

Report No.: FR491831A

FCC RADIO TEST REPORT

FCC ID : COFTPA8800

Equipment : Payment Tablet eMoBo

Brand Name : USI

Model Name : TPA-8800

Applicant : Universal Global Scientific Industrial Co., Ltd.

No.141, Lane 351, Sec.1, Taiping Road, Tsaotuen,

Nantou County, 542007, Taiwan

Manufacturer : Universal Global Scientific Industrial Co., Ltd.

No.141, Lane 351, Sec.1, Taiping Road, Tsaotuen,

Nantou County, 542007, Taiwan

Standard : FCC Part 15 Subpart C §15.247

The product was received on Oct. 30, 2024 and testing was performed from Nov. 14, 2024 to Dec. 14, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Approved by: Louis Wu

Lunis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

Table of Contents

His	tory o	of this test report	3
Sui	mmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	9
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	Number of Channel Measurement	11
	3.2	Hopping Channel Separation Measurement	
	3.3	Dwell Time Measurement	13
	3.4	20dB and 99% Bandwidth Measurement	14
	3.5	Output Power Measurement	15
	3.6	Conducted Band Edges Measurement	16
	3.7	Conducted Spurious Emission Measurement	17
	3.8	Radiated Band Edges and Spurious Emission Measurement	18
	3.9	AC Conducted Emission Measurement	22
	3.10	Antenna Requirements	24
4	List o	of Measuring Equipment	25
5	Meas	surement Uncertainty	27
Ap	pendix	x A. Conducted Test Results	
Αp	pendix	x B. AC Conducted Emission Test Result	
Αp	pendix	x C. Radiated Spurious Emission Test Data	
Αp	pendix	x D. Duty Cycle Plots	
Apı	pendix	x E. Setup Photographs	

TEL: 886-3-327-0868 FAX: 886-3-327-0855

Report Template No.: BU5-FR15CBT Version 2.4

Page Number Issue Date

: 2 of 27 : Feb. 11, 2025

Report Version

: 01

Report No. : FR491831A

History of this test report

Report No. : FR491831A

Report No.	Version	Description	Issue Date
FR491831A	01	Initial issue of report	Feb. 11, 2025

TEL: 886-3-327-0868 Page Number : 3 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

Summary of Test Result

Report No.: FR491831A

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Pass	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	-
3.9	15.207	AC Conducted Emission	Pass	-
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Ming Chen

TEL: 886-3-327-0868 Page Number : 4 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

Report No.: FR491831A

General Specs

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac and NFC.

Antenna Type

Bluetooth: PIFA Antenna

Antenna information				
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	2.84		

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

TEL: 886-3-327-0868 Page Number : 5 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH11-HY

Report No.: FR491831A

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-0868 Page Number : 6 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	27	2429	54	2456
	1	2403	28	2430	55	2457
	2	2404	29	2431	56	2458
	3	2405	30	2432	57	2459
	4	2406	31	2433	58	2460
	5	2407	32	2434	59	2461
	6	2408	33	2435	60	2462
	7	2409	34	2436	61	2463
	8	2410	35	2437	62	2464
	9	2411	36	2438	63	2465
	10	2412	37	2439	64	2466
	11	2413	38	2440	65	2467
	12	2414	39	2441	66	2468
2400-2483.5 MHz	13	2415	40	2442	67	2469
	14	2416	41	2443	68	2470
	15	2417	42	2444	69	2471
	16	2418	43	2445	70	2472
	17	2419	44	2446	71	2473
	18	2420	45	2447	72	2474
	19	2421	46	2448	73	2475
	20	2422	47	2449	74	2476
	21	2423	48	2450	75	2477
	22	2424	49	2451	76	2478
	23	2425	50	2452	77	2479
	24	2426	51	2453	78	2480
	25	2427	52	2454	-	-
	26	2428	53	2455	-	-

TEL: 886-3-327-0868 FAX: 886-3-327-0855

Report Template No.: BU5-FR15CBT Version 2.4

Page Number : 7 of 27 Issue Date : Feb. 11, 2025

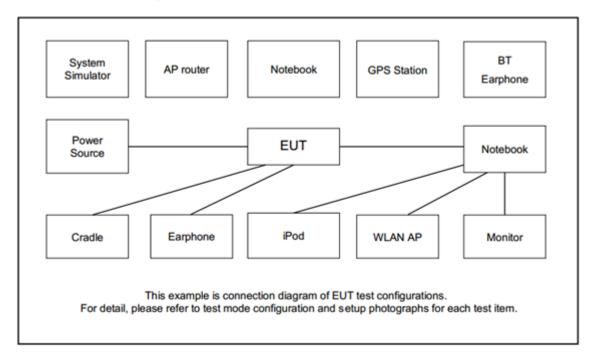
Report No. : FR491831A

Report Version : 01

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst plane, and the worst mode of radiated spurious emissions is Bluetooth 1Mbps mode, and recorded in this report.

Report No.: FR491831A


b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

The following summary table is snowing all test modes to demonstrate in compilance with the standard.							
	Sui	mmary table of Test Cases					
Test Item	Data Rate / Modulation						
	Bluetooth BR 1Mbps GFSK	Bluetooth EDR 2Mbps π /4-DQPSK	Bluetooth EDR 3Mbps 8-DPSK				
Conducted	Mode 1: CH00_2402 MHz	Mode 4: CH00_2402 MHz	Mode 7: CH00_2402 MHz				
Test Cases	Mode 2: CH39_2441 MHz	Mode 5: CH39_2441 MHz	Mode 8: CH39_2441 MHz				
	Mode 3: CH78_2480 MHz	Mode 6: CH78_2480 MHz	Mode 9: CH78_2480 MHz				
	Bluetooth BR 1Mbps GFSK						
Radiated	Mode 1: CH00_2402 MHz						
Test Cases	Mode 2: CH39_2441 MHz						
	Mode 3: CH78_2480 MHz						
AC Conducted	Mode 1: WLAN (2.4GHz) Link + Bluetooth Link + NFC on + IC card reader +						
Emission	Camera (Rear) +	Adapter					
Remark: For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.							

TEL: 886-3-327-0868 Page Number : 8 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

2.3 Connection Diagram of Test System

Report No.: FR491831A

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
2.	WLAN AP	ASUS	RT-AC52	MSQ-RTAC4A00	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

TEL: 886-3-327-0868 Page Number : 9 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.211.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

Report No.: FR491831A

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-0868 Page Number : 10 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

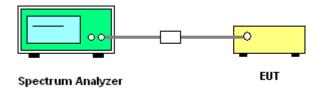
3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

Report No.: FR491831A


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

Please refer to Appendix A.

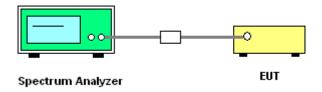
TEL: 886-3-327-0868 Page Number : 11 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Report No.: FR491831A


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Hopping Channel Separation

Please refer to Appendix A.

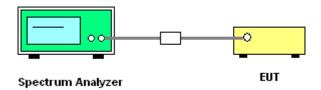
TEL: 886-3-327-0868 Page Number : 12 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Report No.: FR491831A


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 13 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

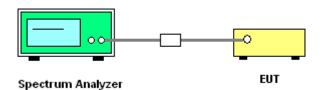
3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

Report No.: FR491831A

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 - Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 - RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 - Trace = \max hold.
- 5. Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 - Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 - RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 - Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

3.4.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 14 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

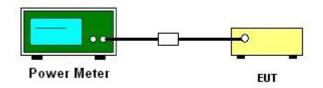
3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

Report No.: FR491831A

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

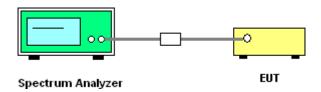
TEL: 886-3-327-0868 Page Number : 15 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR491831A


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

Please refer to Appendix A.

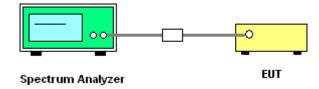
TEL: 886-3-327-0868 Page Number : 16 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.

Report No.: FR491831A


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 17 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR491831A

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

TEL: 886-3-327-0868 Page Number : 18 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.8.3 Test Procedures

1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.

Report No.: FR491831A

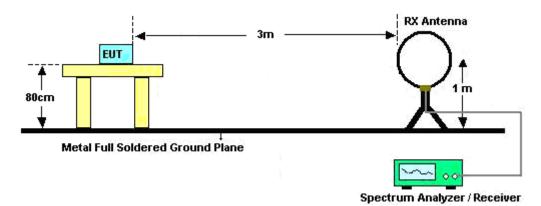
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).

Duty cycle = On time/100 milliseconds

On time = $N_1*L_1+N_2*L_2+...+N_{n-1}*LN_{n-1}+N_n*L_n$

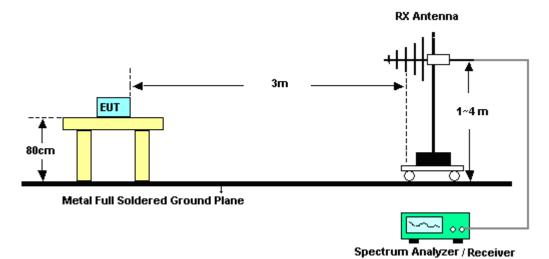
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.

Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

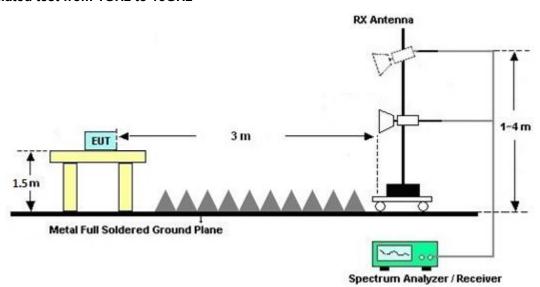

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

Note: The average levels are calculated from the peak level corrected with duty cycle correction factor (-24.76dB) derived from 20log (dwell time/100ms). This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

TEL: 886-3-327-0868 Page Number : 19 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

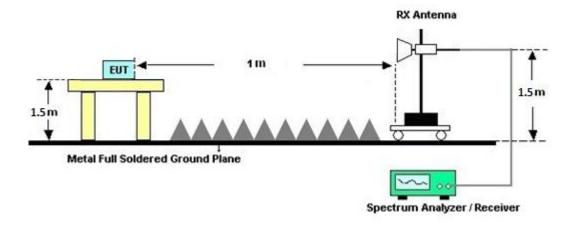

3.8.4 Test Setup

For radiated test below 30MHz



Report No.: FR491831A

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 20 of 27 FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

For radiated test above 18GHz

Report No.: FR491831A

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.8.7 Duty Cycle

Please refer to Appendix D.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

TEL: 886-3-327-0868 Page Number : 21 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.9 AC Conducted Emission Measurement

3.9.1 Limit of AC Conducted Emission

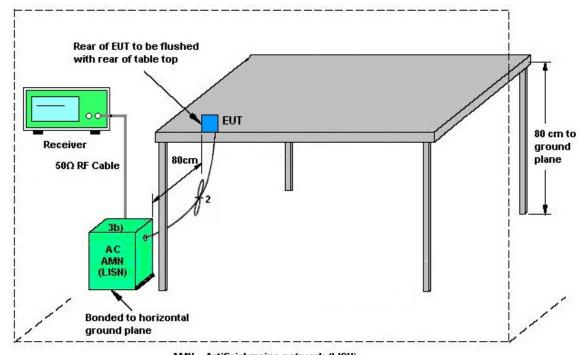
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR491831A

Frequency of emission (MHz)	Conducted	limit (dBμV)
Frequency of emission (winz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*}Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 22 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.9.4 Test Setup

Report No.: FR491831A

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 23 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

3.10 Antenna Requirements

3.10.1 Standard Applicable

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§ 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Report No.: FR491831A

3.10.2 Antenna Anti-Replacement Construction

Antenna permanently attached.

TEL: 886-3-327-0868 Page Number : 24 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 01, 2024	Nov. 14, 2024~ Dec. 14, 2024	Oct. 31, 2025	Conducted (TH05-HY)
Power Meter	Agilent	E4416A	GB41292344	N/A	Jun. 26, 2024	Nov. 14, 2024~ Dec. 14, 2024	Jun. 25, 2025	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Jun. 25, 2024	Nov. 14, 2024~ Dec. 14, 2024	Jun. 24, 2025	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV3044	101466	10HZ~44GHZ	Jan. 24, 2024	Nov. 14, 2024~ Dec. 14, 2024	Jan. 23, 2025	Conducted (TH05-HY)
Switch Control Mainframe	Burgeon	ETF-058	EC1300484 (BOX3)	N/A	May 20, 2024	Nov. 14, 2024~ Dec. 14, 2024	May 19, 2025	Conducted (TH05-HY)
Software	Sporton	BTWIFI_Final_v ersion_240513	N/A	Conducted Other Test Item	N/A	Nov. 14, 2024~ Dec. 14, 2024	N/A	Conducted (TH05-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Dec. 12, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Dec. 12, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 23, 2024	Dec. 12, 2024	Oct. 22, 2025	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 14, 2024	Dec. 12, 2024	Mar. 13, 2025	Conduction (CO07-HY)
Two-Line V-Network Four-Line	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Dec. 12, 2024	Mar. 09, 2025	Conduction (CO07-HY)
V-Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Dec. 12, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 23, 2024	Dec. 12, 2024	Sep. 22, 2025	Conduction (CO07-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N-06	41912 & 05	30MHz~1GHz	Feb. 04, 2024	Dec. 02, 2024~ Dec. 05, 2024	Feb. 03, 2025	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Aug. 29, 2024	Dec. 02, 2024~ Dec. 05, 2024	Aug. 28, 2025	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 28, 2024	Dec. 02, 2024~ Dec. 05, 2024	Aug. 27, 2025	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1224	18GHz~40GHz	Jun. 24, 2024	Dec. 02, 2024~ Dec. 05, 2024	Jun. 23, 2025	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 08, 2023	Dec. 02, 2024~ Dec. 05, 2024	Dec. 07, 2024	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Mar. 25, 2024	Dec. 02, 2024~ Dec. 05, 2024	Mar. 24, 2025	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55007	1GHz~18GHz	Jun. 13, 2024	Dec. 02, 2024~ Dec. 05, 2024	Jun. 12, 2025	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz		Dec. 02, 2024~ Dec. 05, 2024	May 26, 2025	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 14, 2024	Dec. 02, 2024~ Dec. 05, 2024	Oct. 13, 2025	Radiation (03CH11-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY55420170	20MHz~8.4GHz	Jul. 19, 2024	Dec. 02, 2024~ Dec. 05, 2024	Jul. 18, 2025	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Dec. 02, 2024~ Dec. 05, 2024	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Dec. 02, 2024~ Dec. 05, 2024	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Dec. 02, 2024~ Dec. 05, 2024	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Dec. 02, 2024~ Dec. 05, 2024	N/A	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Dec. 08, 2023	Dec. 02, 2024~ Dec. 05, 2024	Dec. 07, 2024	Radiation (03CH11-HY)

Report No. : FR491831A

TEL: 886-3-327-0868 Page Number : 25 of 27 FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804013/2	30M~40G	May 23, 2024	Dec. 02, 2024~ Dec. 05, 2024	May 22, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 06, 2024	Dec. 02, 2024~ Dec. 05, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 06, 2024	Dec. 02, 2024~ Dec. 05, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 06, 2024	Dec. 02, 2024~ Dec. 05, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700- 3000-18000-60 SS	SN3	3GHz High Pass Filter	Sep. 10, 2024	Dec. 02, 2024~ Dec. 05, 2024	Sep. 09, 2025	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-153 0-8000-40SS	SN11	1.53GHz Low Pass Filter	Sep. 10, 2024	Dec. 02, 2024~ Dec. 05, 2024	Sep. 09, 2025	Radiation (03CH11-HY)
Attenuator	HONOVA	5910 SMA-50-005	0028	N/A	Sep. 10, 2024	Dec. 02, 2024~ Dec. 05, 2024	Sep. 09, 2025	Radiation (03CH11-HY)

Report No. : FR491831A

 TEL: 886-3-327-0868
 Page Number
 : 26 of 27

 FAX: 886-3-327-0855
 Issue Date
 : Feb. 11, 2025

5 Measurement Uncertainty

<u>Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)</u>

Measuring Uncertainty for a Level of Confidence	3.7 dB
of 95% (U = 2Uc(y))	3.7 ub

Report No.: FR491831A

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.4 dB
of 95% (U = 2Uc(y))	6.4 dB

<u>Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.1 dB
of 95% (U = 2Uc(y))	3.1 uB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0.40
of 95% (U = 2Uc(y))	5.3 dB

<u>Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.3 UB

TEL: 886-3-327-0868 Page Number : 27 of 27
FAX: 886-3-327-0855 Issue Date : Feb. 11, 2025

Report Number : FR491831A

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu	Temperature:	21~25	°C
Test Date:	2024/11/14~2024/12/14	Relative Humidity:	51~54	%

TEST RESULTS DATA 20dB and 99% Occupied Bandwidth and Hopping Channel Separation

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
DH	1Mbps	1	0	2402	0.875	0.825	0.994	0.5833	Pass
DH	1Mbps	1	39	2441	0.874	0.826	1.002	0.5827	Pass
DH	1Mbps	1	78	2480	0.873	0.824	0.998	0.5820	Pass
2DH	2Mbps	1	0	2402	1.253	1.169	0.994	0.8353	Pass
2DH	2Mbps	1	39	2441	1.251	1.168	1.011	0.8340	Pass
2DH	2Mbps	1	78	2480	1.250	1.170	0.998	0.8333	Pass
3DH	3Mbps	1	0	2402	1.237	1.156	0.998	0.8247	Pass
3DH	3Mbps	1	39	2441	1.243	1.154	0.989	0.8287	Pass
3DH	3Mbps	1	78	2480	1.243	1.155	0.994	0.8287	Pass

TEST RESULTS DATA

vell	

Mod.	Hopping Channel Number Rate	Hops Over Occupanc y Time (hops)	0	Dwell Time (sec)	Limits (sec)	Pass/Fail
DH5	79	106.670	2.89	0.31	0.4	Pass
DH5 (AFH)	20	53.330	2.89	0.15	0.4	Pass

TEST RESULTS DATA

Peak Power Table

DH	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result
	0	1	12.52	30.00	Pass
DH1	39	1	13.06	30.00	Pass
	78	1	11.94	30.00	Pass
	0	1	12.13	20.97	Pass
2DH1	39	1	12.67	20.97	Pass
	78	1	11.60	20.97	Pass
	0	1	12.29	20.97	Pass
3DH1	39	1	12.78	20.97	Pass
	78	1	11.69	20.97	Pass

TEST RESULTS DATA Average Power Table

(Reporting Only)

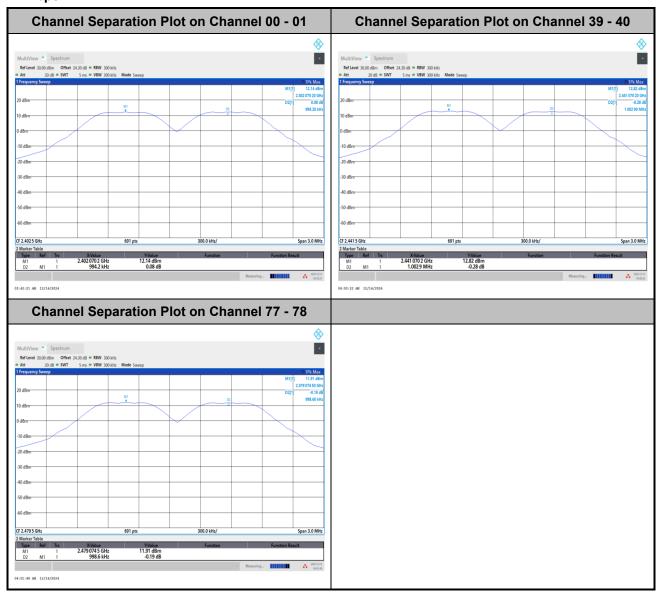
DH	CH.	NTX	Average Power (dBm)	Duty Factor (dB)
	0	1	12.31	5.13
DH1	39	1	12.83	5.13
	78	1	11.68	5.13
2DH1	0	1	10.05	5.08
	39	1	10.56	5.08
	78	1	9.55	5.08
	0	1	10.07	5.08
3DH1	39	1	10.56	5.08
	78	1	9.51	5.08

TEST RESULTS DATA

Number of Hopping Frequency

Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

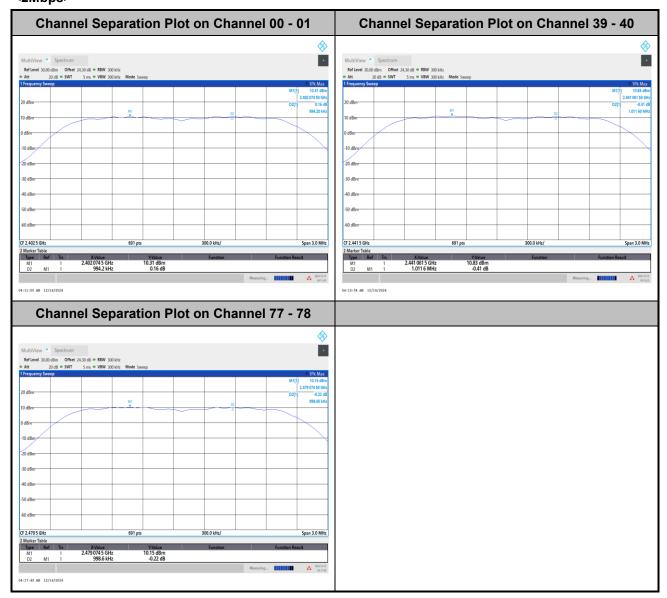
Number of Hopping Frequency



Report No.: FR491831A

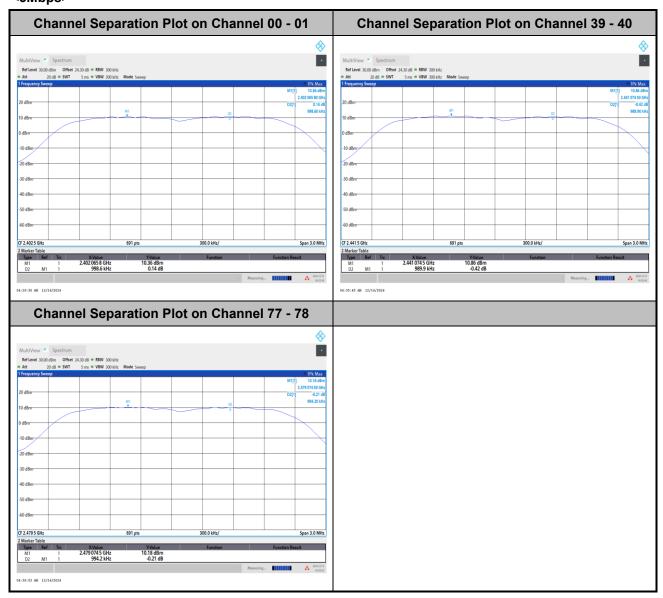
TEL: 886-3-327-0868 Page Number : A2-1 of 18

Hopping Channel Separation


<1Mbps>

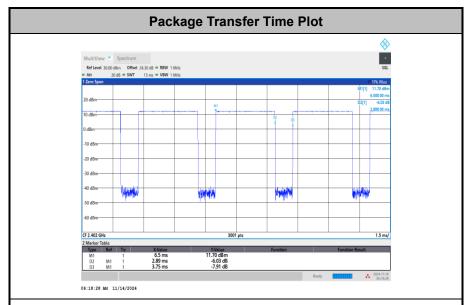
Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-2 of 18


<2Mbps>

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-3 of 18

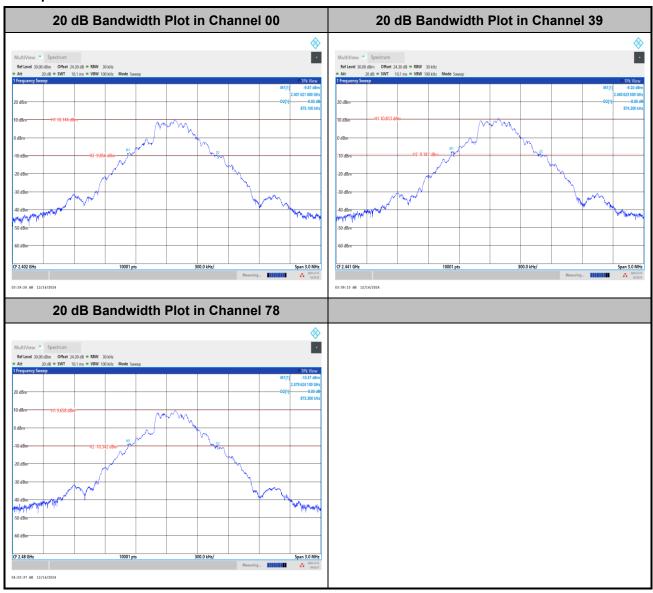

<3Mbps>

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-4 of 18

Dwell Time

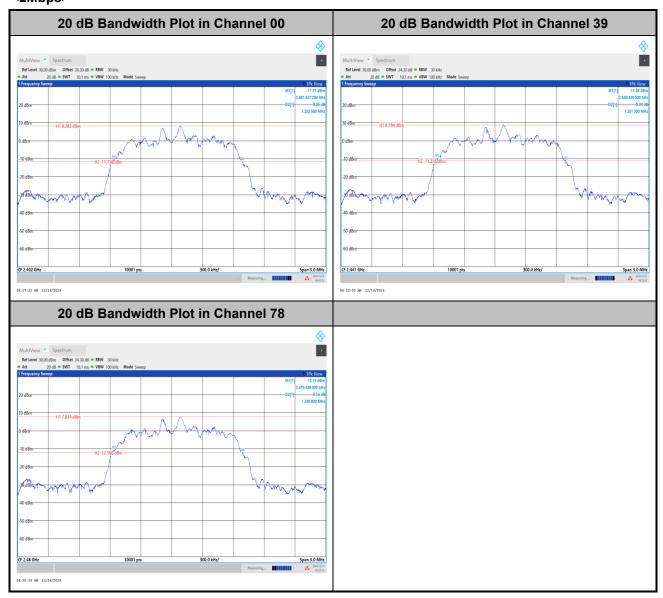
Report No.: FR491831A


Remark:

- 1 In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
- 2 In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3 Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

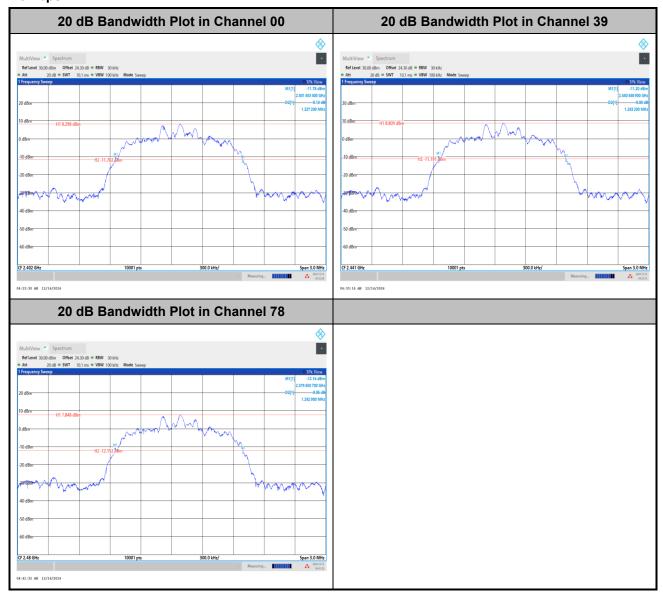
TEL: 886-3-327-0868 Page Number : A2-5 of 18

20dB Bandwidth


<1Mbps>

Report No.: FR491831A

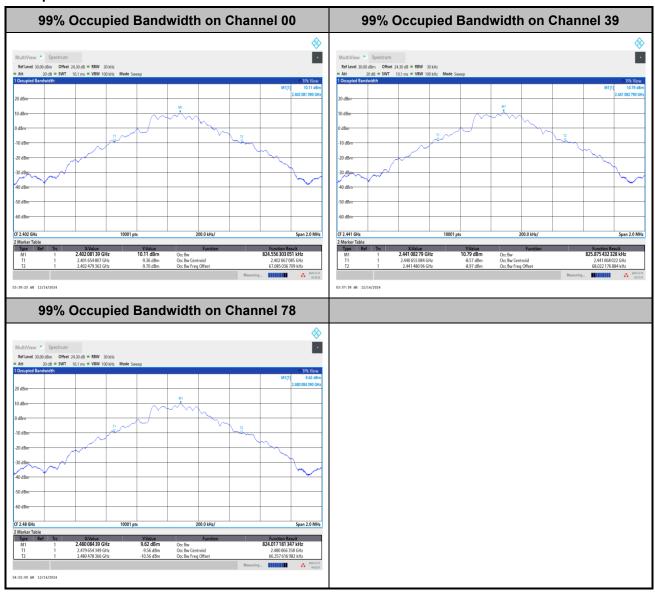
TEL: 886-3-327-0868 Page Number : A2-6 of 18


<2Mbps>

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-7 of 18

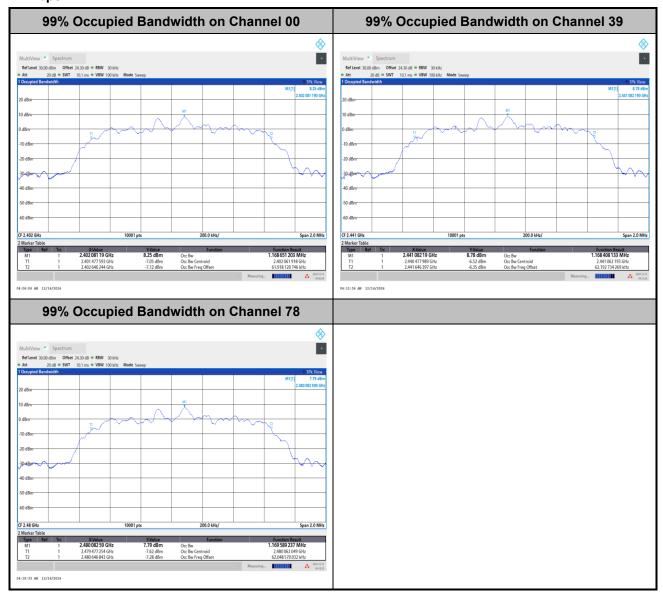
<3Mbps>



Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-8 of 18

99% Occupied Bandwidth


<1Mbps>

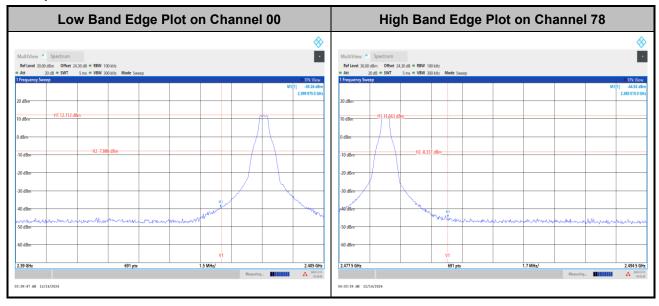
Report No.: FR491831A


TEL: 886-3-327-0868 Page Number : A2-9 of 18

<2Mbps>

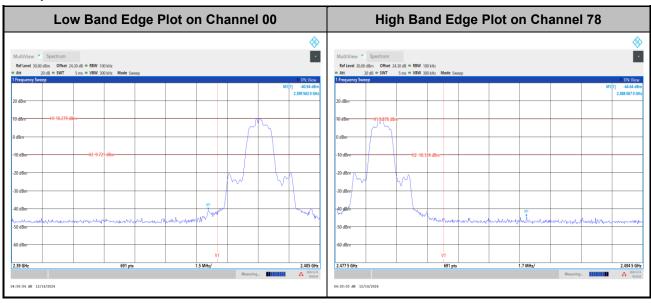
Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-10 of 18



Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-11 of 18


Band Edges

<1Mbps>

Report No.: FR491831A

<2Mbps>

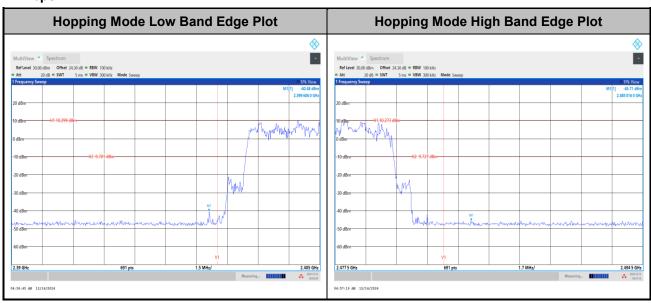
TEL: 886-3-327-0868 Page Number : A2-12 of 18

<3Mbps>

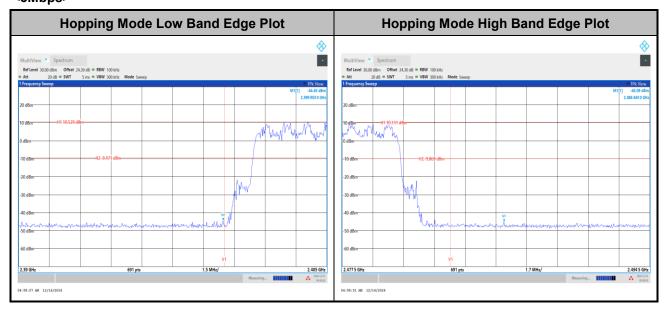


Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : A2-13 of 18


Hopping Mode Band Edges

<1Mbps>

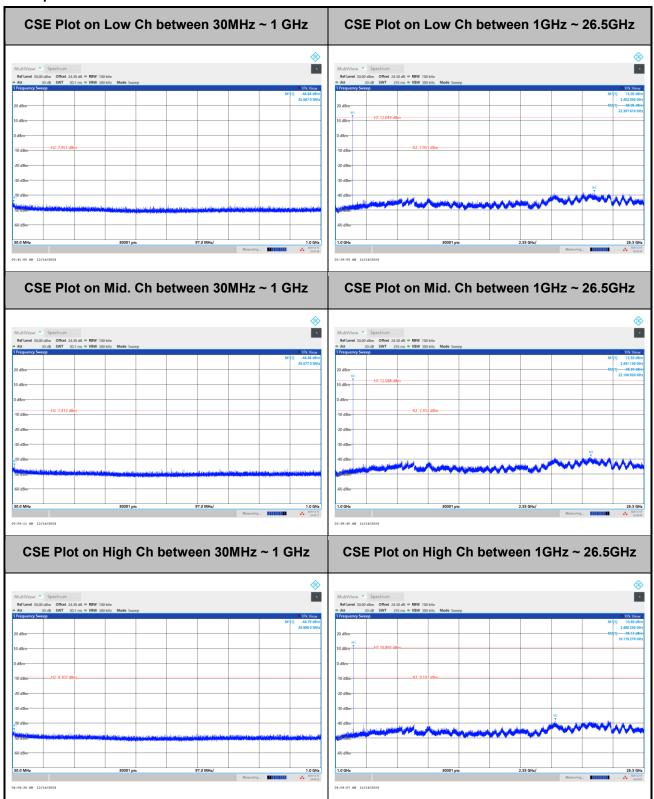

Report No.: FR491831A

<2Mbps>

TEL: 886-3-327-0868 Page Number : A2-14 of 18

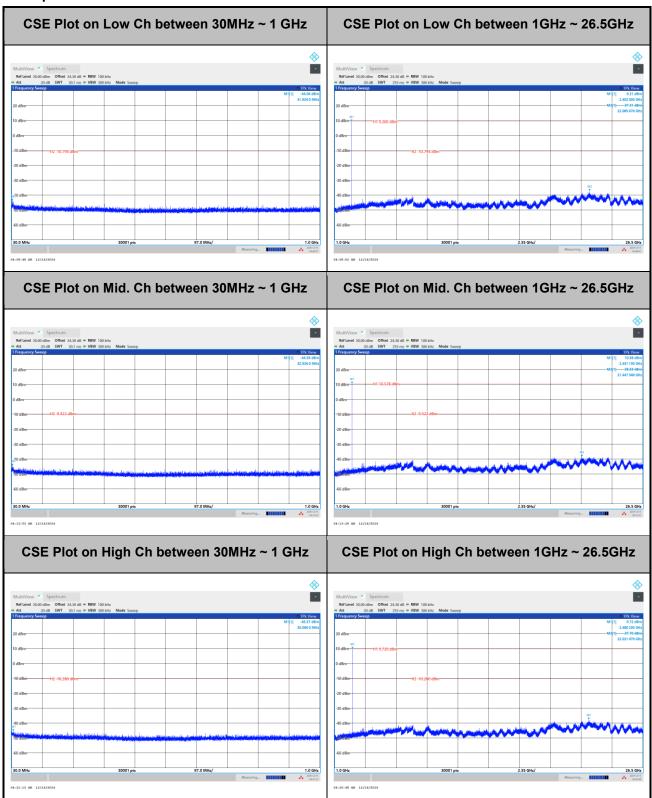
<3Mbps>

Report No.: FR491831A

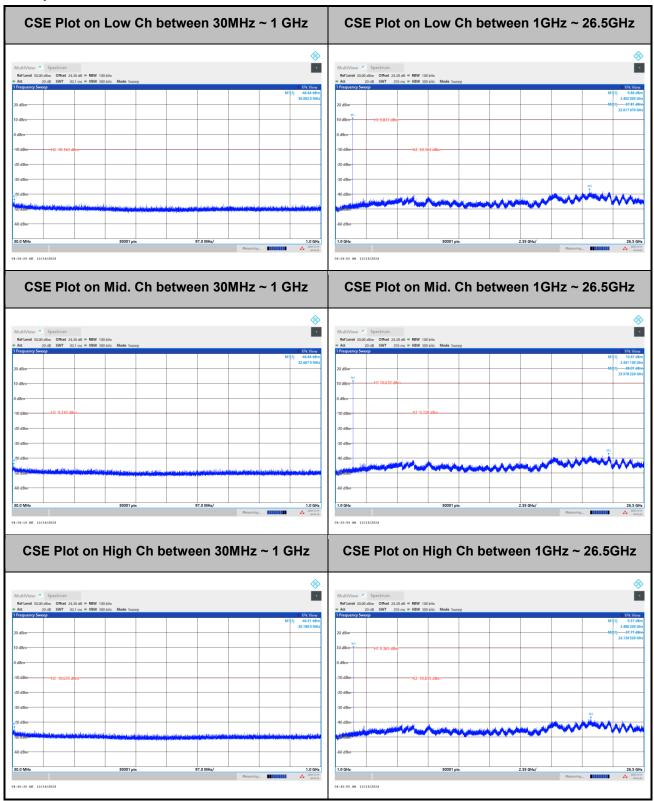

TEL: 886-3-327-0868 Page Number : A2-15 of 18

CC RADIO TEST REPORT Report No. : FR491831A

Conducted Spurious Emission


<1Mbps>

TEL: 886-3-327-0868 Page Number : A2-16 of 18


Report No.: FR491831A

<2Mbps>

TEL: 886-3-327-0868 Page Number : A2-17 of 18

<3Mbps>

Report No.: FR491831A

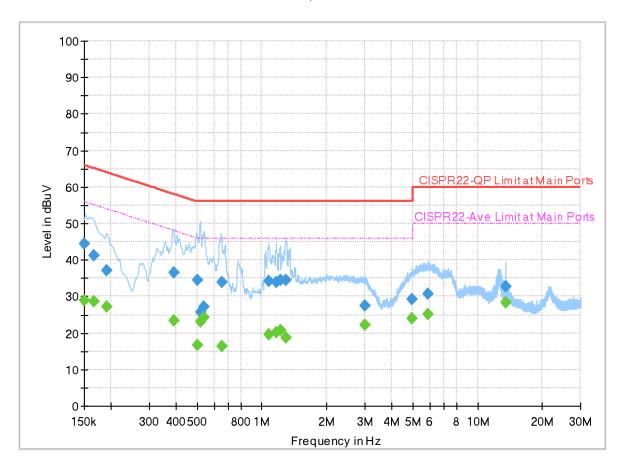
TEL: 886-3-327-0868 Page Number : A2-18 of 18

Appendix B. AC Conducted Emission Test Results

Test Engineer : Louis Chung	Temperature :	20.2~22.6°C
	Louis Chung	Relative Humidity:

Report No. : FR491831A

TEL: 886-3-327-0868 Page Number : B1 of B5


Report No.: FR491831A

EUT Information

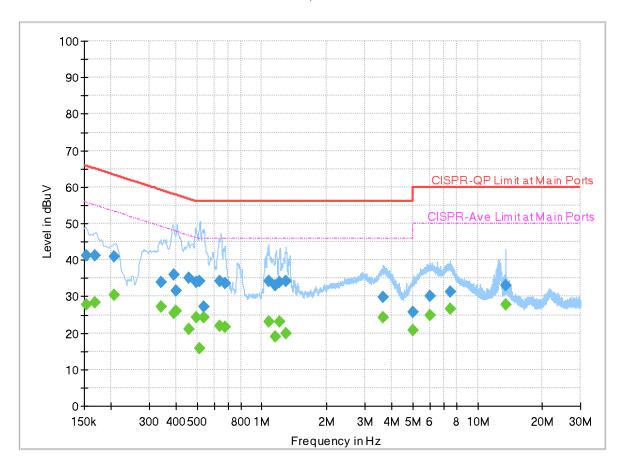
Report NO: 491831
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz

Phase: Line

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	PE	Corr. (dB)
0.150000		28.82	56.00	27.18	L1	FLO	19.9
0.150000	44.45		66.00	21.55	L1	FLO	19.9
0.165750		28.67	55.17	26.50	L1	FLO	19.9
0.165750	41.19		65.17	23.98	L1	FLO	19.9
0.189600		27.32	54.05	26.73	L1	FLO	19.9
0.189600	37.24		64.05	26.81	L1	FLO	19.9
0.389850		23.44	48.07	24.63	L1	FLO	19.9
0.389850	36.46		58.07	21.61	L1	FLO	19.9
0.501000		16.64	46.00	29.36	L1	FLO	19.9
0.501000	34.41		56.00	21.59	L1	FLO	19.9
0.521250		23.19	46.00	22.81	L1	FLO	19.9
0.521250	25.79		56.00	30.21	L1	FLO	19.9
0.536910		24.23	46.00	21.77	L1	FLO	19.9
0.536910	27.13		56.00	28.87	L1	FLO	19.9
0.651300		16.33	46.00	29.67	L1	FLO	19.9
0.651300	34.05	-	56.00	21.95	L1	FLO	19.9
1.080150		19.73	46.00	26.27	L1	FLO	19.9
1.080150	34.29		56.00	21.71	L1	FLO	19.9
1.169250		20.24	46.00	25.76	L1	FLO	19.9


1.169250	34.03		56.00	21.97	L1	FLO	19.9
1.215870		20.86	46.00	25.14	L1	FLO	19.9
1.215870	34.40		56.00	21.60	L1	FLO	19.9
1.297500		18.59	46.00	27.41	L1	FLO	19.9
1.297500	34.41		56.00	21.59	L1	FLO	19.9
3.000570		22.10	46.00	23.90	L1	FLO	20.0
3.000570	27.62		56.00	28.38	L1	FLO	20.0
4.949970		23.99	46.00	22.01	L1	FLO	20.0
4.949970	29.20		56.00	26.80	L1	FLO	20.0
5.909550		25.18	50.00	24.82	L1	FLO	20.0
5.909550	30.62		60.00	29.38	L1	FLO	20.0
13.559460		28.44	50.00	21.56	L1	FLO	20.1
13.559460	32.88		60.00	27.12	L1	FLO	20.1

Report No.: FR491831A

EUT Information

Report NO: 491831
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	PE	Corr. (dB)
0.152633	41.14		65.86	24.72	N	FLO	20.0
0.152633	-	27.91	55.86	27.95	N	FLO	20.0
0.168450	41.27		65.04	23.77	N	FLO	19.9
0.168450	-	28.23	55.04	26.81	N	FLO	19.9
0.206970	40.82		63.33	22.51	N	FLO	19.9
0.206970		30.47	53.33	22.86	N	FLO	19.9
0.342510	33.81		59.14	25.33	N	FLO	19.9
0.342510	-	27.13	49.14	22.01	N	FLO	19.9
0.390750	36.06		58.05	21.99	N	FLO	19.9
0.390750	-	25.58	48.05	22.47	N	FLO	19.9
0.401910	31.70		57.81	26.11	N	FLO	19.9
0.401910		25.89	47.81	21.92	N	FLO	19.9
0.458160	34.97		56.73	21.76	N	FLO	19.9
0.458160	-	21.02	46.73	25.71	N	FLO	19.9
0.495690	34.02	-	56.07	22.05	N	FLO	19.9
0.495690		24.29	46.07	21.78	N	FLO	19.9
0.513690	34.19		56.00	21.81	N	FLO	19.9
0.513690		15.71	46.00	30.29	N	FLO	19.9
0.535830	27.09		56.00	28.91	N	FLO	19.9

0.535830		24.32	46.00	21.68	N	FLO	19.9
0.640770	34.13		56.00	21.87	N	FLO	19.9
0.640770	-	21.92	46.00	24.08	N	FLO	19.9
0.674970	33.59		56.00	22.41	N	FLO	19.9
0.674970		21.59	46.00	24.41	N	FLO	19.9
1.076820	34.11		56.00	21.89	N	FLO	20.0
1.076820	-	23.11	46.00	22.89	N	FLO	20.0
1.155750	33.07		56.00	22.93	N	FLO	20.0
1.155750		19.01	46.00	26.99	N	FLO	20.0
1.210920	34.05		56.00	21.95	N	FLO	20.0
1.210920		22.96	46.00	23.04	N	FLO	20.0
1.294260	34.17		56.00	21.83	N	FLO	20.0
1.294260		19.77	46.00	26.23	N	FLO	20.0
3.664500	29.76		56.00	26.24	N	FLO	20.0
3.664500		24.34	46.00	21.66	N	FLO	20.0
4.991010	25.61		56.00	30.39	N	FLO	20.0
4.991010		20.86	46.00	25.14	N	FLO	20.0
6.034380	30.23		60.00	29.77	N	FLO	20.0
6.034380		24.79	50.00	25.21	N	FLO	20.0
7.501560	31.36		60.00	28.64	N	FLO	20.1
7.501560		26.58	50.00	23.42	N	FLO	20.1
13.560540	32.99		60.00	27.01	N	FLO	20.1
13.560540	-	27.84	50.00	22.16	N	FLO	20.1

Appendix C. Radiated Spurious Emission Test Data

Test Engineer :	Daniel Lee, Fu Chen and Troye Hsieh	Temperature :	19.2~20.6°C
		Relative Humidity :	51.8~65.6%

Report No.: FR491831A

Note symbol

-L	Low channel location
-R	High channel location

C1. Radiated Spurious Emission Test Modes

Mode	Band (MHz)	Antenna	Modulation	Channel Frequency		Data Rate	RU	Remark			
Mode 1	2400-2483.5	SISO	Bluetooth BR_GSFK	00	2402	1Mbps	-	-			
Mode 2	2400-2483.5	SISO	Bluetooth BR_GSFK	39	2441	1Mbps	-	-			
Mode 3	2400-2483.5	SISO	Bluetooth BR_GSFK	78	2480	1Mbps	-	-			
Mode 19	2400-2483.5	SISO	Bluetooth BR_GSFK	78	2480	1Mbps	-	SHF			
Mode 20	2400-2483.5	SISO	Bluetooth BR_GSFK	78	2480	1Mbps	-	LF			

C2. Summary of each worse mode

Mode	Modulation	Ch.	Freq.	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Pol.	Peak Avg.	Result	RU	Remark
1	Bluetooth BR_GSFK	00	2387.65	45.09	74.00	-28.91	Н	Peak	Pass	-	Band Edge
'	Bluetooth BR_GSFK	00	4804.00	48.55	74.00	-25.45	Н	Peak	Pass	-	Harmonic
	Bluetooth BR_GSFK	39	2483.54	44.86	74.00	-29.14	V	Peak	Pass	-	Band Edge
2	Bluetooth BR_GSFK	39	4882.00	52.46	74.00	-21.54	Н	Peak	Pass	-	Harmonic
3	Bluetooth BR_GSFK	78	2483.54	59.80	74.00	-14.20	٧	Peak	Pass	-	Band Edge
3	Bluetooth BR_GSFK	78	4960.00	54.44	74.00	-19.56	Н	Peak	Pass	-	Harmonic
19	SHF	78	25689.00	41.62	74.00	-32.38	٧	Peak	Pass	-	SHF
20	LF	78	60.07	33.06	40.00	-6.94	V	Peak	Pass	-	LF

TEL: 886-3-327-0868 Page Number : C1 of C17

1 **Band Edge** Mode 2400-2483.5_Bluetooth BR_GSFK_CH00_2402MHz **ANT** SISO Pol. Horizontal **Fundamental** 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 **Peak** 17.5 17.5 2310 1000 2328.4 2346.8 2 Frequency (MHz) 2365.2 2383.6 2402 1400. 1800. 2200. 2600. 3000 Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK_74 3m 9120D_01620_240828 HORIZONTAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Condition: PEAK BE 74 3m 9120D 01620 240828 HORIZONTAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos
Freq Level Line Margin Level Factor Loss Factor Factor Remark Remark -- 140 360 AVERAGE -- 140 360 AVERAGE

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number: C2 of C17

1 Mode **Band Edge** 2400-2483.5_Bluetooth BR_GSFK_CH00_2402MHz **ANT** SISO Pol. Vertical **Fundamental** 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 Peak 17.5 17.5 1000 2310 2328.4 2346.8 2365.2 Frequency (MHz) 2383.6 2402 1400. 1800. 2200. Frequency (MHz) 2600. 3000 Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK BE 74 3m 9120D 01620 240828 VERTICAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Condition: PEAK 74 3m 9120D 01620 240828 VERTICAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Remark | MHz dBuV/m dBuV/m dB dBuV dB/m dB dBu dB dB dB cm deg | 1 2389.86 44.25 74.80 -29.75 43.51 27.30 6.78 33.34 0.00 303 95 PEAK | 2 2389.86 19.49 54.00 -34.51 -- - - 303 95 AVERAGE

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number: C3 of C17

1 Mode Harmonic 2400-2483.5_Bluetooth BR_GSFK_CH00_2402MHz **ANT** SISO Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 52.5 52.5 **Peak** 17.5 Avg 3000 3000 15000. 6000. 15000. 18000 6000. 18000 Frequency (MHz) Frequency (MHz) : 03CH11-HY Site : 03CH11-HY Condition: PEAK_74 3m 9120D_01620_240828 VERTICAL Condition: PEAK_74 3m 9120D_01620_240828 HORIZONTAL Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor -- AVERAGE -- AVERAGE

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C4 of C17

Mode Harmonic 2400-2483.5_Bluetooth BR_GSFK_CH00_2402MHz SISO **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140_Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 14.47G AVG_54 AVG_54 ~14.5G 52.5 52.5 Avg 35.0 17.5 17.5 14470 14470 14476. 14494. 14500 14476. 14494. 14500 Frequency (MHz) Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: AVG_54 3m 9120D_01620_240828 HORIZONTAL Condition: AVG 54 3m 9120D 01620 240828 VERTICAL 140_Level (dBuV/m) 140 Level (dBuVim) 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 17.7G ~18G 52.5 52.5 Avg 35.0 35.0 17.5 17.5 17700 17700 17760. 17940. 17760. 17940. 18000 18000 Frequency (MHz) Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: AVG_54 3m 9120D_01620_240828 HORIZONTAL Condition: AVG_54 3m 9120D_01620_240828 VERTICAL

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number: C5 of C17

2 Mode Band Edge - L 2400-2483.5_Bluetooth BR_GSFK_CH39_2441MHz **ANT** SISO Pol. Horizontal **Fundamental** 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 Peak 17.5 17.5 1000 2310 2336.2 2362.4 2388.6 Frequency (MHz) 2414.8 2441 1400. 1800. 2200. Frequency (MHz) 2600. 3000 Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK_BE 74 3m 9120D 01620 240828 HORIZONTAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Condition: PEAK 74 3m 9120D 01620 240828 HORIZONTAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Remark | MHz | dBuV/m | dBuV/m | dB | dBuV | dB/m | dB | dB | dB | cm | deg | 1 | 2349.82 | 43.64 | 74.80 | -30.36 | 43.65 | 27.20 | 6.75 | 33.36 | 0.60 | 157 | 360 PEAK | 2 | 2349.82 | 18.88 | 54.80 | -35.12 | -- - - - - - - - - - 157 | 360 AVERAGE

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C6 of C17

2 Mode Band Edge - R 2400-2483.5_Bluetooth BR_GSFK_CH39_2441MHz SISO **ANT** Pol. Horizontal **Fundamental** 140 Level (dBuV/m) 122.5 105.0 87.5 PEAK_BE_74 70.0 52.5 35.0 Peak Blank 17.5 2441 2452.8 2464.6 2476.4 Frequency (MHz) 2488.2 2500 Site : 03CH11-HY
Condition: PEAK_BE_74 3m 9120D_01620_240828 HORIZONTAL
: RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number: C7 of C17

2 Mode Band Edge - L 2400-2483.5_Bluetooth BR_GSFK_CH39_2441MHz **ANT** SISO Pol. Vertical **Fundamental** 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 Peak 17.5 17.5 1000 2310 2336.2 2362.4 2388.6 Frequency (MHz) 2414.8 2441 1400. 1800. 2200. Frequency (MHz) 2600. 3000 Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK BE 74 3m 9120D 01620 240828 VERTICAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Condition: PEAK 74 3m 9120D 01620 240828 VERTICAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Remark | MHz | dBuV/m | dBuV/m | dB | dBuV | dB/m | dB | dB | dB | cm | deg | 1 | 2347.86 | 43.74 | 74.80 | -30.26 | 43.17 | 27.18 | 6.75 | 33.36 | 0.00 | 292 | 90 | PEAK | 2 | 2347.86 | 18.98 | 54.00 | -35.02 | -- - - - - - 292 | 90 | AVERAGE

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number: C8 of C17

2 Mode Band Edge - R 2400-2483.5_Bluetooth BR_GSFK_CH39_2441MHz SISO **ANT** Pol. Vertical **Fundamental** 140 Level (dBuV/m) 122.5 105.0 87.5 PEAK_BE_74 70.0 52.5 35.0 Peak Blank 17.5 2441 2452.8 2464.6 2476.4 Frequency (MHz) 2488.2 2500 Site : 03CH11-HY Condition: PEAK_BE_74 3m 91200_01620_240828 VERTICAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark | MHz dBuV/m dBuV/m dB dBuV dB/m dB dBu dB dB dB cm deg | 1 2483.54 44.86 74.80 -29.14 43.39 27.84 6.91 33.28 0.00 292 90 PEAK | 2 2483.54 20.10 54.80 -33.90 --- -- -- -- 292 90 AVERAGE

Report No.: FR491831A

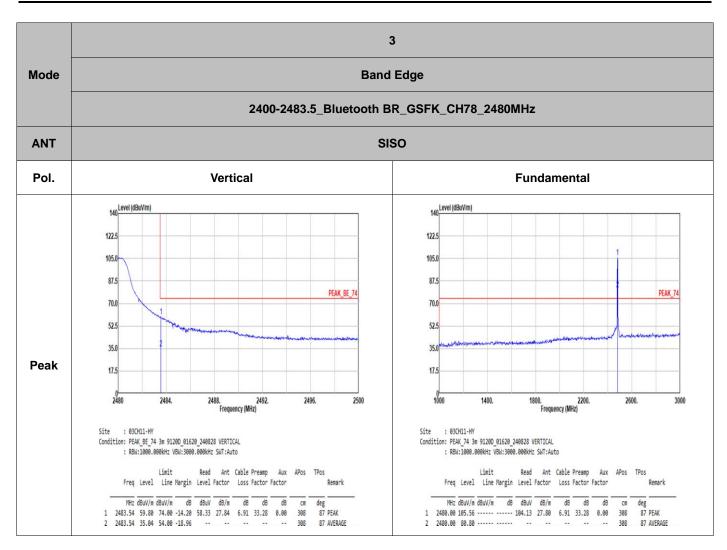
TEL: 886-3-327-0868 Page Number: C9 of C17

2 Mode Harmonic 2400-2483.5_Bluetooth BR_GSFK_CH39_2441MHz **ANT** SISO Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 **Peak** 17.5 17.5 Avg 3000 3000 6000. 9000. 12000. Frequency (MHz) 15000. 18000 6000. 9000. 12000. Frequency (MHz) 15000. 18000 Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK_74 3m 9120D_01620_240828 HORIZONTAL Condition: PEAK_74 3m 9120D_01620_240828 VERTICAL Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor | NHz dBuV/m dBuV/m dB dB dB dB dB cm deg | 1 4882.00 47.88 74.00 -26.12 61.74 32.73 11.46 58.59 0.54 300 273 Peak | 2 4882.00 23.11 54.00 -30.39 --- -- -- -- -- -- -- -- -- Avera | 3 7323.00 43.65 74.00 -30.35 50.99 36.75 14.58 58.98 0.31 -- -- Peak -- Average -- Peak -- Average -- Peak

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C10 of C17

2 Mode Harmonic 2400-2483.5_Bluetooth BR_GSFK_CH39_2441MHz SISO **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140_Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 14.47G AVG_54 AVG_54 ~14.5G 52.5 52.5 Avg 35.0 17.5 17.5 14470 14470 14476. 14494. 14500 14476. 14494. 14500 Frequency (MHz) Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: AVG_54 3m 91200_01620_240828 HORIZONTAL Condition: AVG 54 3m 9120D 01620 240828 VERTICAL 140_Level (dBuV/m) 140 Level (dBuVim) 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 17.7G ~18G 52.5 52.5 Avg 35.0 35.0 17.5 17.5 17700 17700 17760. 17940. 17760. 17940. 18000 18000 Frequency (MHz) Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: AVG_54 3m 9120D_01620_240828 HORIZONTAL Condition: AVG 54 3m 9120D 01620 240828 VERTICAL


Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C11 of C17

3 Mode **Band Edge** 2400-2483.5_Bluetooth BR_GSFK_CH78_2480MHz **ANT** SISO Pol. Horizontal **Fundamental** 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_BE_74 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 Peak 17.5 17.5 1000 2480 2484. 2488. 2492. Frequency (MHz) 2496. 2500 1400. 1800. 2200. Frequency (MHz) 2600. 3000 Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK_BE_74 3m 9120D 01620 240828 HORIZONTAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Condition: PEAK 74 3m 9120D 01620 240828 HORIZONTAL : RBW:1000.000kHz VBW:3000.000kHz SWT:Auto Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Remark | MHz dBuV/m dBuV/m dB dBuV dB/m dB dBuV dB/m dB dB dB cm deg | 1 2483.56 59.22 74.80 -14.78 57.75 27.84 6.91 33.28 0.00 111 360 PEAK | 2 2483.56 34.46 54.00 -19.54 --- -- -- -- -- 111 360 AVERAGE

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C12 of C17

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C13 of C17

3 Mode Harmonic 2400-2483.5_Bluetooth BR_GSFK_CH78_2480MHz **ANT** SISO Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 PEAK_74 PEAK_74 70.0 70.0 52.5 52.5 35.0 35.0 Peak 17.5 17.5 Avg 3000 3000 6000. 9000. 12000. Frequency (MHz) 15000. 18000 6000. 9000. 12000. Frequency (MHz) 15000. 18000 Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK_74 3m 9120D_01620_240828 HORIZONTAL Condition: PEAK_74 3m 9120D_01620_240828 VERTICAL Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Limit Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB cm deg 1 4960.00 54.44 74.00 -19.56 67.90 33.02 11.59 58.64 0.57 100 313 Peak 2 4960.00 29.68 54.00 -24.32 -- -- -- -- -- -- -- -- -- -- 3 7440.00 43.54 74.00 -30.46 51.16 36.24 14.72 58.90 0.32 ---- Average -- Peak -- Average -- Peak

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C14 of C17

3 Mode Harmonic 2400-2483.5_Bluetooth BR_GSFK_CH78_2480MHz SISO **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140_Level (dBuV/m) 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 14.47G AVG_54 AVG_54 ~14.5G 52.5 52.5 Avg 35.0 17.5 17.5 14470 14470 14476. 14494. 14500 14476. 14494. 14500 Frequency (MHz) Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: AVG_54 3m 9120D_01620_240828 HORIZONTAL Condition: AVG_54 3m 9120D_01620_240828 VERTICAL 140_Level (dBuV/m) 140 Level (dBuVim) 122.5 122.5 105.0 105.0 87.5 87.5 70.0 70.0 17.7G ~18G 52.5 52.5 Avg 35.0 35.0 17.5 17.5 17700 17700 17760. 17940. 17760. 17940. 18000 18000 Frequency (MHz) Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: AVG_54 3m 9120D_01620_240828 HORIZONTAL Condition: AVG 54 3m 9120D 01620 240828 VERTICAL

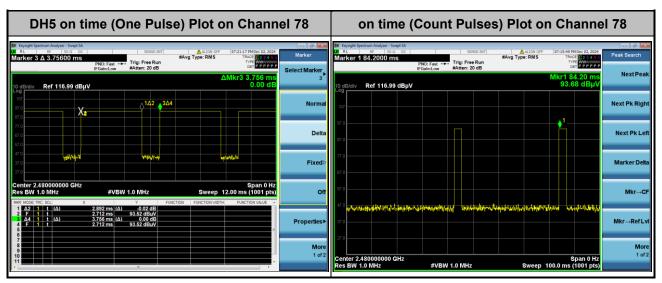
Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C15 of C17

19 Mode SHF 2400-2483.5_Bluetooth BR_GSFK_CH78_2480MHz SISO **ANT** Pol. Horizontal Vertical 140 Level (dBuV/m) 140 Level (dBuV/m) 122.5 122.5 105.0 105.0 PEAK_74 PEAK_74 70.0 70.0 52.5 52.5 35.0 Peak 17.5 17.5 18000 18000 19600. 26000 26000 21200. 22800. 19600. 21200. 22800. Frequency (MHz) Frequency (MHz) Site : 03CH11-HY Site : 03CH11-HY Condition: PEAK_74 1m SHF_1224_240624 HORIZONTAL Condition: PEAK_74 1m SHF_1224_240624 VERTICAL Limit Limit Read Ant Cable Preamp Aux APos TPos Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Remark Freq Level Line Margin Level Factor Loss Factor Factor | MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB dB cm deg | 1 25436.00 41.43 74.00 -32.57 36.27 39.40 28.41 53.11 -9.54 100 333 Peak MHz dBuV/m dBuV/m dB dBuV dB/m dB dB dB dB cm deg
1 25689.00 41.62 74.00 -32.38 36.62 39.24 28.40 53.10 -9.54 100 167 Peak

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C16 of C17


902.03 30.52 46.00 -15.48 29.30 28.39 4.07 31.48 0.24

20 Mode LF 2400-2483.5_Bluetooth BR_GSFK_CH78_2480MHz **ANT** SISO Pol. Horizontal Vertical 80 Level (dBuV/m) 80 Level (dBuV/m) 60.0 60.0 50.0 50.0 40.0 40.0 30.0 30.0 20.0 20.0 QP/ 10.0 **Peak** 224. 418. 612. Frequency (MHz) 806. 224. Frequency (MHz) 806. Site : 03CH11-HY Condition: QP 3m Bilog_41912&05_240204 VERTICAL Site : 03CH11-HY Condition: QP 3m Bilog_41912&05_240204 HORIZONTAL Ant Cable Preamp Aux APos TPos Read Ant Cable Preamp Aux APos TPos Freq Level Line Margin Level Factor Loss Factor Factor Freq Level Line Margin Level Factor Loss Factor Factor Remark Remark | MHz | dBuV/m | dBuV/m | dB | dB | dB | dB | dB | 60,07 | 33,06 | 40,00 | -6.94 | 52,46 | 11.96 | 0.68 | 32,11 | 0.07 | 97.90 | 29.66 | 43.50 | -13.84 | 45.32 | 15.60 | 1.08 | 32.38 | 0.04 | 216.24 | 17.60 | 46.00 | -22.40 | 33.08 | 14.92 | 1.76 | 32.30 | 0.14 | 503.36 | 23.71 | 46.00 | -22.29 | 29.55 | 23.66 | 2.87 | 32.49 | 0.12 | 732.28 | 28.47 | 46.00 | -12.30 | 32.48 | 28.39 | 4.07 | 31.48 | 0.24 deg -- Peak -- Peak deg -- Peak -- Peak cm ----- Peak -- Peak

Report No.: FR491831A

TEL: 886-3-327-0868 Page Number : C17 of C17

Appendix D. Duty Cycle Plots

Report No.: FR491831A

Note:

- 1. Worst case Duty cycle = on time/100 milliseconds = 2 * 2.89 / 100 = 5.78 %
- 2. Worst case Duty cycle correction factor = 20*log(Duty cycle) = -24.76 dB
- 3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the on time period to have DH5 packet completing one hopping sequence is

$$2.89 \text{ ms x } 20 \text{ channels} = 57.8 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.8 ms] = 2 hops Thus, the maximum possible ON time:

$$2.89 \text{ ms } x 2 = 5.78 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times log(5.78 \text{ ms}/100 \text{ ms}) = -24.76 \text{ dB}$$

TEL: 886-3-327-0868 Page Number : D1 of D1