 30/15 * β _C.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and Δ_{CQI} = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for $\beta_{\rm e}/\beta_{\rm d}$ =12/15, $\beta_{\rm hs}/\beta_{\rm c}$ =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_o/β_0 ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$.

CCIC-SET/T-I (00) Page 20 of 118

Note:

- WCDMA SAR was tested under PMC 12.2kbps with HSPA Inactive per KDB Publication 941225
 D01.HSPA SAR was not requires since the average output power of the HSPA subtests was not more than 0.25dB higher than the RMC level and SAR was less than 1.2W/kg.
- 2. It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2dB more than specified by 3GPP, but also as low as 0dB according to the chipset implementation in this model.

WLAN 2.4GHz Band Conducted Power

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1,6 and 11 respectively in the case of 2450 MHz.During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frquency band. 802.11b/g modes are tested on channel 1, 6, 11; however,if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

Wi-Fi	Channel/F		Avera	ge Powe	er (dBm)	for Data	a Rates	(Mbps)	
2450MHz	req.(MHz)	1	2	5.5	11	/	/	/	/
	1(2412)	16.8	16.7	16.5	16.6	/	/	/	/
802.11b	6(2437)	18.2	18.0	17.9	18.1	/	/	/	/
	11(2462)	19.0	18.8	18.7	18.9	/	/	/	/
	Channel	6	9	12	18	24	36	48	54
802.11g	1(2412)	14.9	14.7	14.5	14.8	14.5	14.6	14.7	14.8
002.119	6(2437)	16.5	16.1	16.4	16.2	16.4	16.3	16.2	16.0
	11(2462)	17.3	17.0	17.1	17.2	16.9	17.1	17.1	17.2
	Channel	0	1	2	3	4	5	6	7
802.11n	1(2412)	14.9	14.5	14.6	14.7	14.5	14.8	14.7	14.5
(HT20)	6(2437)	16.7	16.6	16.4	16.6	16.4	16.5	16.3	16.6
	11(2462)	17.4	17.2	17.0	17.3	17.0	17.2	17.1	17.3

CCIC-SET/T-I (00) Page 21 of 118

Note:

- 1. Per KDB 248227 D01 v02r01, choose the highest output power channel to test SAR and determine further SAR exclusion
- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at lowest data rate
- 3. Per KDB 248227 D01 v02r01, 802.11g /11n-HT20 is not required. . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg. Thus the SAR can be excluded.

Bluetooth Conducted Power

Channel	Frequency	BT3.0 Output Power(dBm)					
Onamici	(MHz)	GFSK	π /4-DQPSK	8-DPSK			
CH 0	2402	1.0	1.2	1.2			
CH 39	2441	1.4	1.3	1.3			
CH 78	2480	1.2	1.0	1.1			

Channel	Frequency(MHz)	BT 4.0
CH 0	2402	-1.8
CH 20	2442	-1.5
CH 39	2480	-1.6

Note:

1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thrssholds for 100MHz to 6GHz at test separation distances ≤ 50mm are determined by:[(max. power of channel, including tune-up tolerance,

mW)/(min. test separation distance, mm)] • [$^{\sqrt{f}}$ (GHz)] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

- (1) f(GHz) is the RF channel transmit frequency in GHz
- (2) Power and distance are round to the nearest mW and mm before calculation
- (3) The result is rounded to one decimal place for comparison
- (4) If the test separation diatance(antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

Bluetooth Max Power (dBm)	mW	Test Distance (mm)	Frequency(Ghz)	Exclusion Thresholds
2	1.585	5	2.4	0.491

Per KDB 447498 D01v05r02 exclusion thresholds is 0.246<3, RF exposure evaluation is not required. BT estimated SAR value=Exclusion Thresholds/7.5=0.491/7.5=0.065W/Kg

Bluetooth Max Power (dBm)	mW	Test Distance (mm)	Frequency(Ghz)	Exclusion Thresholds
2	1.585	10	2.4	0.246

Per KDB 447498 D01v05r02 exclusion thresholds is 0.246<3, RF exposure evaluation is not required. BT estimated SAR value=Exclusion Thresholds/7.5=0.246/7.5=0.033W/Kg

The estimated SAR value is used for simultaneous transmission analysis.

CCIC-SET/T-I (00) Page 22 of 118

General Note:

- 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
- 2. Per KDB447498 D01v05r02, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is≤ 100 MHz. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 3. Per KDB941225 D06v02, the DUT Dimension is bigger than 9 cm x 5 cm, so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested. As the manufacture required, the separation distance use 5mm for Hotspot mode.
- 4. Per KDB 865664 D01v01r03,for each frequency band,repeated SAR measurement is required only when the measured SAR is ≥0.8W/Kg; if the deviation among the repeated measurement is ≤20%,and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 5. Per KDB865664 D02v01r01, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing(Refer to appendix D for details).
- 6. Per KDB941225 D01v03, when multiple slots can be used, the GPRS/EDGE slot configuration with the highest frame—averaged output power was selected for SAR testing.
- 7. Per KDB941225 D01v03, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.
- 8. Per KDB 248227 D01 v02r01, 802.11g /11n-HT20/11n-HT40 is not required. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤1.2W/Kg. Thus the SAR can be excluded.

CCIC-SET/T-I (00) Page 23 of 118

9.3. Scaling Factor calculation

Operation Mode	Channel	Output	Tune up Power in	Scaling
		Power(dBm)	tolerance(dBm)	Factor
	128	31.60	31.50 ± 0.5	1.096
GSM 850	190	31.64	31.50 ± 0.5	1.086
	251	31.48	31.50 ± 0.5	1.127
	128	29.52	29.50± 0.5	1.117
GPRS 850(2Tx)	190	29.58	29.50± 0.5	1.102
	251	29.46	29.50± 0.5	1.132
	512	28.93	29.00±0.5	1.140
GSM1900	661	28.89	29.00±0.5	1.151
	810	28.84	29.00±0.5	1.164
	512	27.53	27.50± 0.5	1.114
GPRS1900(2Tx)	661	27.46	27.50± 0.5	1.132
	810	27.42	27.50± 0.5	1.143
	4132	24.65	24.50 ± 0.5	1.084
WCDMA850	4183	24.60	24.50 ± 0.5	1.096
	4233	24.64	24.50 ± 0.5	1.086
	9262	24.45	24.50 ± 0.5	1.135
WCDMA1900	9400	24.35	24.50 ± 0.5	1.161
	9538	24.23	24.50 ± 0.5	1.194
	1	16.8	18.00± 1.5	1.862
WIFI 802.11b	6	18.2	18.00± 1.5	1.349
	11	19.0	18.00± 1.5	1.122
ВТ	78	1.4	1.00± 1.0	1.148

CCIC-SET/T-I (00) Page 24 of 118

Simultaneous SAR

No.	Transmitter Combinations	Scenario Supported or not	Supported for Mobile Hotspot or not
1	GSM(Voice)+GSM(Data)	No	No
2	WCDMA(Voice)+WCDMA(Data)	Yes	No
3	GSM(Voice)+ WCDMA(Data)	No	No
4	WCDMA(Voice)+GSM(Data)	No	No
5	GSM(Voice)+ WCDMA(Voice)	No	No
6	GSM(Voice)+Wifi(/BT)	Yes	Yes
7	WCDMA(Voice) +Wifi(/BT)	Yes	Yes
8	WCDMA(Voice)+WCDMA(Data)+ Wifi(/BT)	Yes	Yes
9	GSM(Data)+wifi	Yes	Yes
10	WCDMA(Data) +wifi	Yes	Yes

CCIC-SET/T-I (00) Page 25 of 118

10 TEST RESULTS

10.1 Summary of SAR Measurement Results

Table 7: SAR Values of GSM 850MHz Band

	Temperature: 23.0~23.5°C, humidity: 62~64%.									
	Test Positions		Channel	SAR(W/Kg)), 1.6 (1g average)					
	rest Positions	•	/Frequency (MHz)	SAR(W/Kg),1g	Scaled SAR(W/Kg),1g					
Right Side of	Cł	neek	190/836.4	0.302	0.328					
Head	Tilt 15	degrees	190/836.4	0.250	0.272					
Left Side of	Cł	neek	190/836.4	0.259	0.281					
Head	Head Tilt 15 degrees		190/836.4	0.143	0.155					
	GSM	Face Upward	190/836.4	0.207	0.225					
	Body-worn	Back Upward	190/836.4	0.362	0.393					
Body (10mm		Face Upward	190/836.4	0.271	0.299					
Separation)	GPRS (2Tx)	Back Upward	190/836.4	0.476	0.525					
		Edge B	190/836.4	0.318	0.350					
	hotspot	Edge C	190/836.4	0.156	0.172					
		Edge D	190/836.4	0.188	0.207					

Table 8: SAR Values of GSM1900 MHz Band

	Temperature: 23.0~23.5°C, humidity: 62~64%.									
	Test Positions		Channel	SAR(W/Kg)), 1.6 (1g average)					
	rest i dilitorio			SAR(W/Kg),1g	Scaled SAR(W/Kg),1g					
Right Side of	Cł	neek	512/1850.2	0.227	0.259					
Head	Tilt 15	degrees	512/1850.2	0.061	0.070					
Left Side of	Cheek		512/1850.2	0.219	0.250					
Head	Tilt 15	degrees	512/1850.2	0.072	0.082					
	GSM	Face Upward	512/1850.2	0.355	0.405					
	Body-worn	Back Upward	512/1850.2	0.344	0.392					
Body (10mm		Face Upward	512/1850.2	0.223	0.248					
Separation)	GPRS	Back Upward	512/1850.2	0.309	0.344					
	(2Tx)	Edge B	512/1850.2	0.051	0.057					
	hotspot	Edge C	512/1850.2	0.454	0.506					
		Edge D	512/1850.2	0.053	0.059					

CCIC-SET/T-I (00) Page 26 of 118

Table 9: SAR Values of WCDMA850

	Tempera	ture: 23.0~23.5°C, humi	dity: 62~64%.	
Test Pos	itiono	Channel /Frequency	SAR(W/Kg), 1.6 (1g average)
rest Pos	SILIONS	(MHz)	SAR(W/Kg),1g	Scaled SAR(W/Kg),1g
Dight Side of Head	Cheek	4132/826.4	0.167	0.181
Right Side of Head	Tilt 15 degrees	4132/826.4	0.103	0.112
Left Side of Head	Cheek	4132/826.4	0.187	0.203
Left Side of Head	Tilt 15 degrees	4132/826.4	0.129	0.140
Body (10mm Separation)	Face Upward	4132/826.4	0.182	0.197
Body-worn	Back Upward	4132/826.4	0.450	0.488
	Face Upward	4132/826.4	0.182	0.197
Body (10mm	Back Upward	4132/826.4	0.450	0.488
Separation)	Edge B	4132/826.4	0.145	0.157
Hotspot	Edge C	4132/826.4	0.155	0.168
	Edge D	4132/826.4	0.051	0.055

Table 10: SAR Values of WCDMA1900

Temperature: 23.0~23.5°C, humidity: 62~64%.									
Test Posi	tions	Channel	SAR(W/Kg), 1.6 (1g average)						
Test Posi	uons	/Frequency (MHz)	SAR(W/Kg1g Peak)	Scaled SAR(W/Kg),1g					
Pight Side of Head	Cheek	9262/1852.4	0.167	0.190					
Right Side of Head	Tilt 15 degrees	9262/1852.4	0.125	0.142					
Left Side of Head	Cheek	9262/1852.4	0.151	0.171					
Leit Side of Head	Tilt 15 degrees	9262/1852.4	0.101	0.115					
Body (10mm Separation)	Face Upward	9262/1852.4	0.581	0.659					
Body-worn	Back Upward	9262/1852.4	0.633	0.718					
	Face Upward	9262/1852.4	0.581	0.659					
Body (10mm	Back Upward	9262/1852.4	0.633	0.718					
Separation)	Edge B	9262/1852.4	0.105	0.119					
Hotspot	Edge C	9262/1852.4	0.702	0.797					
	Edge D	9262/1852.4	0.207	0.235					

CCIC-SET/T-I (00) Page 27 of 118

Table 13: SAR Values of Wi-Fi 802.11b

	Temperature: 23.0~23.5°C, humidity: 62~64%.								
Toot Dooi	tions	Channel	SAR(W/Kg),	1.6 (1g average)					
Test Posi	Test Positions		SAR(W/Kg1g Peak)	Scaled SAR(W/Kg),1g					
Dight Cide of Head	Cheek	11/2462	0.149	0.167					
Right Side of Head	Tilt 15 degrees	11/2462	0.075	0.084					
Left Side of Head	Cheek	11/2462	0.158	0.177					
Left Side of Flead	Tilt 15 degrees	11/2462	0.110	0.123					
Body (10mm Separation)	Face Upward	11/2462	0.018	0.020					
Body-worn	Back Upward	11/2462	0.069	0.077					
Body (10mm	Face Upward	11/2462	0.018	0.020					
Separation)	Back Upward	11/2462	0.069	0.077					
Hotspot	Edge A	11/2462	0.025	0.028					
Ποιδροί	Edge D	11/2462	0.043	0.048					

Note:

- a) When the 1-g SAR for the mid-band channel or the channel with the Highest output power satisfy the following conditions, testing of the other channels in the band is not required.(Per KDB 447498 D01 General RF Exposure Guidance v05r02)
- \leq 0.8 W/kg, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg, when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg, when the transmission band is ≥ 200 MHz
- b) Repeated SAR Measurement

Per KDB 865664 D01v01, for each frequency band, repeated SAR measurement is required only when the measured SAR is \geq 0.8W/Kg.

Per KDB 865664 D01v01, if the ratio of largest to smallest SAR for the original and first repeated measurement is \leq 1.2 and the measured SAR <1.45W/Kg, only one repeated measurement is required.

Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurement is >1.20 or when the original or repeated measurement is>1.45W/Kg.

10.2 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.

CCIC-SET/T-I (00) Page 28 of 118

SIMULTANEOUS TRANSMISSION ANALYSIS

	Test Position	Right Cheek	Right Title	Left Cheek	Left Tilt
	GSM850	0.328	0.272	0.281	0.155
	GSM1900	0.259	0.070	0.250	0.082
Head	WCDMA850	0.181	0.112	0.203	0.140
MAX 1-g SAR(W/Kg)	WCDMA1900	0.190	0.142	0.171	0.115
	WIFI 802.11b	0.167	0.084	0.177	0.123
	ВТ	*0.065	*0.065	*0.065	*0.065
BT Simultaneous ∑1-g SAR(W/Kg)		0.393	0.337	0.346	0.220
WiFi Simulta	neous Σ 1-g SAR(W/Kg)	0.495	0.356	0.458	0.278

Simultaneous Tx Combination of GSM/WCDMA and BT/WIFI (Head).

	Test Position		Back	Edge A	Edge B	Edge C	Edge D
	GSMS850	0.225	0.393				
Body-worn	GSM1900	0.405	0.392				
10mm	WCDMA850	0.197	0.488				
separation MAX 1-g	WCDMA1900	0.659	0.718				
SAR(W/Kg)	WIFI 802.11b	0.020	0.077				
	ВТ	*0.033	*0.033				
BT Simultaneous ∑1-g SAR(W/Kg)		0.692	0.751				
WiFi Simulta	neous Σ 1-g SAR(W/Kg)	0.679	0.795				

Simultaneous Tx Combination of GSM/WCDMA and BT/WIFI (Body).

CCIC-SET/T-I (00) Page 29 of 118

Test Position		Face	Back	Edge A	Edge B	Edge C	Edge D
Hotspot	GPRS850	0.299	0.525		0.350	0.172	0.207
10mm	GPRS1900	0.248	0.344		0.057	0.506	0.059
separation	WCDMA 850	0.197	0.488		0.157	0.168	0.055
MAX 1-g SAR(W/Kg)	WCDMA 1900	0.659	0.718		0.119	0.797	0.235
	WiFi	0.020	0.077	0.028			0.048
WiFi Simulta	WiFi Simultaneous Σ1-g SAR(W/Kg)		0.795	0.028	0.350	0.797	0.283

Simultaneous Tx Combination of GSM/WCDMA and WIFI (Body).

The estimated SAR value with * Signal

SAR to Peak Location Separation Ratio (SPLSR)

As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required

CCIC-SET/T-I (00) Page 30 of 118

11 Measurement Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi			
	Measurement System										
1	 Probe Calibration 	В	5.8	N	1	1	5.8	∞			
2	Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞			
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞			
4	– Boundary Effect	В	1	R	$\sqrt{3}$	1	0.58	∞			
5	Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	∞			
6	– System Detection Limits	В	1.0	R	$\sqrt{3}$	1	0.58	∞			
7	Modulation response	В	3	Z	1	1	3.00				
8	- Readout Electronics	В	0.5	N	1	1	0.50	∞			
9	– Response Time	В	1.4	R	$\sqrt{3}$	1	0.81	∞			
10	 Integration Time 	В	3.0	R	$\sqrt{3}$	1	1.73	∞			
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	∞			
12	- Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	∞			
13	Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	∞			
14	Extrapolation,Interpolation and IntegrationAlgorithms for Max. SARevaluation	В	2.3	R	$\sqrt{3}$	1	1.33	∞			
			Uncertair	nties of the DUT	Γ						
15	– Position of the DUT	А	2.6	N	$\sqrt{3}$	1	2.6	5			
16	- Holder of the DUT	А	3	N	$\sqrt{3}$	1	3.0	5			

CCIC-SET/T-I (00) Page 31 of 118

17	- Output Power Variation -SAR drift measurement	В	5.0	R	$\sqrt{3}$	1	2.89	∞		
	Phantom and Tissue Parameters									
18	Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	∞		
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00			
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞		
21	- Liquid Conductivity -measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9		
22	- Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞		
23	Liquid Permittivitymeasurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞		
Combined Standard Uncertainty				RSS			10.63			
(0	Expanded uncertainty Confidence interval of 95 %)			K=2			21.26			

System Check Uncertainty

No.	Uncertainty Component	Туре	Uncertainty Value (%)	Probability Distribution	k	ci	Standard Uncertainty (%) ui(%)	Degree of freedom Veff or vi
			Measure	ement System				
1	– Probe Calibration	В	5.8	N	1	1	5.8	∞
2	Axial isotropy	В	3.5	R	$\sqrt{3}$	0.5	1.43	∞
3	—Hemispherical Isotropy	В	5.9	R	$\sqrt{3}$	0.5	2.41	∞
4	 Boundary Effect 	В	1	R	$\sqrt{3}$	1	0.58	∞
5	Linearity	В	4.7	R	$\sqrt{3}$	1	2.71	∞
6	– System Detection Limits	В	1	R	$\sqrt{3}$	1	0.58	∞
7	Modulation response	В	0	N	1	1	0.00	

CCIC-SET/T-I (00) Page 32 of 118

						110	DORT NO. SETA	-010 10011
8	- Readout Electronics	В	0.5	N	1	1	0.50	∞
9	- Response Time	В	0.00	R	$\sqrt{3}$	1	0.00	∞
10	- Integration Time	В	1.4	R	$\sqrt{3}$	1	0.81	8
11	- RF Ambient Conditions	В	3.0	R	$\sqrt{3}$	1	1.73	80
12	Probe Position Mechanical tolerance	В	1.4	R	$\sqrt{3}$	1	0.81	80
13	Probe Position with respect to Phantom Shell	В	1.4	R	$\sqrt{3}$	1	0.81	80
14	Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation	В	2.3	R	$\sqrt{3}$	1	1.33	&
			Uncertair	nties of the DU	Т			
15	Deviation of experimental source from numberical source	A	4	N	1	1	4.00	5
16	Input Power and SAR drift measurement	А	5	R	$\sqrt{3}$	1	2.89	5
17	Dipole Axis to Liquid Distance	В	2	R	$\sqrt{3}$	1	1.2	∞
		Р	hantom and Ti	ssue Paramet	ers			
18	Phantom Uncertainty(shape and thickness tolerances)	В	4	R	$\sqrt{3}$	1	2.31	80
19	Uncertainty in SAR correction for deviation(in permittivity and conductivity)	В	2	N	1	1	2.00	
20	- Liquid Conductivity Target -tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
21	Liquid Conductivity –measurement Uncertainty)	В	4	N	$\sqrt{3}$	1	0.92	9
22	Liquid Permittivity Target tolerance	В	2.5	R	$\sqrt{3}$	0.6	1.95	∞
23	- Liquid Permittivity -measurement uncertainty	В	5	N	$\sqrt{3}$	1	1.15	∞
Cor	mbined Standard Uncertainty			RSS			10.15	
(Expanded uncertainty Confidence interval of 95 %)			K=2			20.29	

CCIC-SET/T-I (00) Page 33 of 118

12 MAIN TEST INSTRUMENTS

No.	EQUIPMENT	TYPE	Series No.	Due Date
1	System Simulator	E5515C	GB 47200710	2015/09/15
2	System Simulator	CMW500	130805	2016/06/02
3	SAR Probe	SATIMO	SN_0413_EP166	2015/08/14
4	SAR Probe	SATIMO	SN09/13 EP169	2016/05/04
5	Dipole	SATIMO	SN 25/13DIP0G750-253	2015/08/16
6	Dipole	SID835	SN09/13 DIP0G835-217	2015/08/27
7	Dipole	SID1800	SN09/13 DIP1G800-216	2015/08/27
8	Dipole	SID1900	SN09/13 DIP1G900-218	2015/08/27
9	Dipole	SID2450	SN09/13 DIP2G450-220	2015/08/27
10	Vector Network Analyzer	ZVB8	A0802530	2016/06/08
11	Signal Generator	SMR27	A0304219	2016/06/08
12	Power Meter	NRP2	A140401673	2016/03/27
15	Power Sensor	NPR-Z11	1138.3004.02-114072-nq	2016/03/27
16	Amplifier	Nucletudes	143060	2016/03/27
17	Directional Coupler	DC6180A	305827	2016/03/27
18	Power Meter	NRVS	A0802531	2016/03/27
19	Power Sensor	NRV-Z4	100069	2016/03/27
20	Multimeter	Keithley-2000	4014020	2016/03/27

CCIC-SET/T-I (00) Page 34 of 118

ANNEX A

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-10511

JSR Limited.

mobile phone

Type Name: I62S

Hardware Version: i62S-MB-V2.0

Software Version: OWN-I62S-V3

TEST LAYOUT

This Annex consists of 8 pages

Date of Report: 2015-07-31

CCIC-SET/T-I (00) Page 35 of 118

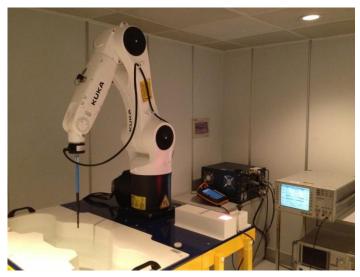


Fig.1 COMO SAR Test System

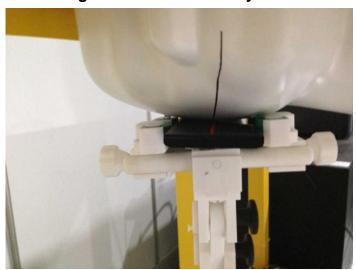


Fig.2 Right_Cheek

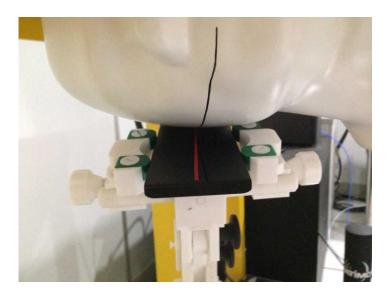


Fig.3 Right_Tilt

CCIC-SET/T-I (00) Page 36 of 118

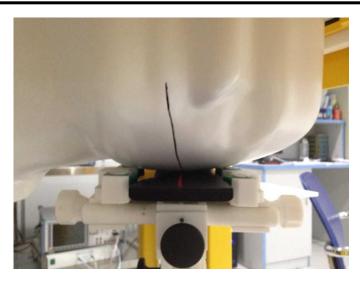


Fig.4 Left Cheek

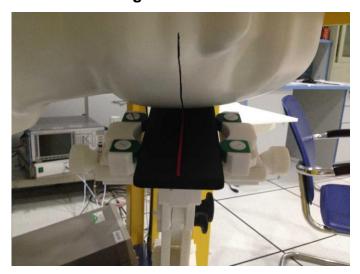


Fig.5 Left_Tilt

Fig.6 Body (Back upside,10mm separation)

CCIC-SET/T-I (00) Page 37 of 118

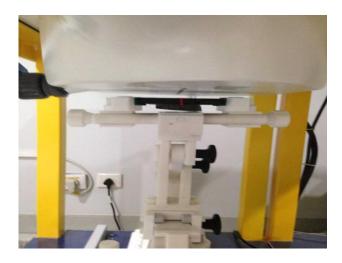


Fig.7 Body (Face upside,10mm separation)

Fig.8 Body Edge A(UP,10mm separation)

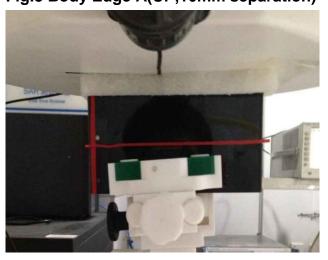


Fig.9 Body Edge B(Down,10mm separation)

CCIC-SET/T-I (00) Page 38 of 118

Fig.10 Body Edge C(Left upside,10mm separation)

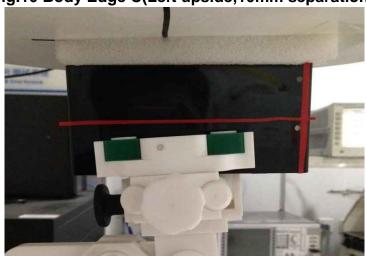


Fig.11 Body Edge D(Left upside,10mm separation)

Fig.12 Head Liquid of 835MHz(15cm)

CCIC-SET/T-I (00) Page 39 of 118

Fig.13 Body Liquid of 835MHz(15cm)

Fig.14 Body Liquid of 835MHz(15cm)

Fig.15 Body Liquid of 1800MHz(15cm)

CCIC-SET/T-I (00) Page 40 of 118

Fig.16 Head Liquid of 1900MHz(15cm)

Fig.17 Body Liquid of 1900MHz(15cm)

Fig.18 Head Liquid of 2450MHz(15cm)

CCIC-SET/T-I (00) Page 41 of 118

Fig.19 Body Liquid of 2450MHz(15cm)

CCIC-SET/T-I (00) Page 42 of 118

ANNEX B

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-10511

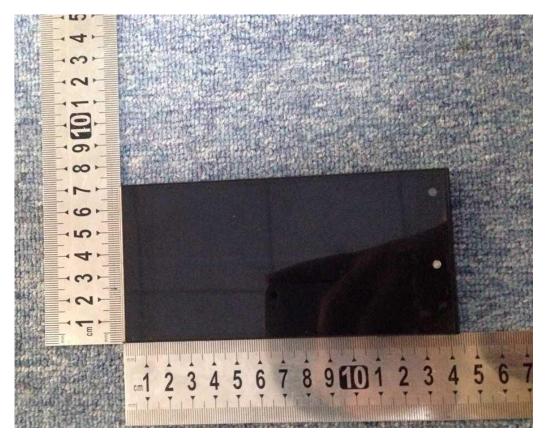
mobile phone

Type Name: I62S

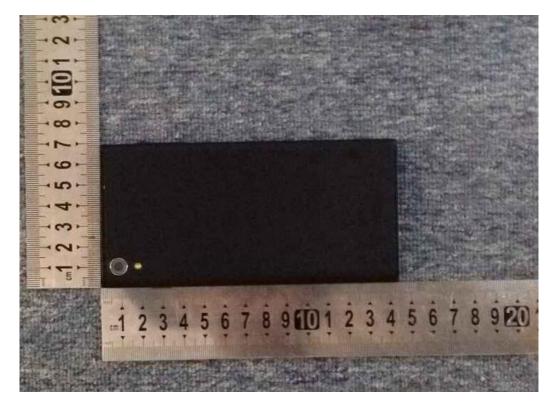
Hardware Version: i62S-MB-V2.0

Software Version: OWN-I62S-V3

Sample Photographs


This Annex consists of 2 pages

Date of Report: 2015-07-31


CCIC-SET/T-I (00) Page 43 of 118

1. Appearance

Appearance and size (obverse)

Appearance and size (reverse)

CCIC-SET/T-I (00) Page 44 of 118

ANNEX C

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-10511

mobile phone

Type Name: I62S

Hardware Version: i62S-MB-V2.0

Software Version: OWN-I62S-V3

System Performance Check Data and Highest SAR Plots

This Annex consists of 44 pages

Date of Report: 2015-07-31

CCIC-SET/T-I (00) Page 45 of 118

System Performance Check (Head, 835MHz)

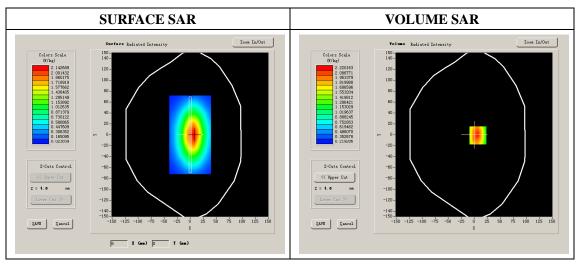
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement:27/07/2015

Measurement duration: 21 minutes 22 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835.000000
Relative permittivity (real part)	41.18
Relative permittivity	18.97
Conductivity (S/m)	0.88
Power drift (%)	-1.32
Ambient Temperature:	23.2 ℃
Liquid Temperature:	23.5 ℃
ConvF:	5.68
Duty factor:	1:1

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.820261
SAR 1g (W/Kg)	2.404573

CCIC-SET/T-I (00) Page 46 of 118

System Performance Check (Head, 1900MHz)

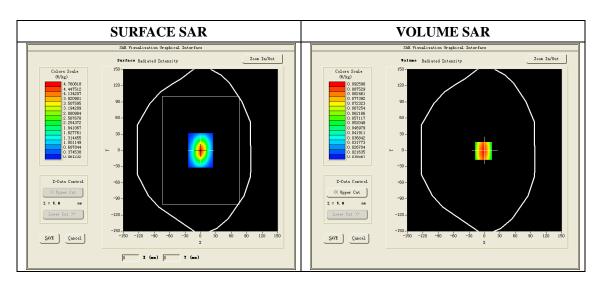
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 29/07/2015

Measurement duration: 21minutes 05 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	
Band	1900MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	1900.000000
Relative permittivity (real part)	39.59
Relative permittivity	13.17
Conductivity (S/m)	1.39
Power drift (%)	0.34
Ambient Temperature:	22.2 ℃
Liquid Temperature:	22.5 ℃
ConvF:	5.25
Duty factor:	1:1

Maximum location: X=6.00, Y=0.00

SAR 10g (W/Kg)	5.124314
SAR 1g (W/Kg)	9.836842

CCIC-SET/T-I (00) Page 47 of 118

System Performance Check (Head, 2450MHz)

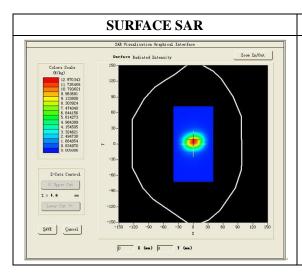
Type: Validation measurement

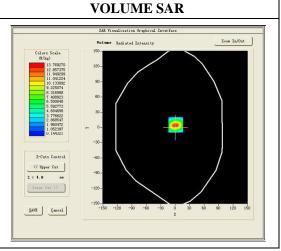
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement:31/07/2015

Measurement duration: 21 minutes 12 seconds


A. Experimental conditions.


Phantom File	dx=8mm,dy=8mm
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm
Device Position	Dipole
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

<u>~</u>	
Frequency (MHz)	2450
Relative permittivity (real part)	38.65
Relative permittivity	13.08
Conductivity (S/m)	1.78
Power Drift (%)	-0.39
ConvF:	4.93
Duty factor:	1:1

Maximum location: X=0.00, Y=7.00

SAR 10g (W/Kg)	5.648620
SAR 1g (W/Kg)	12.970632

CCIC-SET/T-I (00) Page 48 of 118

System Performance Check (Body, 835MHz)

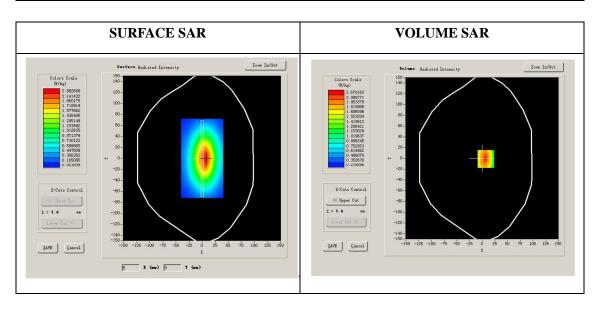
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 28/07/2015

Measurement duration: 20 minutes 04 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	Dipole
Band	835MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	835
Relative permittivity (real part)	54.68
Relative permittivity	20.48
Conductivity (S/m)	0.95
Power drift (%)	-2.51
Ambient Temperature:	22.2 ℃
Liquid Temperature:	22.5 ℃
ConvF:	5.84
Duty factor:	1:1

Maximum location: X=7.00, Y=-1.00

SAR 10g (W/Kg)	1.603562
SAR 1g (W/Kg)	2.523541

CCIC-SET/T-I (00) Page 49 of 118

System Performance Check (Body, 1900MHz)

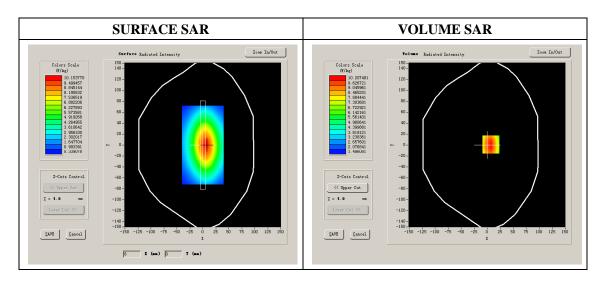
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 30/07/2015

Measurement duration: 21 minutes 10 seconds


A. Experimental conditions.

Phantom File	dx=8mm dy=8mm
Phantom	5x5x7,dx=8mm dy=8mm dz=5mm
Device Position	Dipole
Band	1900MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

	
Frequency (MHz)	1900
Relative permittivity (real part)	52.72
Relative permittivity	14.21
Conductivity (S/m)	1.50
Power Drift (%)	1.02
Ambient Temperature:	22.1 ℃
Liquid Temperature:	22.6 ℃
ConvF:	5.42
Duty factor:	1:1

Maximum location: X=1.00, Y=6.00

SAR 10g (W/Kg)	5.136751
SAR 1g (W/Kg)	10.063452

CCIC-SET/T-I (00) Page 50 of 118

System Performance Check (Body, 2450MHz)

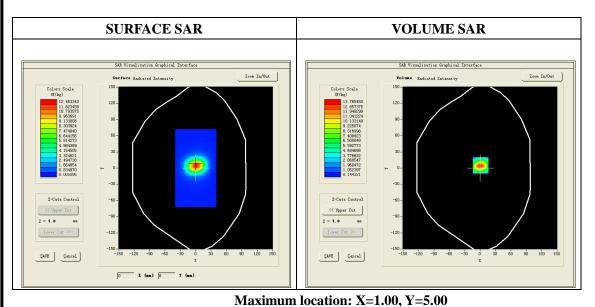
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 31/07/2015

Measurement duration: 22 minutes 08 seconds


Mobile Phone IMEI number: -- **A. Experimental conditions.**

Phantom File	dx=8mm,dy=8mm
Phantom	7x7x8,dx=5mm dy=5mm dz=4mm
Device Position	Dipole
Band	2450MHz
Channels	
Signal	CW

B. SAR Measurement Results

Band SAR

Frequency (MHz)	2450
Relative permittivity (real part)	52.27
Relative permittivity	14.18
Conductivity (S/m)	1.93
Power Drift (%)	-0.20
Ambient Temperature:	22.1 ℃
Liquid Temperature:	22.6 ℃
Duty factor:	1:1
ConvF:	5.07

	· · · · · · · · · · · · · · · · · · ·
SAR 10g (W/Kg)	6.108426
SAR 1g (W/Kg)	12.953471

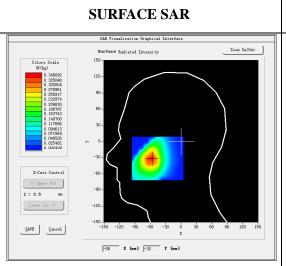
CCIC-SET/T-I (00) Page 51 of 118

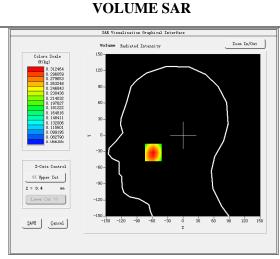
GSM850, Right Cheek, Middle

Type: Phone measurement

Date of measurement: 27/07/2015

Measurement duration: 6 minutes 42 seconds


Mobile Phone IMEI number: --

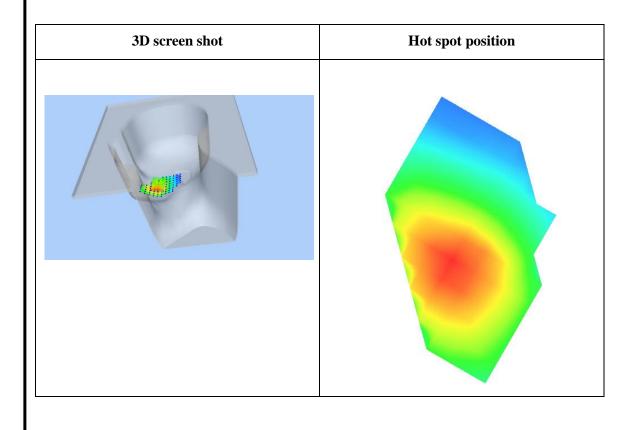

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	GSM850
Channels	190
Signal	GSM (Duty cycle: 1:8)

B. SAR Measurement Results

Frequency (MHz)	836.4
Relative permittivity (real part)	41.18
Relative permittivity (imaginary part)	18.97
Conductivity (S/m)	0.88
Variation (%)	-2.51
ConvF:	5.68




Maximum location: X=-58.00, Y=--32.00

SAR 10g (W/Kg)	0.230306
SAR 1g (W/Kg)	0.302396

CCIC-SET/T-I (00) Page 52 of 118

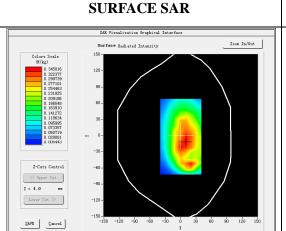
CCIC-SET/T-I (00) Page 53 of 118

GSM850, Back, Middle

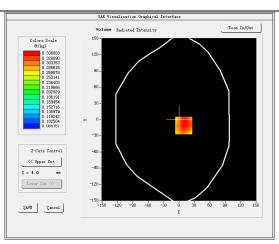
Type: Phone measurement

Date of measurement: 28/07/2015

Measurement duration: 7 minutes 24 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

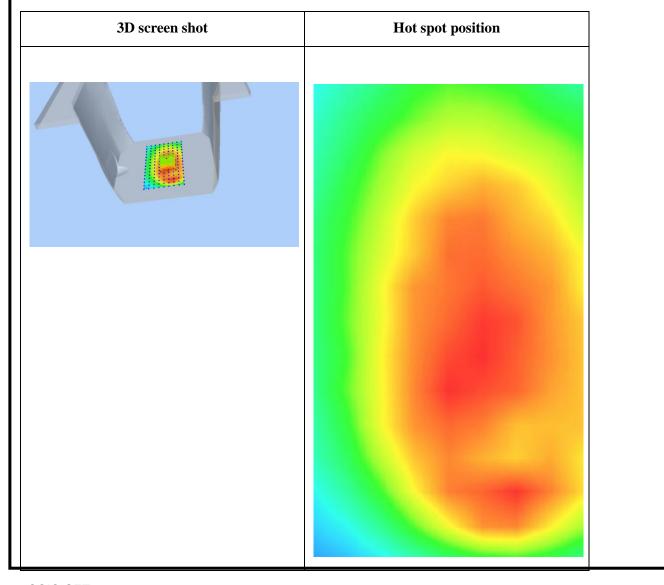

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	GSM850
Channels	190
Signal	GSM(Duty cycle: 1:8)

B. SAR Measurement Results

Frequency (MHz)	836.4
Relative permittivity (real part)	54.68
Relative permittivity (imaginary part)	20.48
Conductivity (S/m)	0.95
Variation (%)	-2.46
ConvF:	5.84

10 X (nn) -12 Y (nn)

VOLUME SAR


Maximum location: X=9.00, Y=-11.00

SAR 10g (W/Kg)	0.259471
SAR 1g (W/Kg)	0.361617

CCIC-SET/T-I (00) Page 54 of 118

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.4558	0.3368	0.2355	0.1740	0.1386
	0.46				
	0.40-				
	© 0.30 - ∰ 0.25 -				
	0.25 - 0.20 -				
	0. 15 - 0. 11 - 0 2	4 6 8 10 12	14 16 18 20 22	2 24 26 28 30	
	0 2	4 0 0 10 12	Z (mm)	2 24 20 20 30	

CCIC-SET/T-I (00) Page 55 of 118

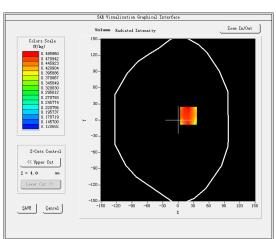
GPRS 850, Back, Middle

Type: Phone measurement

Date of measurement: 28/07/2014

Measurement duration: 7 minutes 08 seconds

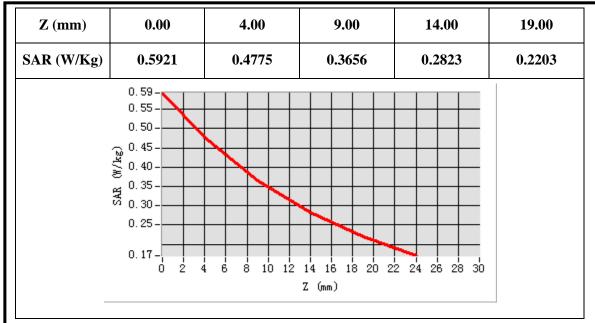
Mobile Phone IMEI number: --

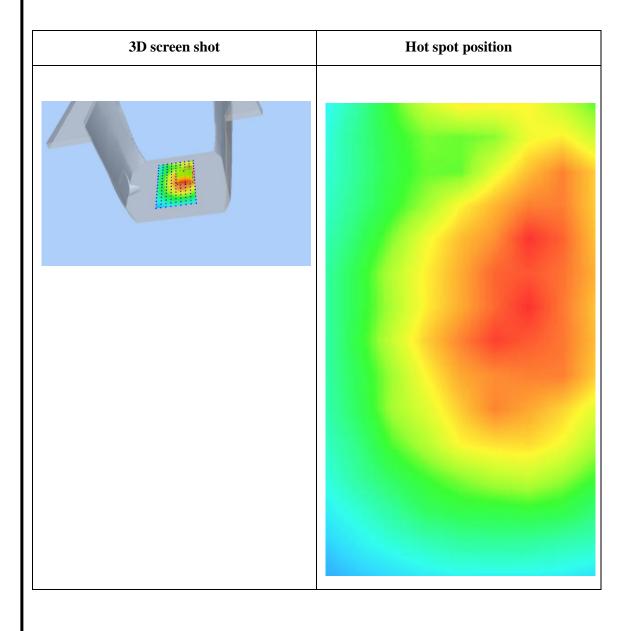

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	CUSTOM (GPRS850_2Tx)
Channels	190
Signal	GPRS(Duty cycle: 1:4)

B.SAR Measurement Results

Frequency (MHz)	836.4
Relative permittivity (real part)	54.68
Relative permittivity (imaginary part)	20.48
Conductivity (S/m)	0.95
Variation (%)	2.04
ConvF:	5.84


VOLUME SAR


Maximum location: X=20.00, Y=-8.00

SAR 10g (W/Kg)	0.353625
SAR 1g (W/Kg)	0.475719

CCIC-SET/T-I (00) Page 56 of 118

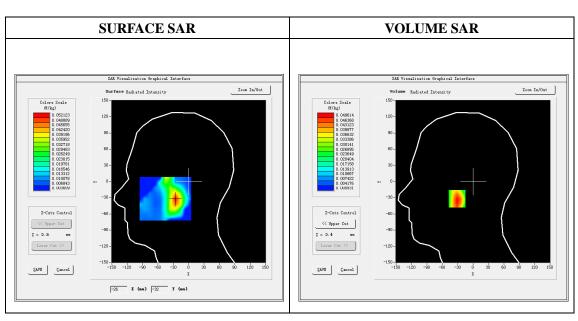
CCIC-SET/T-I (00) Page 57 of 118

GSM1900, Right Cheek, Low

Type: Phone measurement

Date of measurement: 29/7/2015

Measurement duration: 7 minutes 00 seconds

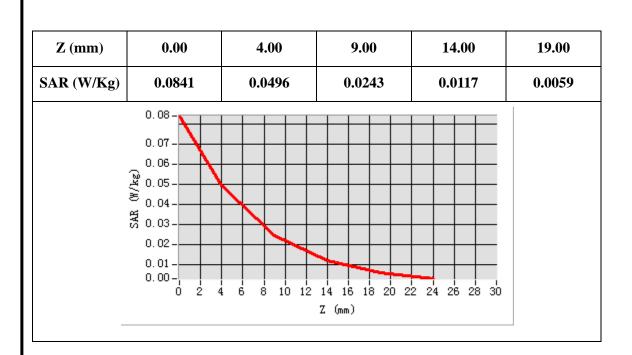

Mobile Phone IMEI number: --

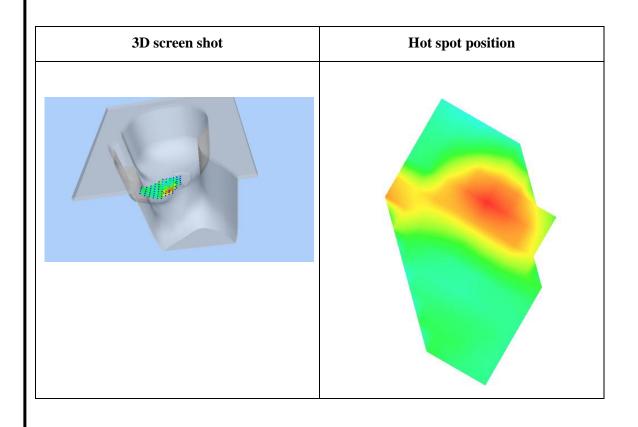
A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	GSM1900
Channels	512
Signal	GSM (Duty cycle: 1:8)

B. SAR Measurement Results

Frequency (MHz)	1850.2
Relative permittivity (real part)	39.59
Relative permittivity (imaginary part)	13.17
Conductivity (S/m)	1.39
Variation (%)	-4.57
ConvF:	5.25




Maximum location: X=-26.00, Y=--32.00

SAR 10g (W/Kg)	0.124441
SAR 1g (W/Kg)	0.227223

CCIC-SET/T-I (00) Page 58 of 118

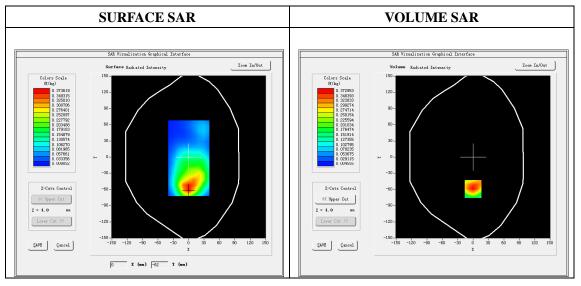
CCIC-SET/T-I (00) Page 59 of 118

GSM1900, Face, Low

Type: Phone measurement

Date of measurement: 30/7/2015

Measurement duration: 6 minutes 51 seconds

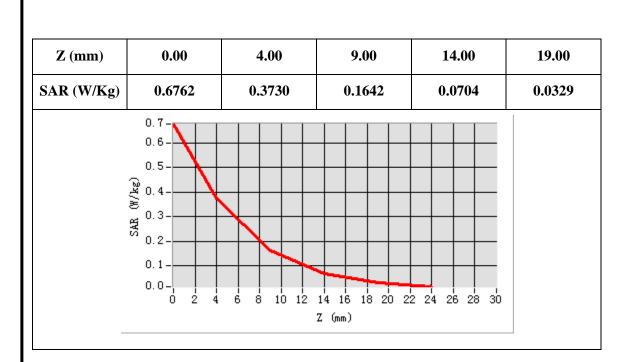

Mobile Phone IMEI number: --

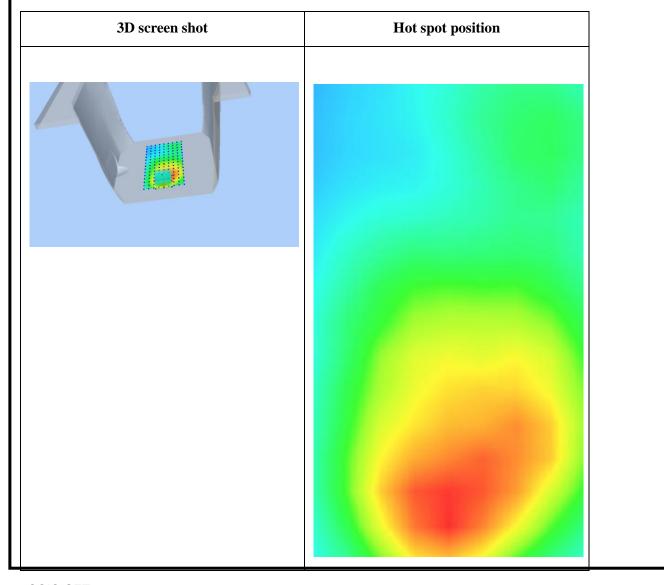
A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Face
Band	GSM1900
Channels	512
Signal	GSM (Duty cycle: 1:8)

B. SAR Measurement Results

Frequency (MHz)	1850.2
Relative permittivity (real part)	52.68
Relative permittivity (imaginary part)	14.21
Conductivity (S/m)	1.50
Variation (%)	-1.33
ConvF:	5.42




Maximum location: X=0.00, Y=-59.00

SAR 10g (W/Kg)	0.176869
SAR 1g (W/Kg)	0.354990

CCIC-SET/T-I (00) Page 60 of 118

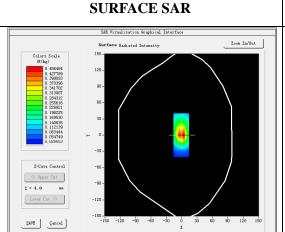
CCIC-SET/T-I (00) Page 61 of 118

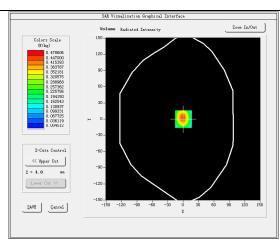
GPRS1900, Edge C, Low

Type: Phone measurement

Date of measurement: 30/7/2015

Measurement duration: 7 minutes 13 seconds

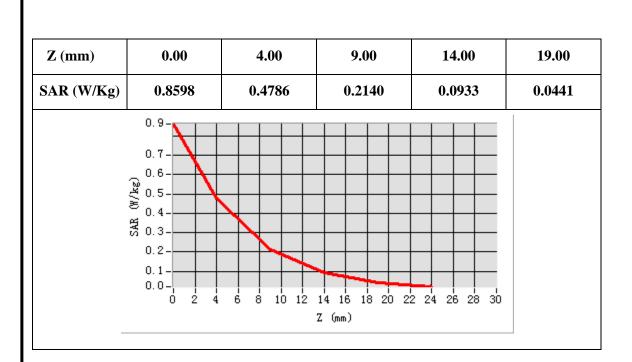

Mobile Phone IMEI number: --

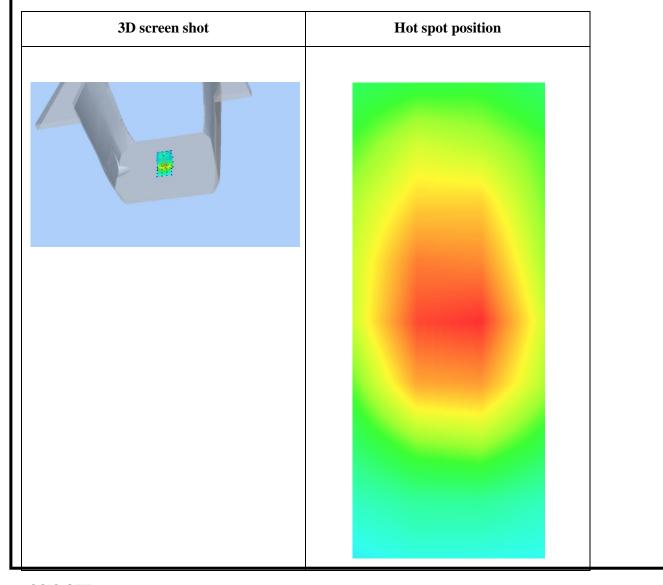

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Edge C
Band	CUSTOM (GPRS1900_2Tx)
Channels	512
Signal	GPRS (Duty cycle: 1:4)

B. SAR Measurement Results

Frequency (MHz)	1850.2
Relative permittivity (real part)	52.72
Relative permittivity (imaginary part)	14.21
Conductivity (S/m)	1.50
Variation (%)	-0.29
ConvF:	5.42


VOLUME SAR


Maximum location: X=1.00, Y=-0.00

SAR 10g (W/Kg)	0.210907
SAR 1g (W/Kg)	0.453525

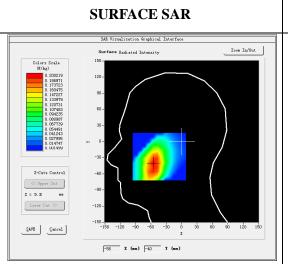
CCIC-SET/T-I (00) Page 62 of 118

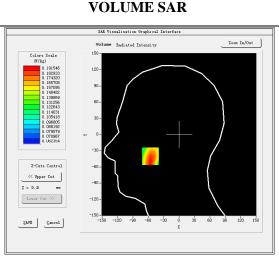
CCIC-SET/T-I (00) Page 63 of 118

WCDMA850, Left Cheek, Low

Type: Phone measurement

Date of measurement: 27/7/2015


Measurement duration: 6 minutes 52 seconds

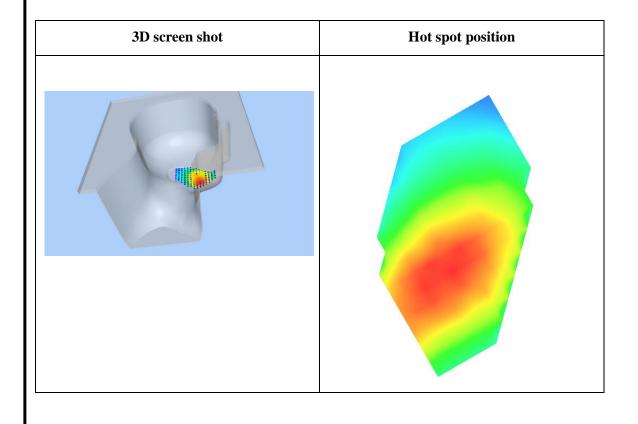

Mobile Phone IMEI number: -
A. Experimental conditions.

A. Experimental conditions.	
Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	Band5_WCDMA850
Channels	4132
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

Frequency (MHz)	826.4
Relative permittivity (real part)	41.18
Relative permittivity (imaginary part)	18.97
Conductivity (S/m)	0.88
Variation (%)	-2.46
ConvF:	5.68

Maximum location: X=-56.00, Y=-40.00


SAR Peak: 0.29 W/kg

SAR 10g (W/Kg)	0.156659
SAR 1g (W/Kg)	0.187305

CCIC-SET/T-I (00) Page 64 of 118

1	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.1914	0.1862	0.1742	0.1567	0.1353
	0.19-				
	0.18-	\rightarrow			
	0.17-				
,	्रिक्ष 0.16		\longrightarrow		
			\longrightarrow		
	ž 0.14-				
	0.13-		+++		
	0.12-		++++		
	0.11-	6 8 10 12	14 16 18 20 22	2 24 26 28 30	

CCIC-SET/T-I (00) Page 65 of 118

WCDMA850, Back, Low

Type: Phone measurement

Date of measurement: 28/7/2015

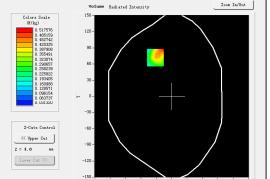
Measurement duration: 7 minutes 05 seconds

Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	Band5_WCDMA850
Channels	4132
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results


SAVE Cancel

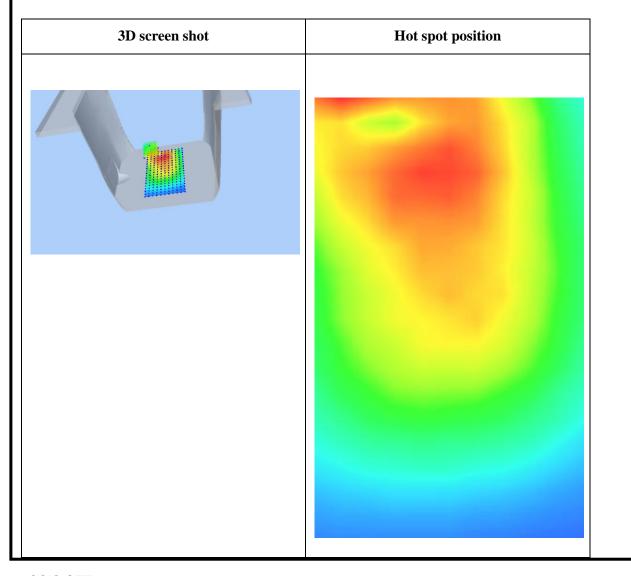
Frequency (MHz)	826.4
Relative permittivity (real part)	54.68
Relative permittivity (imaginary part)	20.48
Conductivity (S/m)	0.95
Variation (%)	-1.75
ConvF:	5.84

SURFACE SAR

-32 X (nm) 72 Y (nm)

SAVE Cancel

VOLUME SAR


Maximum location: X=-32.00, Y=72.00

SAR 10g (W/Kg)	0.285798
SAR 1g (W/Kg)	0.449536

CCIC-SET/T-I (00) Page 66 of 118

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.6052	0.4293	0.2819	0.1935	0.1422
	0.6-				
	0.5-				
	(S) 0.4- (S) 0.4-	$\downarrow \downarrow \downarrow \downarrow$			
	SAR 0.3-	\mathcal{N}			
	0.2-	++			
	0.1-			_	
	0 2 4		14 16 18 20 22 Z (mm)	2 24 26 28 30	
-					

CCIC-SET/T-I (00) Page 67 of 118

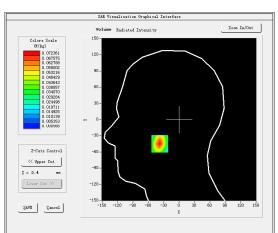
WCDMA1900, Right Cheek, Low

Type: Phone measurement

Date of measurement: 29/7/2015

Measurement duration: 7 minutes 20 seconds


Mobile Phone IMEI number: --

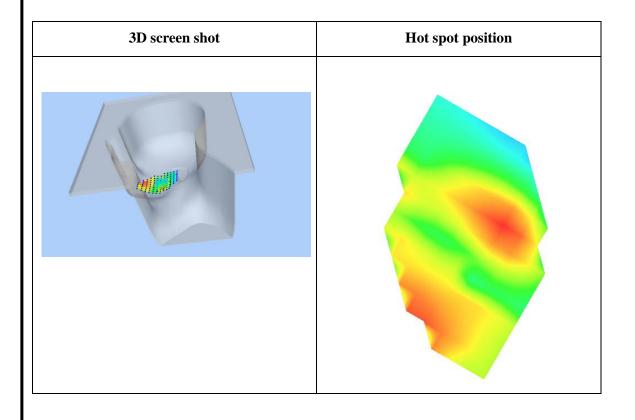

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Right head
Device Position	Cheek
Band	Band2_WCDMA1900
Channels	9262
Signal	WCDMA (Duty cycle: 1:1)

B. SAR Measurement Results

Frequency (MHz)	1852.4
Relative permittivity (real part)	39.59
Relative permittivity (imaginary	13.17
Conductivity (S/m)	1.39
Variation (%)	3.37
ConvF:	5.25

VOLUME SAR


Maximum location: X=-3300, Y=-45.00

SAR 10g (W/Kg)	0.083247
SAR 1g (W/Kg)	0.167311

CCIC-SET/T-I (00) Page 68 of 118

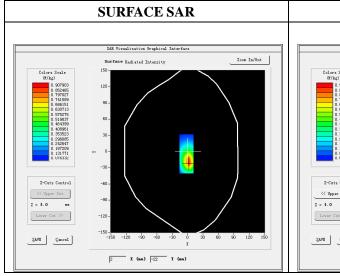
CCIC-SET/T-I (00) Page 69 of 118

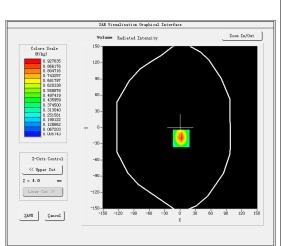
WCDMA1900, Edge C, Low

Type: Phone measurement

Date of measurement: 30/7/2015

Measurement duration: 7 minutes 26 seconds


Mobile Phone IMEI number: --

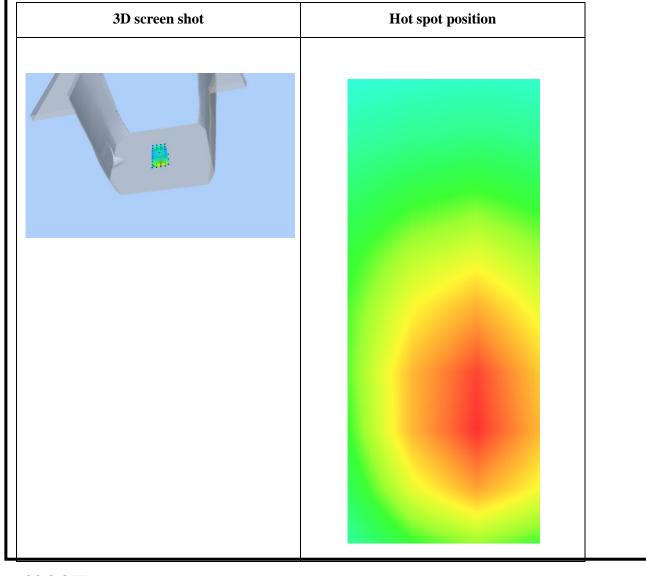

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm	
Phantom	Validation plane	
Device Position	Edge C	
Band	Band2_WCDMA1900	
Channels	9262	
Signal	WCDMA (Duty cycle: 1:1)	

B. SAR Measurement Results

DV DILLE IVIOUS WI DINGING INCOME.		
Frequency (MHz)	1852.4	
Relative permittivity (real part)	52.72	
Relative permittivity (imaginary	14.21	
Conductivity (S/m)	1.50	
Variation (%)	0.030	
ConvF:	5.42	

VOLUME SAR


Maximum location: X=2.00, Y=-20.00

SAR 10g (W/Kg)	0.362368
SAR 1g (W/Kg)	0.702387

CCIC-SET/T-I (00) Page 70 of 118

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.7501	0.9276	0.3813	0.1501	0.0659
	1.75-				
	1.50-				
	_ 1.25-				
	(%) 1.00-	++++			
	0.75-	\wedge			
	ශී o. 50 -	+			
	0.25				
	0.03-				
	o ż	4 6 8 10 12	14 16 18 20 22 Z (mm)	2 24 26 28 30	

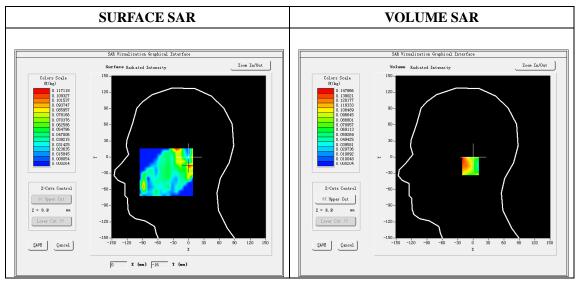
CCIC-SET/T-I (00) Page 71 of 118

Wi-Fi 802.11b ,Left Cheek, High

Type: Phone measurement (11 points in the volume)

Date of measurement: 31/07/2015

Measurement duration: 7 minutes 02 seconds

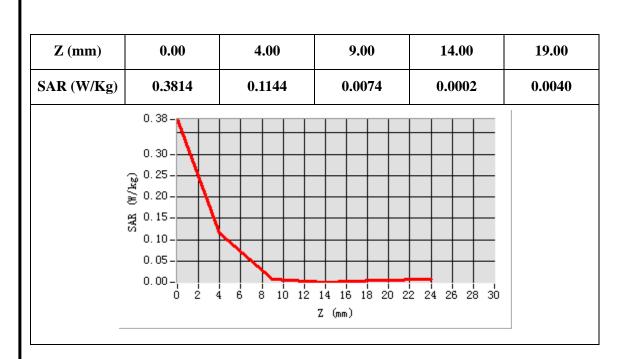

Mobile Phone IMEI number: --

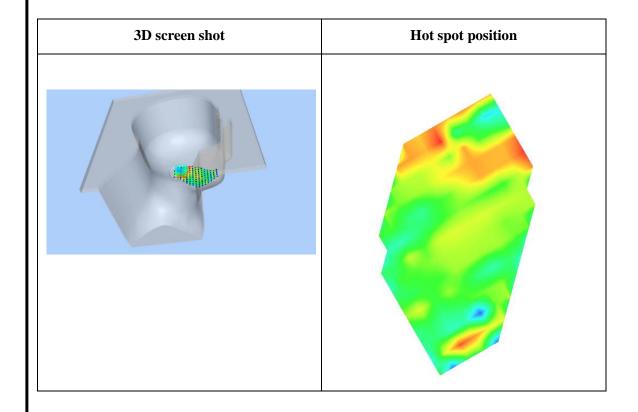
A. Experimental conditions.

Area Scan	dx=8mm dy=8mm	
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm	
Phantom	Left head	
Device Position	Cheek	
Band	IEEE 802.11b ISM	
Channels	11	
Signal	DSSS (Crest factor: 1:1)	

B. SAR Measurement Results

Di Billi i i debui di	
Frequency (MHz)	2462
Relative permittivity (real part)	38.65
Relative permittivity (imaginary part)	13.08
Conductivity (S/m)	1.78
Variation (%)	0.71
ConvF:	4.93




Maximum location: X=1.00, Y=17.00

SAR 10g (W/Kg)	0.068050
SAR 1g (W/Kg)	0.157974

CCIC-SET/T-I (00) Page 72 of 118

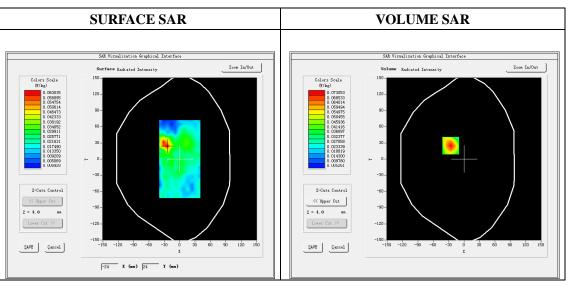
CCIC-SET/T-I (00) Page 73 of 118

Wi-Fi 802.11b , Back, High

Type: Phone measurement

Date of measurement: 31/07/2015

Measurement duration: 20 minutes 11 seconds

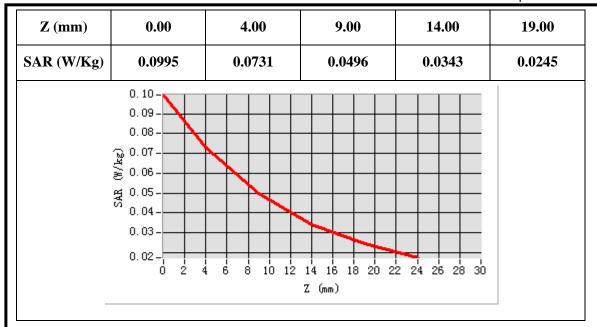

Mobile Phone IMEI number: --

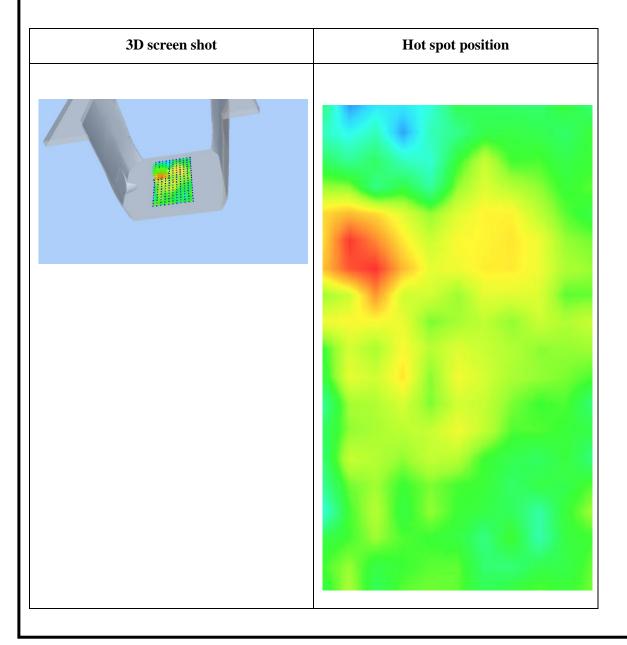
A. Experimental conditions.

Area Scan	dx=8mm dy=8mm		
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm		
Phantom	Validation plane		
Device Position	Body		
Band	IEEE 802.11b		
Channels	11		
Signal	DSSS (Crest factor: 1:1)		

B. SAR Measurement Results

Frequency (MHz)	2462
Relative permittivity (real part)	52.27
Relative permittivity (imaginary part)	14.18
Conductivity (S/m)	1.93
Variation (%)	4.31
ConvF:	5.07




Maximum location: X=-26.00, Y=25.00

SAR 10g (W/Kg)	0.042775
SAR 1g (W/Kg)	0.068563

CCIC-SET/T-I (00) Page 74 of 118

CCIC-SET/T-I (00) Page 75 of 118

ANNEX E

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-10511

mobile phone

Type Name: I62S

Hardware Version: i62S-MB-V2.0

Software Version: OWN-I62S-V3

Calibration Certificate of Probe and Dipoles

This Annex consists of 62 pages

Date of Report: 2015-07-31

CCIC-SET/T-I (00) Page 76 of 118

Probe Calibration Ceriticate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.227.15.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 04/13 EP166

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/14/2014

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 77 of 118

Ref: ACR.227.15.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/15/2014	JES
Checked by:	Jérôme LUC	Product Manager	8/15/2014	255
Approved by:	Kim RUTKOWSKI	Quality Manager	8/15/2014	um Puthowski

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
A	8/15/2014	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 78 of 118

Ref: ACR.227.15.14.SATU.A

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Calib	oration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment9	

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

Ref. ACR.227.15.14.SATU.A

1 DEVICE UNDER TEST

Device Under Test		
Device Type COMOSAR DOSIMETRIC E FIELD PROB		
Manufacturer	Satimo	
Model	SSE5	
Serial Number	SN 04/13 EP166	
Product Condition (new / used)	Used	
Frequency Range of Probe	0.7 GHz-3GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.232 MΩ	
	Dipole 2: R2=0.226 MΩ	
	Dipole 3: R3=0.228 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 80 of 118

Ref: ACR.227.15.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

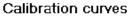
CCIC-SET/T-I (00) Page 81 of 118

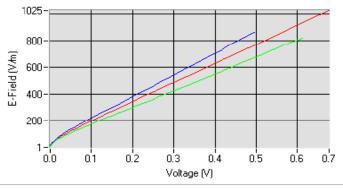
Ref: ACR.227.15.14.SATU.A

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


5.1 SENSITIVITY IN AIR


Normx dipole $1 (\mu V/(V/m)^2)$	Normy dipole $2 (\mu V/(V/m)^2)$	Normz dipole $3 (\mu V/(V/m)^2)$
8.57	4.83	7.15

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
92	90	95

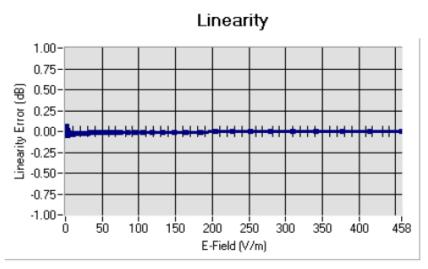
Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Dipole 1 Dipole 2 Dipole 3

Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


CCIC-SET/T-I (00) Page 82 of 118

Ref: ACR.227.15.14.SATU.A

5.2 LINEARITY

Linearity: I+/-1.55% (+/-0.07dB)

5.3 SENSITIVITY IN LIQUID

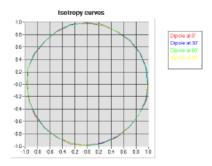
Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
	(MHz +/-			
	100MHz)			
HL850	835	42.81	0.89	5.68
BL850	835	53.46	0.96	5.84
HL900	900	42.47	0.96	5.34
BL900	900	56.69	1.08	5.54
HL1800	1800	41.31	1.38	4.75
BL1800	1800	53.27	1.51	4.93
HL1900	1900	41.09	1.42	5.25
BL1900	1900	54.20	1.54	5.42
HL2000	2000	39.72	1.43	4.81
BL2000	2000	53.91	1.53	4.91
HL2450	2450	39.05	1.77	4.93
BL2450	2450	52.97	1.93	5.07
HL2600	2600	38.35	1.92	5.02
BL2600	2600	51.81	2.19	5.22

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

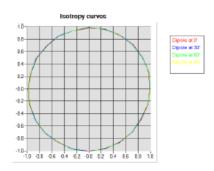
This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 83 of 118



Ref: ACR.227.15.14.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 84 of 118

Ref: ACR.227.15.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Identification No.		Next Calibration Date		
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 85 of 118

SID835 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.240.1.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)

SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 09/13 DIP0G835-217

Calibrated at SATIMO US

2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 86 of 118

Raf. ACR.240.1.14.5ATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	75
Checked by :	Jérôme LUC	Product Manager	8/29/2014	23
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	som Puthavilli

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
1.td

Issue	Date	Modifications
A	8/29/2014	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO

CCIC-SET/T-I (00) Page 87 of 118

Ref. ACR 240 J.14 SATU. A

TABLE OF CONTENTS

1	Inti	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method5	
	4,1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Мо	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

Ref: ACR,240,1.14.SATL: A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type COMOSAR 835 MHz REFERENO				
Manufacturer	Satimo			
Model	SID835			
Serial Number	SN 09/13 DIP0G835-217			
Product Condition (new / used)	used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except as full or in part, without the written approval of SATPAO.

CCIC-SET/T-I (00) Page 89 of 118

Ref. ACR.240.1.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Length
0.05 mm

5.3 VALIDATION MEASUREMENT

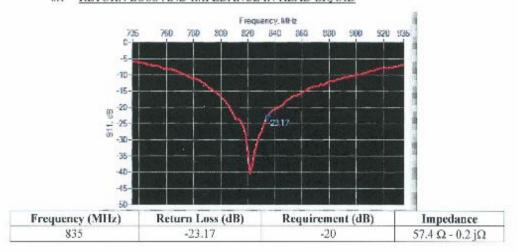
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

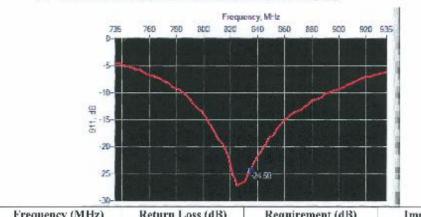
Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

Dies document shall not be reproduced, except in full or in part, without the virilian apprecial of SATEMO.

CCIC-SET/T-I (00) Page 90 of 118




Ref. ACR.240.1.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-24.50	-20	55 0 O + 3 9 iO

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	hmm		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		156.7 ±1 %,		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS

Page: 6/11

This document shall can be reproduced senses in full or in pair, without the written approved of \$811140.

CCIC-SET/T-I (00) Page 91 of 118

Ref. ACR.240.1.14.SATU.A

900	149.0 ±1 %.	83.3 ±1 %.	3.6 ±1 %.
1450	89 1 ±1 %.	\$1.7 ±1 %.	3.6 ±1 %.
1500	80.5 ±1 %.	50.0 ±1 %.	3.6 ±1 %.
1640	79.0 ±1 %.	45.7 ±1 %.	3.6 ±1 %.
1750	75 2 ±1 %.	42.9 = 1 %.	3.6 ±1 %.
1800	72.0 ±1 %.	41.7 ±1 %.	3.5 ±1 %.
1900	68.0 ±1 %.	39.5 ±1 %.	3.6 ±1 %.
1950	66.3 ±1.%.	38.5 ±1 %.	3.5 ±1 %.
2000	64.5 ±1 %.	37.5 ±1 %.	3.5 ±1 %.
2100	61.0 ±1 %.	35.7 ±1 %.	3.6 ±1 %.
2300	55.5 ±1.%.	32.6 ±1 %.	3.6 ±1 %.
2450	51.5 ±1 %.	30.4 ±1 %.	3.5 ±1 %.
2600	48.5 ±1 %.	28.8 ±1 %.	3.5 ±1 %.
3000	41.5 ±1.%.	25.0 ±1 %.	3.5 ±1 %.
3500	37.0±1 %.	26.4 ±1 %.	3.5 ±1 %.
3700	34.7±1 %.	26.4 ±1 %.	3.6 ±1 %.

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (x;')	Conductiv	ity (a) S/m
	required	measured	required	measured
3CO	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of \$471140

CCIC-SET/T-I (00) Page 92 of 118

Ref: ACR 240 1 14 SATU.A

2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1,67 ±5 %
2450	39.2 ±5 %	1,80 ±5 %
2500	39.0 ±5 %	1.96±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

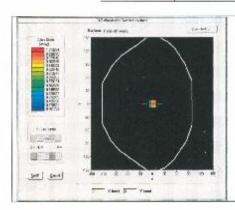
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

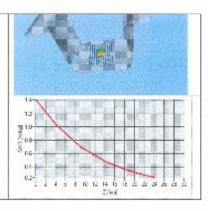
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx-8mm/dy-8mm
Zoen Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		5.94	
490	4.58		3.06	
750	8.49		5.55	
835	9.56	9.77 (0.98)	6.22	6.30 (0.63
900	10.9	0.00	6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

This discurrent shall not be reproduced, except in full or in part, without the written approval of SATIMO.


CCIC-SET/T-I (00) Page 93 of 118



Ref: ACR.240.1.14.SATU.A

2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	67.1	25

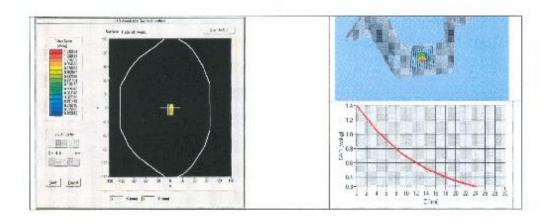
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε,')	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	FASS.	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 56		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5.%	
1900	53.3 ±5 56		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53,2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7±10%		5.53 ±10 %	

Page: 9/11

This discussion shall not be reproduced, except in full or in part, without the written approval of \$45,040,

CCIC-SET/T-I (00) Page 94 of 118


Ref. ACR 240 L LL SATULA

5500	48.5 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps1: 54.1 sigma: 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity 45 %	

Frequency MHz	1 g 5AR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
835	10.31 (1.03)	6.74 (0.67)	

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approved of SATTMO.

CCIC-SET/T-I (00) Page 95 of 118

Ref: ACR 240.1.14 SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 11/11

This document shall not be reproduced, except in fall or in part, without the written approval of SATOAO.

CCIC-SET/T-I (00) Page 96 of 118

SID1900 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.240.4.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

> FREQUENCY: 1900 MHZ SERIAL NO.: SN 09/13 DIP1G900-218

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traccable to national metrology institutions.

CCIC-SET/T-I (00) Page 97 of 118

Ref: ACR.240.4.14.SATU.A.

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	255
Checked by :	Jérôme LUC	Product Manager	8/29/2014	J85
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	Kom Parth Medici

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications	
A	8/29/2014	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 98 of 118

Ref: ACR,240.4.14.5ATU.A

TABLE OF CONTENTS

1	Int	oduction4				
2	De	Device Under Test4				
3	Product Description4					
	3.1	General Information	4			
4	Me	asurement Method5				
	4.1	Return Loss Requirements	5			
	4.2	Mechanical Requirements	5			
5	Me	asurement Uncertainty5				
	5.1	Return Loss	5			
	5.2	Dimension Measurement	5			
	5.3	Validation Measurement	5			
6	Cal	ibration Measurement Results6				
	6.1	Return Loss and Impedance In Head Liquid	6			
	6.2	Return Loss and Impedance In Body Liquid	6			
	6.3	Mechanical Dimensions	6			
7	Val	idation measurement				
	7.1	Head Liquid Measurement	7			
	7.2	SAR Measurement Result With Head Liquid	8			
	7.3	Body Liquid Measurement	9			
	7.4	SAR Measurement Result With Body Liquid	10			
ų.	Lie	t of Equipment				

Page: 3/11

This document shall rest be reproduced, except in full or in part, without the written approval of SATHAO.