

Test Report:	2006 100883 FCC
Applicant:	Broadcast Microwave Services 12367 Crosthwaite Circle Dock 10 Poway, CA 92064 (858) 391-3050 x147 (858) 391-3049 - fax
Equipment Under Test:	Model: Carry Coder II Portable COFDM Digital Wireless Camera System with 1Watt Power Amplifier
FCC ID:	CNVCCII-4H
In Accordance With:	FCC PART 2 and PART 90 Subpart Y
Tested By:	Nemko USA Inc. 11696 Sorrento Valley Road San Diego, CA 92121-1024
Date:	February 28, 2007
Total Number of Pages:	34

DOCUMENT HISTORY

REVISION	DATE		COMMENTS
-	February 28, 2007	Prepared By:	F.S.Custodio
-	February 28, 2007	Initial Release:	M. T. Krumweide

NOTE: Nemko USA, Inc. hereby makes the following statements so as to conform to Chapter 10 (Test Reports) Requirements of ANSI C63.4: 2003 "Methods and Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz":

- The unit described in this report was received at Nemko USA, Inc.'s facilities on October 23, 2006. Testing was performed on the unit described in this report on October 23, 2006 to January 5, 2006.
- The Test Results reported herein apply only to the Unit actually tested, and to substantially identical Units.
- This report does not imply the endorsement of the Federal Communications Commission (FCC), NVLAP or any other government agency.

This Report is the property of Nemko USA, Inc., and shall not be reproduced, except in full, without prior written approval of Nemko USA, Inc. However, all ownership rights are hereby returned unconditionally to Broadcast Microwave Services, and approval is hereby granted to Broadcast Microwave Services and its employees and agents to reproduce all or part of this report for any legitimate business purpose without further reference to Nemko USA, Inc.

Table of Contents

Section 1.	Summary of Test Results	5
Section 2.	General Equipment Specification	6
Section 3.	RF Power Output	7
Section 4.	Modulation Characteristics	9
Section 5.	Occupied Bandwidth	13
Section 6.	Spurious Emissions At Antenna Terminals	16
Section 7.	Field Strength of Spurious	24
Section 8.	Frequency Stability	26
Section 9.	Test Equipment List	28

APPENDICES

PARA. NO.: 2.1055 FREQUENCY STABILITY DATA		
SECTION 6.	SPURIOUS EMISSIONS AT ANTENNA TERMINALS	31

CERTIFICATION

Nemko USA, Inc., an independent Electromagnetic Compatibility (EMC) Test Laboratory, produced this Test Report and performed the Radio Frequency Interference (RFI) testing and data evaluation contained herein.

Nemko USA, Inc.'s measurement facility is currently registered with the United States Federal Communications Commission (FCC) in accordance with the provisions of 47 United States Code (CFR) Part 2, Subpart I, Section 2.948(a). A current description of Nemko USA, Inc.'s measurement facility is on file with the FCC. Nemko USA Inc. has additionally satisfied the FCC that it complies with the requirements set forth in 47 CFR Part 2, Subpart I, Section 2.948(d) regarding the accreditation of EMC laboratories. As a result, the FCC has placed Nemko USA Inc. on its list of EMC laboratories approved to perform Declaration of Conformity (DOC) procedure testing.

The RFI testing, test data collection and test data evaluation were accomplished in accordance with the ANSI C63.4: 2003 Standard, and in accordance with the applicable sections of the FCC rules (47 CFR Parts 2 and 18)." digital devices.

I hereby certify that the test data, test data evaluation, and equipment configurations used to compile this test report are a true and accurate representation of the test sample's radio frequency interference characteristics as of the test date(s), and, for the design of the test sample.

Mikel 7.2

Mike T. Krumweide, EMC Test Supervisor

Section 1. Summary of Test Results

General

All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with FCC PART 2 and PART 90 Subpart Y.

Summary Of Test Data

Name Of Test	Para. No.	Result
RF Power Output	90.1215	PASS
Modulation Characteristics	2.1047	AS REPORTED*
Occupied Bandwidth	90.1213	PASS
Spurious Emissions at Antenna Terminals	2.1051/90.210	PASS
Field Strength of Spurious Emissions	2.1053	PASS
Frequency Stability	2.1055/90.213	AS REPORTED

* EUT is a digitally modulated transmitter. Part 90 do not express limits or pass/fail criteria for Modulation Characteristics.

Test Conditions:

Indoor	Temperature: Humidity:	<u>1925 </u> °C <u>40-50 </u> %
Outdoor	Temperature: Humidity:	<u>1823 </u> °C <u>40-60 </u> %

Section 2. General Equipment Specification

Manufacturer:	Broadcast Microwave Services
Model No.:	Portable COFDM Digital Wireless Camera System
Serial No.:	469 and 470 –Carry Coder II 240 – Linear Power Amplifier
Test Voltage:	15VDC to Carry-Coder II 28VDC to Linear Power Amplifier
Frequency Range:	4949MHz to 4990MHz
Date Received In Laboratory:	October 23, 2006
Nemko Identification No.:	26-883-BRO

Section 3. RF Power Output

Para. No.: 2.1046(c)

Test Performed By:	F. S. Custodio	Date of Test: February 28,
		2007

Minimum Standard: Subpart Y—Regulations Governing Licensing and Use of Frequencies in the 4940-4990 MHz Band Sec. 90.1215 Power Limits

The transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

Channel Bandwidth (MHz)	Low power peak transmitter power (dBm)	High power peak transmitter power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

(a) The peak transmit power should not exceed:

High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. **High power** devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the peak transmit power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point or point-to-multipoint operation (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the transmitter power or spectral density. Corresponding reduction in the peak transmit power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi.

(c) The peak transmit power is measured as a conducted emission over any interval of continuous transmission calibrated in rms of an RMS- equivalent voltage. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true peak measurement conforming to the definitions in this paragraph for the emission in question.

(d) The peak power spectral density is measured as conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements are made over a bandwidth of one MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

Test Results: EUT complies

Test Conditions:

Tested using Agilent E4440A PSA Series Spectrum Analyzer thru a 44.5 dB attenuator at antenna terminal. Spectrum Analyzer set to Channel Power measurement mode with Reference Level optimized and RBW set to 100KHz and VBW to 30KHz. EUT RF Power Output setting set to Max with 8MHz bandwidth. Tested on all modes of operation (QPSK, 64QAM and 16QAM).

Measurement Data:

	Low Channel	4949MHz	Mid Channel	4969.5MHz	High Channel	4990MHz
Modulation	PSD	Power	PSD	Power	PSD	Power
QPSK	20.54	0.91	19.38	0.69	18.92	0.62
64QAM	20.97	1.00	19.34	0.69	19.06	0.64
16QAM	20.4	0.88	19.36	0.69	19.04	0.64

Note: PSD (Peak Power Spectral Density) unit is dBm/MHz Power unit is Watts

Section 4. Modulation Characteristics

Para. No.: 2.1047

Test Performed By:	Ferdinand S. Custodio	Date of Test: Oct. 23, 2006
Minimum Standard:	Part 90	
Test Results:	As Reported. Conducted Spectrum Analyzer thru a 30	emission plots captured on the) dB attenuator.
Measurement Data:	See attached plots to modulation:	exemplify the three modes of
	Modulation modes are QPS	SK, 16QAM and 64QAM

Nemko USA Inc.

EQUIPMENT: Carry-Coder II

Modulation Mode: 64QAM

Nemko USA Inc.

EQUIPMENT: Carry-Coder II

Modulation Mode: 16QAM

Modulation Mode: QPSK

Section 5. Occupied Bandwidth

Para. No.: 2.1049

Minimum Standard: Subpart Y—Regulations Governing Licensing and Use of Frequencies in the 4940-4990 MHz Band Sec. 90.1215 Power Limits

The transmitting power of stations operating in the 4940–4990 MHz band must not exceed the maximum limits in this section.(a) The peak transmit power should not exceed:

Channel Bandwidth (Mhz)	Low Power Peak Transmitter Power (dBm)	High Power Peak Transmitter Power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. *High power devices using channel bandwidths other than those listed above are permitted*; however, they are limited to a peak power spectral density of 21 dBm/MHz.

Test Results:	EUT Complies. Conductive emission plots captured on the Spectrum Analyzer thru a 41 dB attenuator. EUT has a user selectable bandwidth setting of 6, 7 or 8 MHz.
Test Date:	Cas attached plate. All medulation medes were eveninged and

Test Data:See attached plots. All modulation modes were examined and
all of them do not diverge from what is presented in this report.

Mid Channel 64QAM 7MHz Bandwidth

Mid Channel 64QAM 8MHz Bandwidth

Section 6. Spurious Emissions At Antenna Terminals

Para. No.: 2.1051

Test Performed By: Ferdinand Custodio	Date of Test: August 4,
	2006

Minimum Standard:

Part 90.210 Emissions Masks

Except as indicated elsewhere in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (m) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating in the frequency bands governed under this part.

Applicable Emission Masks

Frequency band (MHz)	Mask for equipment with Audio low pass filter	Mask for equipment without Audio low pass filter
Below 25 \1\	A or B	A or C
25-50	В	С
72-76	В	С
150-174 \2\	B, D, or E	C, D, or E
150 Paging-only	В	С
220-222	F	F
421-512 \2\	B, D, or E	C, D, or E
450 Paging-only	В	G
806-809/851-854	В	Н
809-824/854-869 \3\	В	G
896-901/935-940	I	J
902-928	K	К
929-930	В	G
4940-4990 MHz	L or M	L or M
5850-5925 \4\		
All other bands	В	С

(m) *Emission Mask M.* For high power transmitters (greater that 20 dBm) operating in the 4940–4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

(1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.

(2) On any frequency removed from the assigned frequency between 45–50% of the authorized bandwidth: 568 log (% of (BW)/45) dB.

(3) On any frequency removed from the assigned frequency between 50–55% of the authorized bandwidth: 26 + 145 log (% of BW/50) dB.

(4) On any frequency removed from the assigned frequency between 55–100% of the authorized bandwidth: 32 + 31 log (% of (BW)/55) dB.

(5) On any frequency removed from the assigned frequency between 100–150% of the authorized bandwidth: 40 + 57 log (% of (BW)/100) dB.

(6) On any frequency removed from the assigned frequency between above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

(7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Test Results:EUT Complies. Conductive emission plots captured on the
Spectrum Analyzer thru a 42 dB attenuator.. Emissions were
investigated from 30 MHz to 25 GHz .

Frequenc	Source Channel/Mode of	Measured	Limit	Margin
y (GHz)	Operation	(dBm)	(dBm)	(dBm)
4.54	low channel/64QAM	-33.95	-20.1	13.85
4.8	low channel/64QAM	-34.22	-20.1	14.12
4.824	low channel/64QAM	-34.07	-20.1	13.97
4.934	low channel/64QAM	-33.43	-20.1	13.33
4.9667	low channel/64QAM	-30.9	-20.1	10.8

The EUT was investigated for Spurious Emission in low, mid and high channels on all modes of operation (QPSK, 16QAM and 64QAM), Low channel/64QAM which is reported, and low channel/16QAM represents the worst case results during the investigation. Plots for low channel /16QAM and low channel /QPSK are located in the Appendix. The EUT was tested at a higher resolution bandwidth than what is required with no resulting emission issues.

EQUIPMENT: Carry-Coder II

Emission Mask Endpoints:

M Mask – For transmitters greater than 20dBm Authorized Bandwidth = 10MHz REF Level = Average Power 45% of BW (4.5MHz) = 0dB 50% of BW (5.0MHz) = 26dB down 55% of BW (5.5MHz) = 32dB down 100% of BW (10.0MHz) = 40dB down 150% of BW (15.0MHz) = 50dB down

Lo Channel/64QAM - 4949.0 MHz

₩ A	✤ Agilent 13:21:59 Oct 25, 2006									
Ref 29	.99 dBm		At	ten 10 df	3					
#Peak Log										
10 dB/										
Offst 42 ⊿P										
ав DI _20 А	Displa	y Line								
dBm LaAv	-20.0	1 dBm								
W1 S2										
S3 FC AA										
€(f): FTun	1400 M. Marthur	how have	munimum	mangen	hormound	wintylunn	where	rhwww.hyphiliph	Marner	hterischilter open die
Ѕ₩р										
Start 1	.000 GHz	2							Stop 3.	.500 GHz
#Res B	W 300 kH	z		#	VBW 30 k	Hz		Sweep 21	.8.1 ms (6	601 pts)

₩ A	gilent 15:	02:44 Oc	t 25,200)6						
Ref 29	.99 dBm		At	ten 10 di	3				Mkr1 4 -34	.824 GHz .07 dBm
#Peak Log										
10 dB/										
0††st 42 dB										
00 DI -20.0	Marke	r								
dBm LaAv	ี4.824 – 34 0	00000 7 dRm	ØGHz							
W1 S2	0 110									
S3 FS AA								Ma	Nakat . atal	
£ (f): FTun	halloway	ANA MANY NU	wannad	renner of the set of the	waturhalanya	nunhahan	and the sealer of the	4 <u>16 f</u> ernet a	ግግ የመ <u>የ</u> ለትለለም በ	n arvhard
Ѕพр										
Start 3	3.500 GHz								Stop 4.	.934 GHz
#Res B	W 300 kH	Z		+	VBW 30 k	Hz		Sweep 12	25.1 ms (6	601 pts)_

🔆 👫 🗛	gilent 15:0	02:59 Oc	t 25, 200)6						
Ref 29.	.99 dBm		At	ten 10 dl	В				Mkr1 4 -34	.800 GHz .22 dBm
#Peak Log										
10 dB/										
Offst 42 dB										
dB -20.0 dBm LaOu	Marke 4.800	r 00000 2 dBm	0 GHz							
W1 S2	-34.2									
S3 FS AA								Maland	Martin and	
£ (f): FTun ∧	ww.th.ww.upw.y.	unuderproduce	wannaa	www.appapellyhi	waterhalava	nunhahan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a dona.	· · · · · · · · · · · · · · · · · · ·	. тъдини
⊃₩р										
Start 3 #Res B	.500 GHz W З00 kH	7			ŧVRW 30 k	·H7		Sween 12	Stop 4.	.934 GHz 601 nts)

∦к А	gilent 15:	03:35 Oc	t 25,200)6						
Ref 29	.99 dBm		At	ten 10 di	3				Mkr1 4 -33	.540 GHz .95 dBm
#Peak Log										
10 dB/										
Offst 42 dB										
ад DI -20.0	Marke	r								
dBm LaAv	[4.540 [-33.9	00000 5 dBm	ØGHz							
W1 S2								_1		
S3 FS AA								Å	Mary and	
£ (f): FTun	han han sheriy	www.	whitenate	manyapathy hy	water belakase	hunderlich	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ե ափոտվ։		n nedhaara
Swp										
Start 3	3.500 GHz	2							Stop 4.	.934 GHz
#Res B	W 300 kH	Z		+	VBW 30 k	:Hz		Sweep 12	25.1 ms (6	601 pts)_

Ж А	gilent 13:4	42 : 58 Oc	t 25,200	96						
Ref 29	.99 dBm		At	ten 10 di	В				Mkr1 4.9 –30	66 7 GHz).90 dBm
#Peak Loα										
10 10										
dB/										
0††st 42										
dB										
DI	Markei	r								
-20.0 dBm	4.966	70000	0 GHz							
LgAv	-30.9	0 dBm								
	ļ									
W1 S2 sp es	¢									
SS FS AA	1									
£ (f):	Whitedraph	handrynda	www.huha	Wr Why Man	Wahaman	mandu	and when when	hard	Alman	www.
FTun										
Swb										
Start 4	4.964 0 GI	lz							Stop 5.50	00 0 GHz
#Res B	W 300 kH:	Z		+	#VBW 30 k	:Hz		Sweep 40	6.76 ms (601 pts)

₩ А	gilent 13:	43 : 51 Oc	t 25, 200)6						
Ref 29	.99 dBm		At	ten 10 di	3				Mkr1 5 –41	.522 GHz .66 dBm
#Peak Log										
10 dB/										
Offst 42 dB										
DI -20.0	Displa	y Line								
dBm LgAv	-20.0	T GRW								
W1 S2										
S3 FC AA	1		b . of	Ju washed	Carta		ى ئىد يىلىد			
£ (f): FTun	Survey and the	MyMMM	weeks all and a second	***	and the constraints of	and a faith of the section of the se	*************************	araa ahaa ahaa	arter Martin Martin Antonina	r Magnerije Andrew Andrew
Ѕพр										
Start 5	5.500 GHz								Stop 10.	000 GHz
#Res B	W 300 kH	z		#	VBW 30 k	:Hz		Sweep 39	02.6 ms (6	601 pts)_

Ж А	gilent 13:4	44:22 Oc	t 25, 200	96						
Ref 29	.99 dBm		At	ten 10 di	В				Mkr1 10 -41	.025 GHz 31 dBm
#Peak										
LOg 10										
dB/										
Offst										
42 dB										
DI 20.0	Displa	y Line								
dBm	-20.0	1 dBm								
LgAv										
W1 S2										
S3 FC										
HH CEN	1 Antomar Marine	May Marthan	en anti-	Name	w.nyww.where	comprosition	month	yrahanagaa arayaya	entrador-september	whenter the
FTun										
Swp										
Start 1	0.000 GH	z					1		Stop 15	.000 GHz
#Res B	300 kH	Z		+	ŧVBW 30 k	кНz		Sweep 43	36.2 ms (1	601 pts)

Ж А	gilent 13:4	44:46 Oc	t 25, 200)6						
Ref 29	.99 dBm		At	ten 10 di	3				Mkr1 15 -38	.025 GHz .66 dBm
#Peak Log										
10 dB/										
0ffst 42 dB										
DI -20.0	Displa	y Line								
dBm LgAv	-20.0	T UDIII								
W1 S2										
S3 FC AA	1 Order and the option	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hand a start and a start and a start a	M. May Alland	hitternanstelen	and a start and a start and a start as	amahama	www.www.	namman	nontreportenen
£ (f): FTun										
Ѕพр										
Start 1	5.000 GH	z							Stop 20.	000 GHz
#Res B	W 300 kH	z		+	VBW 30 k	Hz		Sweep 43	36.2 ms (6	601 pts)_

₩ A	gilent 13:4	5:23 Oc	t 25,200)6						
D∨t Ja	aa dem		۵.	ton 10 d	P				Mkr1 20	.025 GHz
nei ∠o #Peak			FIL	ten 10 u					-57	.35 UDIII
Loa										
10 10										
dB7										
ab, Affst										
42										
dB										
וח	Dieplay	lino								
-20.0										
dBm	-20.01	.dBm								
LaAv										
W1 S2										
S3 FC	1									
AA	Samonalitan	Whenton	www.www.www	how when	MARAMIN	and the second	Wyshruthur	www.	www.www.hww	want
£ (f):										
FTun										
Swp										
	\vdash									
Start 2	20.000 GHz								Stop 25.	.000 GHz
#Res B	W 300 kHz			+	+VBW 30 k	κHz		Sweep 43	36.2 ms (6	501 pts)

Section 7. Field Strength of Spurious

Para. No.: 2.1053

Test Performed By: Ferdinand Custodio Date of Test: October 30, 2006

Minimum Standard: Part 2.1053

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

(b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:

(1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter.

- (2) All equipment operating on frequencies higher than 25 MHz.
- (3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.
- (4) Other types of equipment as required, when deemed necessary by the Commission.
- Test Results:EUT Complies. Emissions were searched from 30 MHz to 25
GHz with the antenna port terminated into a 50 ohm load. No
spurious emissions above 1 GHz at a level greater than 20dB
below the limit were observed. Emissions between 30 MHz
and 1 GHz were searched and four emissions were found and
the results proved by substitution.

Test Data: See attached tables.

Quasi-peak measurements with a RBW =VBW = 100 kHz.

Measured Frequency (MHz)	Antenna Polarization (H/V)	Meter Reading (dBuV)
33.556	V	81.7
59.41	V	70.4
74.065	V	75.6
78.46	V	75.8
81.773	V	75.8

Results—Substitution

Target Frequency	Target Level	Antenna Gain	Cable Loss	Signal Generator	Total (EIRP)	Specs (dBm)	Margin (dBm)
	(dBuV/m)	(dipole)		(dBm)	dBm		
33.556	81.7	0	1.0	-32.5	-33.5	-20.1	-13.4
59.41	70.4	0	1.0	-53.2	-54.2	-20.1	-34.1
74.065	75.6	0	1.0	-46.8	-47.8	-20.1	-27.7
78.46	75.8	0	1.0	-49.0	-50.0	-20.1	-29.9
81.773	75.8	0	1.0	-48.8	-49.8	-20.1	-29.7

Location: North OATS, $T = 24^{\circ}C$, 60% R.H. 3 meters No other measurements within 20 dB of the limit noted. Limits are from Part 90.210 Emissions Masks

Section 8. Frequency Stability

Para. No.: 2.1055

Test Performed B	v: F.S.Custodio	Date of Test: Oct. 25, 2006

Minimum Standard: 2.1055 Frequency Stability vs Temperature Variation and Power Supply Voltage Variation.

(a) The frequency stability shall be measured with variation of ambient temperature as follows:

(1) From -30[deg] to +50[deg] centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

(3) From 0[deg] to +50[deg] centigrade for equipment to be licensed for use in the Radio Broadcast Services under part 73 of this chapter.

(b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10[deg] centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.

(d) The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

(2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

(3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

(e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c), and (d) of this section. (For example measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment.)

Minimum Standard: 90.213 Frequency Stability

For above 2450MHz, minimum frequency stability is not specified however a Note is provided:

(10) Except for DSRCS equipment in the 5850-5925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5850-5925 MHz band is specified in subpart M of this part.

Test Results:	11,290Hz difference which corresponds to 2.271 ppm
	Reported Frequency Stability = 2.271 ppm

Measurement Data:

Part 2.1055 (-30°C	to +50°C)			
Spectrum Analyze	er @ 500KHz RE	3 <u>W, 2KHZ RBW, 20MH</u> z Span	Mid Cha	nnel QPSK Modulation
Worst case variati	ion:	11290.0 Hz (>Set fr	eq.) Set Freq	uency: 4969.52004 MHz@25C
		4540.0 Hz (<set fr<="" th=""><th>eq.) *Red are</th><th>negative numbers</th></set>	eq.) *Red are	negative numbers
		85% of Vnom	Vnom=28VDC	115% of Vnom
Temp.Set Point	Time	Frequency ? (MHz)	Frequency ? (MHz)	Frequency ? (MHz)
Temp.Actual		Difference (MHz)	Difference (MHz)	Difference (MHz)
-30	8:30AM	4969.522	4969.521	4969.522
-30.1		0.001960000	0.000960000	0.001960000
-20	9:30AM	4969.521	4969.522	4969.522
-19.4		0.000960000	0.001960000	0.001960000
-10	10:30AM	4969.5156	4969.5155	4969.5155
-10.4		0.004440000	0.004540000	0.004540000
0	11:30AM	4969.5196	4969.5196	4969.5196
0.4		0.000440000	0.000440000	0.000440000
10	12:30PM	4969.5194	4969.5196	4969.5194
10.01		0.000640000	0.000440000	0.000640000
20	1:30PM	4969.52	4969.52	4969.5197
20.1		0.000040000	0.000040000	0.000340000
30	2:30PM	4969.5235	4969.5233	4969.5233
30		0.003460000	0.003260000	0.003260000
40	3:30PM	4969.528813	4969.528814	4969.528813
40.1		0.008773200	0.008774000	0.008773400
50	4:30PM	4969.53132	4969.53132	4969.53133
50.1		0.011280000	0.011280000	0.011290000

This report represents the Channel with the highest frequency variation. The other Channel Data are located in Appendix A.

Section 9. Test Equipment List

Nemko ID	Device	Manufacturer	Model	Serial Number	Cal Date	Cal Due Date
877	Antenna, DRG Horn, .7-18GHz	AH Systems	2882	688	6/20/06	6/20/07
110	Antenna, LPA	Electrometrics	LPA-25	1217	11/29/05	11/29/06
835	Spectrum Analyzer	Rohde & Schwarz	RHDFSEK	829058/005	1/18/2006	01/18/07
746	Signal Generator	HP	8648B	2007A00910	10/31/05	10/31/06
911	Spectrum Analyzer	Agilent	E4440A	US41421266	2/14/2007	2/14/2008
834	Peak Power Sensor	HP	HP84811A	2551A01194	3/31/2006	3/31/2007
833	Peak Power Meter	HP	HP8900D	2131A00861	3/31/2006	3/31/2007
N115	Digital Power Meter	Yokogawa	253421	12A319267B	5/22/2006	5/22/2007
N149	Environmental Chamber	Cincinnati Sub-Zero	ZPHS-32-2-2-H/AC	ZP0552665	5/11/2006	5/11/2007
765	Antenna Set, Dipole	EMCO	3121C	1214	6/27/06	6/27/07
	EPM Series Power Meter	HP	E4418B	737221	7/25/06	7/25/07

Appendix A.

Para. No.: 2.1055 Frequency Stability Data

Reported Frequency Stability = **0.2323 ppm**

Part 2.1055 (-30°C	to +50°C)				
Spectrum Analyze	er @ 500KHz RE	3 <u>W, 2KHZ RBW, 20MH</u> z Span		Lo Channel QPS	K Modulation
Worst case variati	on:	1150.0 Hz (>Set freq.)		Set Frequency:	4949.2004 MHz@25C
		295.0 Hz (<set freq.)<="" th=""><th></th><th>*Red are negative</th><th>numbers</th></set>		*Red are negative	numbers
		85% of Vnom	Vnom=28VDC		115% of Vnom
Temp.Set Point	Time	Frequency ? (MHz)	Frequency ? (MH	łz)	Frequency ? (MHz)
Temp.Actual		Difference (MHz)	Difference (MHz)		Difference (MHz)
-30	8:30AM	4949.200105	4949.200105		4949.200105
-30.1		0.000295000	0.000295000		-0.000295000
-20	9:30AM	4949.20019	4949.20019		4949.20017
-19.4		0.000210000	0.000210000		0.000230000
-10	10:30AM	4949.20025	4949.20025		4949.20026
-10.4		0.000150000	0.000150000		0.000140000
0	11:30AM	4949.2003	4949.20031		4949.20031
0.4		0.000100000	0.00090000		0.000090000
10	12:30PM	4949.20033	4949.20033		4949.20032
10.01		0.000070000	0.000070000		0.000080000
20	1:30PM	4949.20033	4949.20034		4949.20034
20.1		0.000070000	0.00060000		0.000060000
30	2:30PM	4949.20042	4949.20042		4949.20042
30		0.000020000	0.000020000		0.000020000
40	3:30PM	4949.20088	4949.20088		4949.20088
40.1		0.000480000	0.000480000		0.000480000
50	4:30PM	4949.20155	4949.20155		4949.20155
50.1		0.001150000	0.001150000		0.001150000

Reported Frequency Stability = **1.973 ppm**

Part 2.1055 (-30°C	to +50°C)			
Spectrum Analyze	er @ 500KHz R	B <u>W, 2KHZ RBW, 20MH</u> z Span	Hi Channel QPS	K Modulation
Worst case variati	ion:	9840.0 Hz (>Set freq.)	Set Frequency:	4989.97996 MHz@25C
		9850.0 Hz (<set freq.)<="" th=""><th>*Red are negative</th><th>e numbers</th></set>	*Red are negative	e numbers
		85% of Vnom	Vnom=28VDC	115% of Vnom
Temp.Set Point	Time	Frequency ? (MHz)	Frequency ? (MHz)	Frequency ? (MHz)
Temp.Actual		Difference (MHz)	Difference (MHz)	Difference (MHz)
-30	8:30AM	4989.971143	4989.971142	4989.971143
-30.1		0.008817000	0.008818000	-0.008817000
-20	9:30AM	4989.97242	4989.97243	4989.97243
-19.4		0.007540000	0.007530000	0.007530000
-10	10:30AM	4989.97543	4989.97543	4989.97543
-10.4		0.004530000	0.004530000	0.004530000
0	11:30AM	4989.9769	4989.9769	4989.9768
0.4		0.003060000	0.003060000	0.003160000
10	12:30PM	4989.97012	4989.97012	4989.97011
10.01		0.009840000	0.009840000	0.009850000
20	1:30PM	4989.9766	4989.9765	4989.9765
20.1		0.003360000	0.003460000	0.003460000
		1000 00 10	1000.00/5	
30	2:30PM	4989.9846	4989.9845	4989.9846
30		0.004640000	0.004540000	0.004640000
40	2.2001	4080.080	4080.080	4080.0808
40	3.30PM	4909.909	4303.303	4303.3030
40.1		0.009040000	0.009040000	0.009840000
50	4.20PM	4080 0801	4080 0801	4080 0802
50 1	4.30FIVI	4303.3031	4909.9091	+303.3032
50.1		0.009140000	0.009140000	0.009240000

Appendix B.

LO Channel/16QAM

Nemko USA Inc.

EQUIPMENT: Carry-Coder II

REPORT NO.: 2006 100883 FCC

* Agient 15:18:32 Oct 25, 2886		🔅 Agilent 15:18:51 Oct 3	25, 2006	
Ref 23.99 dBm Atten	18 - 68	Ref 29.99 dBm	Atten 10 dB	
Log		«Peak Lag		
dB/		10 dB/		
42 -R		Offst 42		
di den LaAv		Display Line -20.8 -20.01 dBm -20.01 dBm		
kt. s2 s3 FC Rβ hut of the second 	www.chamblego.ch.uegue.ch.ee.urg.geedhelpoststerenheid.geo.ch.ch.urmbleters	HI 52 53 FC АН-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	were growing and a bold on	www.engenergenergenergenergenergenergenerge
FTun Skp		FTut Smp		
Start 15,008 GHz	5top 28,099 GHz #USH 39 HHz Sweep 435.2 m3 (581 pts)	Start 20,800 GHz #Res BM 300 KHz	WBM 3R MHz	Stop 25,000 GHz Sweep 436.2 ms (601 pts)

LO Channel/QPSK

Nemko USA Inc.

EQUIPMENT: Carry-Coder II

REPORT NO.: 2006 100883 FCC

29.99 JBm	Otton 18 d	2					
0.00 000	HIGH TO O	,					
and the second s							
Display Line							
-20.00 dBm							
20100 0011							
2							
c							
Á					diame.	ALLAN .	a merce
a pho gan so sport man	an area and	100-000	Martin Bar	14			

3.99 dBm A	tten 18 dB	
Display Lina		
-20.00 dBm		
20.00 000		
ويعالمه والمحافظة ومعالمه	kabéra tertenik réstrik i	a construction of the
15 000 011-		
5.000 bHZ		St00 28,89

Agilent 22:38:51 Nev 9, 2006

ef 23,99 dBm Rt	tten 18 dB	
eak		
fst		
Display Line		
-20.00 dBm		
Plu -		
- <u>\$2</u>		
may any see and make man	and the second and a	-
(F): Tun		
4D		
28 008 CHa	Suc 25.00	0.0
Res BH 388 kHz	•VBH 38 kHz Sneep 436.2 ms (68)	l pt