

Applicant Name: Intel Corporation

Applicant Address: Intel Corporation Evening Creek Drive, San Diego CA, 92128

FCC ID: CNTWM3B2915ABG

Test/Analysis Date:

29th September 2004 3rd October 2004

Project Number: ITLB-HP-Heavenly-ABG-5063

DUT Type	Laptop computer with 802.11a/b/g WLAN				
Model Number	WM3B2915ABG				
Agency Series Number	SI1				
Project Name	Heavenly				
Received Status	Pre Production Model				
DUT Serial Number	CAT000121872				
Experimental/Compliance	Compliance				
Tx Frequency	2412MHz to 2462MHz 802.11bg				
	5180MHz to 5320MHz 802.11a				
	5745MHz to 5825MHz 802.11a				
Max Tx Power	802.11b 19.2 dB				
	802.11g 24.0 dB				
	802.11a 21.3 dB				
	802.11a 23.2 dB				
Conservative Averaged SAR	802.11b 0.61 W/kg 0mm separation				
(RF Exposure)	802.11g 0.57 W/kg 0mm separation				
-	802.11a 0.43 W/kg 0mm separation				
	802.11a 1.25 W/kg 0mm separation				

We the undersigned of APREL Laboratories, located at 51 Spectrum Way, Ottawa, Ontario, Canada, K2R-1E6, on the date indicated attest that the Device Under Test as detailed within this test report has been tested and found to be compliant with the Uncontrolled Environment RF exposure rules and regulations as defined by the methodologies, procedures, and standards as described in this document.

APREL Laboratories are an ISO 17025 accredited facility. S-Outober- 2004 Stuart Nicol, Date **Director Product Development** Jay Sarkar, Date J.J. WOJCIK Director Standards & Certification 390 WINCE OF ON D Jacek J. Wojcik Date P. Engineer Project number: ITLB-HP-5063 Page 1 of 99 FCC ID: ID: CNTWM3B2915ABG Tel: (613) 820-2730 51 Spectrum Way Nepean, Ontario Fax: (613) 820-4161 Canada K2R 1E6 Info@aprel.com © 2004 APREL Laboratories www.aprel.com

AL-065

Table of Contents

1.0	Introduction	
2.0	Applicable Documents	
3.0	ALSAS-10U System Description	4
3.1	Applications	
3.2	Visualisation and reporting	5
3.3	Field scans	5
3.3.1	Area Scans	5
3.3.2	Zoom Scan (Cube Scan Averaging)	5
3.4	Operator settings	
3.5	ALSAS-10U Interpolation and Extrapolation Uncertainty	
4.0	ALSAS-10U Hardware	
4.1	Isotropic E-Field Probe	7
4.2	Isotropic E-Field Probe Specification	3
4.3	Boundary Detection Unit and Probe Mounting Device	
4.4	Dag-Pag (Analog to Digital Electronics)	
4.5	Axis Articulated Robot	9
4.6	ALSAS Universal Workstation	9
4.7	Universal Device Positioner	C
4.8	Phantom Types 11	1
4.8.1	APREL SAM Phantoms 11	1
4.8.2	APREL Laboratories Universal Phantom 12	2
4.9	Validation Dipoles	
5.0	Tissue Simulation Fluid 14	
5.1	Tissue Calibration Procedure Using a Coaxial Probe	5
5.2	Tissue Calibration Results	5
6.0	System Validation	5
6.1	Experimental Results Summary 17	
6.2	SAR Measurement Procedure	7
6.3	SAR Exposure Limits	7
6.4	Equipment List	3
6.5	SAR Measurement Results	9
6.6	Additional Information24	
Apper	ndix A SAR Plots	C
	ndix B Probe Calibration Certificate	
	ndix C Dipole Calibration Certificate Error! Bookmark not defined	

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 2 of 99

1.0 Introduction

Tests were conducted at APREL Laboratories within the ISO 17025 accredited SAR facility to establish the conservative exposure value associated with the Device Under Test as detailed within this test report. Assessments were made in line with the guidelines contained in the reference documents. The method used for assessment was the ALSAS-10U (APREL Laboratories SAR Assessment System-10 Universal). All practices along with standards and scientific methodologies which have been utilized during the assessment of the Device Under Test (DUT) are detailed within this test report.

APREL Laboratories employees currently hold senior and executive positions in multiple international standards organizations, including IEC, IEEE, among others, and work closely with several national regulators, including the FCC. Through the IEC, we have a liaison with CENELEC, and informal links to other national and international standards organizations.

2.0 Applicable Documents

EN-50371 TITLE "Generic Standard to Demonstrate the Compliance of low power electronic and electrical apparatus with the basic restrictions related to human exposure to electromagnetic fields (10MHz-300GHz) general public"

2) DIRECTIVE 1999/5/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 9 March 1999 on radio equipment and telecommunications terminal equipment and the mutual recognition of their conformity

ANSI/IEEE C95.1-1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation.

ANSI/IEEE C95.3-1992, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave.

OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields".

IEEE 1528 "Recommended Practice for Determining the Peak Spatial Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communication Devices: Experimental Techniques."

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

Page 3 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

51 Spectrum Way Nepean, Ontario

Canada K2R 1E6

3.0 ALSAS-10U System Description

APREL Laboratories ALSAS-10-U (APREL Laboratories SAR Assessment System) is fully optimized for the dosimetric evaluation of a broad range of wireless transceivers and antennas. It is an easy-to-use development and compliance tool, which provides excellent application flexibility. Developed in line with the latest methodologies it is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller.

ALSAS-10U has been developed with a strong engineering focus, and with custom modular software/hardware for the broadest range of applications, including dosimetry research and measurements in various Phantoms – SAM Phantom, UniPhantom[™] Universal Phantom, Universal Flat Phantom and others.

Free space E-Field measurements of mobile devices and base station antennas can also be executed using ALSAS. With the current ALSAS configuration, several phantoms and setups can be arranged around the system – and since the phantoms are designed to be light and easy to move for interchanging between test frequencies.

ALSAS-10U has been developed using the latest methodologies and FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

The ongoing commitment from APREL Laboratories to the field of Dosimetric research and development will ensure that the ALSAS-10-U measurement system can easily be upgraded to accommodate changes to wireless technologies, and scientific methodologies.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 4 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

3.1 Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. A little less than 10 min per device position measurement completion time, (depending of DUT size) ensures minimum power drift during the assessment. No user interaction is required during the measurement processes: area scan, evaluation of cube maximal search, fine cube measurements and device power drift measurement. System operation range currently available up-to 6 GHz in simulated tissue.

ALSAS-10U can be used for all analog and digital devices, including wideband, spread spectrum and pulsed systems, etc.: handsets, handhelds, wireless data, electronic article surveillance, accessories, wireless access points, WLAN, cordless, radio, etc.

3.2 Visualisation and reporting

2/3D isoline distribution, scatter graphics, polar graphics, and vector reproduction. Device representation and phantom visualization in 2/3D graphics with measurement data overlaid (in color plot format). Freely configurable output graphic formats with automatic title, data and legend generation which includes all relevant information relating to the measurement process. Uncertainty analysis and budget calculated and reported drawing on active device drift assessment, and tissue simulation values.

3.3 Field scans

ALSAS-10U can provide multiple scan types including Measurements along lines (X, Y, Z), multiple planes, curved surfaces, volumes in free space or restricted volumes (phantoms). Cube measurements with surface extrapolation and spatial SAR evaluation for 1g and/or 10g. Time measurements (source power drift). Probe rotation measurements (isotropy) and many others in line with the requirements of any given standard or procedure.

3.3.1 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 5 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

3.3.2 Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1 000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the centre of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

3.4 Operator settings

Multiple access levels (password protected) for parametric modifications/test scenarios in line with selected standards, including the FCC. Any number of predefined settings (probes, phantoms, liquids, devices, measurement procedures, etc.) can be stored for future use and repeatable assessments.

3.5 ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_{3}(x, y, z) = A \frac{a^{2}}{\frac{a^{2}}{4} + {x'}^{2} + {y'}^{2}} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^{2}}{2(a+2z)^{2}}\right)$$

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

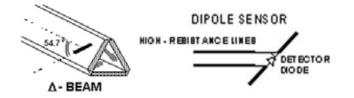
51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories

AL-065

Page 6 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

4.0 ALSAS-10U Hardware


The ALSAS-10U comprises of hardware designed exclusively by APREL Laboratories based on methodologies presented in IEEE 1528, IEC 62209, CENELEC and FCC supplement C OET bulletin 65.

4.1 **Isotropic E-Field Probe**

The isotropic E-Field probe used by APREL Laboratories, has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. APREL Laboratories utilize a number of methods for calibrating probes, and these are outlined in the table below.

Calibration	Air Calibration	Tissue
Frequency (MHz)		Calibration
300	TEM Cell	Temperature
450	TEM Cell	Temperature
835	TEM Cell	Temperature
900	TEM Cell	Temperature
1800	TEM Cell	Temperature
1900	TEM Cell	Temperature
2450	Waveguide	Temperature
5200	Waveguide	Waveguide
5800	Waveguide	Waveguide

The APREL Laboratories E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below.

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the centre of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This report shall not be reproduced, except in full, without written approval of APREL Laboratories Page 7 of 99

4.2 Isotropic E-Field Probe Specification

Calibration in Air	Frequency Dependent		
	Below 2GHz Calibration in air performed in a TEM Cell		
Above 2GHz Calibration in air performed in wa			
Sensitivity	$0.60 \mu\text{V}/(\text{V/m})^2$ to 1.25 $\mu\text{V}/(\text{V/m})^2$		
Dynamic Range	0.01 W/kg to 100 W/kg		
Isotropic Response	Better than 0.2dB		
Diode Compression	Calibrated for Specific Frequency		
Point (DCP)			
Probe Tip Radius	<5mm		
Sensor Offset	1.56 (+/-0.02mm)		
Probe Length	290mm		
Video Bandwidth	@ 500 Hz: 1 dB		
	@ 1.02 KHz: 3 dB		
Boundary Effect	Less than 2% for distances greater than 2.4mm		
Spatial Resolution	Diameter less than 5mm Compliant with Standards		

4.3 Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Dag-Pag.

4.4 Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from $5\mu V$ to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearization and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit		
Amplifier Range	20mV to 200mV and 150mV to 800mV		
Field Integration	Local Co-Processor utilizing proprietary integration algorithms		
Number of Input Channels	4 in total 3 dedicated and 1 spare		
Communication	Packet data via RS232		

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 Th

Page 8 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

4.5 Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot/Controller Manufacturer Thermo CRS		
Number of Axis	Six independently controlled axis	
Positioning Repeatability	0.05mm	
Controller Type	Single phase Pentium based C500C	
Robot Reach	710mm	
Communication	RS232 and LAN compatible	

4.6 ALSAS Universal Workstation

ALSAS Universal workstation was developed with a strong engineering focus taking into consideration flexibility and engineering needs, and the necessity to have integrated system which will allow for repeatability and fast adaptability. ALSAS workstation technology is stable and robust in structure, but at the same time flexible so that users can do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

The workstation incorporates a modular structure which can be easily adapted to specific engineering requirements and needs. Phantoms which are self contained modular units are easily located, removable and swappable. Three fully configurable shelves allow for setting up of a test device in a way which can either utilize the APREL Laboratories device positioner, or custom designed units. When using the modular shelf for positioning of a device, additional loading characteristics have been avoided.

The workstation has been constructed entirely out of composite wood and Canadian maple, with all metallic fasteners kept at a compliant distance from the Device under test.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 9 of 99

4.7 Universal Device Positioner

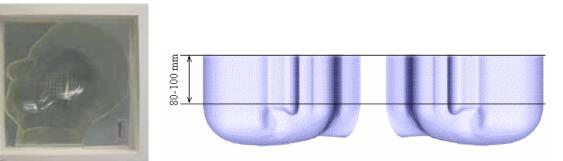
The APREL Laboratories universal device positioner has been developed so as to allow complete freedom of movement of the DUT. Developed to hold a DUT in a freespace scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator has been included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a freespace scenario as possible, and by providing the means for complete repeatability.

Length	201mm		
Width	140mm		
Height	222mm		
Weight	1.95kg		
Number of Axis	6 axis freedom of movement		
Translation Along MB Line	+/- 76.2mm		
Translation Along NF Line	+/- 38.1mm		
Translation Along Z Axis	+/- 25.4mm (expandable to 500mm)		
Rotation Around MB Line (yaw)	+/- 10°		
Rotation Around NF Line (pitch)	+/- 30°		
Rotation Around Z Axis (roll)	360° full circle		
Minimum Grip Range	0mm		
Maximum Grip	152mm		
Maximum Distance from Device to	40mm		
Positioner Material			
Tilt Movement	Full movement with predefined 15° guide		

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 Th

Page 10 of 99



4.8 Phantom Types

The ALSAS-10U has been designed so as to allow the integration of multiple phantom types. This includes but is not limited to the APREL Laboratories SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

4.8.1 APREL SAM Phantoms

The APREL Laboratories SAM phantoms have been designed so as to aid repeatability and positioning for any DUT. Developed using the IEEE SAM CAD file they are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

Compliant Standards	IEEE-1528, IEC 62209, CENELEC, and				
	others				
Manufacturing Process	Injection molded				
Material	Composite urethane				
Manufacturing Tolerance	+/- 0.2mm				
Frame Material	Corian				
Tissue Simulation Volume	7 Itr with 15cm tissue				
Thickness	2mm nominally				
	6mm at NF/MB intersection				
Loss Tangent	<0.05				
Relative Permittivity	<5				
Resistant to Solvents	Resistant to all solvents detailed in IEEE				
	1528				
Load Deflection	<1mm with sugar water compositions				

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 11 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

4.8.2 APREL Laboratories Universal Phantom

The APREL Laboratories Universal Phantom has been developed as an engineering tool for both compliance and development. It is also used on the ALSAS-10U as a system validation phantom. The unique design allows repeatable measurements for all devices, including handsets, PDA units, laptop computers, and validation dipoles. The APREL Laboratories Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall

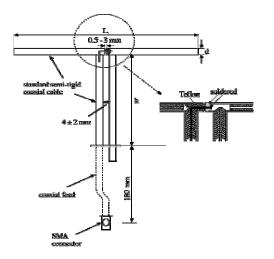
thickness of 6mm in line with the requirements of IEEE-1528. The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement. The phantom is surrounded by a Corian frame, which adds additional support and load bearing characteristics.

Compliant Standards	IEEE-1528, IEC 62209, CENELEC, and				
	others				
Frequency Range	800MHz to 6GHz				
Material	Vivac				
Manufacturing Tolerance	+/- 0.2mm				
Frame Material	Corian				
Tissue Simulation Volume	8 ltr with 15cm tissue				
Thickness	2mm nominally				
	6mm at NF/MB intersection				
Loss Tangent	< 0.05				
Relative Permittivity	<5				
Resistant to Solvents	Resistant to all solvents detailed in IEEE				
	1528				
Load Deflection	<1% Length with sugar water				
	compositions				
Dimensions	Length 220mm x breadth 170mm				

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 12 of 99


Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

4.9 Validation Dipoles

APREL Laboratories utilize dipoles based on the IEEE-1528 standard, and have ensured that they comply with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles used by APREL Laboratories.

Body validation target numbers have been derived using XFDTD numerical software, and validated experimentally.

APREL Laboratories have developed high frequency dipoles based on current scientific research carried both experimentally and numerically here at the APREL Laboratories site. Mechanical and electrical parameters for the dipoles have been established using experimental and numerical techniques, and target SAR values have been established following IEC methodologies. The results of the experimental and numerical research have been published and released for peer review.

Frequency (MHz)	<i>L</i> (mm)	<i>h</i> (mm)	<i>d</i> (mm)
300	396.0	250.0	6.0
450	270.0	167.8	6.0
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.5	30.4	3.6
3000	41.5	25.0	3.6
5200	23.6	Х	3.6
5800	21.6	Х	3.6

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

Page 13 of 99

5.0 Tissue Simulation Fluid

Tissue simulation fluids in the frequency range of 450MHz to 2450MHz are based on IEEE-1528 and FCC Supplement C guidelines. All fluids meet the dielectric specifications as outlined in the above standards (within allowable tolerances) and are calibrated on a regular basis, to maintain stability. The recipes used along with the dielectric target values are included in the table below.

Ingredients	2450 MHz	5200 MHz	5800 MHz
(%	Body	Body	Body
Weight)	_		
Water	73.2	55.85	59.0
Salt	0.04	Х	Х
Sugar	Х	44.0	40.6
HEC	Х	0.1	0.3
Bactericide	Х	0.05	0.1
Triton-X	Х	Х	Х
DGBE	27.8	Х	Х
ε ^r	52.5	43.0	48.2
δ	1.78	5.75	6.0

NOTE. Recipes are based on those presented in FCC Supplement C Page 36.

For frequencies above 2450MHz recipes are based on numerical and experimental research.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 14 of 99

5.1 Tissue Calibration Procedure Using a Coaxial Probe

The VNA (Vector Network Analyzer) is configured and calibrated for the frequency of the simulated tissue which has to be assessed. The Coaxial probe is then calibrated in line with the tissue frequency using an open, short, and De-Ionized water routine. The sample of simulated tissue is placed into a non-metallic container for use during the calibration. The temperature of the simulated tissue sample is measured. The probe head is then completely immersed in the simulated tissue sample (the probe is held in place using a non metallic probe holder). The simulated tissue sample is then measured to assess the permittivity and conductivity.

5.2 Tissue Calibration Results

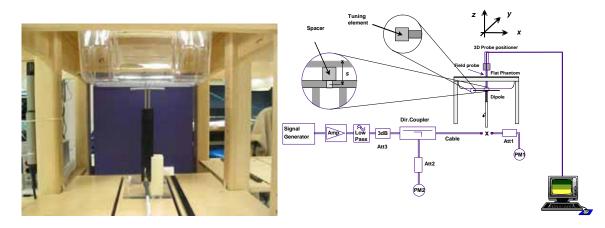
Tissue used during the SAR assessment is calibrated prior to in the measurement use process. APREL Laboratories use the co-axial probe method for all tissue calibration exercises. Tissue which is being used over a period of 24 hours is recalibrated to ensure that no change to the dielectric properties will affect the SAR measurement process. The table below provides details of the tissue results from the equivalent dielectric calibration.

Calibrated By	Calibration Date	Frequency MHz	Tissue Type	Epsilon (ε')	Sigma (δ)
Yi Pan	29-09-2004	2450	Body	50.0	1.9
Yi Pan	30-09-2004	2450	Body	50.0	1.9
Yi Pan	03-10-2004	5240	Body	36.0	5.4
Yi Pan	04-10-2004	5240	Body	36.0	5.4
Yi Pan	03-10-2004	5800	Body	41.0	6.3
Yi Pan	04-10-2004	5800	Body	41.0	6.3

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

SAR Certified

Tel: (613) 820-2730 Fax: (613) 820-4161


Page 15 of 99

Fax: (613) 820-2730 Info@aprel.com www.aprel.com

6.0 System Validation

ALSAS-10U is fully validated prior to the SAR assessment of the DUT following methodologies presented in IEEE-1528 section 8. The system is validated using tissue which has been calibrated within a 24 hour period. When the measurement process exceeds a 24 hour period a secondary system validation is executed and the results presented within this test report. The graphic plots resulting from the system validation are included in Appendix A SAR plots.

Date	Validation Frequency (MHZ)	Dipole Separation Distance mm	Power W	Dipole	SAR 1g W/kg	Target 1g W/kg	Delta %
29-09-04	2450	10	1.0	AL-CD10	53.4	52.4	3.0
30-09-04	2450	10	1.0	AL-CD10	53.4	52.4	3.0
03-10-04	5240	10	1.0	AL-CD11	64.6	61.8	4.0
03-10-04	5240	10	1.0	AL-CD11	64.6	61.8	4.0
04-10-04	5800	10	1.0	AL-CD12	61.0	58.0	5.0
04-10-04	5800	10	1.0	AL-CD12	61.0	58.0	5.0

Currently no standards are in place for validating a system while using body tissue. APREL Laboratories have conducted research using XFDTD to assess the target validation numbers while using body tissue. It should be noted that the target validation numbers presented in IEEE-1528 have been derived using FDTD methodologies.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This r

Page 16 of 99

6.1 Experimental Results Summary

The results for each experimental assessment are contained within this section. Where any deviation has been made from the given procedures contained within IEEE-1528 or FCC Supplement C this has been described accordingly.

6.2 SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ : represents the simulated tissue conductivity ρ : represents the tissue density

The DUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The DUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

6.3 SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Type of Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 17 of 99

6.4 Equipment List

APREL Laboratories utilize the following equipment.

Equipment Description	Asset/Serial Number	Calibration Due Date
ALSAS-10U	301571	Prior to Test
Boundary Detection Unit	301572	Calibrated Once
Daq-Paq	301573	6 Jan 2005
Pentium 4 Workstation	301574	Not Required
Signal Generator	301468	September 2004
Gigatronics Power Meter	301393	October 2004
Gigatronics Broad Band Power Sensor	301394	October 2004
HP-Directional Coupler	100251	October 2004
APREL Laboratories 800-4200MHz 12W Amplifier	301577	Prior to Test
APREL Laboratories 2450MHz Validation Dipole	301581	November 2004
APREL Laboratories E-020 E-Field Probe	209	November 2004
40MHz -20GHz VNA	301382	January 2005
TRL Calibration Kit	301582	January 2006
APREL Laboratories Coaxial Probe (Dielectric Probe Kit)	100757	Prior to Test
APREL Laboratories Universal Phantom	301511	Calibrated Once
APREL Laboratories SAM Phantom LHS	301500	Calibrated Once
APREL Laboratories SAM Phantom RHS	301501	Calibrated Once
APREL Laboratories 15mm Dipole Separation Kit	301546	Calibrated Once
APREL Laboratories 10mm Dipole Separation Kit	301547	Calibrated Once
APREL Laboratories 5-6GHz 2 W Amplifier	NYA	March 2004
APREL Laboratories MMW Directional Coupler	NYA	March 2004
APREL Laboratories 5240MHz Validation Dipole	301460	March 2004
APREL Laboratories 5800MHz Validation Dipole	РТ-015-а	March 2004

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories SAR Certified Page 18 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

AL-065

6.5 SAR Measurement Results

HP Heavenly

Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

Power	19.2dB 802.11b	
	24.0dB 802.11g	
DUT Position	LHS of laptop LCD	
	open Tablet mode	
Separation	0mm	
Antenna Type	Internal	
Antenna	-	
Manufacturer		
Antenna Location	Top left hand side	
	of LCD	
Power Mode	Mains A/C	
Tx Frequency	2412-2462MHz	
Duty Cycle	95%	
Epsilon	50	
	50	
Sigma	1.9	
-	1.9	
Tissue Depth	15cm	
Phantom Type	Universal	
DUT Workstation	Centre	
Location		
Device Positioner	HESET1	
Test Date	29-09-04	
	30-09-04	
Test Engineer	Y-Chen	

Mode	Channel	Frequency MHz	1g SAR W/kg
801.11b	1	2412	0.35
802.11b	6	2437	0.48
802.11b	12	2462	0.61
802.11g	1	2412	0.52
802.11g	6	2437	0.57
802.11g	12	2462	0.29

SAR Limit	Conservative Measured SAR	
1.6 W/kg 1gram Average Maximum	0.61 W/kg 1gram Average	

SAR Plot for Conservative SAR Included in Appendix A.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

HP Heavenly Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

Power	21.3dB 802.11a	
	23.2dB 802.11a	
DUT Position	LHS of laptop LCD	
	open Tablet mode	
Separation	0mm	
Antenna Type	Internal	
Antenna	-	
Manufacturer		
Antenna Location	Top left hand side	
	of LCD	
Power Mode	Mains A/C	
Tx Frequency	5180-5320 MHz	
	5745-5825 MHz	
Duty Cycle	95%	
Epsilon	36.0	
	41.0	
Sigma	5.4	
	6.3	
Tissue Depth	15cm	
Phantom Type	Universal	
DUT Workstation	Centre	
Location		
Device Positioner	HESET1	
Test Date	03-10-04	
	03-10-04	
Test Engineer	Y-Chen	

Mode	Channel	Frequency MHz	1g SAR W/kg
801.11a Low Band	36	5180	0.02
802.11a Low Band	52	5260	0.11
802.11a Low Band	64	5320	0.10
802.11a High Band	149	5745	0.83
802.11a High Band	157	5785	0.53
802.11a High Band	165	5825	0.55

SAR Limit	Conservative Measured SAR	
1.6 W/kg 1gram Average Maximum	0.83 W/kg 1gram Average	

SAR Plot for Conservative SAR Included in Appendix A.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

Page 20 of 99

Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

J.	

Power	19.2dB 802.11b	
	24.0dB 802.11g	
DUT Position	LHS of laptop LCD	
	closed face up	
Separation	0mm	
Antenna Type	Internal	
Antenna	-	
Manufacturer		
Antenna Location	Top left hand side	
	of LCD	
Power Mode	Mains A/C	
Tx Frequency	2412-2462MHz	
Duty Cycle	95%	
Epsilon	50	
	50	
Sigma	1.9	
-	1.9	
Tissue Depth	15cm	
Phantom Type	Universal	
DUT Workstation	Centre	
Location		
Device Positioner	HESET1	
Test Date	29-09-04	
	30-09-04	
Test Engineer	Y-Chen	

Mode	Channel	Frequency MHz	1g SAR W/kg
802.11b	11	2462	0.54
802.11g	06	2437	0.39

SAR Limit	Conservative Measured SAR
1.6 W/kg 1gram Average Maximum	0.54 W/kg 1gram Average

SAR Plot for Conservative SAR Included in Appendix A.

Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

Power	21.3dB 802.11a
	23.2dB 802.11a
DUT Position	LHS of laptop LCD
	closed face up
Separation	0mm
Antenna Type	Internal
Antenna	Hitachi
Manufacturer	
Antenna Location	Top left hand side
	of LCD
Power Mode	Mains A/C
Tx Frequency	5180-5320 MHz
	5745-5825 MHz
Duty Cycle	95%
Epsilon	36.0
	41.0
Sigma	5.4
	6.3
Tissue Depth	15cm
Phantom Type	Universal
DUT Workstation	Centre
Location	
Device Positioner	HESET1
Test Date	03-10-04
	04-10-04
Test Engineer	Y-Chen

Mode	Channel	Frequency MHz	1g SAR W/kg
802.11a (low)	36	5180	0.15
802.11a (low)	52	5260	0.43
802.11a (low)	64	5320	0.34
802.11a (high)	149	5745	1.25
802.11a (high)	157	5785	0.96
802.11a (high)	165	5825	0.98

SAR Limit	Conservative Measured SAR
1.6 W/kg 1gram Average Maximum	1.25 W/kg 1gram Average

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 22 of 99

Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

NY NY		Power	19.2dB 802.11b 24.0dB 802.11g
		DUT Position	LHS of laptop top of LCD
		Separation	0mm
	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE OWNER OWNE OWNER OWNE	Antenna Type	Internal
		Antenna Manufacturer	-
		Antenna Location	Top left hand side of LCD
Style 1		Power Mode	Mains A/C
10 17 1		Tx Frequency	2412-2462MHz
N P		Duty Cycle	95%
	Epsilon	50	
1	The second second second		50
BULLET THE		Sigma	1.9
in the second	A STATISTICS AND A STATISTICS		1.9
10		Tissue Depth	15cm
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Phantom Type	Universal
		DUT Workstation	Centre
		Location	
		Device Positioner	HESET1
		Test Date	29-09-04
			30-09-04
		Test Engineer	Y-Chen
Mode	Channel	Frequency	1α \$ΔΡ

Mode	Channel	Frequency MHz	1g SAR W/kg
802.11b	11	2462	0.14
802.11g	6	2437	0.14

SAR Limit	Conservative Measured SAR
1.6 W/kg 1gram Average Maximum	0.14 W/kg 1gram Average

SAR Plot for Conservative SAR Included in Appendix A.

Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

Power	21.3dB 802.11a
	23.2dB 802.11a
DUT Position	LHS of laptop top
	of LCD
Separation	0mm
Antenna Type	-
Antenna	Hitachi
Manufacturer	
Antenna Location	Top left hand side
	of LCD
Power Mode	Mains A/C
Tx Frequency	5180-5320 MHz
	5745-5825 MHz
Duty Cycle	95%
Epsilon	36.0
	41.0
Sigma	5.4
	6.3
Tissue Depth	15cm
Phantom Type	Universal
DUT Workstation	Centre
Location	
Device Positioner	HESET1
Test Date	03-10-04
	04-10-04
Test Engineer	Y-Chen

Mode	Channel	Frequency MHz	1g SAR W/kg
802.11a Low Band	52	5260	0.09
802.11a High Band	149	5745	0.40

SAR Limit	Conservative Measured SAR
1.6 W/kg 1gram Average Maximum	0.40 W/kg 1gram Average

SAR Plot for Conservative SAR Included in Appendix A.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 24 of 99

Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

	-
	P
APR EL	C
	S A
	A
	A
and the second s	
	P
	T C E
	E
	S
	Т
	P

Power	19.2dB 802.11b		
	24.0dB 802.11g		
DUT Position	LHS of laptop LCD		
	closed		
Separation	0mm		
Antenna Type	Internal		
Antenna	-		
Manufacturer			
Antenna Location	Top left hand side		
	of LCD		
Power Mode	Mains A/C		
Tx Frequency	2412-2462MHz		
Duty Cycle	95%		
Epsilon	50		
	50		
Sigma	1.9		
	1.9		
Tissue Depth	15cm		
Phantom Type	Universal		
DUT Workstation	Centre		
Location			
Device Positioner	HESET1		
Test Date	29-09-04		
	30-09-04		
Test Engineer	Y-Chen		

Mode	Channel	Frequency MHz	1g SAR W/kg		
802.11b	11	2462	0.07		
802.11g	6	2437	0.06		

SAR Limit	Conservative Measured SAR			
1.6 W/kg 1gram Average Maximum	0.07 W/kg 1gram Average			

SAR Plot for Conservative SAR Included in Appendix A.

AL-065

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Intel PRO/Wireless 802.11a/b/g Mini-PCI WLAN Adapter

Power	21.3dB 802.11a		
	23.2dB 802.11a		
DUT Position	LHS of laptop LCD		
	closed		
Separation	0mm		
Antenna Type	Internal		
Antenna	-		
Manufacturer			
Antenna Location	Top left hand side		
	of LCD		
Power Mode	Mains A/C		
Tx Frequency	5180-5320 MHz		
	5745-5825 MHz		
Duty Cycle	95%		
Epsilon	36.0		
	41.0		
Sigma	5.4		
	6.3		
Tissue Depth	15cm		
Phantom Type	Universal		
DUT Workstation	Centre		
Location			
Device Positioner	HESET1		
Test Date	03-10-04		
	04-10-04		
Test Engineer	Y-Chen		

Mode	Channel	Frequency MHz	1g SAR W/kg
802.11a Low Band	52	5260	0.06
802.11a High Band	149	5745	0.19

SAR Limit	Conservative Measured SAR			
1.6 W/kg 1gram Average Maximum	0.19 W/kg 1gram Average			

SAR Plot for Conservative SAR Included in Appendix A.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 26 of 99

6.6 Additional Information

The HP Heavenly TR1105 was tested in other positions with respect to general user scenarios, where the SAR was found to be less than 80% lower than the highest value recorded or no separation distance was needed. The following images represent the full exposure conditions in which the DUT was assessed. Tests were conducted with and without the mains attached and it was found that the highest SAR could be assessed while the device was connected to the mains supply.

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 27 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 28 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

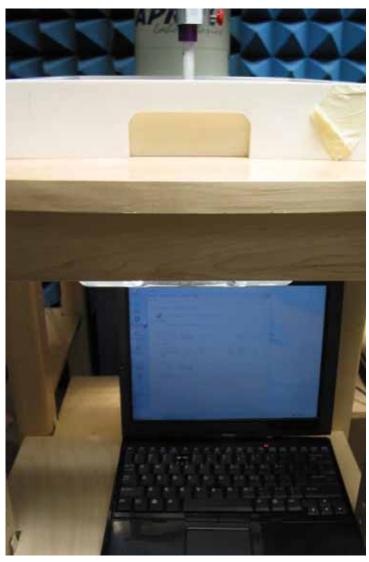
51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 29 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Consulting • Research • Certification Testing • SAR Tools and Training • Since 1981

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This



Page 30 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Consulting • Research • Certification Testing • SAR Tools and Training • Since 1981

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 31 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 32 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Appendix A SAR Plots

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 33 of 99

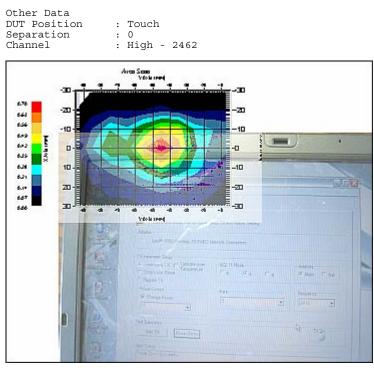
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 29-Sep-2004 : 29-Sep-2004 : 29-Sep-2004 04:03:53 PM : 29-Sep-2004 04:21:31 PM : 1058 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 115 : 157 : 0 : Internal : 0.13
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	2450 MHz 1 3.3 1.20 1.20 1.20 μV/(V/sq.m) 95
Set-up Date :	1 Complete 29-Sep-2004 2:59:02 PM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories Certified


Page 34 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

AL-065

1 gram SAR value : 0.61 W/kg Zoom Scan Peak SAR : 1.43

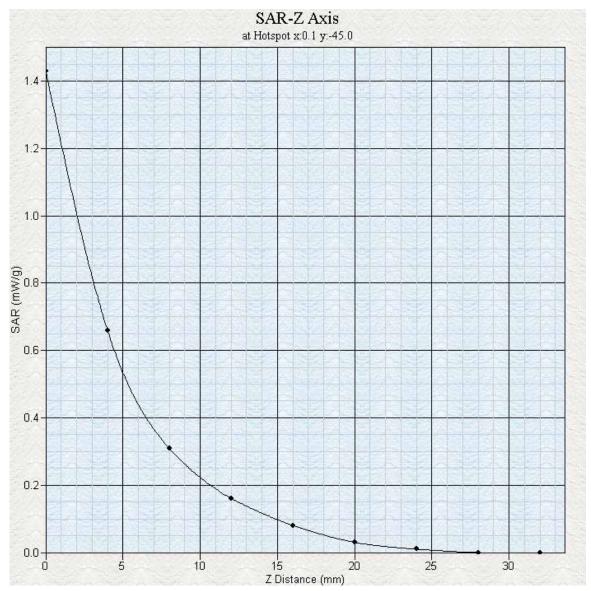
Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 35 of 99

Exposure A	Assessment	Measurement	Uncertainty
------------	------------	-------------	-------------

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.5	rectangular	•3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	•3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	•3	1	1	0.5	0.5
Integration Time	1.7	rectangular	•3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	•3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Dhanton and Catur							
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	•3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2


Page 36 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

AL-065

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 37 of 99

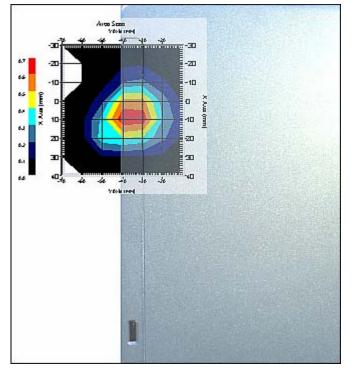
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 30-Sep-2004 : 30-Sep-2004 : 30-Sep-2004 01:25:54 PM : 30-Sep-2004 01:34:45 PM : 531 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 180 : 110 : 0 : Internal : 0.01
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	2450 MHz 1 3.3 1.20 1.20 1.20 µV/(V/sq.m) 95
Set-up Date :	1 Complete 30-Sep-2004 9:35:23 AM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories


Page 38 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Other Data	
DUT Position	: Touch
Separation	: 0
Channel	: High - 2462

1 gram SAR value : 0.54 W/kg Zoom Scan Peak SAR : 1.28

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories

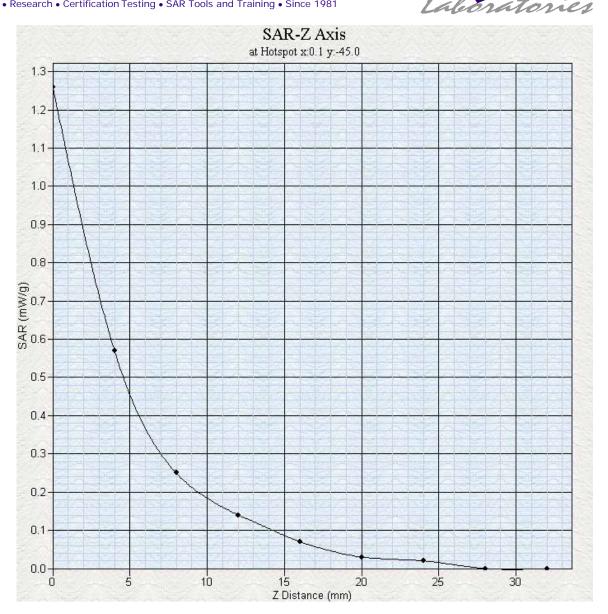
Page 39 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Exposure A	Assessment	Measurement	Uncertainty
------------	------------	-------------	-------------

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Duche Calibustics	2 5		1	1	1	2 5	2 5
Probe Calibration Axial Isotropy	3.5 3.7	normal rectangular	•3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	3.5	3.5
Hemispherical Isotropy	10.9	rectangular	•3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	•3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	•3	1	1	0.5	0.5
Integration Time	1.7	rectangular	•3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	•3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Dhanton and Catur							
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	•3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2



Page 40 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Consulting • Research • Certification Testing • SAR Tools and Training • Since 1981

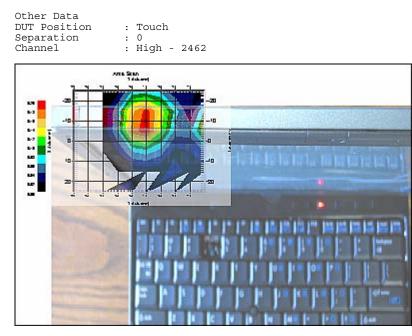
51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065

Page 41 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 30-Sep-2004 : 30-Sep-2004 : 30-Sep-2004 11:46:25 AM : 30-Sep-2004 11:55:52 AM : 567 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 110 : 180 : 0 : Internal : 0.14
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	04-0tm-2004 2450 MHz 1 3.3 1.20 1.20 1.20 μV/(V/sq. m) 95
Set-up Date :	1 Complete 30-Sep-2004 9:35:23 AM


Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This Certified

Page 42 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

1 gram SAR value : 0.14 W/kg Zoom Scan Peak SAR : 0.41

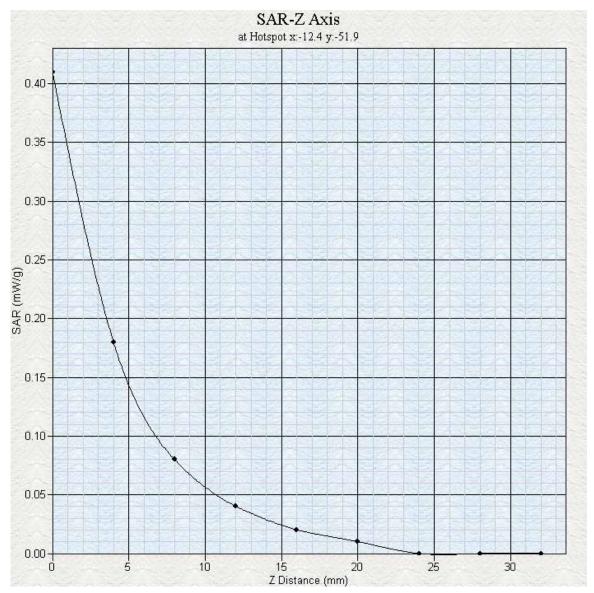
Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 43 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.5	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	•cp	●cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	•3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	•3	1	1	0.5	0.5
Integration Time	1.7	rectangular	•3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	•3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Phantom and Setup							
Phantom Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	•3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2


Certified

Page 44 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 45 of 99

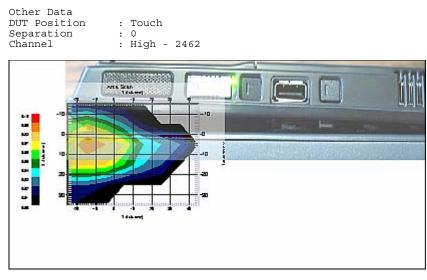
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 30-Sep-2004 : 30-Sep-2004 : 30-Sep-2004 10:13:27 AM : 30-Sep-2004 10:21:40 AM : 493 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 50 : 180 : 0 : Internal : 0.06
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	2450 MHz 1 3.3 1.20 1.20 1.20 µV/(V/sq.m) 95
Set-up Date :	1 Complete 30-Sep-2004 10:11:40 AM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories



Page 46 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

1 gram SAR value : 0.07 W/kg Zoom Scan Peak SAR : 0.17

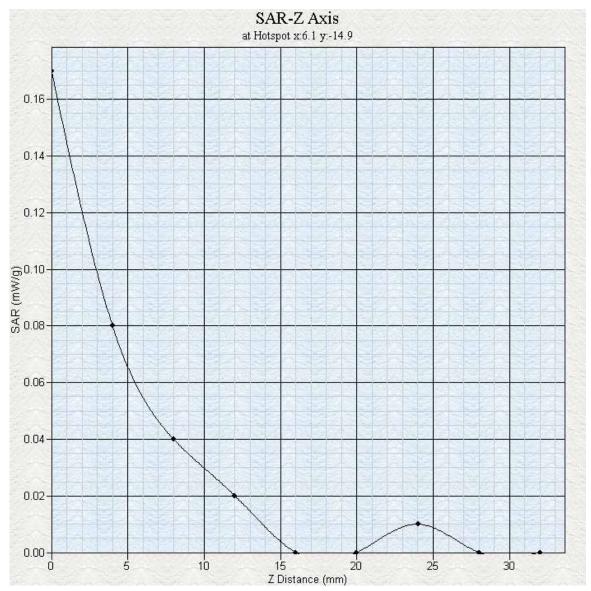
Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This SAR Certified Page 47 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Exposure Assessment	Measurement	Uncertainty
---------------------	-------------	-------------

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	•3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	•3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	•3	1	1	0.5	0.5
Integration Time	1.7	rectangular	•3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	•3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to	2.9	rectangular	•3	1	1	1.7	1.7
Phantom Shell Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2


51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 Thi

Page 48 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This SAR Certified Page 49 of 99

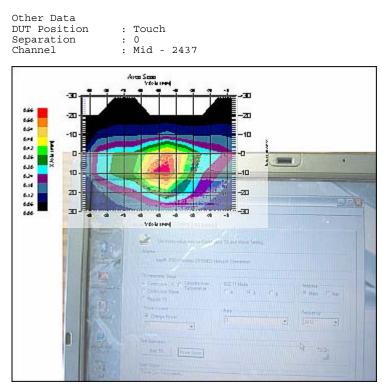
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 29-Sep-2004 : 29-Sep-2004 : 29-Sep-2004 04:44:07 PM : 29-Sep-2004 05:01:45 PM : 1058 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 115 : 157 : 0 : Internal : 0.12
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	2450 MHz 1 3.3 1.20 1.20 1.20 $\mu V/(V/sq.m)$ 95
Set-up Date :	1 Complete 29-Sep-2004 2:59:02 PM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories



Page 50 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

1 gram SAR value : 0.57 W/kg Zoom Scan Peak SAR : 1.46

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

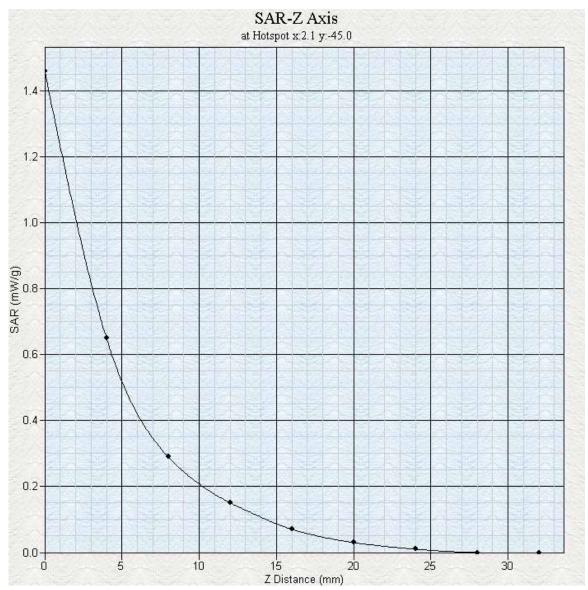
51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 51 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Exposure	Assessment	Measurement	Uncertainty
----------	------------	-------------	-------------

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	●cp	∙cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time RF Ambient	1.7 3.0	rectangular rectangular	•3 •3	1	1	1.0 1.7	1.0 1.7
Condition Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Phantom and Setup	1						
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	•3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2



Page 52 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 53 of 99

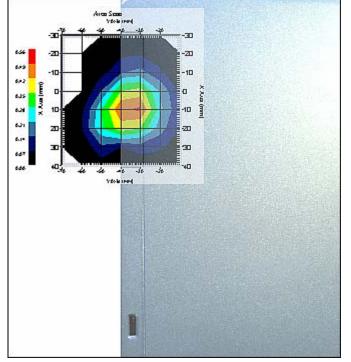
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 30-Sep-2004 : 30-Sep-2004 : 30-Sep-2004 12:18:28 PM : 30-Sep-2004 12:27:21 PM : 533 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 180 : 110 : 0 : Internal : 0.00
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	2450 MHz 1 3.3 1.20 1.20 1.20 $\mu V/(V/sq. m)$ 95
Set-up Date :	1 Complete 30-Sep-2004 9:35:23 AM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories


Page 54 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Other Data	
DUT Position	: Touch
Separation	: 0
Channel	: Mid - 2437

1 gram SAR value : 0.39 W/kg Zoom Scan Peak SAR : 1.03

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

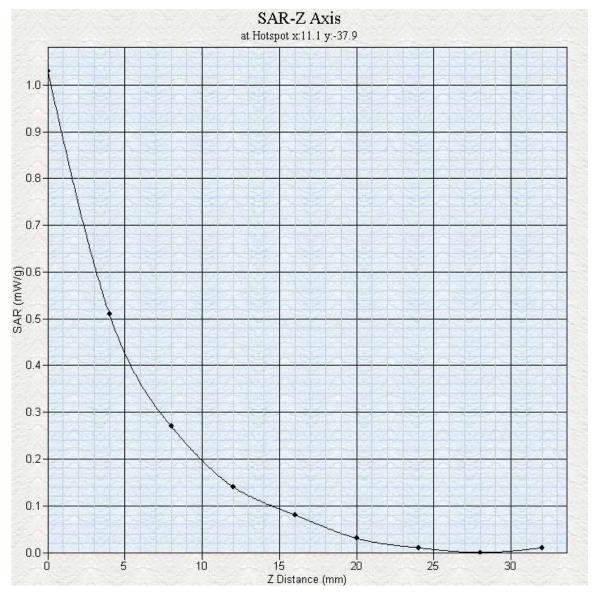
51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 55 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Exposure A	Assessment	Measurement	Uncertainty
------------	------------	-------------	-------------

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	•3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	•3	1	1	0.5	0.5
Integration Time RF Ambient	1.7 3.0	rectangular rectangular	•3 •3	1	1	1.0	1.0 1.7
Condition Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	•3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2



ID: CNTWM3B2915ABG

SAR Certified Page 56 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 57 of 99

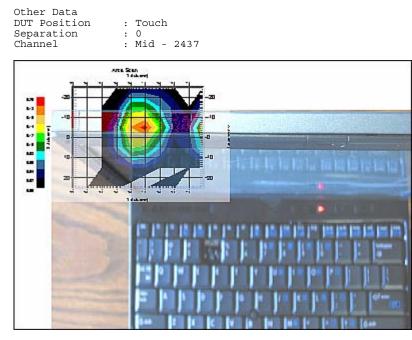
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 30-Sep-2004 : 30-Sep-2004 : 30-Sep-2004 12:00:47 PM : 30-Sep-2004 12:09:54 PM : 547 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 110 : 180 : 0 : Internal : 0.13
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	2450 MHz 1 3.3 1.20 1.20 1.20 µV/(V/sq.m) 95
Set-up Date :	1 Complete 30-Sep-2004 9:35:23 AM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories



Page 58 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

1 gram SAR value : 0.14 W/kg Zoom Scan Peak SAR : 0.32

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

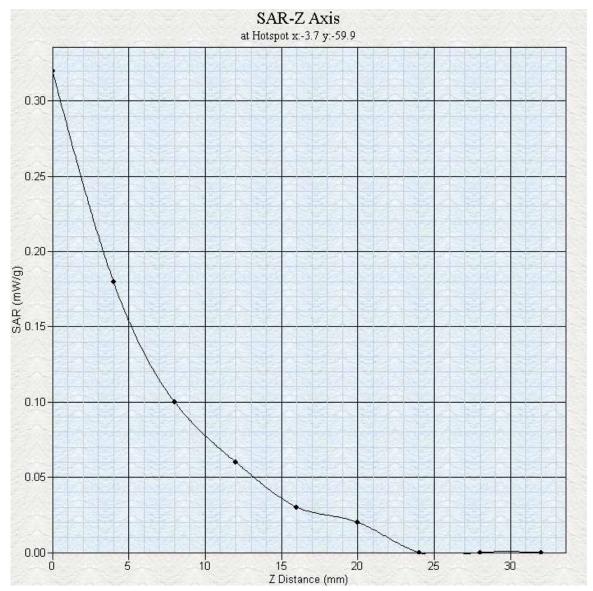
Page 59 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Exposure	Assessment	Measurement	Uncertainty
----------	------------	-------------	-------------

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	●cp	∙cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time RF Ambient	1.7 3.0	rectangular rectangular	•3 •3	1	1	1.0 1.7	1.0 1.7
Condition Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Phantom and Setup	1						
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	•3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories



Page 60 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

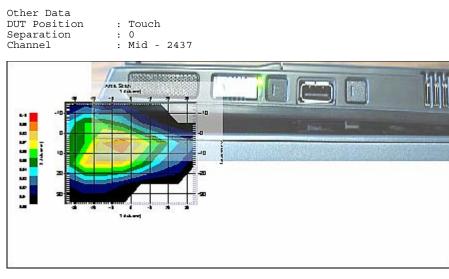
This report shall not be reproduced, except in full, without written approval of APREL Laboratories

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This SAR Certified Page 61 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date Starting Time End Time	: Chen : 30-Sep-2004 : 30-Sep-2004 : 30-Sep-2004 10:57:00 AM : 30-Sep-2004 11:05:23 AM : 503 secs
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 50 : 180 : 0 : Internal : 0.04
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	22 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	2450 MHz 1 3.3 1.20 1.20 1.20 µV/(V/sq.m) 95
Set-up Date :	1 Complete 30-Sep-2004 10:56:55 AM


Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This Certified

Page 62 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

1 gram SAR value : 0.06 W/kg Zoom Scan Peak SAR : 0.20

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This I

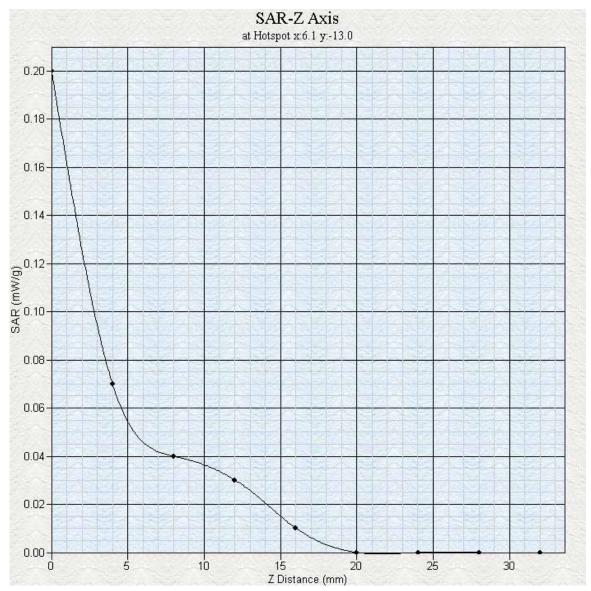
Page 63 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

Exposure Assessment	Measurement	Uncertainty
---------------------	-------------	-------------

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	•3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	•3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	•3	1	1	0.6	0.6
Linearity	4.7	rectangular	•3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	•3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	•3	1	1	0.5	0.5
Integration Time	1.7	rectangular	•3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	•3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	•3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to	2.9	rectangular	•3	1	1	1.7	1.7
Phantom Shell Extrapolation and Integration	3.7	rectangular	•3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty Drift of Output Power	0.0	rectangular	•3	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.2	rectangular	•3	0.7	0.5	0.1	0.1
Liquid Permittivity(targe t)	2.0	rectangular	•3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	4.7	rectangular	•3	0.6	0.5	1.6	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.5	18.2

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories



Page 64 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 65 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date	: 03-Oct-2004 03:04:45 PM : 03-Oct-2004 03:18:24 PM
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 110 : 180 : 0 : Internal : 0.00
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	23 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	5245 MHz 1 7.8 0.61 0.61 0.61 μV/(V/sq. m) 95
Set-up Date :	1 Complete 03-Oct-2004 2:30:51 PM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories

Page 66 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Other Data DUT Position Separation Channel	: Touch : 0 : Mid - 5260

1 gram SAR value : 0.11 W/kg Zoom Scan Peak SAR : 0.53

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories

Page 67 of 99

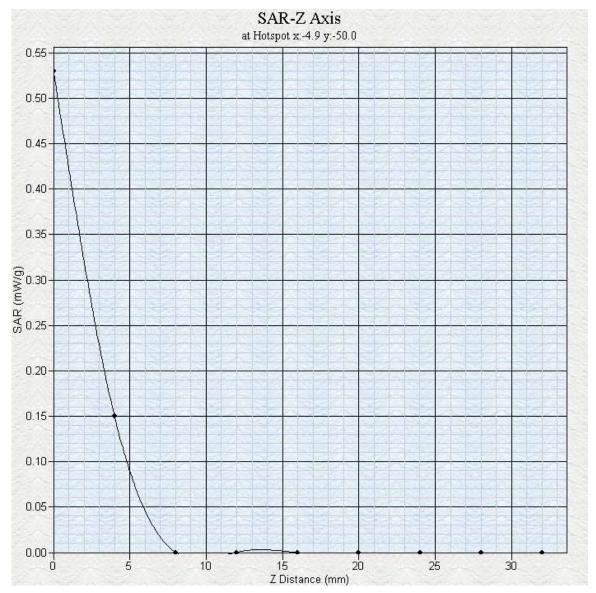
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	√3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	√3	√cp	√cp	4.4	4.4
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6
Linearity	4.7	rectangular	√3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	√3	1	1	0.5	0.5
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	√3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	√3	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	√3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.6	rectangular	√3	0.7	0.5	0.2	0.2
Liquid Permittivity(targe t)	2.0	rectangular	√3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	2.6	rectangular	√3	0.6	0.5	0.9	0.8
Combined Uncertainty		RSS				9.1	9.0
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.3	18.0

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG


Cer

Page 68 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

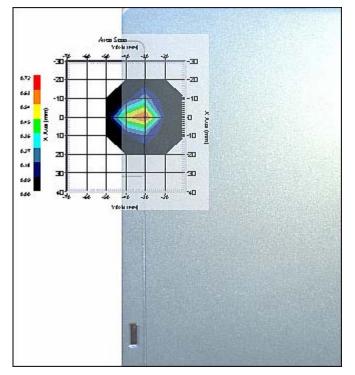
Page 69 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

SAR Test Report

Validation Date Measurement Date	: 04-Oct-2004 09:27:39 AM : 04-Oct-2004 09:43:07 AM
Serial No. Type Model Frequency Max. Transmit Pwr Drift Time Length Width Depth Antenna Type Power Drift-Start Power Drift-Finish	: 0 min(s) : 180 : 110 : 0 : Internal : 0.00
Type : Size : Serial No. : Location :	APREL-Uni Uni-Phantom 280 x 280 x 200 User Define Center Uni
Serial No. : Frequency : Calibration Date : Temperature : Ambient Temp. : Humidity : Epsilon : Sigma :	23 °C
Model : Type : Serial No. : Calibration Date : Frequency : Duty Cycle Factor: Conversion Factor:	5245 MHz 1 7.8 0.61 0.61 0.61 µV/(V/sq.m) 95
Set-up Date :	1 Complete 04-Oct-2004 4:03:14 PM

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG


51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories SAR Certified Page 70 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Other Data DUT Position : Touch Separation : 0 Channel : Mid - 5260

1 gram SAR value : 0.43 W/kg Zoom Scan Peak SAR : 1.87

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories

Page 71 of 99

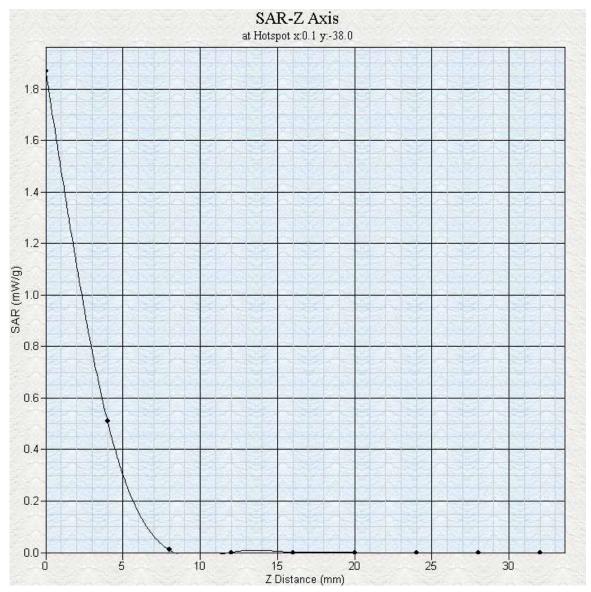
Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Toleranc e Value	Probability Distributio n	Diviso r	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertaint y (1-g)	Standard Uncertaint y (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	√3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	√3	√cp	√cp	4.4	4.4
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6
Linearity	4.7	rectangular	√3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	√3	1	1	0.5	0.5
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	√3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	√3	1	1	0.0	0.0
Phantom and Setup							
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0
Liquid Conductivity(targe t)	5.0	rectangular	√3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.	0.6	rectangular	√3	0.7	0.5	0.2	0.2
Liquid Permittivity(targe t)	2.0	rectangular	√3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.	2.6	rectangular	√3	0.6	0.5	0.9	0.8
Combined Uncertainty		RSS				9.1	9.0
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.3	18.0

Project number: ITLB-HP-5063 FCC ID: ID: CNTWM3B2915ABG


Ce

Page 72 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com

This report shall not be reproduced, except in full, without written approval of APREL Laboratories

51 Spectrum Way Nepean, Ontario Canada K2R 1E6 © 2004 APREL Laboratories AL-065 This

Page 73 of 99

Tel: (613) 820-2730 Fax: (613) 820-4161 Info@aprel.com www.aprel.com