

# **APPENDIX C: PROBE & DIPOLE ANTENNA CALIBRATION**

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Onetech (Dymstec)

Certificate No: EX3-3832\_Feb19

# **CALIBRATION CERTIFICATE**

Object EX3DV4 - SN:3832

Calibration procedure(s) QA CAL-01 v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date: February 27, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID               | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|------------------|-----------------------------------|------------------------|
| Power meter NRP            | SN, 104778       | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103244       | 04-Apr-18 (No. 217-02672)         | Apr-19                 |
| Power sensor NRP-Z91       | SN: 103245       | 04-Apr-18 (No. 217-02673)         | Apr-19                 |
| Reference 20 dB Attenuator | SN: S5277 (20x)  | 04-Apr-18 (No. 217-02682)         | Apr-19                 |
| DAE4                       | SN: 660          | 19-Dec-18 (No. DAE4-660_Dec18)    | Dec-19                 |
| Reference Probe ES3DV2     | SN: 3013         | 31-Dec-18 (No. ES3-3013_Dec18)    | Dec-19                 |
| Secondary Standards        | ID               | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B         | SN: GB41293874   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: MY41498087   | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 |
| Power sensor E4412A        | SN: 000110210    | 06-Apr-15 (in house check Jun-18) | In house check; Jun-20 |
| RF generator HP 8648C      | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 |
| Network Analyzer E8358A    | SN: US41080477   | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |
|                            |                  |                                   |                        |

Calibrated by:

Claudio Leubler

Claudio Leubler

Capproved by:

Katja Pokovic

Function

Signature

Signature

Signature

Signature

Technician

Issued: February 28, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization o o rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 b) IEC 62209-1, ""Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-

 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016

i) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide) NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below CanvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the Information gained by determining the NORMx (no uncertainty required).

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

**Basic Calibration Parameters** 

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (μV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.44     | 0.44     | 0.57     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>                      | 102.1    | 100.2    | 103.5    |           |

Calibration Possilts for Modulation Possons

| UID      | Communication System Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | A<br>dB | B<br>dBõV | С     | D<br>dB | VR<br>mV      | Max<br>dev. | Max<br>Unc <sup>E</sup><br>(k=2) |         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|-----------|-------|---------|---------------|-------------|----------------------------------|---------|
| 0        | CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X | 0.00    | 0.00      | 1.00  | 0.00    | 169.1         | ± 3.0 %     | ± 4.7 %                          |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 0.00    | 0.00      | 1.00  |         | 173.6         |             | 133.00                           |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 0.00    | 0.00      | 1.00  |         | 179.5         |             |                                  |         |
| 10352-   | Pulse Waveform (200Hz, 10%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X | 15.00   | 89.07     | 21.38 | 10.00   | 60.0          | ± 3.1 %     | ± 9.6 %                          |         |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 15.00   | 87.73     | 20.50 |         | 60.0<br>60.0  | 100         |                                  |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 15.00   | 89.44     | 21.20 |         |               |             |                                  |         |
| 10353-   | Pulse Waveform (200Hz, 20%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X | 15.00   | 89.92     | 20.56 | 6.99    | 80.0          | ± 1.4 %     | ± 9.6 %                          |         |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 15.00   | 88.37     | 19.36 | 1000    | 80.0          | 1111        |                                  |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 15.00   | 90.51     | 20.71 | 1 1     | 80.0          |             |                                  |         |
| 10354-   | Pulse Waveform (200Hz, 40%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X | 15.00   | 94.87     | 21.54 | 3.98    | 95.0          | ± 1.2 %     | ± 1.2 %                          | ± 9.6 % |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 15.00   | 88.99     | 17.91 |         | 95.0          |             | 1000                             |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 15.00   | 93.51     | 20.83 |         | 95.0          | 95.0        |                                  |         |
| 10355-   | Pulse Waveform (200Hz, 60%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X | 15.00   | 102.17    | 23.57 | 2.22    | 120.0         | ± 1.2 %     | ± 9.6 %                          |         |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 15.00   | 86.53     | 15.16 |         | 120.0         |             | jid.                             |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 15.00   | 98.09     | 21.67 | 4       | 120.0         |             |                                  |         |
| 10387-   | QPSK Waveform, 1 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X | 0.99    | 65.97     | 12.03 | 0.00    | 150.0 ± 2.9 ° | ± 2.9 %     | ± 9.6 %                          |         |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 0.55    | 60.00     | 7.27  | 1 10000 |               |             | 1200                             |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 0.80    | 63.14     | 10.24 |         | 150.0         |             | 1.5                              |         |
| 10388-   | QPSK Waveform, 10 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X | 2.55    | 70.66     | 17.17 | 0.00    | 150.0         | ± 1.3 %     | ± 9.6 %                          |         |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 2.03    | 66.91     | 14.93 | 11:40   | 150.0         |             |                                  |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 2.35    | 69.06     | 16.18 |         | 150.0         |             | 111                              |         |
| 10396-   | 64-QAM Waveform, 100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X | 3.63    | 73.67     | 20.23 | 3.01    | 150.0         | ±0.7%       | ± 9.6 %                          |         |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 2.94    | 69.39     | 18.20 |         | 150.0         |             | 1.0                              |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 3.58    | 73.48     | 19.93 |         | 150.0         |             |                                  |         |
| 10399-   | 64-QAM Waveform, 40 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X | 3.66    | 68.13     | 16.41 | 0.00    | 150,0         | ± 2.3 %     | ± 9.6 %                          |         |
| AAA      | The state of the s | Y | 3.40    | 66.69     | 15.46 | 1 30-1  | 150.0         |             | 1                                |         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 3.44    | 67.02     | 15.69 |         | 150.0         |             |                                  |         |
| 10414-   | WLAN CCDF, 64-QAM, 40MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X | 4.96    | 66.11     | 15.86 | 0.00    | 150.0         | ± 4.4 %     | ± 9.6 %                          |         |
| AAA      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 4.79    | 65.46     | 15.43 |         | 150.0         |             | - C. C. (3)                      |         |
| C M AC 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z | 4.77    | 65.41     | 15.36 |         | 150.0         |             |                                  |         |

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3832\_Feb19 Page 3 of 20

<sup>&</sup>lt;sup>A</sup> The uncertainties of Norm X,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6), <sup>B</sup> Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

# **Sensor Model Parameters**

|   | C1<br>fF | C2<br>fF | α<br>V-1 | T1<br>ms.V <sup>-2</sup> | T2<br>ms.V <sup>-1</sup> | T3<br>ms | T4<br>V <sup>-2</sup> | T5<br>V <sup>-1</sup> | Т6   |
|---|----------|----------|----------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------|
| X | 49.2     | 363.41   | 35.01    | 18.01                    | 0.76                     | 5.08     | 1.15                  | 0.40                  | 1.01 |
| Υ | 44.4     | 340.08   | 37.15    | 13.78                    | 0.85                     | 5.08     | 0.00                  | 0.61                  | 1.01 |
| Z | 47.5     | 346.99   | 34.23    | 20.04                    | 0.38                     | 5.10     | 1.43                  | 0.31                  | 1.01 |

#### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 55.8       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Certificate No: EX3-3832\_Feb19 Page 4 of 20

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 150                  | 52.3                       | 0.76                    | 11.50   | 11.50   | 11.50   | 0.00               | 1.00                       | ± 13.3 %     |
| 300                  | 45.3                       | 0.87                    | 10.87   | 10.87   | 10.87   | 0.07               | 1.30                       | ± 13.3 %     |
| 450                  | 43.5                       | 0.87                    | 10.21   | 10.21   | 10.21   | 0.15               | 1.30                       | ± 13.3 %     |
| 750                  | 41.9                       | 0.89                    | 9.97    | 9.97    | 9.97    | 0.52               | 0.80                       | ± 12.0 %     |
| 835                  | 41.5                       | 0.90                    | 9.19    | 9.19    | 9.19    | 0.54               | 0.85                       | ± 12.0 %     |
| 900                  | 41.5                       | 0.97                    | 9.05    | 9.05    | 9.05    | 0.40               | 0.95                       | ± 12.0 %     |
| 1750                 | 40.1                       | 1.37                    | 8.10    | 8.10    | 8.10    | 0.36               | 0.85                       | ± 12.0 %     |
| 1950                 | 40.0                       | 1.40                    | 7.78    | 7.78    | 7.78    | 0.30               | 0.85                       | ± 12.0 %     |
| 2300                 | 39.5                       | 1.67                    | 7.37    | 7.37    | 7.37    | 0.37               | 0.85                       | ± 12.0 %     |
| 2450                 | 39.2                       | 1.80                    | 7.11    | 7.11    | 7.11    | 0.34               | 0.88                       | ± 12.0 %     |
| 2600                 | 39.0                       | 1.96                    | 7.00    | 7.00    | 7.00    | 0.41               | 0.85                       | ± 12.0 %     |
| 3500                 | 37.9                       | 2.91                    | 6.80    | 6.80    | 6.80    | 0.23               | 1.20                       | ± 13.1 %     |
| 3700                 | 37.7                       | 3.12                    | 6.60    | 6.60    | 6.60    | 0.23               | 1.20                       | ± 13.1 %     |
| 5200                 | 36.0                       | 4.66                    | 5.18    | 5.18    | 5.18    | 0.40               | 1.80                       | ± 13.1 %     |
| 5300                 | 35.9                       | 4.76                    | 5.05    | 5.05    | 5.05    | 0.40               | 1.80                       | ± 13.1 %     |
| 5500                 | 35.6                       | 4.96                    | 4.71    | 4.71    | 4.71    | 0.40               | 1.80                       | ± 13.1 %     |
| 5600                 | 35.5                       | 5.07                    | 4.59    | 4.59    | 4.59    | 0.40               | 1.80                       | ± 13.1 %     |
| 5800                 | 35.3                       | 5.27                    | 4.67    | 4.67    | 4.67    | 0.40               | 1.80                       | ± 13.1 %     |

Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.

Certificate No: EX3-3832\_Feb19

<sup>&</sup>lt;sup>6</sup> At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

<sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

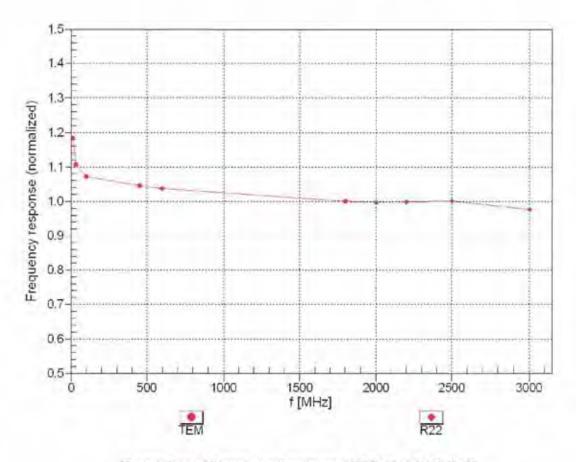
Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

#### Calibration Parameter Determined in Body Tissue Simulating Media

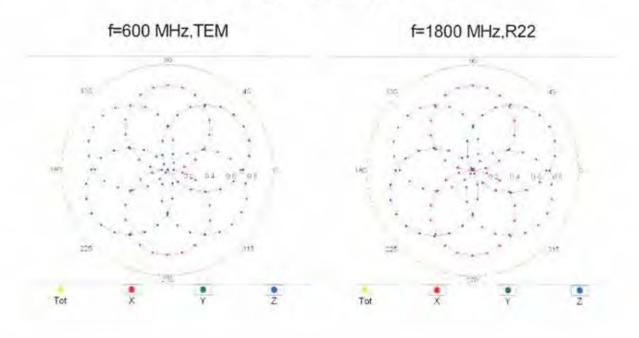
| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unc<br>(k=2) |
|----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------|
| 150                  | 61.9                       | 0.80                    | 11.05   | 11.05   | 11.05   | 0.00               | 1.00                       | ± 13.3 %     |
| 300                  | 58.2                       | 0.92                    | 10.61   | 10.61   | 10.61   | 0.04               | 1.30                       | ± 13.3 %     |
| 450                  | 56.7                       | 0.94                    | 10.46   | 10.46   | 10.46   | 0.09               | 1.30                       | ± 13.3 %     |
| 750                  | 55.5                       | 0.96                    | 9.36    | 9.36    | 9.36    | 0.54               | 0.80                       | ± 12.0 %     |
| 835                  | 55.2                       | 0.97                    | 9.13    | 9.13    | 9.13    | 0.48               | 0.81                       | ± 12.0 %     |
| 900                  | 55.0                       | 1.05                    | 8.93    | 8.93    | 8.93    | 0.44               | 0.88                       | ± 12.0 %     |
| 1750                 | 53.4                       | 1.49                    | 7.62    | 7.62    | 7.62    | 0.42               | 0.85                       | ± 12.0 %     |
| 1950                 | 53.3                       | 1.52                    | 7.57    | 7.57    | 7.57    | 0.32               | 0.99                       | ± 12.0 %     |
| 2300                 | 52.9                       | 1.81                    | 7.23    | 7.23    | 7.23    | 0.43               | 0.86                       | ± 12.0 %     |
| 2450                 | 52.7                       | 1.95                    | 7.19    | 7.19    | 7.19    | 0.42               | 0.89                       | ± 12.0 %     |
| 2600                 | 52.5                       | 2.16                    | 7.14    | 7.14    | 7.14    | 0.31               | 0.90                       | ± 12.0 %     |
| 3500                 | 51.3                       | 3.31                    | 6.56    | 6.56    | 6.56    | 0.25               | 1.25                       | ± 13.1 %     |
| 3700                 | 51.0                       | 3.55                    | 6.29    | 6.29    | 6.29    | 0.25               | 1.25                       | ± 13.1 %     |
| 5200                 | 49.0                       | 5.30                    | 4.69    | 4.69    | 4.69    | 0.50               | 1.90                       | ± 13.1 %     |
| 5300                 | 48.9                       | 5.42                    | 4.54    | 4.54    | 4.54    | 0.50               | 1.90                       | ± 13.1 %     |
| 5500                 | 48.6                       | 5.65                    | 4.14    | 4.14    | 4.14    | 0.50               | 1.90                       | ± 13.1 %     |
| 5600                 | 48.5                       | 5.77                    | 4.04    | 4.04    | 4.04    | 0.50               | 1.90                       | ± 13.1 %     |
| 5800                 | 48.2                       | 6.00                    | 4.12    | 4.12    | 4.12    | 0.50               | 1.90                       | ± 13.1 %     |

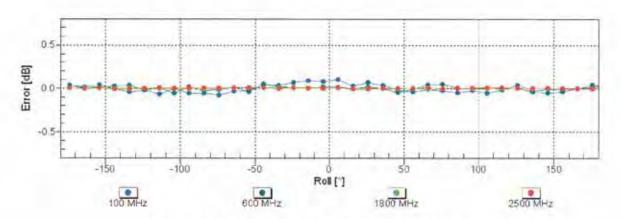
 $<sup>^{\</sup>rm C}$  Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to


Certificate No: EX3-3832\_Feb19

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

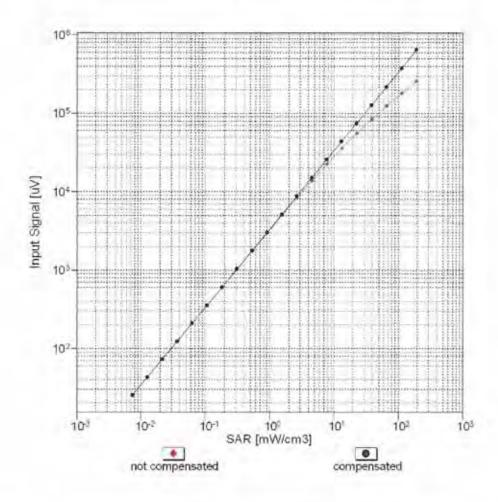
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is

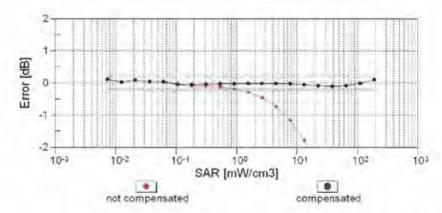

<sup>&</sup>lt;sup>6</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



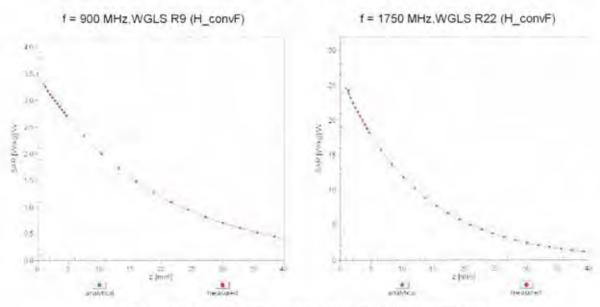
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$

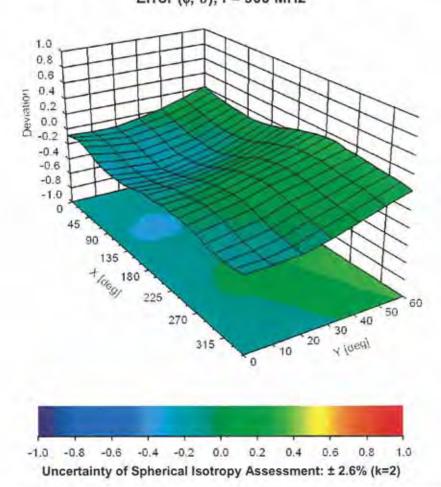





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)

# **Conversion Factor Assessment**



Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz



# Appendix: Modulation Calibration Parameters

| UID   | Rev | Communication System Name                                                                     | Group     | PAR<br>(dB)  | Unc <sup>E</sup><br>(k=2) |
|-------|-----|-----------------------------------------------------------------------------------------------|-----------|--------------|---------------------------|
| 0     |     | CW                                                                                            | CW        | 0.00         | ±4.79                     |
| 10010 | CAA | SAR Validation (Square, 100ms, 10ms)                                                          | Test      | 10.00        | ± 9.6 9                   |
| 10011 | CAB | UMTS-FDD (WCDMA)                                                                              | WCDMA     | 2.91         | ± 9.6                     |
| 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)                                                      | WLAN      | 1.87         | ± 9.6                     |
| 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)                                                 | WLAN      | 9.46         | ± 9.6                     |
| 10021 | DAC | GSM-FDD (TDMA, GMSK)                                                                          | GSM       | 9.39         | ± 9.6 9                   |
| 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0)                                                                   | GSM       | 9.57         | ±9.69                     |
| 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1)                                                                 | GSM       | 6.56         | ± 9.6 9                   |
| 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0)                                                                   | GSM       | 12.62        | ± 9.6 9                   |
| 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1)                                                                 | GSM       | 9.55         | ± 9.6 9                   |
| 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2)                                                               | GSM       | 4.80         | ± 9.6 9                   |
| 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)                                                             | GSM       | 3.55         | ± 9.6 9                   |
| 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2)                                                               | GSM       | 7.78         | ± 9.6 9                   |
| 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1)                                                           | Bluetooth | 5.30         | ± 9.6 %                   |
| 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3)                                                           | Bluetooth | 1.87         | ± 9.6 9                   |
| 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5)                                                           | Bluetooth | 1.16         | ± 9.6 %                   |
| 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)                                                     | Bluetooth | 7.74         | ± 9.6 %                   |
| 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)                                                     | Bluetooth | 4.53         | ± 9.6 %                   |
| 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)                                                     | Bluetooth | 3.83         | ± 9.6 %                   |
| 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1)                                                         | Bluetooth | 8.01         | ± 9.6 %                   |
| 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3)                                                         | Bluetooth | 4.77         | ± 9.6 9                   |
| 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5)                                                         | Bluetooth | 4.10         | ± 9.6 %                   |
| 10039 | CAB | CDMA2000 (1xRTT, RC1)                                                                         | CDMA2000  | 4.57         | ± 9.6 %                   |
| 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)                                           | AMPS      | 7.78         | ± 9.6 %                   |
| 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM)                                                              | AMPS      | 0.00         | ± 9.6 9                   |
| 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)                                                     | DECT      | 13.80        | ± 9.6 9                   |
| 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)                                                   | DECT      | 10.79        | ± 9.6 %                   |
| 10056 | CAA | UMTS-TDD (TD-SCDMA, 1,28 Mcps)                                                                | TD-SCDMA  | 11.01        | ± 9.6 %                   |
| 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)                                                             | GSM       | 6.52         | ± 9.6 %                   |
| 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)                                                      | WLAN      | 2.12         | ± 9.6 %                   |
| 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)                                                    | WLAN      | 2.83         | ± 9.6 %                   |
| 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)                                                     | WLAN      | 3.60         | ± 9.6 %                   |
| 10062 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)                                                      | WLAN      | 8.68         | ± 9.6 %                   |
| 10063 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)                                                      | WLAN      |              |                           |
| 10064 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)                                                     | WLAN      | 8.63<br>9.09 | ± 9.6 %                   |
| 10065 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)                                                     | WLAN      |              | ± 9.6 %                   |
| 10066 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)                                                     | WLAN      | 9.00         | ± 9.6 %                   |
| 10067 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)                                                     | WLAN      |              |                           |
| 10068 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)                                                     |           | 10.12        | ±9.6 %                    |
| 10069 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 46 Mbps)                                                     | WLAN      | 10.24        | ±9.69                     |
| 10003 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)                                                 | WLAN      | 10.56        | ± 9.6 %                   |
| 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)                                                 | WLAN      | 9.83         | ± 9.6 %                   |
| 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)                                                | WLAN      | 9.62         | ± 9.6 %                   |
| 10073 | CAB |                                                                                               | WLAN      | 9.94         | ± 9.6 %                   |
| 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN      | 10.30        | ± 9.6 %                   |
| 10075 | CAB |                                                                                               | WLAN      | 10.77        | ± 9.6 %                   |
| 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN      | 10.94        | ± 9.6 %                   |
| 10081 | CAB | CDMA2000 (1xRTT, RC3)                                                                         | WLAN      | 11.00        | ±9.6%                     |
| 10082 | 1   |                                                                                               | CDMA2000  | 3.97         | ± 9.6 %                   |
|       | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)                                           | AMPS      | 4.77         | ±9.6 %                    |
| 0090  | DAC | GPRS-FDD (HSDRA)                                                                              | GSM       | 6.56         | ± 9.6 %                   |
|       | CAB | UMTS-FDD (HSDPA)                                                                              | WCDMA     | 3.98         | ± 9.6 %                   |
| 10098 | CAB | UMTS-FDD (HSUPA, Subtest 2)                                                                   | WCDMA     | 3.98         | ±9.6%                     |
| 0099  | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4)                                                                 | GSM       | 9.55         | ± 9.6 %                   |
| 10100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)                                                      | LTE-FDD   | 5.67         | ± 9.6 %                   |
| 0101  | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)                                                    | LTE-FDD   | 6.42         | ± 9.6 %                   |
| 0102  | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)                                                    | LTE-FDD   | 6.60         | ± 9.6 %                   |
| 10103 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)                                                      | LTE-TDD   | 9.29         | ± 9.6 %                   |
| 10104 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)                                                    | LTE-TDD   | 9.97         | ± 9.6 %                   |
| 10105 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)                                                    | LTE-TDD   | 10.01        | ± 9.6 %                   |
| 10108 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)                                                      | LTE-FDD   | 5.80         | ± 9.6 %                   |

| 10109 | CAG       | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)           | LTE-FDD | 6.43  | ± 9.6 %  |
|-------|-----------|------------------------------------------------------|---------|-------|----------|
| 10110 | CAG       | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)              | LTE-FDD | 5.75  | ± 9.6 %  |
| 10111 | CAG       | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)            | LTE-FDD | 6.44  | ± 9.6 %  |
| 10112 | CAG       | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)           | LTE-FDD | 6.59  | ± 9.6 %  |
| 10113 | CAG       | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)            | LTE-FDD | 6.62  | ± 9.6 %  |
| 10114 | CAC       | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)        | WLAN    | 8.10  | ± 9.6 %  |
| 10115 | CAC       | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)        | WLAN    | 8.46  | ± 9.6 %  |
| 10116 | CAC       | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)       | WLAN    | 8.15  | ± 9.6 %  |
| 10117 | CAC       | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)             | WLAN    | 8.07  | ± 9.6 %  |
| 10118 | CAC       | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)             | WLAN    | 8.59  | ± 9.6 %  |
| 10119 | CAC       | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)            | WLAN    | 8.13  | ± 9.6 %  |
| 10140 | CAE       | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)           | LTE-FDD | 6.49  | ± 9.6 %  |
| 10141 | CAE       | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)           | LTE-FDD | 6.53  | ± 9.6 %  |
| 10142 | CAE       | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)              | LTE-FDD | 5.73  | ± 9.6 %  |
| 10143 | CAE       | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)            | LTE-FDD | 6.35  | ± 9.6 %  |
| 10144 | CAE       | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)            | LTE-FDD | 6.65  | ± 9.6 %  |
| 10145 | CAF       | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)            | LTE-FDD | 5.76  | ± 9.6 %  |
| 10146 | CAF       | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)          | LTE-FDD | 6.41  | ± 9.6 %  |
| 10147 | CAF       | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)          | LTE-FDD | 6.72  | ±9.6 %   |
| 10149 | CAE       | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)            | LTE-FDD | 6.42  | ± 9.6 %  |
| 10150 | CAE       | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)            | LTE-FDD | 6.60  | ± 9.6 %  |
| 10151 | CAG       | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)              | LTE-TDD | 9.28  | ± 9.6 %  |
| 10152 | CAG       | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)            | LTE-TDD | 9.92  | ± 9.6 %  |
| 10153 | CAG       | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)            | LTE-TDD | 10.05 | ± 9.6 %  |
| 10154 | CAG       | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)              | LTE-FDD | 5.75  | ± 9.6 %  |
| 10155 | CAG       | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)            | LTE-FDD | 6.43  | ± 9.6 %  |
| 10156 | CAG       | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)               | LTE-FDD | 5.79  | ± 9.6 %  |
| 10157 | CAG       | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)             | LTE-FDD | 6.49  | ± 9.6 %  |
| 10158 | CAG       | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)            | LTE-FDD | 6.62  | ± 9.6 %  |
| 10159 | CAG       | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)             | LTE-FDD | 6.56  | ± 9.6 %  |
| 10160 | CAE       | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)              | LTE-FDD | 5.82  | ± 9.6 %  |
| 10161 | CAE       | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)            | LTE-FDD | 6.43  | ± 9.6 %  |
| 10162 | CAE       | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)            | LTE-FDD | 6.58  | ± 9.6 %  |
| 10166 | CAF       | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)             | LTE-FDD | 5.46  | ± 9.6 %  |
| 10167 | CAF       | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)           | LTE-FDD | 6.21  | ± 9.6 %  |
| 10168 | CAF       | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)           | LTE-FDD | 6.79  | ± 9.6 %  |
| 10169 | CAE       | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)                | LTE-FDD | 5.73  | ± 9.6 %  |
| 10170 | CAE       | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)              | LTE-FDD | 6.52  | ± 9.6 %  |
| 10171 | AAE       | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)              | LTE-FDD | 6.49  | ± 9.6 %  |
| 10172 | CAG       | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)                | LTE-TDD | 9.21  | ± 9.6 %  |
| 10173 | CAG       | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)              | LTE-TDD | 9.48  | ± 9.6 %  |
| 10174 | CAG       | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)              | LTE-TDD | 10.25 | ± 9.6 %  |
| 10175 | CAG       | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)                | LTE-FDD | 5.72  | ± 9.6 %  |
| 10176 | CAG       | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)              | LTE-FDD | 6.52  | ± 9.6 %  |
| 10177 | CAI       | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)                 | LTE-FDD | 5.73  | ± 9.6 %  |
| 10178 | CAG       | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)               | LTE-FDD | 6.52  | ± 9.6 %  |
| 10179 | CAG       | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)              | LTE-FDD | 6.50  | ± 9.6 %  |
| 10180 | CAG       | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)               | LTE-FDD | 6.50  | ± 9.6 %  |
| 10181 | CAE       | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)                | LTE-FDD | 5.72  | ± 9.6 %  |
| 10182 | CAE       | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)              | LTE-FDD | 6.52  | ± 9.6 %  |
| 10183 | AAD       | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)              | LTE-FDD | 6.50  | ± 9.6 %  |
| 10184 | CAE       | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)                 | LTE-FDD | 5.73  | ± 9.6 %  |
| 10185 | CAE       | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)               | LTE-FDD | 6.51  | ± 9.6 %  |
| 10186 | AAE       | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)               | LTE-FDD | 6.50  | ± 9.6 %  |
| 10187 | CAF       | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)               | LTE-FDD | 5.73  | ± 9.6 %  |
| 10188 | CAF       | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)             | LTE-FDD | 6.52  | ± 9.6 %  |
| 10189 | AAF       | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)             | LTE-FDD | 6.50  | ± 9.6 %  |
| 10193 | CAC       | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)         | WLAN    | 8.09  | ± 9.6 %  |
| 10193 | CAC       | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)        | WLAN    | 8.12  | ± 9.6 %  |
| 10195 | CAC       | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)        | WLAN    | 8.21  | ± 9.6 %  |
| 10195 | CAC       | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)              | WLAN    | 8.10  | ± 9.6 %  |
| 10196 | CAC       | IEEE 802.1111 (HT Mixed, 0.3 Mbps, BFSK)             | WLAN    | 8.13  | ± 9.6 %  |
| 10197 | CAC       | IEEE 802.1111 (HT Mixed, 39 Mbps, 10-QAM)            | WLAN    | 8.27  | ± 9.6 %  |
|       | I LIMILIA | ILLE OUZ. I III (I II IVIIAGU, OU IVIDUS, OH"Q/\IVI) | VVLAIN  | 0.21  | ± 0.0 /0 |

| 10220          | CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)                                         | WLAN     | 8.13  | ± 9.6 %            |
|----------------|-----|------------------------------------------------------------------------------------|----------|-------|--------------------|
| 10221          | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)                                         | WLAN     | 8.27  | ± 9.6 %            |
| 10222          | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)                                             | WLAN     | 8.06  | ± 9.6 %            |
| 10223          | CAC | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)                                           | WLAN     | 8.48  | ± 9.6 %            |
| 10225          | CAB | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) UMTS-FDD (HSPA+)                         | WLAN     | 8.08  | ± 9.6 %            |
| 10226          | CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)                                           | WCDMA    | 5.97  | ± 9.6 %            |
| 10227          | CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)                                           | LTE-TDD  | 9.49  | ± 9.6 %            |
| 10228          | CAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)                                             | LTE-TDD  | 10.26 | ± 9.6 %            |
| 10229          | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)                                             | LTE-TDD  | 9.22  | ± 9.6 %<br>± 9.6 % |
| 10230          | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)                                             | LTE-TDD  | 10.25 | ± 9.6 %            |
| 10231          | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK)                                               | LTE-TDD  | 9.19  | ± 9.6 %            |
| 10232          | CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)                                             | LTE-TDD  | 9.48  | ± 9.6 %            |
| 10233          | CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)                                             | LTE-TDD  | 10.25 | ± 9.6 %            |
| 10234          | CAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)                                               | LTE-TDD  | 9.21  | ± 9.6 %            |
| 10235          | CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)                                            | LTE-TDD  | 9.48  | ± 9.6 %            |
| 10236          | CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)                                            | LTE-TDD  | 10.25 | ± 9.6 %            |
| 10237          | CAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK)                                              | LTE-TDD  | 9.21  | ± 9.6 %            |
| 10238          | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)                                            | LTE-TDD  | 9.48  | ± 9.6 %            |
| 10239          | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)                                            | LTE-TDD  | 10.25 | ± 9.6 %            |
| 10240          | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)                                              | LTE-TDD  | 9.21  | ± 9.6 %            |
| 10241          | CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)                                         | LTE-TDD  | 9.82  | ± 9.6 %            |
| 10242          | CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)                                         | LTE-TDD  | 9.86  | ± 9.6 %            |
| 10243<br>10244 | CAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)                                           | LTE-TDD  | 9.46  | ±9.6 %             |
| 10244          | CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)                                           | LTE-TDD  | 10.06 | ± 9.6 %            |
| 10245          | CAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)    | LTE-TDD  | 10.06 | ± 9.6 %            |
| 10246          | CAF | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)  LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)   | LTE-TDD  | 9.30  | ± 9.6 %            |
| 10248          | CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)                                           | LTE-TDD  | 9.91  | ± 9.6 %            |
| 10249          | CAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)                                             | LTE-TDD  | 9.29  | ± 9.6 %            |
| 10250          | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)                                          | LTE-TDD  | 9.81  | ± 9.6 %            |
| 10251          | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)                                          | LTE-TDD  | 10.17 | ± 9.6 %            |
| 10252          | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)                                            | LTE-TDD  | 9.24  | ± 9.6 %            |
| 10253          | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)                                          | LTE-TDD  | 9.90  | ± 9.6 %            |
| 10254          | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)                                          | LTE-TDD  | 10.14 | ± 9.6 %            |
| 10255          | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)                                            | LTE-TDD  | 9.20  | ± 9.6 %            |
| 10256          | CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)                                        | LTE-TDD  | 9.96  | ± 9.6 %            |
| 10257          | CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)                                        | LTE-TDD  | 10.08 | ± 9.6 %            |
| 10258          | CAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)                                          | LTE-TDD  | 9.34  | ± 9.6 %            |
| 10259          | CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)                                          | LTE-TDD  | 9.98  | ± 9.6 %            |
| 10260          | CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)                                          | LTE-TDD  | 9.97  | ± 9.6 %            |
| 10261          | CAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)                                            | LTE-TDD  | 9.24  | ± 9.6 %            |
| 10262          | CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)                                          | LTE-TDD  | 9.83  | ± 9.6 %            |
| 10263          | CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)                                          | LTE-TDD  | 10.16 | ± 9.6 %            |
| 10264          | CAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD  | 9.23  | ± 9.6 %            |
| 10266          | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)                                         | LTE-TOD  | 9.92  | ± 9.6 %            |
| 10267          | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)                                         | LTE-TDD  | 10.07 | ± 9.6 %            |
| 10268          | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)                                         | LTE-TOD  | 9.30  | ± 9.6 %            |
| 10269          | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)                                         | LTE-TOD  | 10.06 | ± 9.6 %            |
| 10270          | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)                                           | LTE-TDD  | 9.58  | ± 9.6 %            |
| 10274          | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)                                          | WCDMA    | 4.87  | ± 9.6 %            |
| 10275          | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)                                           | WCDMA    | 3.96  | ± 9.6 %            |
| 10277          | CAA | PHS (QPSK)                                                                         | PHS      | 11.81 | ± 9.6 %            |
| 10278          | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5)                                                 | PHS      | 11.81 | ± 9.6 %            |
| 10279          | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38)                                                | PHS      | 12.18 | ± 9.6 %            |
| 10290          | AAB | CDMA2000, RC1, SO55, Full Rate                                                     | CDMA2000 | 3.91  | ±9.6 %             |
| 10291          | AAB | CDMA2000, RC3, SO55, Full Rate                                                     | CDMA2000 | 3.46  | ± 9.6 %            |
| 10292          | AAB | CDMA2000, RC3, SO32, Full Rate                                                     | CDMA2000 | 3.39  | ±9.6 %             |
| 10293          | AAB | CDMA2000, RC3, SO3, Full Rate                                                      | CDMA2000 | 3.50  | ± 9.6 %            |
| 10295          | AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr.                                              | CDMA2000 | 12.49 | ±9.6 %             |
| 10297          | AAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)                                            | LTE-FDD  | 5.81  | ± 9.6 %            |
| 10298          | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)                                             | LTE-FDD  | 5.72  | ± 9.6 %            |
| 10299          | MMU | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)                                           | LTE-FDD  | 6.39  | ± 9.6 %            |

February 27, 2019

| 10300 | AAD  | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)                                           | LTE-FDD  | 6.60  | ± 9.6 % |
|-------|------|------------------------------------------------------------------------------------|----------|-------|---------|
| 10301 | AAA  | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)                                 | WiMAX    | 12.03 | ± 9.6 % |
| 10302 | AAA  | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)                 | WiMAX    | 12.57 | ± 9.6 % |
| 10303 | AAA  | IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)                                | WiMAX    | 12.52 | ± 9.6 % |
| 10304 | AAA  | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)                                | WiMAX    | 11.86 | ±9.6 %  |
| 10305 | AAA  | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)                   | WiMAX    | 15.24 | ± 9.6 % |
| 10306 | AAA  | IÉEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)                   | WiMAX    | 14.67 | ± 9.6 % |
| 10307 | AAA  | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)                    | WiMAX    | 14.49 | ± 9.6 % |
| 10308 | AAA  | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)                               | WiMAX    | 14.46 | ± 9.6 % |
| 10309 | AAA  | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18 symbols)                | WiMAX    | 14.58 | ± 9.6 % |
| 10310 | AAA  | IÉEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)                 | WiMAX    | 14.57 | ± 9.6 % |
| 10311 | AAD  | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)                                           | LTE-FDD  | 6.06  | ± 9.6 % |
| 10313 | AAA  | IDEN 1:3                                                                           | IDEN     | 10.51 | ± 9.6 % |
| 10314 | AAA  | IDEN 1:6                                                                           | iDEN     | 13.48 | ±9.6 %  |
| 10315 | AAB  | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)                          | WLAN     | 1.71  | ± 9.6 % |
| 10316 | AAB  | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)                      | WLAN     | 8.36  | ±9.6 %  |
| 10317 | AAC  | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)                            | WLAN     | 8.36  | ±9.6 %  |
| 10352 | AAA  | Pulse Waveform (200Hz, 10%)                                                        | Generic  | 10.00 | ±9.6 %  |
| 10353 | AAA  | Pulse Waveform (200Hz, 20%)                                                        | Generic  | 6.99  | ± 9.6 % |
| 10354 | AAA  | Pulse Waveform (200Hz, 40%)                                                        | Generic  | 3.98  | ±9.6%   |
| 10355 | AAA  | Pulse Waveform (200Hz, 60%)                                                        | Generic  | 2.22  | ±9.6 %  |
| 10356 | AAA  | Pulse Waveform (200Hz, 80%)                                                        | Generic  | 0.97  | ± 9.6 % |
| 10387 | AAA  | QPSK Waveform, 1 MHz                                                               | Generic  | 5.10  | ± 9.6 % |
| 10388 | AAA  | QPSK Waveform, 10 MHz                                                              | Generic  | 5.22  | ± 9.6 % |
| 10396 | AAA  | 64-QAM Waveform, 100 kHz                                                           | Generic  | 6.27  | ± 9.6 % |
| 10399 | AAA  | 64-QAM Waveform, 40 MHz                                                            | Generic  | 6.27  | ± 9.6 % |
| 10400 | AAD  | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)                                | WLAN     | 8.37  | ± 9.6 % |
| 10400 | AAD  | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)                                | WLAN     | 8.60  | ± 9.6 % |
| 10401 | AAD  | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)                                | WLAN     | 8.53  | ± 9.6 % |
| 10402 | AAB  | CDMA2000 (1xEV-DO, Rev. 0)                                                         | CDMA2000 | 3.76  | ± 9.6 % |
| 10404 | AAB  | CDMA2000 (1xEV-DO, Rev. A)                                                         | CDMA2000 | 3.77  | ± 9.6 % |
| 10406 | AAB  | CDMA2000, RC3, SO32, SCH0, Full Rate                                               | CDMA2000 | 5.22  | ± 9.6 % |
| 10410 | AAF  | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9, Subframe Conf=4) | LTE-TDD  | 7.82  | ± 9.6 % |
| 10414 | AAA  | WLAN CCDF, 64-QAM, 40MHz                                                           | Generic  | 8.54  | ± 9.6 % |
| 10415 | AAA  | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)                          | WLAN     | 1.54  | ± 9.6 % |
| 10416 | AAA  | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)                      | WLAN     | 8.23  | ± 9.6 % |
| 10417 | AAB  | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)                          | WLAN     | 8.23  | ± 9.6 % |
| 10418 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)     | WLAN     | 8.14  | ± 9.6 % |
| 10419 | AAA  | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)    | WLAN     | 8.19  | ± 9.6 % |
| 10422 | AAB  | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)                                       | WLAN     | 8.32  | ± 9.6 % |
| 10423 | AAB  | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)                                    | WLAN     | 8.47  | ± 9.6 % |
| 10424 | AAB  | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)                                    | WLAN     | 8.40  | ± 9.6 % |
| 10425 | AAB  | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)                                        | WLAN     | 8.41  | ± 9.6 % |
| 10426 | AAB  | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)                                      | WLAN     | 8.45  | ± 9.6 % |
| 10427 | AAB  | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)                                     | WLAN     | 8.41  | ± 9.6 % |
| 10430 | AAD  | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)                                                   | LTE-FDD  | 8.28  | ± 9.6 % |
| 10431 | AAD  | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)                                                  | LTE-FDD  | 8.38  | ± 9.6 % |
| 10432 | AAC  | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)                                                  | LTE-FDD  | 8.34  | ± 9.6 % |
| 10433 | AAC  | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)                                                  | LTE-FDD  | 8.34  | ±9.6 %  |
| 10434 | AAA  | W-CDMA (BS Test Model 1, 64 DPCH)                                                  | WCDMA    | 8.60  | ± 9.6 % |
| 10435 | AAF  | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)                  | LTE-TDD  | 7.82  | ± 9.6 % |
| 10447 | AAD  | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)                                     | LTE-FDD  | 7.56  | ± 9.6 % |
| 10448 | AAD  | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)                                     | LTE-FDD  | 7.53  | ± 9.6 % |
| 10449 | AAC  | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%)                                     | LTE-FDD  | 7.51  | ± 9.6 % |
|       | 1010 | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)                                    | LTE-FDD  | 7.48  | ± 9.6 % |

| 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)                       | WCDMA    | 7.59 | ± 9.6 % |
|-------|-----|-----------------------------------------------------------------------|----------|------|---------|
| 10456 | AAB | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)                  | WLAN     | 8.63 | ± 9.6 % |
| 10457 | AAA | UMTS-FDD (DC-HSDPA)                                                   | WCDMA    | 6.62 | ± 9.6 % |
| 10458 | AAA | CDMA2000 (1xEV-DO, Rev. B, 2 carriers)                                | CDMA2000 | 6.55 | ± 9.6 % |
| 10459 | AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers)                                | CDMA2000 | 8.25 | ± 9.6 % |
| 10460 | AAA | UMTS-FDD (WCDMA, AMR)                                                 | WCDMA    | 2.39 | ± 9.6 % |
| 10461 | AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)    | LTE-TDD  | 7.82 | ± 9.6 % |
| 10462 | AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | LTE-TDD  | 8.30 | ± 9.6 % |
| 10463 | AAA | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)     | LTE-TDD  | 8.56 | ± 9.6 % |
| 10464 | AAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)      | LTE-TDD  | 7.82 | ± 9.6 % |
| 10465 | AAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)    | LTE-TDD  | 8.32 | ± 9.6 % |
| 10466 | AAB | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)    | LTE-TDD  | 8.57 | ± 9.6 % |
| 10467 | AAE | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)      | LTE-TDD  | 7.82 | ± 9.6 % |
| 10468 | AAE | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)    | LTE-TDD  | 8.32 | ± 9.6 % |
| 10469 | AAE | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)    | LTE-TDD  | 8.56 | ± 9.6 % |
| 10470 | AAE | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)     | LTE-TDD  | 7.82 | ± 9.6 % |
| 10471 | AAE | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.32 | ± 9.6 % |
| 10472 | AAE | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.57 | ± 9.6 % |
| 10473 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)     | LTE-TDD  | 7.82 | ± 9.6 % |
| 10474 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.32 | ± 9.6 % |
| 10475 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.57 | ± 9.6 % |
| 10477 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.32 | ± 9.6 % |
| 10478 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.57 | ± 9.6 % |
| 10479 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)     | LTE-TDD  | 7.74 | ± 9.6 % |
| 10480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.18 | ± 9.6 % |
| 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)   | LTE-TDD  | 8.45 | ± 9.6 % |
| 10482 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)    | LTE-TDD  | 7.71 | ± 9.6 % |
| 10483 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | LTE-TDD  | 8.39 | ± 9.6 % |
| 10484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)     | LTE-TDD  | 8.47 | ± 9.6 % |
| 10485 | AAE | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)    | LTE-TDD  | 7.59 | ± 9.6 % |
| 10486 | AAE | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)     | LTE-TDD  | 8.38 | ± 9.6 % |
| 10487 | AAE | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)     | LTE-TDD  | 8.60 | ± 9.6 % |
| 10488 | AAE | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)      | LTE-TDD  | 7.70 | ± 9.6 % |
| 10489 | AAE | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9) | LTE-TDD  | 8.31 | ± 9.6 % |
| 10490 | AAE | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9) | LTE-TDD  | 8.54 | ± 9.6 % |
| 10491 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)   | LTE-TDD  | 7.74 | ± 9.6 % |

February 27, 2019

| 10492 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                        | LTE-TDD | 8.41 | ±9.6 %  |
|-------|-----|-------------------------------------------------------------------------------------------|---------|------|---------|
| 10493 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL                                              | LTE-TDD | 8.55 | ±9.6 %  |
| 10494 | AAF | Subframe=2,3,4,7,8,9)  LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL                         | LTE-TDD | 7.74 | ± 9.6 % |
| 10495 | AAF | Subframe=2,3,4,7,8,9)  LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL                       | LTE-TDD | 8.37 | ± 9.6 % |
| 10496 | AAF | Subframe=2,3,4,7,8,9)  LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) | LTE-TDD | 8.54 | ± 9.6 % |
| 10497 | AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)                     | LTE-TDD | 7.67 | ± 9.6 % |
| 10498 | AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                      | LTE-TDD | 8.40 | ± 9.6 % |
| 10499 | AAA | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)                   | LTE-TDD | 8.68 | ±9.6 %  |
| 10500 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)                       | LTE-TDD | 7.67 | ± 9.6 % |
| 10501 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL<br>Subframe=2,3,4,7,8,9)                     | LTE-TDD | 8.44 | ± 9.6 % |
| 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)                     | LTE-TDD | 8.52 | ± 9.6 % |
| 10503 | AAE | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)                       | LTE-TDD | 7.72 | ± 9.6 % |
| 10504 | AAE | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                        | LTE-TDD | 8.31 | ± 9.6 % |
| 10505 | AAE | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL<br>Subframe=2,3,4,7,8,9)                     | LTE-TDD | 8.54 | ± 9.6 % |
| 10506 | AAE | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)                      | LTE-TDD | 7.74 | ± 9.6 % |
| 10507 | AAE | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                       | LTE-TDD | 8.36 | ± 9.6 % |
| 10508 | AAE | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)                       | LTE-TDD | 8.55 | ± 9.6 % |
| 10509 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)                      | LTE-TDD | 7.99 | ± 9.6 % |
| 10510 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                       | LTE-TDD | 8.49 | ± 9.6 % |
| 10511 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)                       | LTE-TDD | 8.51 | ± 9.6 % |
| 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL<br>Subframe=2,3,4,7,8,9)                      | LTE-TDD | 7.74 | ± 9.6 % |
| 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)                       | LTE-TDD | 8.42 | ± 9.6 % |
| 10514 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)                       | LTE-TDD | 8.45 | ± 9.6 % |
| 10515 | AAA | IEEE 802,11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)                                 | WLAN    | 1.58 | ± 9.6 % |
| 10516 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)                               | WLAN    | 1.57 | ± 9.6 % |
| 10517 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)                                | WLAN    | 1.58 | ± 9.6 % |
| 10518 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)                                 | WLAN    | 8.23 | ± 9.6 % |
| 10519 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)                                | WLAN    | 8.39 | ± 9.6 % |
| 10520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)                                | WLAN    | 8.12 | ± 9.6 % |
| 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)                                | WLAN    | 7.97 | ±9.6 %  |
| 10522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)                                | WLAN    | 8.45 | ± 9.6 % |
| 10523 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)                                | WLAN    | 8.08 | ± 9.6 % |
| 10523 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)                                | WLAN    | 8.27 | ± 9.6 % |
|       |     | IEEE 802.11a/N WIFI 5 GHZ (OPDM, 54 Mbps, 99pc duty cycle)                                | WLAN    | 8.36 | ± 9.6 % |
| 10525 | AAB |                                                                                           | WLAN    | 8.42 | ± 9.6 % |
| 10526 | AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)                                         |         | -    |         |
| 10527 | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)                                         | WLAN    | 8.21 | ± 9.6 % |
| 10528 | AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)                                         | WLAN    | 8.36 | ± 9.6 % |
| 10529 | AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)                                         | WLAN    | 8.36 | ± 9.6 % |
| 10531 | AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)                                         | WLAN    | 8.43 | ± 9.6 % |
| 10532 | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)                                         | WLAN    | 8.29 | ± 9.6 % |
| 10533 | AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)                                         | WLAN    | 8.38 | ± 9.6 % |
|       | _   | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)                                         | WLAN    | 8.45 | ± 9.6 % |

| 10535 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc duty cycle)                                                                     | WLAN  | 8.45 | ± 9.6 % |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------|-------|------|---------|
| 10536 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc duty cycle)                                                                     | WLAN  | 8.32 | ±9.6 %  |
| 10537 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc duty cycle)                                                                     | WLAN  | 8.44 | ± 9.6 % |
| 10538 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc duty cycle)                                                                     | WLAN  | 8.54 | ± 9.6 % |
| 10540 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc duty cycle)                                                                     | WLAN  | 8.39 | ± 9.6 % |
| 10541 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc duty cycle)                                                                     | WLAN  | 8.46 | ± 9.6 % |
| 10542 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc duty cycle)                                                                     | WLAN  | 8.65 | ±9.6 %  |
| 10543 | AAB   | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc duty cycle)                                                                     | WLAN  | 8.65 | ± 9.6 % |
| 10544 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc duty cycle)                                                                     | WLAN  | 8.47 | ± 9.6 % |
| 10545 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc duty cycle)                                                                     | WLAN  | 8.55 | ± 9.6 % |
| 10546 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc duty cycle)                                                                     | WLAN  | 8.35 | ± 9.6 % |
| 10547 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc duty cycle)                                                                     | WLAN  | 8.49 | ± 9.6 % |
| 10548 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc duty cycle)                                                                     | WLAN  | 8.37 | ± 9.6 % |
| 10550 | AAB   | IEEE 802,11ac WiFi (80MHz, MCS6, 99pc duty cycle)                                                                     | WLAN  | 8.38 | ± 9.6 % |
| 10551 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc duty cycle)                                                                     | WLAN  | 8.50 | ± 9.6 % |
| 10552 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc duty cycle)                                                                     | WLAN  | 8.42 | ± 9.6 % |
| 10553 | AAB   | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc duty cycle)                                                                     | WLAN  | 8.45 | ± 9.6 % |
| 10554 | AAC   |                                                                                                                       |       |      |         |
|       |       | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc duty cycle)                                                                    | WLAN  | 8.48 | ± 9.6 % |
| 10555 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc duty cycle)                                                                    | WLAN  | 8.47 | ± 9.6 % |
| 10556 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc duty cycle)                                                                    | WLAN  | 8.50 | ± 9.6 % |
| 10557 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc duty cycle)                                                                    | WLAN  | 8.52 | ± 9.6 % |
| 10558 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc duty cycle)                                                                    | WLAN  | 8.61 | ± 9.6 % |
| 10560 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc duty cycle)                                                                    | WLAN  | 8.73 | ± 9.6 % |
| 10561 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc duty cycle)                                                                    | WLAN  | 8.56 | ± 9.6 % |
| 10562 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc duty cycle)                                                                    | WLAN  | 8.69 | ± 9.6 % |
| 10563 | AAC   | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc duty cycle)                                                                    | WLAN  | 8.77 | ± 9.6 % |
| 10564 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)                                                        | WLAN  | 8.25 | ± 9.6 % |
| 10565 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)                                                       | WLAN  | 8.45 | ± 9.6 % |
| 10566 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty                                                              | WLAN  | 8.13 | ± 9.6 % |
| 10567 | AAA   | cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty                                                       | WLAN  | 8.00 | ±9.6 %  |
| 10568 | AAA   | cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty                                                       | WLAN  | 8.37 | ± 9.6 % |
| 10569 | AAA   | cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty                                                       | WLAN  | 8.10 | ±9.6 %  |
| 10570 | AAA   | cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty                                                       | WLAN  | 8.30 | ± 9.6 % |
| 10571 | AAA   | cycle)  IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)                                                     | WLAN  | 1.99 | ± 9.6 % |
|       |       |                                                                                                                       |       |      | -       |
| 10572 | AAA   | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle) IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle) | WLAN  | 1.99 | ± 9.6 % |
| 10573 | AAA   |                                                                                                                       | WLAN  | 1.98 | ± 9.6 % |
| 10574 | AAA   | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)                                                            | WLAN  | 1.98 | ±9.6 %  |
| 10575 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)                                                        | WLAN  | 8.59 | ± 9.6 % |
| 10576 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)                                                        | WLAN  | 8.60 | ± 9.6 % |
| 10577 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)                                                       | WLAN  | 8.70 | ± 9.6 % |
| 10578 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)                                                       | WLAN  | 8.49 | ± 9.6 % |
| 10579 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)                                                       | WLAN  | 8.36 | ± 9.6 % |
| 10580 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)                                                       | WLAN  | 8.76 | ± 9.6 % |
| 10581 | AAA   | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty                                                              | WLAN  | 8.35 | ± 9.6 % |
| 10582 | AAA   | cycle) IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty                                                       | WLAN  | 8.67 | ± 9.6 % |
| 10500 | A A D | cycle)                                                                                                                | MO AN | 0.50 | 1000    |
| 10583 | AAB   | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)                                                             | WLAN  | 8.59 | ± 9.6 % |
| 10584 | AAB   | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)                                                             | WLAN  | 8.60 | ± 9.6 % |
| 10585 | AAB   | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)                                                            | WLAN  | 8.70 | ±9.6 %  |
| 10586 | AAB   | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)                                                            | WLAN  | 8.49 | ± 9.6 % |
| 10587 | AAB   | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)                                                            | WLAN  | 8.36 | ± 9.6 % |

| 10588          | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)                                                  | WLAN     | 8.76         | ± 9.6 %            |
|----------------|-----|-------------------------------------------------------------------------------------------------------------|----------|--------------|--------------------|
| 10589          | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)                                                  | WLAN     | 8.35         | ± 9.6 %            |
| 10590          | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)                                                  | WLAN     | 8.67         | ± 9.6 %            |
| 10591          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc duty cycle)                                                       | WLAN     | 8.63         | ± 9.6 %            |
| 10592          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc duty cycle)                                                       | WLAN     | 8.79         | ± 9.6 %            |
| 10593          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc duty cycle)                                                       | WLAN     | 8.64         | ± 9.6 %            |
| 10594          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc duty cycle)                                                       | WLAN     | 8.74         | ± 9.6 %            |
| 10595          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc duty cycle)                                                       | WLAN     | 8.74         | ± 9.6 %            |
| 10596          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc duty cycle)                                                       | WLAN     | 8.71         | ± 9.6 %            |
| 10597          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc duty cycle)                                                       | WLAN     | 8.72         | ± 9.6 %            |
| 10598          | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc duty cycle)                                                       | WLAN     | 8.50         | ± 9.6 %            |
| 10599<br>10600 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc duty cycle) IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle) | WLAN     | 8.79<br>8.88 | ± 9.6 %<br>± 9.6 % |
| 10601          | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc duty cycle)                                                       | WLAN     | 8.82         | ± 9.6 %            |
| 10602          | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc duty cycle)                                                       | WLAN     | 8.94         | ± 9.6 %            |
| 10603          | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc duty cycle)                                                       | WLAN     | 9.03         | ± 9.6 %            |
| 10604          | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc duty cycle)                                                       | WLAN     | 8.76         | ± 9.6 %            |
| 10605          | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc duty cycle)                                                       | WLAN     | 8.97         | ± 9.6 %            |
| 10606          | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc duty cycle)                                                       | WLAN     | 8.82         | ± 9.6 %            |
| 10607          | AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc duty cycle)                                                           | WLAN     | 8.64         | ± 9.6 %            |
| 10608          | AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc duty cycle)                                                           | WLAN     | 8.77         | ± 9.6 %            |
| 10609          | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc duty cycle)                                                           | WLAN     | 8.57         | ± 9.6 %            |
| 10610          | AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc duty cycle)                                                           | WLAN     | 8.78         | ± 9.6 %            |
| 10611          | AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc duty cycle)                                                           | WLAN     | 8.70         | ± 9.6 %            |
| 10612          | AAB | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc duty cycle)                                                           | WLAN     | 8.77         | ± 9.6 %            |
| 10613          | AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc duty cycle)                                                           | WLAN     | 8.94         | ± 9.6 %            |
| 10614          | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc duty cycle)                                                           | WLAN     | 8.59         | ± 9.6 %            |
| 10615          | AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc duty cycle)                                                           | WLAN     | 8.82         | ± 9.6 %            |
| 10616          | AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle)                                                           | WLAN     | 8.82         | ± 9.6 %            |
| 10617          | AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc duty cycle)                                                           | WLAN     | 8.81         | ± 9.6 %            |
| 10618          | AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc duty cycle)                                                           | WLAN     | 8.58         | ± 9.6 %            |
| 10619          | AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc duty cycle)                                                           | WLAN     | 8.86         | ± 9.6 %            |
| 10620          | AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc duty cycle)                                                           | WLAN     | 8.87         | ± 9.6 %            |
| 10621          | AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc duty cycle)                                                           | WLAN     | 8.77         | ± 9.6 %            |
| 10622          | AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc duty cycle)                                                           | WLAN     | 8.68         | ± 9.6 %            |
| 10623          | AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc duty cycle)                                                           | WLAN     | 8.82         | ± 9.6 %            |
| 10624          | AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc duty cycle)                                                           | WLAN     | 8.96         | ± 9.6 %            |
| 10625          | AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc duty cycle)                                                           | WLAN     | 8.96         | ± 9.6 %            |
| 10626          | AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc duty cycle)                                                           | WLAN     | 8.83         | ± 9.6 %            |
| 10627          | AAB | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc duty cycle)                                                           | WLAN     | 8.88         | ± 9.6 %            |
| 10628          | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc duty cycle)                                                           | WLAN     | 8.71         | ± 9.6 %            |
| 10629          | AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc duty cycle)                                                           | WLAN     | 8.85         | ± 9.6 %            |
| 10630          | AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc duty cycle)                                                           | WLAN     | 8.72         | ± 9.6 %            |
| 10631          | AAB | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc duty cycle)                                                           | WLAN     | 8.81         | ± 9.6 %            |
| 10632          | AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc duty cycle)                                                           | WLAN     | 8.74         | ± 9.6 %            |
| 10633          | AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc duty cycle)                                                           | WLAN     | 8.83         | ± 9.6 %            |
| 10634          | AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc duty cycle)                                                           | WLAN     | 8.80         | ± 9.6 %            |
| 10635          | AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc duty cycle)                                                           | WLAN     | 8.81         | ± 9.6 %            |
| 10636          | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc duty cycle)                                                          | WLAN     | 8.83         | ± 9.6 %            |
| 10637          | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc duty cycle)                                                          | WLAN     | 8.79         | ± 9.6 %            |
| 10638          | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc duty cycle)                                                          | WLAN     | 8.86         | ± 9.6 %            |
| 10639          | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc duty cycle)                                                          | WLAN     | 8.85         | ± 9.6 %            |
| 10640          | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc duty cycle)                                                          | WLAN     | 8.98         | ± 9.6 %            |
| 10641          | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc duty cycle)                                                          | WLAN     | 9.06         | ± 9.6 %            |
| 10642          | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc duty cycle)                                                          | WLAN     | 9.06         | ± 9.6 %            |
| 10643          | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc duty cycle)                                                          | WLAN     | 8.89         | ± 9.6 %            |
| 10644          | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc duty cycle)                                                          | WLAN     | 9.05         | ±9.6 %             |
| 10645          | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc duty cycle)                                                          | WLAN     | 9.11         | ± 9.6 %            |
| 10646          | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)                                                       | LTE-TDD  | 11.96        | ± 9.6 %            |
| 10647          | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)                                                      | LTE-TDD  | 11.96        | ± 9.6 %            |
| 10648          | AAA | CDMA2000 (1x Advanced)                                                                                      | CDMA2000 | 3,45         | ± 9.6 %            |
| 10652          | AAD | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)                                                              | LTE-TDD  | 6.91         | ± 9.6 %            |
| 10653          | AAD | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)                                                             | LTE-TDD  | 7.42         | ± 9.6 %            |
| 10654          |     | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)                                                             | LTE-TDD  | 6.96         | ± 9.6 %            |

| 10655          | AAE | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)                                             | LTE-TDD      | 7.21         | ± 9.6 %            |
|----------------|-----|---------------------------------------------------------------------------------------------|--------------|--------------|--------------------|
| 10658          | AAA | Pulse Waveform (200Hz, 10%)                                                                 | Test         | 10.00        | ±9.6 %             |
| 10659          | AAA | Pulse Waveform (200Hz, 20%)                                                                 | Test         | 6.99         | ± 9.6 %            |
| 10660          | AAA | Pulse Waveform (200Hz, 40%)                                                                 | Test         | 3.98         | ±9.6 %             |
| 10661<br>10662 | AAA | Pulse Waveform (200Hz, 60%)                                                                 | Test         | 2.22         | ± 9.6 %            |
| 10670          | AAA | Pulse Waveform (200Hz, 80%) Bluetooth Low Energy                                            | Test         | 0.97         | ±9.6 %             |
| 10670          | AAA | IEEE 802.11ax (20MHz, MCS0, 90pc duty cycle)                                                | Bluetooth    | 2.19         | ± 9.6 %            |
| 10671          | AAA | IEEE 802.11ax (20MHz, MCS1, 90pc duty cycle)                                                | WLAN         | 9.09         | ± 9.6 %            |
| 10673          | AAA |                                                                                             | WLAN         | 8.57         | ± 9.6 %            |
| 10674          | AAA | IEEE 802.11ax (20MHz, MCS2, 90pc duty cycle) IEEE 802.11ax (20MHz, MCS3, 90pc duty cycle)   | WLAN<br>WLAN | 8.78         | ± 9.6 %            |
| 10675          | AAA | IEEE 802.11ax (20MHz, MCS4, 90pc duty cycle)                                                | WLAN         | 8.74         | ± 9.6 %            |
| 10676          | AAA | IEEE 802.11ax (20MHz, MCS5, 90pc duty cycle)                                                | WLAN         | 8.90<br>8.77 | ±9.6 %<br>±9.6 %   |
| 10677          | AAA | IEEE 802.11ax (20MHz, MCS6, 90pc duty cycle)                                                | WLAN         | 8.73         | ± 9.6 %            |
| 10678          | AAA | IEEE 802.11ax (20MHz, MCS7, 90pc duty cycle)                                                | WLAN         | 8.78         | ± 9.6 %            |
| 10679          | AAA | IEEE 802.11ax (20MHz, MCS8, 90pc duty cycle)                                                | WLAN         | 8.89         | ± 9.6 %            |
| 10680          | AAA | IEEE 802.11ax (20MHz, MCS9, 90pc duty cycle)                                                | WLAN         | 8.80         | ± 9.6 %            |
| 10681          | AAA | IEEE 802.11ax (20MHz, MCS10, 90pc duty cycle)                                               | WLAN         | 8.62         | ± 9.6 %            |
| 10682          | AAA | IEEE 802.11ax (20MHz, MCS11, 90pc duty cycle)                                               | WLAN         | 8.83         | ± 9.6 %            |
| 10683          | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc duty cycle)                                                | WLAN         | 8.42         | ± 9.6 %            |
| 10684          | AAA | IEEE 802.11ax (20MHz, MCS1, 99pc duty cycle)                                                | WLAN         | 8.26         | ± 9.6 %            |
| 10685          | AAA | IEEE 802.11ax (20MHz, MCS2, 99pc duty cycle)                                                | WLAN         | 8.33         | ± 9.6 %            |
| 10686          | AAA | IEEE 802.11ax (20MHz, MCS3, 99pc duty cycle)                                                | WLAN         | 8.28         | ± 9.6 %            |
| 10687          | AAA | IEEE 802.11ax (20MHz, MCS4, 99pc duty cycle)                                                | WLAN         | 8.45         | ± 9.6 %            |
| 10688          | AAA | IEEE 802.11ax (20MHz, MCS5, 99pc duty cycle)                                                | WLAN         | 8.29         | ± 9.6 %            |
| 10689          | AAA | IEEE 802.11ax (20MHz, MCS6, 99pc duty cycle)                                                | WLAN         | 8.55         | ±9.6 %             |
| 10690          | AAA | IEEE 802.11ax (20MHz, MCS7, 99pc duty cycle)                                                | WLAN         | 8.29         | ±9.6 %             |
| 10691          | AAA | IEEE 802.11ax (20MHz, MCS8, 99pc duty cycle)                                                | WLAN         | 8.25         | ±9.6 %             |
| 10692          | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc duty cycle)                                                | WLAN         | 8.29         | ±9.6 %             |
| 10693          | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc duty cycle)                                               | WLAN         | 8.25         | ± 9.6 %            |
| 10694          | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc duty cycle)                                               | WLAN         | 8.57         | ±9.6 %             |
| 10695          | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle)                                                | WLAN         | 8.78         | ± 9.6 %            |
| 10696          | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc duty cycle)                                                | WLAN         | 8.91         | ± 9.6 %            |
| 10697          | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc duty cycle)                                                | WLAN         | 8.61         | ±9.6 %             |
| 10698          | AAA | IEEE 802,11ax (40MHz, MCS3, 90pc duty cycle)                                                | WLAN         | 8.89         | ± 9.6 %            |
| 10699          | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc duty cycle)                                                | WLAN         | 8.82         | ± 9.6 %            |
| 10700          | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc duty cycle)                                                | WLAN         | 8.73         | ± 9.6 %            |
| 10701          | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc duty cycle)                                                | WLAN         | 8.86         | ± 9.6 %            |
| 10702          | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc duty cycle)                                                | WLAN         | 8.70         | ± 9.6 %            |
| 10703          | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc duty cycle)                                                | WLAN         | 8.82         | ±9.6 %             |
| 10704          | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc duty cycle)                                                | WLAN         | 8.56         | ± 9.6 %            |
| 10705          | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc duty cycle)                                               | WLAN         | 8.69         | ± 9.6 %            |
| 10706          | AAA | IEEE 802.11ax (40MHz, MCS11, 90pc duty cycle)                                               | WLAN         | 8.66         | ± 9.6 %            |
| 10707          | AAA | IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)                                                | WLAN         | 8.32         | ±9.6 %             |
| 10708          | AAA | IEEE 802.11ax (40MHz, MCS1, 99pc duty cycle)                                                | WLAN         | 8.55         | ± 9.6 %            |
| 10709          | AAA | IEEE 802.11ax (40MHz, MCS2, 99pc duty cycle)                                                | WLAN         | 8.33         | ± 9.6 %            |
| 10710          | AAA | IEEE 802.11ax (40MHz, MCS3, 99pc duty cycle)                                                | WLAN         | 8.29         | ± 9.6 %            |
| 10711<br>10712 | AAA | IEEE 802.11ax (40MHz, MCS4, 99pc duty cycle)                                                | WLAN         | 8.39         | ± 9.6 %            |
| 10712          | AAA | IEEE 802.11ax (40MHz, MCS5, 99pc duty cycle) IEEE 802.11ax (40MHz, MCS6, 99pc duty cycle)   | WLAN         | 8.67         | ±9.6 %             |
| 10713          | AAA | IEEE 802.11ax (40MHz, MCS6, 99pc duty cycle)                                                | WLAN         | 8.33         | ± 9.6 %            |
| 10715          | AAA | IEEE 802.11ax (40MHz, MCS7, 99pc duty cycle)                                                | WLAN         | 8.26         | ±9.6 %             |
| 10715          | AAA | IEEE 802.11ax (40MHz, MCS8, 99pc duty cycle)                                                | WLAN         | 8.45         | ±9.6%              |
| 10717          | AAA |                                                                                             |              | 8.30         | ± 9.6 %            |
| 10717          | AAA | IEEE 802.11ax (40MHz, MCS10, 99pc duty cycle) IEEE 802.11ax (40MHz, MCS11, 99pc duty cycle) | WLAN         | 8.48         | ±9.6 %             |
| 10719          | AAA | IEEE 802.11ax (40MHz, MCS0, 99pc duty cycle)                                                | WLAN         | 8.24         | ± 9.6 %            |
| 10720          | AAA | IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)                                                | WLAN         | 8.81         | ± 9.6 %<br>± 9.6 % |
| 10721          | AAA | IEEE 802.11ax (80MHz, MCS1, 90pc duty cycle)                                                | WLAN         | 8.76         |                    |
| 10721          | AAA | IEEE 802.11ax (80MHz, MCS3, 90pc duty cycle)                                                | WLAN         | -            | ± 9.6 %            |
| 10723          | AAA | IEEE 802.11ax (80MHz, MCS4, 90pc duty cycle)                                                | WLAN         | 8.55<br>8.70 | ± 9.6 %<br>± 9.6 % |
| 10724          | AAA | IEEE 802.11ax (80MHz, MCS5, 90pc duty cycle)                                                | WLAN         | 8.90         | ± 9.6 %            |
| 10725          | AAA | IEEE 802.11ax (80MHz, MCS6, 90pc duty cycle)                                                | WLAN         | 8.74         | ± 9.6 %            |
| 10726          | AAA | IEEE 802.11ax (80MHz, MCS7, 90pc duty cycle)                                                | WLAN         | 8.72         | ± 9.6 %            |
| 10727          | AAA | IEEE 802.11ax (80MHz, MCS8, 90pc duty cycle)                                                | WLAN         | 8.66         | ± 9.6 %            |

| 10728 | AAA | IEEE 802.11ax (80MHz, MCS9, 90pc duty cycle)   | WLAN | 8.65 | ± 9.6 % |
|-------|-----|------------------------------------------------|------|------|---------|
| 10729 | AAA | IEEE 802.11ax (80MHz, MCS10, 90pc duty cycle)  | WLAN | 8.64 | ± 9.6 % |
| 10730 | AAA | IEEE 802.11ax (80MHz, MCS11, 90pc duty cycle)  | WLAN | 8.67 | ± 9.6 % |
| 10731 | AAA | IEEE 802.11ax (80MHz, MCS0, 99pc duty cycle)   | WLAN | 8.42 | ± 9.6 % |
| 10732 | AAA | IEEE 802.11ax (80MHz, MCS1, 99pc duty cycle)   | WLAN | 8.46 | ± 9.6 % |
| 10733 | AAA | IEEE 802.11ax (80MHz, MCS2, 99pc duty cycle)   | WLAN | 8.40 | ± 9.6 % |
| 10734 | AAA | IEEE 802.11ax (80MHz, MCS3, 99pc duty cycle)   | WLAN | 8.25 | ± 9.6 % |
| 10735 | AAA | IEEE 802.11ax (80MHz, MCS4, 99pc duty cycle)   | WLAN | 8.33 | ± 9.6 % |
| 10736 | AAA | IEEE 802.11ax (80MHz, MCS5, 99pc duty cycle)   | WLAN | 8.27 | ± 9.6 % |
| 10737 | AAA | IEEE 802.11ax (80MHz, MCS6, 99pc duty cycle)   | WLAN | 8.36 | ± 9.6 % |
| 10738 | AAA | IEEE 802.11ax (80MHz, MCS7, 99pc duty cycle)   | WLAN | 8.42 | ±9.6 %  |
| 10739 | AAA | IEEE 802.11ax (80MHz, MCS8, 99pc duty cycle)   | WLAN | 8.29 | ± 9.6 % |
| 10740 | AAA | IEEE 802.11ax (80MHz, MCS9, 99pc duty cycle)   | WLAN | 8.48 | ±9.6 %  |
| 10741 | AAA | IEEE 802.11ax (80MHz, MCS10, 99pc duty cycle)  | WLAN | 8.40 | ± 9.6 % |
| 10742 | AAA | IEEE 802.11ax (80MHz, MCS11, 99pc duty cycle)  | WLAN | 8.43 | ± 9.6 % |
| 10743 | AAA | IEEE 802.11ax (160MHz, MCS0, 90pc duty cycle)  | WLAN | 8.94 | ± 9.6 % |
| 10744 | AAA | IEEE 802.11ax (160MHz, MCS1, 90pc duty cycle)  | WLAN | 9.16 | ± 9.6 % |
| 10745 | AAA | IEEE 802.11ax (160MHz, MCS2, 90pc duty cycle)  | WLAN | 8.93 | ± 9.6 % |
| 10746 | AAA | IEEE 802.11ax (160MHz, MCS3, 90pc duty cycle)  | WLAN | 9.11 | ± 9.6 % |
| 10747 | AAA | IEEE 802.11ax (160MHz, MCS4, 90pc duty cycle)  | WLAN | 9.04 | ± 9.6 % |
| 10748 | AAA | IEEE 802.11ax (160MHz, MCS5, 90pc duty cycle)  | WLAN | 8.93 | ± 9.6 % |
| 10749 | AAA | IEEE 802.11ax (160MHz, MCS6, 90pc duty cycle)  | WLAN | 8.90 | ± 9.6 % |
| 10750 | AAA | IEEE 802.11ax (160MHz, MCS7, 90pc duty cycle)  | WLAN | 8.79 | ± 9.6 % |
| 10751 | AAA | IEEE 802.11ax (160MHz, MCS8, 90pc duty cycle)  | WLAN | 8.82 | ± 9.6 % |
| 10752 | AAA | IEEE 802.11ax (160MHz, MCS9, 90pc duty cycle)  | WLAN | 8.81 | ± 9.6 % |
| 10753 | AAA | IEEE 802.11ax (160MHz, MCS10, 90pc duty cycle) | WLAN | 9.00 | ± 9.6 % |
| 10754 | AAA | IEEE 802.11ax (160MHz, MCS11, 90pc duty cycle) | WLAN | 8.94 | ± 9.6 % |
| 10755 | AAA | IEEE 802.11ax (160MHz, MCS0, 99pc duty cycle)  | WLAN | 8.64 | ± 9.6 % |
| 10756 | AAA | IEEE 802.11ax (160MHz, MCS1, 99pc duty cycle)  | WLAN | 8.77 | ± 9.6 % |
| 10757 | AAA | IEEE 802.11ax (160MHz, MCS2, 99pc duty cycle)  | WLAN | 8.77 | ± 9.6 % |
| 10758 | AAA | IEEE 802.11ax (160MHz, MCS3, 99pc duty cycle)  | WLAN | 8.69 | ± 9.6 % |
| 10759 | AAA | IEEE 802.11ax (160MHz, MCS4, 99pc duty cycle)  | WLAN | 8.58 | ±9.6 %  |
| 10760 | AAA | IEEE 802.11ax (160MHz, MCS5, 99pc duty cycle)  | WLAN | 8.49 | ± 9.6 % |
| 10761 | AAA | IEEE 802.11ax (160MHz, MCS6, 99pc duty cycle)  | WLAN | 8.58 | ± 9.6 % |
| 10762 | AAA | IEEE 802.11ax (160MHz, MCS7, 99pc duty cycle)  | WLAN | 8.49 | ± 9.6 % |
| 10763 | AAA | IEEE 802.11ax (160MHz, MCS8, 99pc duty cycle)  | WLAN | 8.53 | ± 9.6 % |
| 10764 | AAA | IEEE 802.11ax (160MHz, MCS9, 99pc duty cycle)  | WLAN | 8.54 | ± 9.6 % |
| 10765 | AAA | IEEE 802.11ax (160MHz, MCS10, 99pc duty cycle) | WLAN | 8.54 | ± 9.6 % |
| 10766 | AAA | IEEE 802.11ax (160MHz, MCS11, 99pc duty cycle) | WLAN | 8.51 | ± 9.6 % |

<sup>&</sup>lt;sup>E</sup> Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

**BV Korea (Dymstec)** 

Accreditation No.: SCS 0108

Certificate No: D2450V2-716 May19

# CALIBRATION CERTIFICATE

Object **D2450V2 - SN:716** 

Calibration procedure(s) QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: May 28, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|---------------------------------|--------------------|-----------------------------------|------------------------|
| Power meter NRP                 | SN: 104778         | 03-Apr-19 (No. 217-02892/02893)   | Apr-20                 |
| Power sensor NRP-Z91            | SN: 103244         | 03-Apr-19 (No. 217-02892)         | Apr-20                 |
| Power sensor NRP-Z91            | SN: 103245         | 03-Apr-19 (No. 217-02893)         | Apr-20                 |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-19 (No. 217-02894)         | Apr-20                 |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895)         | Apr-20                 |
| Reference Probe EX3DV4          | SN: 7405           | 25-Mar-19 (No. EX3-7405_Mar19)    | Mar-20                 |
| DAE4                            | SN: 601            | 30-Apr-19 (No. DAE4-601_Apr19)    | Apr-20                 |
| Secondary Standards             | ID#                | Check Date (in house)             | Scheduled Check        |
| Power meter E4419B              | SN: GB39512475     | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19 |
|                                 | Name               | Function                          | Signature              |
| Calibrated by:                  | Manu Seitz         | Laboratory Technician             |                        |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | 0014                   |

Issued: May 29, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-716\_May19

## **Calibration Laboratory of**

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### **Methods Applied and Interpretation of Parameters:**

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-716\_May19 Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.10.2    |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 2450 MHz ± 1 MHz       |             |

## **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 37.7 ± 6 %   | 1.85 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | ****         |                  |

## **SAR** result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 13.8 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 54.0 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 6.33 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.0 W/kg ± 16.5 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.7 ± 6 %   | 2.03 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# **SAR result with Body TSL**

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 12.8 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 49.8 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.99 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 16.5 % (k=2) |

Certificate No: D2450V2-716\_May19 Page 3 of 8

## Appendix (Additional assessments outside the scope of SCS 0108)

#### **Antenna Parameters with Head TSL**

| Impedance, transformed to feed point | 55.0 Ω + 3.2 jΩ |      |
|--------------------------------------|-----------------|------|
| Return Loss                          | - 25.0 dB       | - 7/ |

# **Antenna Parameters with Body TSL**

| Impedance, transformed to feed point | 51.1 Ω + 6.6 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.7 dB       |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.143 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG |
|-----------------|-------|
|                 |       |

Certificate No: D2450V2-716\_May19 Page 4 of 8

#### **DASY5 Validation Report for Head TSL**

Date: 28.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:716

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 1.85 \text{ S/m}$ ;  $\varepsilon_r = 37.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7405; ConvF(7.66, 7.66, 7.66) @ 2450 MHz; Calibrated: 25.03.2019

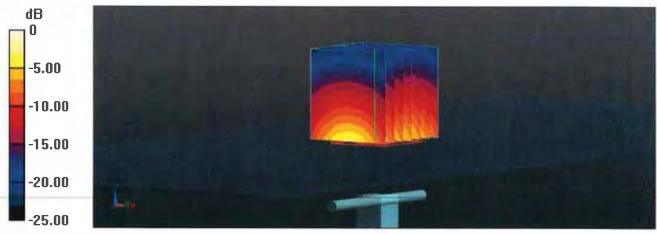
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.04.2019

• Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 116.9 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 28.7 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.33 W/kg


Maximum value of SAR (measured) = 23.3 W/kg



0 dB = 23.3 W/kg = 13.67 dBW/kg

Certificate No: D2450V2-716\_May19

# **Impedance Measurement Plot for Head TSL**



# **DASY5 Validation Report for Body TSL**

Date: 28.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:716** 

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz;  $\sigma = 2.03 \text{ S/m}$ ;  $\varepsilon_r = 50.7$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

• Probe: EX3DV4 - SN7405; ConvF(7.75, 7.75, 7.75) @ 2450 MHz; Calibrated: 25.03.2019

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

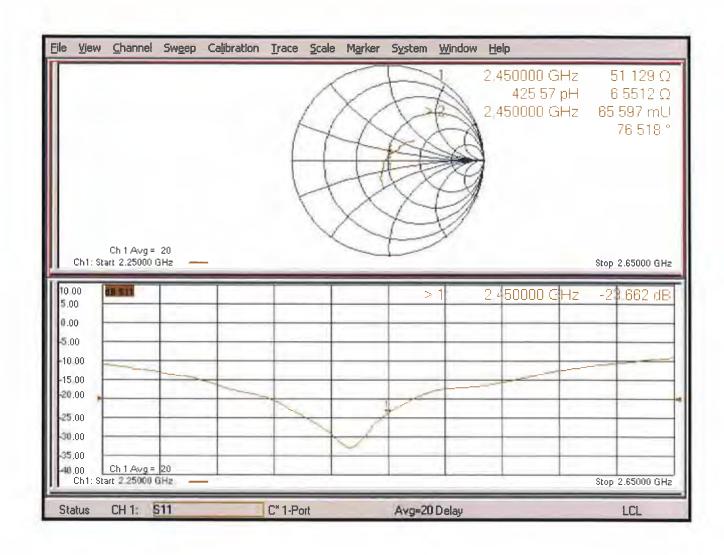
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.1 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 25.6 W/kg


SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.99 W/kg

Maximum value of SAR (measured) = 20.8 W/kg



0 dB = 20.8 W/kg = 13.18 dBW/kg

## Impedance Measurement Plot for Body TSL





#### APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system were configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container.
   Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured.
- 4) The complex relative permittivity  $\varepsilon_r$  can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively.  $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$ ,  $\omega$  is the angular frequency, and  $j = \sqrt{-1}$ .

Table D-1 Composition of the Tissue Equivalent Matter

| Frequency (MHz)           | 2450 |
|---------------------------|------|
| Tissue                    | Body |
| Ingredients (% by weight) |      |
| Bactericide               |      |
| DGBE                      | 26.7 |
| HEC                       |      |
| NaCl                      | 0.1  |
| Sucrose                   |      |
| Tween 20                  |      |
| Water                     | 73.2 |

**Table D-2 Recommended Tissue Dielectric Parameters** 

| Target Frequency | Н                  | ead     | В                  | ody     |
|------------------|--------------------|---------|--------------------|---------|
| (MHz)            | $\epsilon_{\rm r}$ | σ (S/m) | $\epsilon_{\rm r}$ | σ (S/m) |
| 150              | 52.3               | 0.76    | 61.9               | 0.80    |
| 300              | 45.3               | 0.87    | 58.2               | 0.92    |
| 450              | 43.5               | 0.87    | 56.7               | 0.94    |
| 835              | 41.5               | 0.90    | 55.2               | 0.97    |
| 900              | 41.5               | 0.97    | 55.0               | 1.05    |
| 915              | 41.5               | 0.98    | 55.0               | 1.06    |
| 1450             | 40.5               | 1.20    | 54.0               | 1.30    |
| 1610             | 40.3               | 1.29    | 53.8               | 1.40    |
| 1800 – 2000      | 40.0               | 1.40    | 53.3               | 1.52    |
| 2450             | 39.2               | 1.80    | 52.7               | 1.95    |
| 3000             | 38.5               | 2.40    | 52.0               | 2.73    |
| 5800             | 35.3               | 5.27    | 48.2               | 6.00    |

 $(\epsilon_r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m^3)$ 



Figure D-1 Liquid Height for Head & Body Position (SAM Twin Phantom)

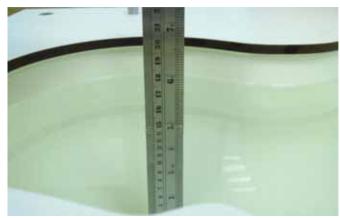
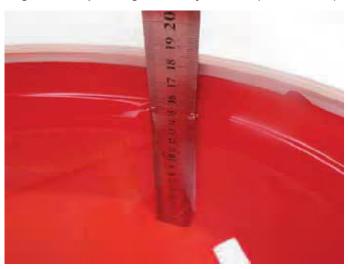






Figure D-2 Liquid Height for Body Position (ELI Phantom)





# **Appendix D.1 DAK3.5 Dielectric Probe Calibration**

# Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Certificate No: OCP-DAK3.5-1140 Nov18

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Onetech (Dymstec)

| CALIBRATION CERTIFICATE |  |
|-------------------------|--|

Object DAK-3.5 - SN: 1140

Calibration procedure(s) QA CAL-33.v2

Calibration of dielectric parameter probes

Calibration date: November 20, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards                  | ID#       | Cal Date (Certificaté No.)              | Scheduled Calibration |
|------------------------------------|-----------|-----------------------------------------|-----------------------|
| OCP DAK-3.5 (weighted)             | SN: 1249  | 09-Oct-18 (OCP-DAK3.5-1249_Oct18)       | Oct-19                |
| Secondary Standards                | ID#       | Check Date (in house)                   | Scheduled Check       |
| Rohde & Schwarz ZVA67              | T4383     | 16-Jan-18 (in house check Jun-18)       | Jun-19                |
| Digital Thermometer DTM3000        | 2148      | 18-May-18 (DTM-2148_May18)              | May-19                |
| Methanol 99.9% Type 34860          | STBH4051  | 04-Apr-18 (bottle opened, check May-18) | May-19                |
| Head Liquid, HBBL U16              | 180314-0  | 06-Apr-18 (in house check May-18)       | May-19                |
| 0.1 mol/L NaCl solution Type 35275 | SZBF3280V | 25-Jan-18 (in house check May-18)       | May-19                |
| 0.05 mol/L NaCl solution           | 180125-1  | 25-Jan-18 (in house check May-18)       | May-19                |
| Head Gel, SL AGH U08 AB-B          | 150430    | 06-May-15 (in house check May-18)       | May-19                |
| Eccostock0005                      | 1507101   | 01-Jul-15 (in house check May-18)       | May-19                |

Name Function

Calibrated by Glaudio Leubler Laboratory Technician

Approved by: Katja Pokovic Technical Manager

ssued: November 20, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

#### References

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged [1] Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from [2] hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)" July 2016
- IEC 62209-2 Ed.1, "Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted [3] Wireless Communication Devices - Human models, Instrumentation, and Procedures Part 2: Procedure to determine the specific absorption rate (SAR) for mobile wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- A. P. Gregory and R. N. Clarke, "NPL Report MAT 23", January 2012. [4] Tables of the Complex Permittivity of Dielectric Reference Liquids at Frequencies up to 5 GHz
- DAK Professional Handbook, SPEAG, September 2018 [5]
- A. Toropainen et al, "Method for accurate measurement of complex permittivity of tissue equivalent [6] liquids", Electronics Letters 36 (1) 2000 pp32-34
- [7] J. Hilland, "Simple sensor system for measuring the dielectric properties of saline solutions", Meas. Sci. Technol. 8 pp901-910 (1997)
- K. Nörtemann, J. Hilland and U. Kaatze, "Dielectric Properties of Aqueous NaCl Solutions at (8) Microwave Frequencies", J. Phys. Chem. A 101 pp6864-6869 (1997)
- R. Buchner, G. T. Hefter and Peter M. May, "Dielectric Relaxation of Aqueous NaCl Solutions", J. f91 Phys. Chem. A 103 (1) (1999).

#### Description of the dielectric probe

Dielectric probes are used to measure the dielectric parameters of tissue simulating media in a wide frequency range. The complex permittivity  $\varepsilon_r$  =  $(\varepsilon'/\varepsilon_0)$  -  $j(\varepsilon''/\varepsilon_0)$  is determined from the S parameters measured with a vector network analyzer (VNA) with software specific to the probe type. The parameters of interest e.g. in standards [1, 2, 3] and for other applications are presented are calculated as follows:

(Relative) permittivity  $\varepsilon'$  (real part of  $\varepsilon_r = (\varepsilon'/\varepsilon_0) - j(\varepsilon''/\varepsilon_0)$  where  $\varepsilon_0 = 8.854$  pF/m is the permittivity in free space)

Conductivity  $\sigma = 2 \pi f \epsilon'' \epsilon_D$ ,

Loss Tangent =  $(\epsilon''/\epsilon')$ 

The OCP (open ended coaxial) is a cut off section of 50 Ohm transmission line, similar to the system described in [1, 2, 3, 5], used for contact measurement The material is measured either by touching the probe to the surface of a solid/gelly or by immersing it into a liquid media. The electromagnetic fields at the probe end fringe into the material to be measured, and its parameters are determined from the change of the S<sub>11</sub> parameters. With larger diameter of the dielectrics, the probe can be used down to lower frequencies.

The flange surrounding the active area shapes the near field similar to a semi-infinite geometry and is inserted fully into the measured lossy liquid.

The probe is connected with a phase and amplitude stable cable to a VNA which is then calibrated with Open, Short and a Liquid with well-known parameters.

All parts in the setup influencing the amplitude and phase of the signal are important and shall remain stable.

#### Handling of the item

Before usage, the active probe area has to be cleaned from any material residuals potentially contaminating the reference standards. The metal and dielectric surface must be protected to keep the precision of the critical mechanical dimensions. The connector and cable quality are critical; any movements between calibration and measurement shall be avoided.

The temperature must be stable and must not differ from the material temperature.

#### Methods Applied and Interpretation of Parameters

The calibration of the dielectric probe system is done in the steps described below for the desired frequency range and calibration package (SAR/MRI liquids, Semi-solid/solid material). Because the standard calibration in step 3 is critical for the results in steps 4 to 8, the sequence 3 to 8 is repeated 3 times. As a result, the result from these 3 sets is represented.

Configuration and mechanical / optical status.

- 2. Measurement resolution is 5 MHz from 10 to 300 MHz, 50 MHz from 300 to 6000 MHz and 250 MHz from 6 to 20 GHz.
- Standard calibration uses Air / Short / Liquid. 1 liter liquid quantity is used to reduce the influence the reflections. The liquid type is selected depending on the lowest frequency and probe diameter: DAK-1.2, DAK-3.5, Agilent OCP: de-ionized water (approx. 22 °C)

DAK-12: saline solution with static conductivity 1 S/m (approx. 22 °C)

NPL OCP: pure ethanol (approx. 22 °C)

- 4. The cable used in the setup stays in a fixed position, i.e. the probe is fixed and measuring from the top in an angle of typ. 20° from the vertical axis. For DAK and Agilent probes, the refresh function (air standard) is used previous to the individual measurements in order to compensate for possible deviations from cable movements. After insertion of the probe into a liquid, the possible air bubbles are removed from the active surface.
- 5. Measurement of multiple shorts if not already available from the calibration in the previous step (NPL). Evaluation of the deviation from the previous calibration short with graphical representation of the complex quantities and magnitude over the frequency range. Probe specific short is used. This assessment shows ability to define a short circuit at the end of the probe for the VNA calibration in the setup which is essential at high frequencies and depends on the probe surface quality.

 Measurement of validation liquids in a quantity of 1 liter at well defined temperature. Evaluation of the deviations from the target. The targets base on traceable data from reference sources. The deviation of the measurement is graphically presented for permittivity and conductivity (for lossy

liquids) or loss tangent (for low losses at low frequencies).

- 7. Measurement of lossy liquids in a quantity of 1 liter at well defined temperature. Head tissue simulating liquid or saline solution with 0.5 S/m static conductivity are representative. The target data base on traceable data from reference sources or from multiple measurements with precision reference probes or different evaluations such as transmission line or slotted line methods. Evaluation of the deviation from the target and graphical representation for permittivity and conductivity over the frequency range
- Semi-solid / solid material calibration:
   Magaurements of an electic leavy broaden.

Measurements of an elastic lossy broadband semi-solid gel with parameters close to the head tissue target. Measurements of a planar very low loss solid microwave-substrate. The average of 4 measurements of the same sample at different location is shown as a single result. The deviation of the permittivity and conductivity from the reference data is evaluated.

Measurements of a planar very low loss solid microwave-substrate. The average of 4 measurements of the same sample at different location is shown as a single result. The relative deviation of the permittivity and the absolute deviation of the loss tangent is evaluated.

The targets base on multiple measurements (on the same material batch at identical temperature) on convex and planar surfaces with precision reference OCP.

The measurement on semi-solid / solid materials is sensitive to the quality and planarity of the probe contact area, such as air gaps due to imperfect probes (resulting lower permittivity values).

Table for the probe uncertainty: The uncertainty of the probe depending on probe type, size, material
parameter range and frequency is given in a table. It represents the best measurement capability of
the specific probe but does not include the material (deviation from the target values).

10. Appendix with detailed results of all measurements with the uncertainties for the specific measurement. In addition to the probe uncertainty (see above), it includes the uncertainty of the reference material used for the measurement. A set of results from independent calibrations represents the capability of the setup and the lossy materials used, including the precision of the measured material and the influence of temperature deviations. Temperature and operator influence was minimized and gives a good indication of the achievable repeatability of a measurement.

11. Summary assessment of the measured deviations and detailed comments if not typical for the probe type.

#### Dielectric probe identification and configuration data

Item description

| Probe type       | OCP Open-ended coaxial probe                                                                                                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Probe name       | SPEAG Dielectric Assessment Kit DAK-3.5                                                                                                      |
| Type No          | SM DAK 040 CA                                                                                                                                |
| Serial No        | 1140                                                                                                                                         |
| Description      | Open-ended coaxial probe with flange Flange diameter: 19.0 mm Dielectric diameter: 3.5 mm Material: stainless steel                          |
| Connector 1      | PC 3.5 pos.                                                                                                                                  |
| Software version | DAK Measurement Solver 2.4.1.144 Calibration Type: Air / short / water (set to measured water temp.) Probe type: "DAK3.5" (software setting) |
| Further settings | VNA bandwidth setting: 50 Hz                                                                                                                 |

SCS 0108 Accessories used for customer probe calibration

| Cable | Huber & Suhner Sucoflex 404, SN: 4361, length 1 m, PC3.5 neg. – PC3.5 neg.                |
|-------|-------------------------------------------------------------------------------------------|
| Short | DAK-3.5 shorting block, type SM DAK 200 BA<br>Contact area covered with cleaned Cu stripe |

Additional items used during measurements

| Adapter 1 | PC3.5 pos PC1.85 (VNA side)          |
|-----------|--------------------------------------|
| Adapter 2 | PC3.5 pos. – PC3.5 neg. (probe side) |

#### Notes

- Before the calibration, the connectors of the probe and cable were inspected and cleaned.
- Probe visual inspection: according to requirements
- Short inspection: according to the requirements

#### **Probe Uncertainty**

The following tables provide material and frequency specific uncertainties (k=2) for the dielectric probe. The values in the tables represent the measurement capability for the probe when measuring a material in the indicated parameter range. They include all uncertainties of

- probe system
- possible systematic errors due to the design
- calibration
- temperature differences during the calibration and measurements, as described,
- VNA noise

Apart from the material used for the calibration (de-ionized water), material uncertainties of the reference materials used during the measurement in Appendix A are not included in these tables.

| DAK-3.5                  |            |                  |                      |            |
|--------------------------|------------|------------------|----------------------|------------|
| Permittivity range       |            | Frequency range  | (sigma / LT range)   | Unc. (k=2) |
|                          | 1 – 15     | 10 MHz - 20 MHz  |                      |            |
|                          |            | 20 MHz - 200 MHz |                      | -          |
|                          |            | 200 MHz - 3 GHz  | LT < 0.1             | 2.0%       |
|                          |            | 3 GHz - 6 GHz    | LT < 0.1             | 2.0%       |
|                          |            | 6 GHz - 20 GHz   | LT < 0.1             | 2.1%       |
|                          | 10 - 40    | 10 MHz - 20 MHz  |                      |            |
|                          |            | 20 MHz - 200 MHz |                      | 44-        |
|                          |            | 200 MHz - 3 GHz  | sigma : 1 – 10 S/m   | 1.8%       |
|                          |            | 3 GHz - 6 GHz    | sigma : 1 – 10 S/m   | 2.3%       |
|                          |            | 6 GHz - 20 GHz   | sigma > 10 S/m       | 3.4%       |
|                          | 35 – 100   | 10 MHz - 20 MHz  |                      |            |
|                          |            | 20 MHz - 200 MHz |                      |            |
|                          |            | 200 MHz - 3 GHz  | sigma : 1 – 10 S/m   | 1.7%       |
|                          |            | 3 GHz - 6 GHz    | sigma : 1 – 10 S/m   | 1.9%       |
|                          |            | 6 GHz - 20 GHz   | sigma > 10 S/m       | 2.4%       |
| Conductivity range (S/m) |            | Frequency range  | (epsilon / LT range) | Unc. (k=2) |
|                          |            | 10 MHz - 20 MHz  |                      |            |
|                          | The second | 20 MHz - 200 MHz |                      |            |
|                          |            | 200 MHz - 3 GHz  | eps: 35 - 100        | 2.7%       |
|                          |            | 3 GHz - 6 GHz    | eps: 35 - 100        | 3.0%       |
|                          |            | 6 GHz - 20 GHz   | eps: 10 - 40         | 3.0%       |
| Loss tangent range       |            | Frequency range  | (epsilon / LT range) | Unc. (k=2) |
|                          | < 0.1      | 10 MHz - 20 MHz  |                      |            |
|                          |            | 20 MHz - 200 MHz |                      |            |
|                          |            | 200 MHz - 3 GHz  | eps: 1 - 15          | 0.03       |
|                          |            | 3 GHz - 6 GHz    | eps: 1 - 15          | 0.03       |
|                          |            | 6 GHz - 20 GHz   | eps: 1 - 15          | 0.03       |

#### Calibration Results

Uncertainty limits (k=2) for the material measurements in the figures of Appendix A are represented with red dashed lines. These uncertainties contain - in addition to probe uncertainty - the uncertainty of the material target parameter determination.

The measurements show the results obtained from independent calibrations for the same material. The differences between the individual measurement curves give therefore an indication for the obtainable repeatability and shall lie within the uncertainties stated in the tables.

#### Materials for DAK-3.5 calibration:

Appendix A with curves for Methanol, HBBL, and 0.05 mol/L NaCl solution (200 MHz - 6 GHz, optional 20 GHz), HS gel and low loss solid substrate are optional.

# Appendix A: Detailed Results (additional assessments outside the scope of SCS0108)

#### A.1 Probe appearance and calibration sequence

#### A.1.1 Appearance

The OCP appearance is fully according to the expectations:

the flange surface is intact

#### A.1.2 Calibration sequence

The following sequence was repeated 3 times in the low frequency range from 200 - 300 MHz in 5 MHz steps and in the high frequency range from 300 to 6000 MHz in 50 MHz steps, and from 6 GHz to 20 GHz in 250 MHz steps.

- · Air
- Short 1 short, then immediate verification with a second short (with eventual repetition)
- Water De-ionized water, temperature measured and set in the software (for DAK-12 0.1 mol/L saline solution, temperature measured and set in the software)
- Methanol Pure methanol, temperature measured and set in the software
- Liquids Measurement of further liquids (e.g. Head tissue simulating liquid and 0.05 mol/l saline)
- Cleaning Probe washed with water and isopropanol at the end of the sequence.
- Shorts 4 additional separate short measurements to determine the deviation from the original
- Refresh Refresh with Air
- Solid 4 separate solid low loss planar substrate measurements to determine one average (optional)
- Semisolid 4 separate head gel measurements on fresh intact surface to determine one average (optional)
- Cleaning Probe washed with water and isopropanol at the end of the sequence

Evaluation of the additional shorts from the calibrated (ideal) short point at the left edge of the Smith Chart, represented as magnitude over the frequency range (fig. 2.1.x) and in polar representation (fig. 2.2.x).

Evaluation of the Liquid measurements and representation of the permittivity and conductivity deviation from their reference data at the measurement temperature. The results of each of the 3 calibrations is shown in the appendix for each material (fig. 3ff) in black, red, blue. The red dashed line shows the uncertainty of the reference material parameter determination.

Evaluation of the Semisolid measurements (optional) by representing the 3 average deviations (each resulting from the 4 separate measurements per set), equivalent to the liquid measurement. Representation of the permittivity and conductivity deviation from their reference data at the nominal temperature.

Evaluation of the Solid measurements (optional) by representing the 3 average deviations (each resulting from the 4 separate measurements per set), equivalent to the liquid measurement. Representation of the permittivity deviation from their reference data and the loss tangent at the nominal temperature.

#### A.2 Short residual magnitudes

After each of the 3 calibrations with a single short (as per the DAK software), 4 additional separate, short measurements were performed after the liquid measurements and evaluated from the S11 data. The residuals in the graphs represent the deviation from the ideal short point on the polar representation on the VNA screen.

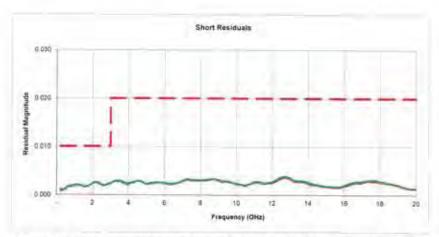



Fig. 2.1a Magnitude of the residual of the shorts, 200 MHz – 20 GHz, after calibration a)

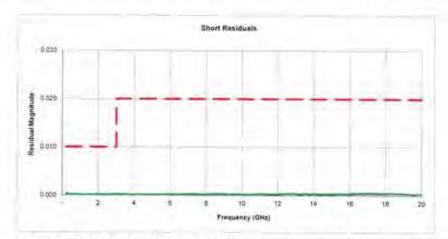



Fig. 2.1b Magnitude of the residual of the shorts, 200 MHz – 20 GHz, after calibration b)



Fig. 2.1c Magnitude of the residual of the shorts, 200 MHz - 20 GHz, after calibration c)

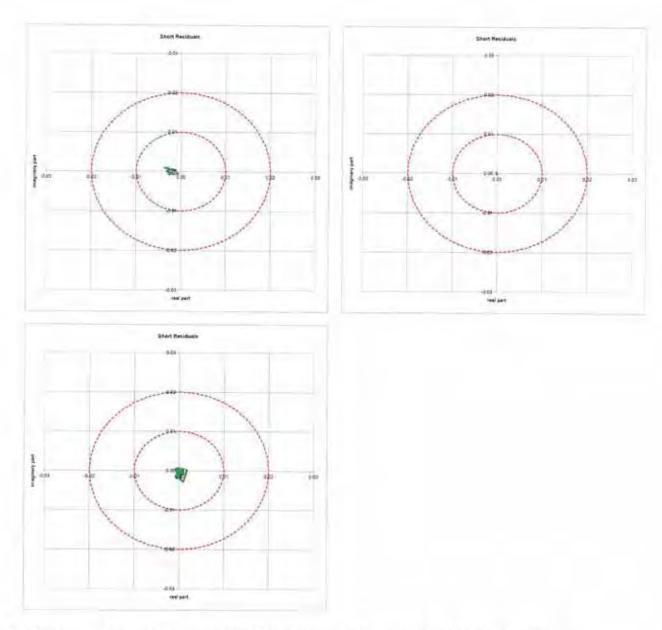



Fig. 2.2a-c Complex representation of the residuals of the shorts, 200 MHz - 20 GHz, after calibrations a)-b) in the top and c) in the bottom

All shorts have good quality. Some minor deviations might be visible from contact quality (left - right).

#### A.3 Methanol

Methanol (99.9% pure) was measured at a temperature of 22 +/- 2 °C. The liquid temperature was stabilized within 0.05 °C of the desired temperature. Deviations are presented relative to the nominal material parameters at this temperature, calculated from NPL data for this temperature. For the measurements the Noise Filter was activated in the software.

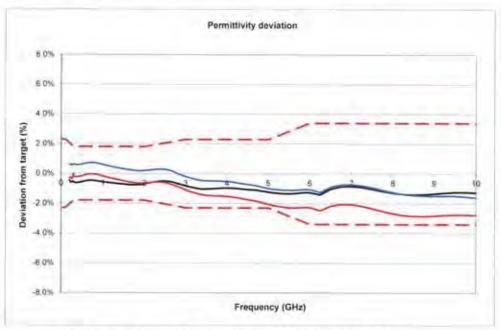



Fig. 3.1 Methanol permittivity deviation from target, 200 MHz – 10 GHz

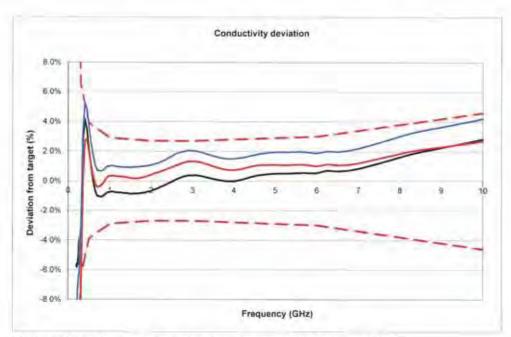



Fig. 3.2 Methanol conductivity deviation from target, 200 MHz - 10 GHz

Note: Conductivity error can be high at low frequencies due to the low absolute conductivity values.

#### A.4 Head Tissue

Broadband head simulating liquid was measured at a temperature of 22 +/- 2 °C. The liquid temperature was stabilized within 0.05 °C of the desired temperature. Deviations are presented relative to the reference data for this material. Those parameters have been evaluated from multiple measurements on the used bath with precision reference OCP and further methods. For the measurements the Noise Filter was activated in the software.



Fig. 4.1 HBBL permittivity deviation from target, 200 MHz – 20 GHz

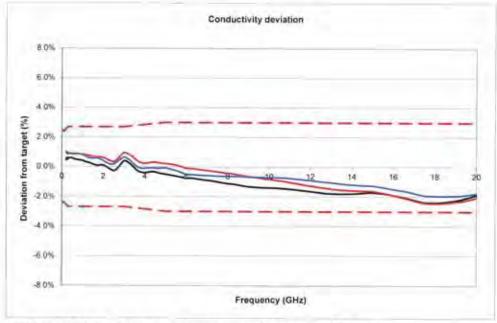



Fig. 4.2 HBBL conductivity deviation from target, 200 MHz - 20 GHz

#### A.5 0.05 mol/L NaCl solution

0.05 mol/L NaCl / water solution has a static conductivity of 0.5 S/m, similar to MRI HCL (High Conductivity Liquid). It was measured at a temperature of 22 +/- 2 °C. The liquid temperature was stabilized within 0.05 °C of the desired temperature. Deviations are presented relative to the reference data for this material. These parameters have been derived from the theoretical model according to [7], matched to the measurements from reference probes and other sources.

A quantity of 1 liter was used for the measurement. For the measurements the Noise Filter was activated in the software.

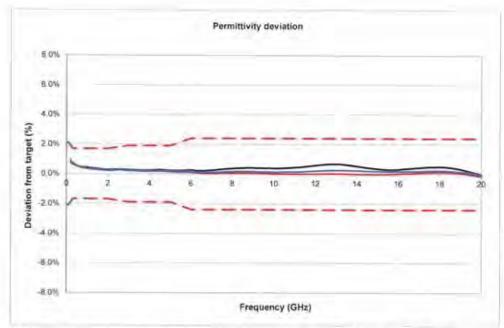



Fig. 5.1 0.05 mol/L solution permittivity deviation from target, 200 MHz - 20 GHz

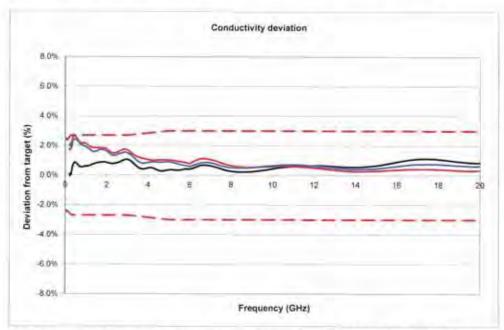



Fig. 5.2 0.05 mol/L solution conductivity deviation from target, 200 MHz - 20 GHz

Appendix B: Nominal parameters of reference materials used for calibration (additional assessments outside the scope of SCS0108)

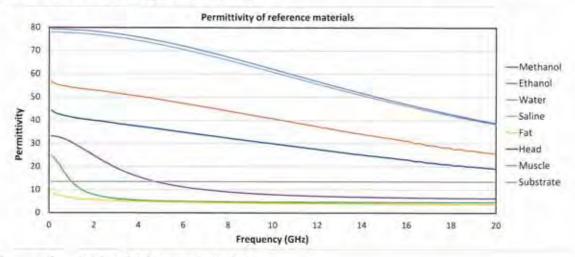



Fig. B.1 Permittivity of reference materials

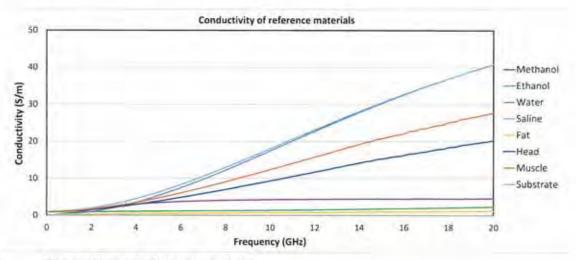



Fig. B.2 Conductivity of reference materials

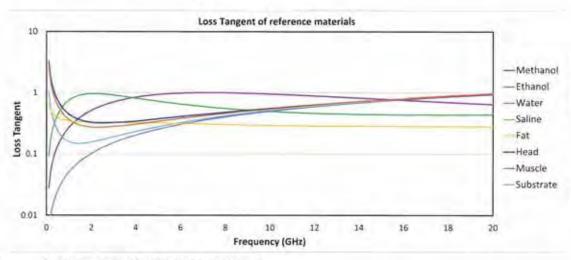



Fig. B.3 Loss tangent of reference materials



#### APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements.

Reference dipoles were used with the required tissue-equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

**CW VALIDATION** MOD. VALIDATION SAR Frea. Probe Probe Cal Cond. Perm. Date PROBE PROBE MOD. DUTY System (MHz) SN Point (o) (er) SENSITIVITY PΔR LINEARITY ISOTROPY **TYPE FACTOR** 2450 2018.03.08 2.043 51.130 4 3832 2450 Body Pass Pass OFDM/TDD N/A Pass

Table E-1 SAR System Validation Summary - 1g

Note: Wile the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (> 5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.