

Phone: +1 (949) 393-1123

Web: <u>www.vista-compliance.com</u> Email: <u>info@vista-compliance.com</u>

RF Test Report

Test Report Number | SRF-23082361-LC-FCC-RF

FCC ID | CO6-A30C105

Applicant | SpotterRF, LLC

Applicant Address 720 Timpanogos Parkway, Orem, UT 84097, USA

Product Name | Ground Surveillance Radar

Model Name | A3000

Family Model (s) | GX1500, WX2000, C1200

Date of Receipt | 09/20/23

Date of Test 10/26/2023 – 11/01/2023

Report Issue Date 12/04/2023 Test Standards 47 CFR Part 90

Test Result | PASS

Issued by:

Vista Compliance Laboratories

1261 Puerta Del Sol, San Clemente, CA 92673 USA <u>www.vista-compliance.com</u>

Devin Tai (Test Engineer)

David Zhang (Technical Manager)

Daide

This report is for the exclusive use of the applicant. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. Note that the results contained in this report pertain only to the test samples identified herein, and the results relate only to the items tested and the results that were obtained in the period between the date of initial receipt of samples and the date of issue of the report. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested and the results thereof based upon the information provided to us. The applicant has 60 days from date of issuance of this report to notify us of any material error or omission. Failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by any government agencies. This report is not to be reproduced by any means except in full and in any case not without the written approval of Vista Laboratories.

REVISION HISTORY

Report Number	Version	Description	Issued Date
SRF-23082361-LC-FCC-RF	01	Initial report	12/04/2023

Report # SF

SRF-23082361-LC-FCC-RF

TABLE OF CONTENTS

1	TEST	SUMMARY	4
2	GEN	ERAL INFORMATION	5
		Applicant	
		Product information	
		Test standard and method	
3	МОГ	DIFICATION OF EUT / DEVIATIONS FROM STANDARDS	6
4	TEST	CONFIGURATION AND OPERATION	6
	4.1	EUT Test Configuration	6
		Supporting Equipment	
5	UNC	ERTAINTY OF MEASUREMENT	7
6	TEST	RESULTS	8
	6.1	Occupied Bandwidth	
	6.2	Radiated Spurious Emissions	10
7	EUT	AND TEST SETUP PHOTOS	14
ደ	TFST	INSTRUMENT LIST	15

1 Test Summary

FCC Rules	Test Item	Test standard	Result
§2.1049	Occupied Bandwidth	47CFR Part 2, Part 90	Pass
§2.1046, §90.103 (c) §90.205 (s)	Maximum RF Power Output	47CFR Part 2, Part 90	Pass*
§15.247(e)	Unwanted Emissions Measurement at Antenna Port	47CFR Part 2, Part 90	Pass*
§2.1053, §90.210	Radiated Emissions & Unwanted Emissions	47CFR Part 2, Part 90	Pass
§2.1055, §90.213 (b)	Frequency Stability	47CFR Part 2, Part 90	Pass*
§1.1310, §2.1091	RF Exposure	47CFR Part 1, Part 2	Pass*

Note: The digital board design change, The RF board has not received any changes, but the overall bandwidth has been decreased by 10 MHz per channel. Only Occupied bandwidth and radiated spurious emission re-evaluated in this report, for other test result, please refer to original test report in the FCC filing (FCC ID: CO6-A30C105).

2 General Information

2.1 Applicant

Applicant	SpotterRF, LLC	
Applicant address	720 Timpanogos Parkway, Orem, UT 84097, USA	
Manufacturer	SpotterRF, LLC	
Manufacturer Address	720 Timpanogos Parkway, Orem, UT 84097, USA	

2.2 Product information

Product Name Ground Surveillance Radar			
Product Name			
Model Number	A3000		
Family Models	GX1500, WX2000, C1200		
Serial Number	SP35233		
Frequency Band	10.00 GHz – 10.50 GHz		
Type of modulation	Continuous Wave		
Equipment Class	TNB - Licensed Non-Broadcast Station Transmitter		
Antenna Information	Patch antenna / 13 dBi Gain		
Clock Frequencies	N/A		
Input Power	24VDC		
Power Adapter	Phoenix Contract: UNO-PS/1AC/24DC/30W		
Manufacturer/Model	PoE Injector: L-COM / BT-CAT5-P1		
Power Adapter SN	2902991032113P0752		
Hardware version	N/A		
Software version	N/A		
Simultaneous	N/A		
Transmission			
	A3000 is retested after product design change. The main changes are,		
	1. Digital board changes		
	a. Added alternate 13V switching regulator.		
	b. Added alternate -5V switching regulator.c. Removed unused serial chip.		
	d. Added ESD protection component.		
	e. Added 3.3V switching regulator to replace obsolete ones.		
	f. Added 1.8V linear regulator to replace obsolete ones.		
Additional Info	g. Removed unused voltage monitoring chip.		
	2. RF board changes		
	a. The RF board has not received any hardware changes, but		
	the overall bandwidth has been decreased by 10 MHz per		
	channel.		
	Family models: GX1500, WX2000, C1200, physically same as A3000.		
	Bandwidth is 30MHz. Radio is the same as A3000. Different model number is		
	to reflect different application of the unit.		

Report #	SRF-23082361-LC-FCC-RF

2.3 Test standard and method

Test standard	47 CFR Part 15.249
Test method	KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI C63.26-2015 TIA-603-E

Lab performing tests	Vista Laboratories, Inc.	
Lab Address	1261 Puerta Del Sol, San Clemente, CA 92673 USA	
Phone Number +1 (949) 393-1123		
Website	www.vista-compliance.com	

Test Condition	Temperature	Humidity	Atmospheric Pressure
RF Testing	23.5°C	58.2%	996 mbar

3 Modification of EUT / Deviations from Standards

N/A

4 Test Configuration and Operation

4.1 EUT Test Configuration

The EUT is powered by an external PoE injector. It is connected to a test laptop through an RJ45 cable and controlled through web portal for RF configuration and measurement.

The following software was used for testing and to monitor EUT performance.

Software	Description
EMISoft Vasona	EMC/RF Spurious emission test software used during testing
Firefox	Use webpage to access EUT UI page to send command

4.2 Supporting Equipment

Description	Manufacturer	Model #	Serial #
Laptop	Dell	LATITUDE E6440	FFF4JC2
PoE Injector	L-COM	BT-CAT5-P1	N/A
AC/DC Power supply	Phoenix Contract	UNO- PS/1AC/24DC/30W	2902991032113P0752

5 Uncertainty of Measurement

Test item	Measurement Uncertainty (dB)
AC Conducted Emissions (150K-30MHz)	±3.5 dB
Radiated Emission (30MHz-1GHz)	±4.6 dB
Radiated Emission (1-18GHz)	±4.9 dB
Radiated Emission (18-40GHz)	±3.5 dB
Radiated Emission (above 40GHz)	±3.5 dB

6 Test Results

6.1 Occupied Bandwidth

6.1.1 Requirement

Per § 2.1049, the occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Per § 90.209 (a), each authorization issued to a station licensed under this part will show an emission designator representing the class of emission authorized. The designator will be prefixed by a specified necessary bandwidth. This number does not necessarily indicate the bandwidth occupied by the emission at any instant.

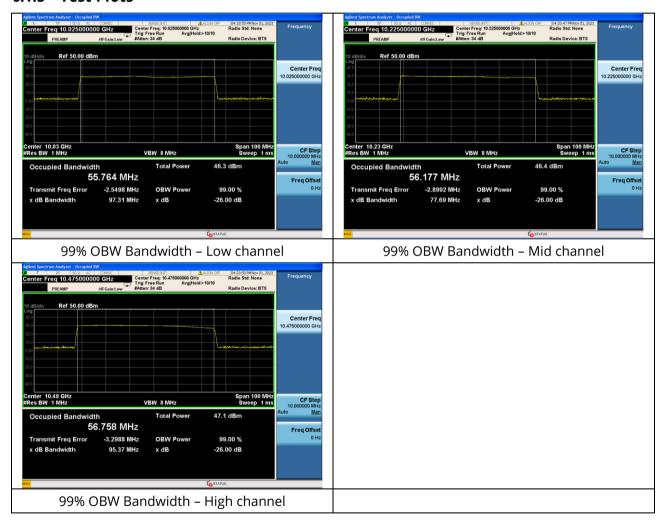
In those cases, where §2.202 of this chapter does not provide a formula for the computation of necessary bandwidth, the occupied bandwidth, as defined in part 2 of this chapter, may be used in lieu of the necessary bandwidth.

6.1.2 Test setup

6.1.3 Test Procedure

According to 971168 D01 Power Meas License Digital Systems v03r01 clause 9, ANSI C63.26-2015 clause 5.4.

- 1. The spectrum analyser center frequency is set to the normal EUT channel center frequency. The frequency span for the spectrum analyser shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 x OBW is sufficient)
- 2. the normal If filter 3 dB bandwidth shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set $\ge 3 \times RBW$.
- 3. Set the reference level of instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyser input mixer level for linear operation.
- 4. Set the detection mode to peak, and the trace to max-hold.
- 5. Use the spectrum analyser's measurement function to obtain 99% OBW result.

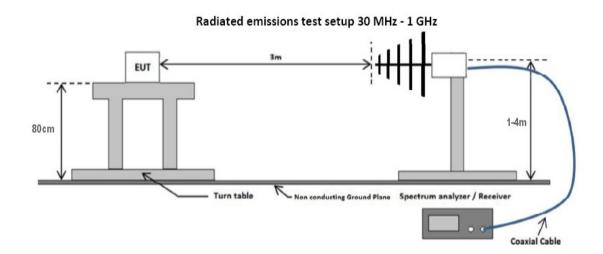


6.1.4 Test Result

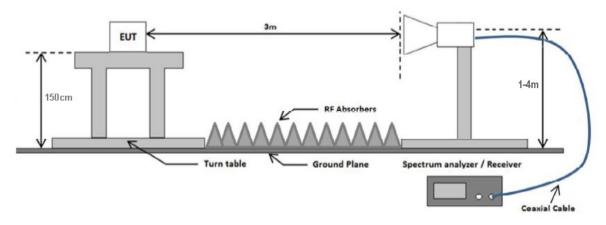
Radio Test Frequency (MHz)		Measured 99% Bandwidth (MHz)	Result
	10025	55.764	N/A
10 GHz Radar	10225	56.177	N/A
	10475	56.758	N/A

6.1.5 Test Plots

6.2 Radiated Spurious Emissions


6.2.1 Requirement

Per §2.1053 Field strength of spurious radiation is required.


Per §90.210 Equipment shall meet the emission mask requirement defined under (c)

- (c) Emission Mask C. For transmitters that are not equipped with an audio low-pass filter, the power of any emission must be attenuated below the unmodulated carrier output power (P) as follows:
- (1) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5 kHz, but not more than 10 kHz: At least 83 log (fd/5) dB;
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 10 kHz, but not more than 250 percent of the authorized bandwidth: At least 29 log (fd2/11) dB or 50 dB, whichever is the lesser attenuation;
- (3) On any frequency removed from the center of the authorized bandwidth by more than 250 percent of the authorized bandwidth: At least 43 + 10 log (P) dB.

6.2.2 Test setup

Radiated emissions test setup above 1 GHz

6.2.3 Test Procedure

According to 971168 D01 Power Meas License Digital Systems v03r01 clause 7, ANSI C63.26-2015 clause 5.5.

Boresight antenna mast was used during the scanning to point to EUT to maximize the emission. The process will be repeated in 3 EUT orientations.

Prescan Measurement

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. The test was carried out at the selected frequency points obtained from the EUT characterization. Maximization of the emissions, was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
 - a. Vertical or horizontal polarization (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 3. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 300 Hz for frequency below 150KHz.
- 4. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 10 kHz for frequency between 150KHz 30MHz.
- 5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-Peak detection at frequency between 30MHz 1GHz.
- 6. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz with Peak detection for Peak and average measurement at frequency above 1GHz.
- 7. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.

Report #

SRF-23082361-LC-FCC-RF

Final Measurement

- 1. Substitution method is used for final measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- 2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value "of step a.

Record the power level of S.G

- 3. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- 4. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power 2.15dBi.
- 5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

6.2.4 Test Result

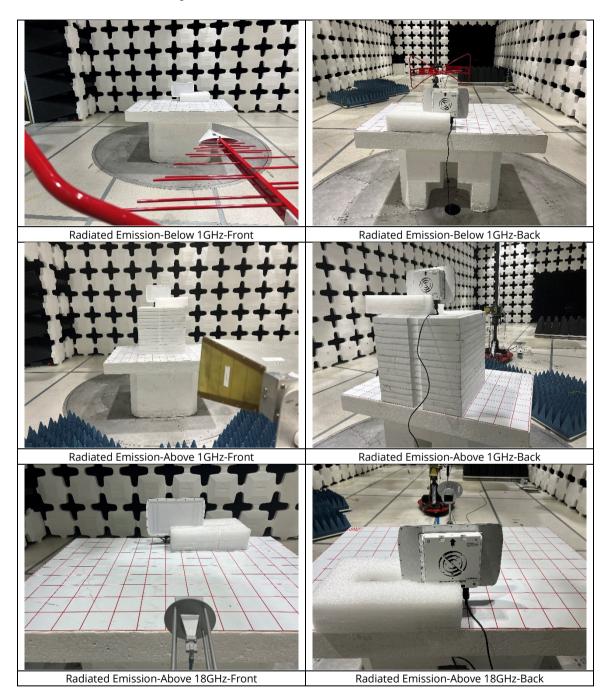
Test Standard:	47CFR Part 90	Mode:	Low CH – 10025MHz
Frequency Range:	30-60000MHz	Test Date:	10/26/2023 ~ 10/28/2023
Polarity:	larity: Hor & Ver		Devin Tai
Remark:	N/A	Test Result:	Pass

Freq. (MHz)	Raw (dBm)	Correction factor	Level (dBm)	Meas. Type	Pol	Hgt (cm)	Limit (dBm)	Margin (dB)	Result
800.199	-58.1	14.6	-43.5	Peak	Н	150	-13	-30.5	Pass
368.342	-51.5	6.9	-44.6	Peak	V	150	-13	-31.6	Pass
62.986	-48.7	-6.7	-55.4	Peak	V	150	-13	-42.4	Pass
975.267	-64.2	16.7	-47.5	Peak	Н	150	-13	-34.5	Pass
5138.221	-97.4	54.5	-42.9	Peak	Н	150	-13	-29.9	Pass
9775.645	-84.6	63	-21.6	Peak	V	150	-13	-8.6	Pass
34107.02	-41.9	17.1	-24.8	Peak	Н	150	-13	-11.8	Pass

Test Standard:	47CFR Part 90	Mode:	Mid CH – 10250MHz
Frequency Range:	30-60000MHz	Test Date:	10/26/2023 ~ 10/28/2023
Polarity:	Hor & Ver	Test Personnel:	Devin Tai
Remark:	N/A	Test Result:	Pass

Freq. (MHz)	Raw (dBm)	Correction factor	Level (dBm)	Meas. Type	Pol	Hgt (cm)	Limit (dBm)	Margin (dB)	Result
368.383	-52	6.9	-45.1	Peak	Н	150	-13	-32.1	Pass
124.555	-55.1	-3.5	-58.6	Peak	Н	150	-13	-45.6	Pass
206.117	-56.7	-0.8	-57.5	Peak	Н	150	-13	-44.5	Pass
5239.273	-97.1	54.9	-42.2	Peak	V	150	-13	-29.2	Pass
5239.273	-97.3	54.9	-42.4	Peak	Н	150	-13	-29.4	Pass
8702.864	-96.7	64.6	-32.1	Peak	V	150	-13	-19.1	Pass
32421.12	-34.43	14.7	-19.73	Peak	V	150	-13	-6.73	Pass

Test Standard:	47CFR Part 90	Mode:	High CH – 10475MHz
Frequency Range:	30-60000MHz	Test Date:	10/26/2023 ~ 10/28/2023
Polarity:	Hor & Ver	Test Personnel:	Devin Tai
Remark:	N/A	Test Result:	Pass


Freq. (MHz)	Raw (dBm)	Correction factor	Level (dBm)	Meas. Type	Pol	Hgt (cm)	Limit (dBm)	Margin (dB)	Result
450.087	-60.4	7.9	-52.5	Peak	>	150	-13	-39.5	Pass
800.169	-58.1	14.6	-43.5	Peak	Ι	150	-13	-30.5	Pass
374.363	-52.9	7.3	-45.6	Peak	V	150	-13	-32.6	Pass
5229.513	-86.4	54.8	-31.6	Peak	Н	150	-13	-18.6	Pass
8738.852	-97.2	64.9	-32.3	Peak	Н	150	-13	-19.3	Pass
23851.64	-38.55	13.2	-25.35	Peak	V	150	-13	-12.35	Pass
27724.8	-40.69	14.4	-26.29	Peak	V	150	-13	-13.29	Pass

Report #

SRF-23082361-LC-FCC-RF

7 EUT and Test Setup Photos

Report #

SRF-23082361-LC-FCC-RF

8 Test Instrument List

Equipment	Manufacturer	Model	Instrument Number	Cal. Date	Cal. Due
Semi-Anechoic Chamber	ETS-Lindgren	10M	VL001	10/18/2022	10/18/2024
Shielding Control Room	ETS-Lindgren	Series 81	VL006	N/A1)	N/A1)
Spectrum Analyzer	Keysight	N9020A	MY50110074	06/09/2023	06/09/2024
EMC Test Receiver	R&S	ESL6	100230	06/07/2023	06/07/2024
LISN (9KHz – 30MHz)	EMCO	3816/2	9705-1066	07/12/2023	07/12/2024
Bi-Log Antenna	ETS-Lindgren	3142E	217921	07/19/2023	07/19/2024
Horn Antenna (1-18GHz)	Electro-Metrics	EM-6961	6292	07/21/2023	07/21/2024
Horn Antenna (18-40GHz)	Com-Power	AH-840	101109	07/21/2023	07/21/2024
Preamplifier	RF Bay, Inc.	LPA-10-20	11180621	07/16/2023	07/16/2024
Temp / Humidity / Pressure Meter	PCE Instruments	PCE-THB 40	R062028	06/07/2023	06/07/2024
RF Attenuator	Pasternack	PE7005-3	VL061	07/16/2023	07/16/2024
Preamplifier 100KHz - 40GHz	Aeroflex	33711-392- 77150-11	064	07/16/2023	07/16/2024
EM Center Control	ETS-Lindgren	7006-001	160136	N/A	N/A
Turn Table	ETS-Lindgren	2181-3.03	VL002	N/A	N/A
Boresight Antenna Tower	ETS-Lindgren	2171B	VL003	N/A	N/A
Loop Antenna (9k-30MHz)	Com-Power	AL-130	121012	06/09/2023	06/09/2024
RE test cable(below 6GHz)	Vista	RE-6GHz-01	RE-6GHz-01	07/16/2023	07/16/2024
RE test cable (1-18GHz)	PhaseTrack	II-240	RE-18GHz-01	07/16/2023	07/16/2024
RE test cable (>18GHz)	Sucoflex	104	344903/4	07/16/2023	07/16/2024
Pulse limiter	Com-Power	LIT-930A	531727	07/16/2023	07/16/2024
CE test cable #1	FIRST RF	FRF-C-1002- 001	CE-6GHz-01	07/16/2023	07/16/2024
CE test cable#2	FIRST RF	FRF-C-1002- 001	CE-6GHz-02	07/16/2023	07/16/2024
Vector Signal Generator	Keysight	N5182A	US47080548	06/07/2023	06/07/2024
RF Power Amplifier (80- 1000MHz)	Ophir	5226FE	1013/1815	N/A	N/A
RF Power Amplifier (700- 6000MHz)	Ophir	5293FE	1063/1815	N/A	N/A
Horn Antenna (1-18GHz)	FT-RF	HA-07M18G- NF	180010HA	N/A	N/A
Horn Antenna (40-60GHz)	OML.Inc	M19RH	19121801-19	07/16/2023	07/16/2024
Harmonic Mixer (40- 60GHz)	OML.Inc	M19HWA	191213-1-19	07/16/2023	07/16/2024
Horn Antenna (60-90GHz)	OML.Inc	M12RH	19121801-12	07/16/2023	07/16/2024
Harmonic Mixer (60- 90GHz)	OML.Inc	M12HWA	191213-1-12	07/16/2023	07/16/2024
Horn Antenna (90-140GHz)	OML.Inc	M08RH	19121801-08	07/16/2023	07/16/2024
Harmonic Mixer (90- 140GHz)	OML.Inc	M08HWA	191213-1-08	07/16/2023	07/16/2024