# ENGINEERING TEST REPORT



Luxe 8500i Model: Luxe 8500i FCC ID: COL-LUXE8500I

Applicant:

### **NBS Payment Solutions Inc.**

703 Evans Ave., Suite 400 Toronto, Ontario Canada M9C 5E9

In Accordance With

Federal Communications Commission (FCC)
Part 15, Subpart C
Unlicensed Low Power Transmitter Operating in the Band 13.110-14.010 MHz

UltraTech's File No.: 16MIS118\_FCC15C225

This Test report is Issued under the Authority of

Tri M. Luu

Vice President of Engineering UltraTech Group of Labs

Date: December 15, 2016

Report Prepared by: Dan Huynh Tested by: Wei Wu

Test Dates: May 7 - June 20, 2016
Issued Date: December 15, 2016
December 13-14, 2016

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

- This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.
- This test report shall not be reproduced, except in full, without a written approval from UltraTech

# **UltraTech**

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4
Tel.: (905) 829-1570 Fax.: (905) 829-8050
Website: www.ultratech-labs.com, Email: vic@ultratech-labs.com, Email: tri@ultratech-labs.com

 $oldsymbol{L}$ 













91038 1309

46390-2049

AT-1945

SL2-IN-E-1119R

#### **TABLE OF CONTENTS**

| EXHIBIT                                      | 1. INTRODUCTION                                                                                                                    | 1           |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.1.<br>1.2.<br>1.3.                         | SCOPERELATED SUBMITTAL(S)/GRANT(S)NORMATIVE REFERENCES                                                                             | 1           |
| <b>EXHIBIT</b>                               | 2. PERFORMANCE ASSESSMENT                                                                                                          | 2           |
| 2.1.<br>2.2.<br>2.3.<br>2.4.<br>2.5.<br>2.6. | CLIENT INFORMATION                                                                                                                 | 2<br>3<br>3 |
| ∠.o.<br>EXHIBIT                              | TEST SETUP  3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS                                                            |             |
| 3.1.                                         | CLIMATE TEST CONDITIONS                                                                                                            |             |
| 3.2.                                         | OPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS                                                                              | 7           |
| EXHIBIT                                      | 4. SUMMARY OF TEST RESULTS                                                                                                         | 8           |
| 4.1.<br>4.2.<br>4.3.                         | LOCATION OF TESTSAPPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTSMODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES | 8           |
| EXHIBIT                                      | 5. TEST DATA                                                                                                                       | 9           |
| 5.1.<br>5.2.<br>5.3.<br>5.4.                 | EMISSION BANDWIDTH [§15.215(c)]                                                                                                    | 13<br>15    |
| EXHIBIT                                      |                                                                                                                                    |             |
| EXHIBIT                                      | 7. MEASUREMENT UNCERTAINTY                                                                                                         | 26          |
| 7.1.                                         | LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY                                                                                    | 26          |
| 72                                           | RADIATED EMISSION MEASUREMENT LINCERTAINTY                                                                                         |             |

#### **EXHIBIT 1. INTRODUCTION**

#### 1.1. SCOPE

| Reference:                    | FCC Part 15, Subpart C, Section 15.225 - Operation within the band 13.110 - 14.010 MHz.                   |
|-------------------------------|-----------------------------------------------------------------------------------------------------------|
| Title:                        | Code of Federal Regulations (CFR), Title 47 Telecommunication, Part 15, Subpart C - Intentional Radiators |
| Purpose of Test:              | Equipment Certification for Devices in Section 15.225 - Operation within the Band 13.110 - 14.010 MHz.    |
| Test Procedures:              | ANSI C63.4 and ANSI C63.10                                                                                |
| Environmental Classification: | Commercial, industrial or business environment                                                            |

# 1.2. RELATED SUBMITTAL(S)/GRANT(S)

None.

#### 1.3. NORMATIVE REFERENCES

| Publication                | Year                         | Title                                                                                                                                                               |
|----------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 CFR Parts 0-19          | 2015                         | Code of Federal Regulations (CFR), Title 47 – Telecommunication                                                                                                     |
| ANSI C63.4                 | 2014                         | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 KHz to 40 GHz |
| ANSI C63.10                | 2013                         | American National Standard of Procedures for Compliance<br>Testing of Unlicensed Wireless Devices                                                                   |
| CISPR 22 &<br>EN 55022     | 2008-09, Edition 6.0<br>2006 | Information Technology Equipment - Radio Disturbance<br>Characteristics - Limits and Methods of Measurement                                                         |
| CISPR 16-1-1<br>+A1<br>+A2 | 2006<br>2006<br>2007         | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus                                                     |
| CISPR 16-1-2<br>+A1<br>+A2 | 2003<br>2004<br>2006         | Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances                                                  |

File #: 16MIS118\_FCC15C225 December 15, 2016

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

### **EXHIBIT 2. PERFORMANCE ASSESSMENT**

#### 2.1. CLIENT INFORMATION

| APPLICANT       |                                                                                                  |  |
|-----------------|--------------------------------------------------------------------------------------------------|--|
| Name:           | NBS Payment Solutions Inc.                                                                       |  |
| Address:        | 703 Evans Ave., Suite 400<br>Toronto, ON<br>Canada M9C 5E9                                       |  |
| Contact Person: | Mr. Eric Babbit Phone #: 416-621-7410 x567 Fax #: 416-621-2450 Email Address: ebabbitt@nbsps.com |  |

| MANUFACTURER    |                                                                                                  |  |
|-----------------|--------------------------------------------------------------------------------------------------|--|
| Name:           | NBS Payment Solutions Inc.                                                                       |  |
| Address:        | 703 Evans Ave., Suite 400<br>Toronto, ON<br>Canada M9C 5E9                                       |  |
| Contact Person: | Mr. Eric Babbit Phone #: 416-621-7410 x567 Fax #: 416-621-2450 Email Address: ebabbitt@nbsps.com |  |

# 2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information (with the exception of the Date of Receipt) has been supplied by the applicant.

| Brand Name:                    | NBS Payment Solutions Inc.                        |
|--------------------------------|---------------------------------------------------|
| Product Name:                  | Luxe 8500i                                        |
| Model Name or Number:          | Luxe 8500i                                        |
| Serial Number:                 | Test sample                                       |
| Type of Equipment:             | Low Power Communication Device Transmitter        |
| Input Power Supply Type:       | 9 VDC/12 VDC via AC adapter                       |
| Primary User Functions of EUT: | Point of Sale credit/debit financial transactions |

#### 2.3. EUT'S TECHNICAL SPECIFICATIONS

| Transmitter                     |                                             |  |
|---------------------------------|---------------------------------------------|--|
| Equipment Type:                 | Mobile                                      |  |
| Intended Operating Environment: | Commercial, light industry & heavy industry |  |
| Power Supply Requirement:       | 9 VDC/12 VDC via AC adapter                 |  |
| Field Strength:                 | 56.61 dBµV/m at 10 m                        |  |
| Operating Frequency Range:      | 13.56 MHz                                   |  |
| 20 dB Bandwidth:                | 219.6 kHz                                   |  |
| Modulation Type:                | ASK                                         |  |
| Antenna Connector Type:         | Integral                                    |  |

#### 2.4. LIST OF EUT'S PORTS

| Port<br>Number | EUT's Port Description               | Number of Identical Ports | Connector Type            | Cable Type<br>(Shielded/Non-shielded) |
|----------------|--------------------------------------|---------------------------|---------------------------|---------------------------------------|
| 1              | Main Connector                       | 1                         | Samtec:<br>SIBF-15-F-S-AD | 1m, non-shielded                      |
| 2              | Earphone Jack                        | 1                         | Oupiin:<br>8965-3505ADT   | 1m, non-shielded                      |
| 3              | *USB                                 | 1                         | USB                       | Shielded                              |
| 4              | Communication Module port (Optional) | 1                         | PCB Pads                  | N/A                                   |
| 5              | Printer Module port<br>(Optional)    | 1                         | PCB Pads                  | N/A                                   |

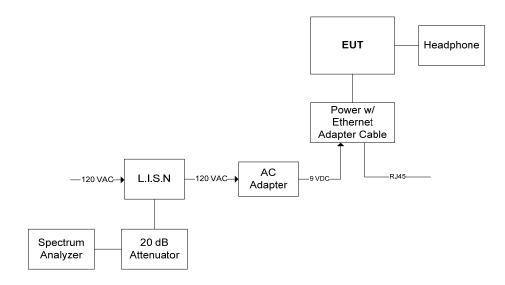
<sup>\*</sup> Service port

#### 2.5. ANCILLARY EQUIPMENT

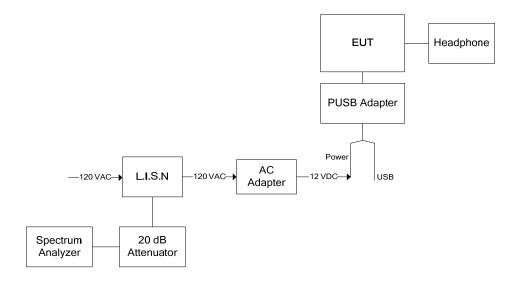
The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

| Ancillary Equipment # 1  |                             |  |
|--------------------------|-----------------------------|--|
| Description:             | ITE Power Supply AC Adapter |  |
| Brand name:              | ENG                         |  |
| Model Name or Number:    | 6A-161WU09                  |  |
| Connected to EUT's Port: | DC Port                     |  |

December 15, 2016

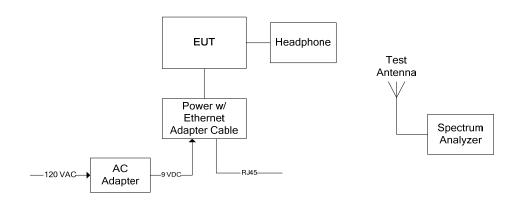

| Ancillary Equipment # 2  |               |  |
|--------------------------|---------------|--|
| Description:             | Headphone     |  |
| Brand name:              | Generic       |  |
| Model Name or Number:    | N/A           |  |
| Connected to EUT's Port: | Earphone Jack |  |

| Ancillary Equipment # 3  |                             |  |
|--------------------------|-----------------------------|--|
| Description:             | ITE Power Supply AC Adapter |  |
| Brand name:              | Equinox                     |  |
| Model Name or Number:    | NU40-E120250-I3             |  |
| Connected to EUT's Port: | PUSB Adapter                |  |

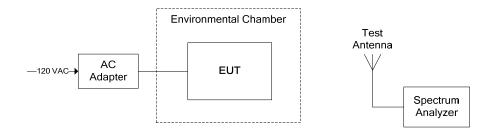

| Ancillary Equipment # 4  |                  |  |
|--------------------------|------------------|--|
| Description:             | Stereo Headphone |  |
| Brand name:              | Nextech          |  |
| Model Name or Number:    | N/A              |  |
| Connected to EUT's Port: | Earphone Jack    |  |

#### 2.6. **TEST SETUP**

### Power Line Conducted Emission (Power via Power w/ Ethernet Adapter Cable)




### Power Line Conducted Emission (Power via PUSB Adapter)




Page 5 of 26

#### **Radiated Emission**



# **Frequency Stability**



Page 7 of 26

Luxe 8500i, Model: Luxe 8500i FCC ID: COL-LUXE8500I

### **EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS**

#### 3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

| Temperature:        | 21 to 23 °C                 |
|---------------------|-----------------------------|
| Humidity:           | 45 to 58%                   |
| Pressure:           | 102 kPa                     |
| Power Input Source: | 9 VDC/12 VDC via AC adapter |

#### 3.2. OPEPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TESTS

| Operating Modes:          | The EUT was configured for continuous transmission for the duration of testing.                                      |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|
| Special Test Software:    | N/A                                                                                                                  |
| Special Hardware Used:    | N/A                                                                                                                  |
| Transmitter Test Antenna: | The EUT was tested with the antenna fitted in a manner typical of normal intended use as integral antenna equipment. |

| Transmitter Test Signals:                        |                      |  |  |  |
|--------------------------------------------------|----------------------|--|--|--|
| Frequency:                                       | 13.56 MHz            |  |  |  |
| Transmitter Wanted Output Test Signals:          |                      |  |  |  |
| RF Power Output (measured maximum output power): | 56.61 dBμV/m at 10 m |  |  |  |
| Normal Test Modulation:                          | ASK                  |  |  |  |
| Modulating signal source:                        | Internal             |  |  |  |

December 15, 2016

File #: 16MIS118\_FCC15C225

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

#### **EXHIBIT 4. SUMMARY OF TEST RESULTS**

#### 4.1. LOCATION OF TESTS

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

- AC Power Line Conducted Emissions were performed in UltraTech's shielded room, 24'(L) by 16'(W) by 8'(H).
- Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2017-04-02.

#### 4.2. APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

| FCC Regulations | Test Requirements                                                                       | Compliance (Yes/No) |
|-----------------|-----------------------------------------------------------------------------------------|---------------------|
| 15.203 & 15.204 | The transmitter shall use a transmitting antenna that is an integral part of the device | Yes                 |
| 15.215(c)       | Emission Bandwidth                                                                      | Yes                 |
| 15.225(a) – (d) | Field Strength of Emissions Inside and Outside the Permitted Band 13.110 - 14.010 MHz   | Yes                 |
| 15.225(e)       | Frequency Stability                                                                     | Yes                 |
| 15.207          | Class B - Power Line Conducted Emissions                                                | Yes                 |

# 4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None.

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

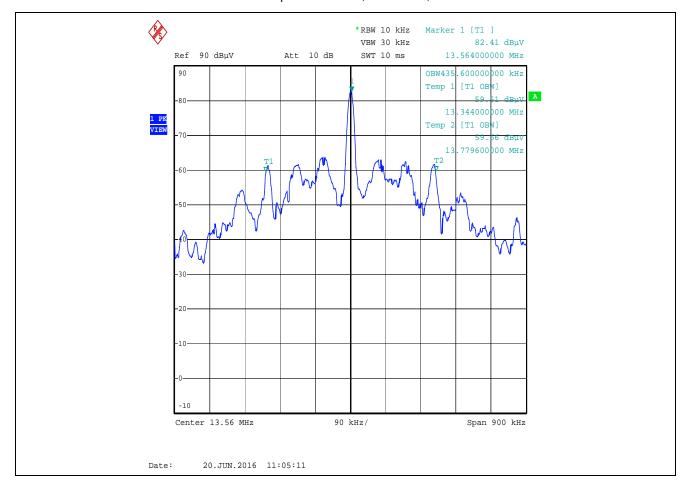
File #: 16MIS118\_FCC15C225 December 15, 2016

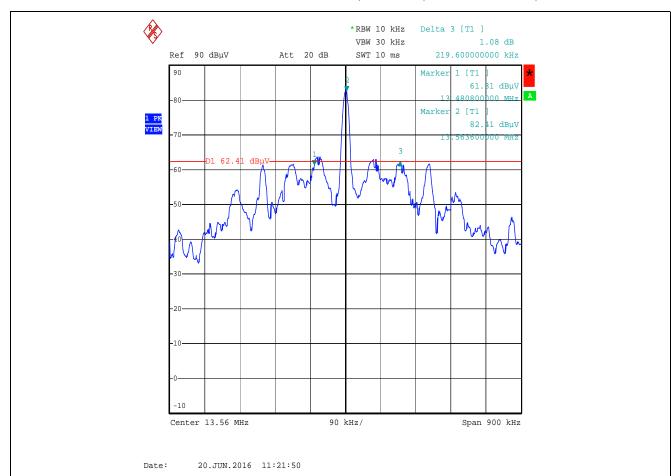
#### **EXHIBIT 5. TEST DATA**

#### **5.1. EMISSION BANDWIDTH [§15.215(c)]**

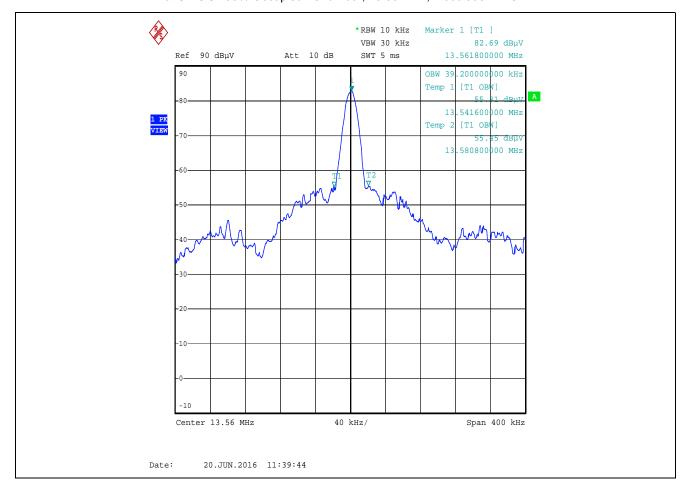
#### 5.1.1. Limits

The 20 dB bandwidth of the emission shall be contained within the band 13.110-14.010 MHz.

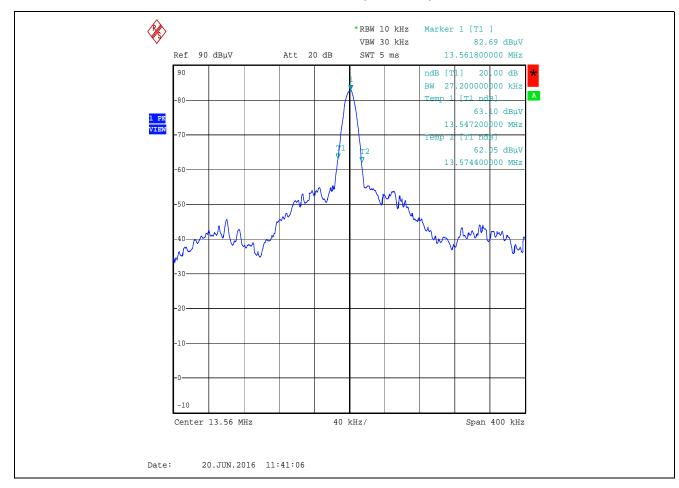

#### 5.1.2. Method of Measurements


ANSI C63.10-2013, Clause 6.9

#### 5.1.3. Test Data


| Toot Fraguency (MU=) | Modulation | Occupied Bandwidth (kHz) |         |
|----------------------|------------|--------------------------|---------|
| Test Frequency (MHz) | Wodulation | 20 dB BW                 | 99 % BW |
| 40.50                | WUP-A      | 219.6                    | 435.6   |
| 13.56                | WUP-B      | 27.20                    | 39.20   |

Plot 5.1.3.1. 99% Occupied Bandwidth, 13.56 MHz, Modulation: WUP-A






Plot 5.1.3.2. 20 dB Emission Bandwidth, 13.56 MHz, Modulation: WUP-A,



Plot 5.1.3.3. 99% Occupied Bandwidth, 13.56 MHz, Modulation: WUP-B



Plot 5.1.3.4. 20 dB Emission Bandwidth, 13.56 MHz, Modulation: WUP-B

Page 13 of 26 FCC ID: COL-LUXE8500I

# 5.2. FIELD STRENGTH OF EMISSIONS WITHIN & OUTSIDE THE PERMITTED BAND 13.110-14.010 MHz [47 CFR 15.225 (a) to (d)]

#### 5.2.1. Limits

- (a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters.
- (b) Within the bands 13.410-13.553 MHz and 13.567-13.710 MHz, the field strength of any emissions shall not exceed 334 microvolts/meter at 30 meters.
- (c) Within the bands 13.110-13.410 MHz and 13.710-14.010 MHz the field strength of any emissions shall not exceed 106 microvolts/meter at 30 meters.
- (d) The field strength of any emissions appearing outside of the 13.110 14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.

#### 47 CFR 15.209(a) - Radiated Emission Limts; general requirements

| Frequency (MHz) | Field Strength Limits (microvolts/m) | Distance (Meters) |
|-----------------|--------------------------------------|-------------------|
| 0.009 - 0.490   | 2,400 / F (KHz)                      | 300               |
| 0.490 - 1.705   | 24,000 / F (KHz)                     | 30                |
| 1.705 - 30.0    | 30                                   | 30                |
| 30 – 88         | 100                                  | 3                 |
| 88 – 216        | 150                                  | 3                 |
| 216 – 960       | 200                                  | 3                 |
| Above 960       | 500                                  | 3                 |

#### 5.2.2. Method of Measurements

ANSI C63.10-2013, Clauses 6.3, 6.4 & 6.5.

December 15, 2016

File #: 16MIS118\_FCC15C225

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

FCC ID: COL-LUXE8500I

#### 5.2.3. Test Data

#### Remarks:

- Radiated spurious emissions measurements were performed at a measuring distance of 10 m (for frequencies below 30 MHz) and 3 m (for frequencies at or above 30 MHz), from 10 kHz – 10<sup>th</sup> harmonic of the fundamental or the range applicable to the digital device, whichever is the higher frequency range and all spurious emissions that are in excess of 20 dB below the specified limit shall be recorded.
- For frequencies below 30 MHz, the results measured at 10 m distance shall be extrapolated to the specified distance using an extrapolation factor of 40 dB/decade for determining compliance.

# 5.2.3.1. Field Strength of Emissions Within the Permitted Band at 10 m

| Frequency<br>(MHz) | Measured Field<br>Strength @ 10 m<br>(dBμV/m) | Detector<br>Used<br>(Peak/QP) | Antenna<br>Plane<br>(H/V) | Field Strength<br>Extrapolated Value<br>(dBµV/m) | § 15.225 Field<br>Strength Limits<br>(dBμV/m) | Margin<br>(dB) |
|--------------------|-----------------------------------------------|-------------------------------|---------------------------|--------------------------------------------------|-----------------------------------------------|----------------|
| 13.56              | 56.61                                         | Peak                          | V                         | 37.5                                             | 84.0                                          | -46.5          |
| 13.56              | 49.34                                         | Peak                          | Н                         | 30.3                                             | 84.0                                          | -53.7          |

#### 5.2.3.2. Field Strength of Emissions Outside the Permitted Band Below 30 MHz at 10 m

| Frequency<br>(MHz)                                                    | Measured Field<br>Strength @ 10 m<br>(dBμV/m) | Detector<br>Used<br>(Peak/QP) | Antenna<br>Plane (H/V) | Field Strength<br>Extrapolated Value<br>(dBµV/m) | § 15.209 Field<br>Strength Limits<br>(dBμV/m) | Margin<br>(dB) |
|-----------------------------------------------------------------------|-----------------------------------------------|-------------------------------|------------------------|--------------------------------------------------|-----------------------------------------------|----------------|
| All spurious emissions are more than 20 dB below the specified limit. |                                               |                               |                        |                                                  |                                               |                |

### 5.2.3.3. Field Strength of Emissions Outside the Permitted Band at or Above 30 MHz at 3 m

| Frequency<br>(MHz) | Measured Field<br>Strength @ 3 m<br>(dBμV/m) | Detector Used<br>(Peak/QP) | Antenna Plane<br>(H/V) | § 15.209 Field<br>Strength Limits<br>(dBμV/m) | Margin (dB) |
|--------------------|----------------------------------------------|----------------------------|------------------------|-----------------------------------------------|-------------|
| 40.68              | 27.06                                        | Peak                       | V                      | 40.0                                          | -12.9       |
| 40.68              | 24.01                                        | Peak                       | Н                      | 40.0                                          | -16.0       |
| 122.04             | 27.58                                        | Peak                       | V                      | 43.5                                          | -15.9       |
| 122.04             | 24.39                                        | Peak                       | Н                      | 43.5                                          | -19.1       |
| 135.60             | 30.35                                        | Peak                       | V                      | 43.5                                          | -13.2       |

December 15, 2016

### 5.3. FREQUENCY STABILITY [47 CFR 15.225(e)]

### 5.3.1. Limits

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency over a temperature variation of –20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

#### 5.3.2. Method of Measurements

ANSI C63.10-2013, Clause 6.8.

#### 5.3.3. Test Data

| Frequency Band:                    | 13.56 MHz                                |
|------------------------------------|------------------------------------------|
| Center Frequency:                  | 13.56 MHz                                |
| Frequency Tolerance Limit:         | <u>+</u> 0.01% ( <u>+</u> 1356 Hz)       |
| Max. Frequency Tolerance Measured: | +96 Hz                                   |
| Input Voltage Rating:              | 100 - 240 VAC (AC adapter specification) |

|                             |                           | Frequency Drift (Hz)      |                          |  |  |  |
|-----------------------------|---------------------------|---------------------------|--------------------------|--|--|--|
| Ambient<br>Temperature (°C) | Supply Voltage<br>120 VAC | Supply Voltage<br>100 VAC | Supply Voltage<br>240VAC |  |  |  |
| -30                         | +64                       | N/A                       | N/A                      |  |  |  |
| -20                         | +96                       | N/A                       | N/A                      |  |  |  |
| -10                         | +96                       | N/A                       | N/A                      |  |  |  |
| 0                           | +64                       | N/A                       | N/A                      |  |  |  |
| 10                          | +32                       | N/A                       | N/A                      |  |  |  |
| 20                          | 0                         | 0                         | 0                        |  |  |  |
| 30                          | -32                       | N/A                       | N/A                      |  |  |  |
| 40                          | -64                       | N/A                       | N/A                      |  |  |  |
| 50                          | -64                       | N/A                       | N/A                      |  |  |  |

December 15, 2016

# 5.4. POWER LINE CONDUCTED EMISSIONS [47 CFR 15.207]

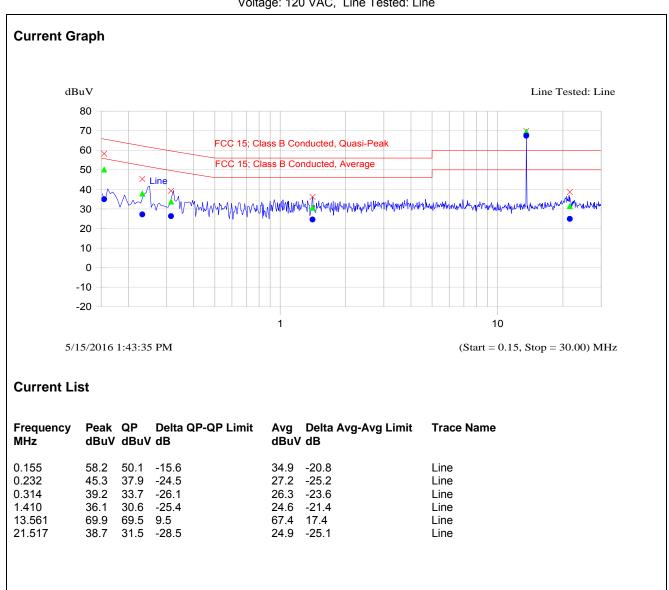
#### 5.4.1. Limits

The equipment shall meet the limits of the following table:

| Eroquency of emission MHz) | Conducted Limits (dBμV) |           |  |
|----------------------------|-------------------------|-----------|--|
| Frequency of emission MHz) | Quasi-peak              | Average   |  |
| 0.15–0.5                   | 66 to 56*               | 56 to 46* |  |
| 0.5–5                      | 56                      | 46        |  |
| 5-30                       | 60                      | 50        |  |

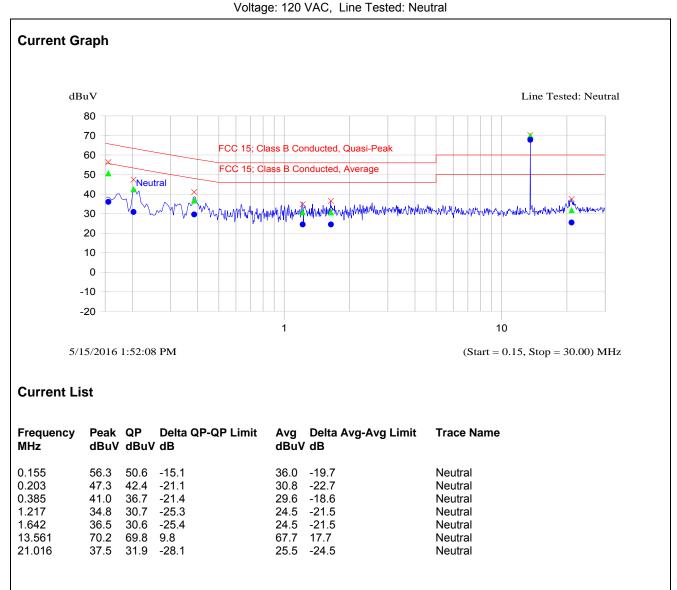
<sup>\*</sup> Decreases linearly with logarithm of the frequency

#### 5.4.2. Method of Measurements


ANSI C63.10-2013, Clause 6.2.

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

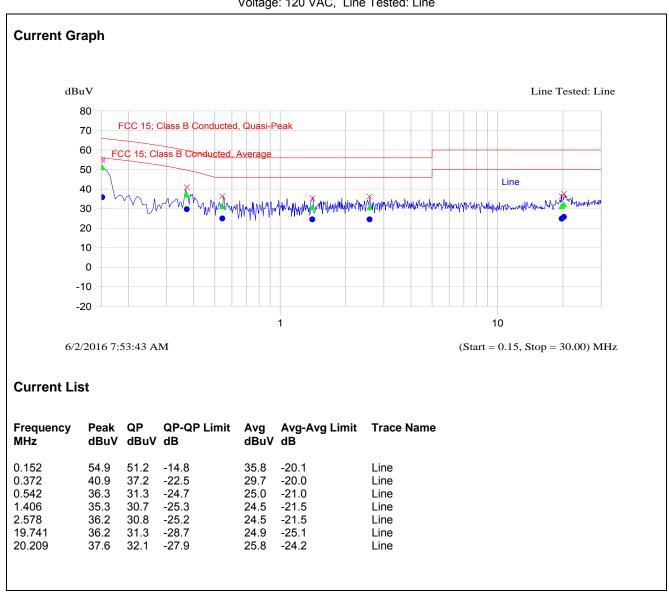
File #: 16MIS118\_FCC15C225 December 15, 2016


#### 5.4.3. Test Data

Plot 5.4.3.1. Power Line Conducted Emissions (Power via Power w/ Ethernet Adapter Cable)
Test Configuration 1: EUT with Antenna
Voltage: 120 VAC, Line Tested: Line

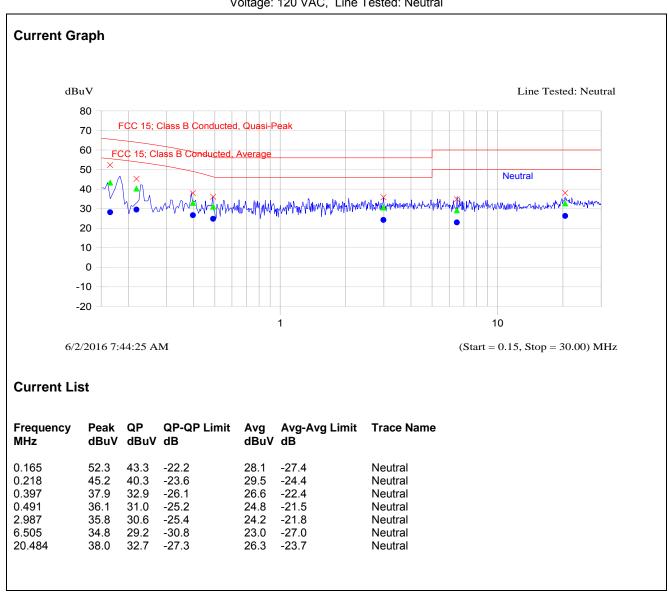


Plot 5.4.3.2. Power Line Conducted Emissions (Power via Power w/ Ethernet Adapter Cable)


Test Configuration 1: EUT with Antenna

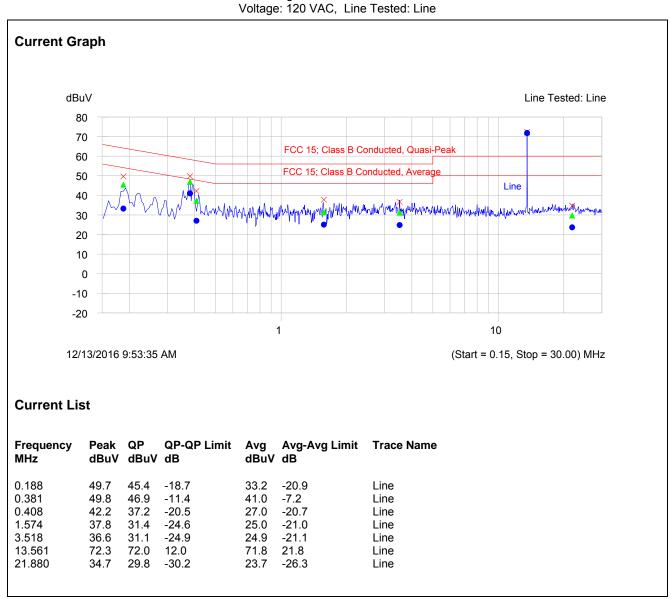


#### **ULTRATECH GROUP OF LABS**

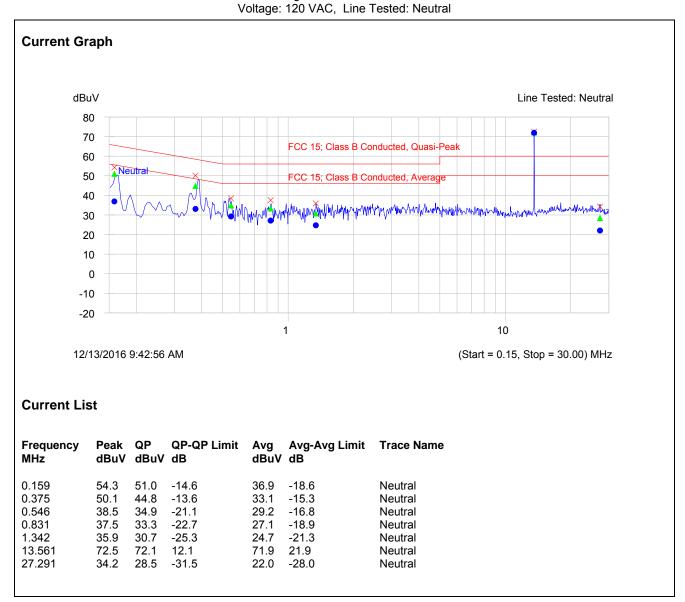

December 15, 2016

Plot 5.4.3.3. Power Line Conducted Emissions (Power via Power w/ Ethernet Adapter Cable) Test Configuration 2: EUT with Antenna Terminated to 50  $\Omega$  Load (Dummy Load) Voltage: 120 VAC, Line Tested: Line

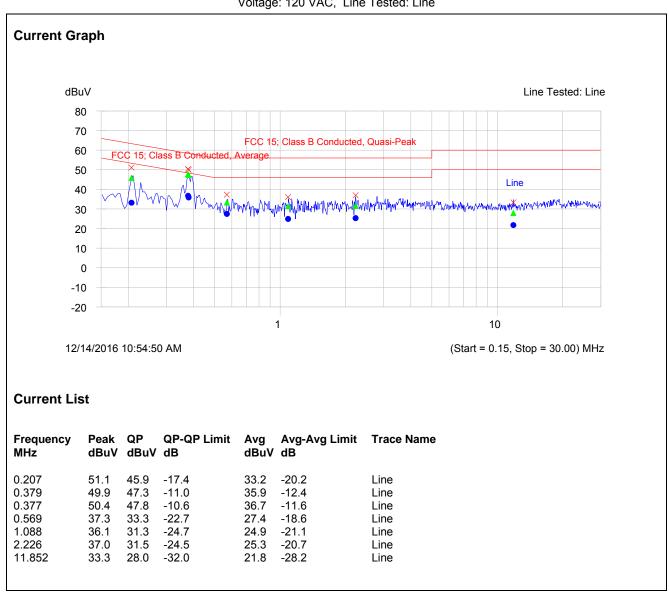



File #: 16MIS118\_FCC15C225 December 15, 2016

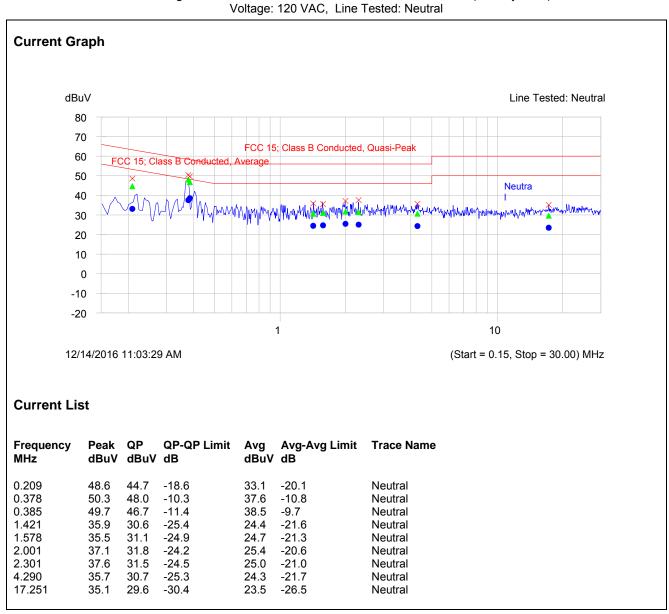
Plot 5.4.3.4. Power Line Conducted Emissions (Power via Power w/ Ethernet Adapter Cable) Test Configuration 2: EUT with Antenna Terminated to 50  $\Omega$  Load (Dummy Load) Voltage: 120 VAC, Line Tested: Neutral




December 15, 2016


Plot 5.4.3.5. Power Line Conducted Emission (Power via PUSB Adapter)
Test Configuration 1: EUT with Antenna




Plot 5.4.3.6. Power Line Conducted Emission (Power via PUSB Adapter)
Test Configuration 1: EUT with Antenna



**Plot 5.4.3.7.** Power Line Conducted Emission (Power via PUSB Adapter) Test Configuration 2: EUT with Antenna Terminated to 50  $\Omega$  Load (Dummy Load) Voltage: 120 VAC, Line Tested: Line



Plot 5.4.3.8. Power Line Conducted Emission (Power via PUSB Adapter) Test Configuration 2: EUT with Antenna Terminated to 50 Ω Load (Dummy Load)



### **EXHIBIT 6. TEST EQUIPMENT LIST**

| Test Instruments         | Manufacturer    | Model No. | Serial No.       | Frequency Range | Cal. Due Date |
|--------------------------|-----------------|-----------|------------------|-----------------|---------------|
| Spectrum Analyzer        | Rhode & Schwarz | FSU       | 1100398          | 20Hz-26.5GHz    | 14 Sep 2017   |
| *Biconical Antenna       | ETS             | 3110B     | 3379             | 20-200MHz       | 11 Sep 2016   |
| *Loop Antenna            | EMCO            | 6502      | 9104-2611        | 10KHz-30MHz     | 05 Nov 2016   |
| *Preamplifier            | Com-power       | PA-103A   | 161243           | 10-1000MHz      | 21 Jul 2016   |
| Environmental<br>Chamber | Envirotronics   | SSH32C    | 11994847-S-11059 | -60 to 177 °C   | 02 Jun 2017   |
| Spectrum Analyzer        | Rhode & Schwarz | FSU       | 1100398          | 20Hz-26.5GHz    | 14 Sep 2017   |
| Spectrum Analyzer        | HP              | 8593EM    | 3412A00103       | 9HHz-26.5GHz    | 09 Apr 2017   |
| *LISN                    | EMCO            | 3825/2R   | 1165             | 10KHz-30MHz     | 29 Sep 2016   |
| Attenuator               | Pasternack      | PE7010-20 | 7                | DC-2GHz         | 26 Mar 2017   |
| EMI Receiver             | R/S             | ESU40     | 100037           | 20Hz-40GHz      | 08 May 2017   |
| Biconical Antenna        | EMCO            | 3142      | 9601-1005        | 26-20000MHz     | 12 May 2017   |
| *Loop Antenna            | EMCO            | 6502      | 9104-2611        | 10KHz-30MHz     | 05 Nov 2016   |
| LISN                     | Shcwarzbeck     | NSLK 8127 | 812276           | 10 kHz - 30 MHz | 24 Jun 2017   |

<sup>\*</sup>Used before cal. due date.

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

#### **EXHIBIT 7. MEASUREMENT UNCERTAINTY**

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

#### 7.1. LINE CONDUCTED EMISSION MEASUREMENT UNCERTAINTY

|                | Line Conducted Emission Measurement Uncertainty (9 kHz – 30 MHz):           | Measured      | Limit        |
|----------------|-----------------------------------------------------------------------------|---------------|--------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 1.44 | <u>+</u> 1.8 |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                          | <u>+</u> 2.89 | <u>+</u> 3.6 |

#### 7.2. RADIATED EMISSION MEASUREMENT UNCERTAINTY

|                | Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):   | Measured<br>(dB) | Limit<br>(dB) |
|----------------|-----------------------------------------------------------------------------|------------------|---------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 2.39    | <u>+</u> 2.6  |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                          | <u>+</u> 4.79    | <u>+</u> 5.2  |

|                | Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):     | Measured<br>(dB) | Limit<br>(dB) |
|----------------|-----------------------------------------------------------------------------|------------------|---------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{l=1}^{m} u_i^2(y)}$ | <u>+</u> 2.39    | <u>+</u> 2.6  |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                          | <u>+</u> 4.78    | <u>+</u> 5.2  |

|                | Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):       | Measured<br>(dB) | Limit<br>(dB)          |
|----------------|--------------------------------------------------------------------------------------------|------------------|------------------------|
| u <sub>c</sub> | Combined standard uncertainty:<br>$u_c(y) = \sqrt{\sum_{i=1}^{m} \sum_{i=1}^{m} u_i^2(y)}$ | <u>+</u> 1.87    | Under<br>consideration |
| U              | Expanded uncertainty U:<br>U = 2u <sub>c</sub> (y)                                         | <u>+</u> 3.75    | Under consideration    |

File #: 16MIS118\_FCC15C225 December 15, 2016