

Page: 1 of 59

SAR TEST REPORT

Test report No:

EMC-FCC-A0012

Type of Equipment:

Portable Conference Transmitter

Model Name:

DLT 300

Applicant:

Williams Sound, LLC

FCCID:

CNMDLT300

IC ID:

1360A-DLT300

FCC Rule Part:

CFR §2.1093

IC Rule Part:

RSS-102 Issue 4 2010

Test standards

IEEE 15282003

ANSI/IEEE C95.1, C95.3

KDB Publication

IEC 62209-1 2005, 62209-2 2010

Max. SAR(1g)

1.36 W/kg

Test result:

Complied

This report details the results of the testing carried out on one sample, the results contained in this testreport do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

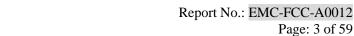
This report may only be reproduced and distributed in full. If the product in this report is used in anyconfiguration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EMC Compliance Ltd. or testing done by EMC compliance Ltd. in connection with distribution or use of the product described in this report must be approved by EMC Compliance Ltd. in writing.

Date ofreceipt: 2014. 09.17

Date of testing: 2014. 10.10~ 10.13

Issued date: 2014. 10.27

Approved by:


Tested by:

Min Kyoung-hoo

Contents

1. Applicant information	3
2. Laboratory information	4
3. Identification of Sample	5
4.Test Result Summary	6
5. Report Overview	6
6. Test Lab Declaration or Comments	6
7. Applicant Declaration or Comments	6
8. Measurement Uncertainty	7
9. The SAR Measurement System	11
10. System Verification	15
11. Operation Configurations	18
12. SAR Measurement Procedures	19
13. Test Equipment Information	21
14. RF Average Conducted Output Power	22
15. SAR Test Results	22
16. Test System Verification Results	23
17. Test Results	25
Annex A. Photographs	27
Annex B. Calibration certificate	36

1. Applicant information

Applicant: Williams Sound, LLC

Address: 10300 Valley View Road, Eden Prairie, MN55344, USA

Telephone No.: +1-800-328-6190 **Facsimile No.:** +1-952-943-2174

E-mail: gregga@williamssound.com

Contact Person: Paul Ingebrigsen

Manufacturer: Williams Sound, LLC

Address: 10300 Valley View Road, Eden Prairie, MN55344, USA

2. Laboratory information

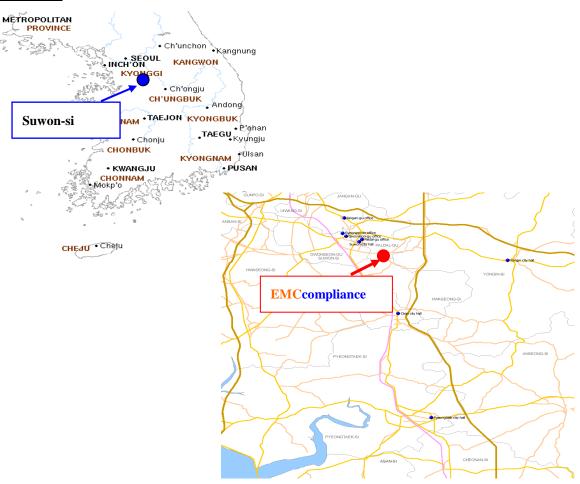
Address

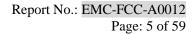
EMC compliance Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-390, Korea

Telephone No.: 82-31-336-9919 Facsimile No.: 82-505-299-8311

Certificate

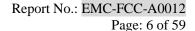

KOLAS No.: 231


FCCSite Registration No.: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.:8035A-2

SITE MAP



3. Identification of Sample

Mode of Operation	FHSS
Model Number	DLT 300
Serial Number	N/A
Sample Version	N/A
TxFreq.Range	FHSS: 2 402MHz ~ 2 476 MHz
Rx Freq.Range	FHSS: 2 402MHz ~ 2 476 MHz
RF Output Power	14 dBm Typical (Max. 16 dBm)
Antenna Type	Chip Ant. on Board
Antenna Gain	1.2 dBi
Normal Voltae	DC 3.7 V 2000 mA(Li-ion Polymer Battery)

4.Test Result Summary

Frequ	iency	RF Output Power	Max. tune	Scaling	EUT	Distance	Measured 1 g SAR	Scaled 1 g SAR
MHz	Ch.	(dBm)	up power (dBm)	Factor	Position	(mm)	(W/kg)	(W/kg)
2402	1	14.0	16	1.585	Body Front	0	0.860	1.36

5. Report Overview

This report details the results of testing carried out on the samples listed in section 3, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of EMC Compliance Ltd Wireless lab or testing done by EMC Compliance Ltd Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by EMC Compliance Ltd Wireless lab.

6. Test Lab Declaration or Comments

None

7. Applicant Declaration or Comments

None

8. Measurement Uncertainty

All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria.

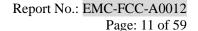
8.1 Uncertainty of SAR equipments for measurement Head 300 MHz to 3GHz(IEEE 1528)

A	Ь	С	D	e = f(d, k)	g.	$i = c \times g/e$	k				
A	Description	Tolerance/	Probability	$e = f(u, \kappa)$ Div.	g Ci	Standard	Vi				
	IEEE P1528	Uncertainty	Distribution	DIV.	CI	uncertainty	or				
Source of Uncertainty		value					Veff				
	(0.3 ~ 3 GHz)	±%			(1 g)	± %, (1 g)					
Measurement System											
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00				
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00				
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00				
Linearity	E.2.4	0.60	R	1.73	1	0.35	00				
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	00				
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00				
Readout electronics	E.2.6	0.30	N	1	1	0.30	00				
Response time	E.2.7	0.80	R	1.73	1	0.46	00				
Integration time	E.2.8	2.60	R	1.73	1	1.50	00				
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00				
RF ambient conditions-reflections	E.6.1	3.00	R	1.73	1	1.73	00				
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	00				
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1.67	00				
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	∞				
Test Sample Related											
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9				
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5				
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	00				
Phantom and Tissue Par	rameters										
Phantom uncertainty (shape and thickness tolerances)	E.3.1	6.10	R	1.73	1	3.52	00				
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5				
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5				
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	00				
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	00				
Combined standard uncertainty				RSS		11.00	165				
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		22.00					

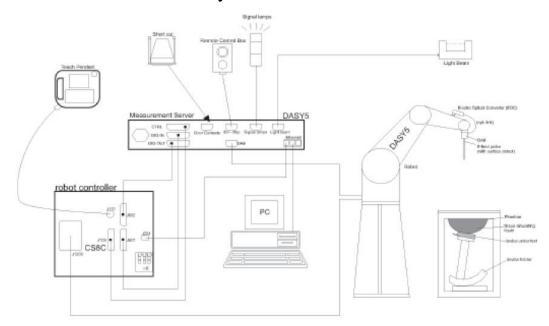
8.2 Uncertainty of SAR equipments for measurement Body 300 MHz to 3GHz(IEEE 1528)

A	ь	С	D	e = f(d, k)	g	$i = c \times g/e$	k			
Source of Uncertainty	Description IEEE P1528	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff			
	$(0.3 \sim 3 \text{ GHz})$	± %			(1 g)	± %, (1 g)				
Measurement System										
Probe calibration(k=1)	E.2.1	6.30	N	1	1	6.30	00			
Axial isotropy	E.2.2	0.50	R	1.73	0.71	0.20	00			
Hemispherical isotropy	E.2.2	2.60	R	1.73	0.71	1.06	00			
Linearity	E.2.4	0.60	R	1.73	1	0.35	00			
Boundary effect	E.2.3	1.00	R	1.73	1	0.58	00			
System detection limits	E.2.5	1.00	R	1.73	1	0.58	00			
Readout electronics	E.2.6	0.30	N	1	1	0.30	00			
Response time	E.2.7	0.80	R	1.73	1	0.46	00			
Integration time	E.2.8	2.60	R	1.73	1	1.50	00			
RF ambient conditions-noise	E.6.1	3.00	R	1.73	1	1.73	00			
RF amoient conditions-	E.6.1	3.00	R	1.73	1	1.73	00			
Probe positioner mechanical tolerance	E.6.2	0.40	R	1.73	1	0.23	00			
Probe positioning with respect to phantom shell	E.6.3	2.90	R	1.73	1	1.67	00			
Extrapolation, interpolation, and integration algorithms for max. SAR evaluation	E.5	2.00	R	1.73	1	1.15	∞			
Test Sample Related										
Test sample positioning	E.4.2	4.71	N	1	1	4.71	9			
Device holder uncertainty	E.4.1	3.60	N	1	1	3.60	5			
Output power variation—SAR drift measurement	6.6.2	5.00	R	1.73	1	2.89	00			
Phantom and Tissue Par	ameters									
Phantom uncertainty (shape and thickness tolerances)	E.3.1	7.50	R	1.73	1	4.33	∞			
Liquid conductivity-measurement uncertainty	E.3.3	1.53	N	1	0.64	0.98	5			
Liquid permittivity-measurement uncertainty	E.3.3	3.07	N	1	0.6	1.84	5			
Liquid conductivity-deviation from target values	E.3.2	5.00	R	1.73	0.64	1.85	00			
Liquid permittivity-deviation from target values	E.3.2	5.00	R	1.73	0.6	1.73	00			
Combined standard uncertainty				RSS		11.29	183			
Expanded uncertainty (95% CONFIDENCE INTERVAL)		-		K=2		22.57				

8.3Uncertainty of SAR equipments for measurement Head 300 MHz to 3GHz(IEC 62209-1)


A	Ь	с	D	e = f(d, k)	g	i = c x g / e	k
Source of Uncertainty	Description 62209-1	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff
	(0.3 ~ 3 GHz)	± %			(10 g)	\pm %, (10 g)	
Measurement System							
Probe calibration	7.2.1	6.30	N	1	1	6.30	00
Isotropy	7.2.1.2	1.87	R	1.73	1	1.08	00
Linearity	7.2.1.5	0.60	R	1.73	1	0.35	00
Boundary effect	7.2.1.3	1.00	R	1.73	1	0.58	00
Detection limits	7.2.1.4	1.00	R	1.73	1	0.58	00
Readout electronics	7.2.1.6	0.30	N	1	1	0.30	00
Response time	7.2.1.7	0.80	R	1.73	1	0.46	00
Integration time	7.2.1.8	2.60	R	1.73	1	1.50	
RF ambient conditions-noise	7.2.3.6	3.00	R	1.73	1	1.73	00
RF ambient conditions-reflections	7.2.3.6	3.00	R	1.73	1	1.73	00
Probe positioner mech. restrictions	7.2.2.1	0.40	R	1.73	1	0.23	∞
Probe positioning with respect to phantom shell	7.2.2.3	2.90	R	1.73	1	1.67	00
Post-processing	7.2.4	2.00	R	1.73	1	1.15	00
Test Sample Related							
Test sample positioning	7.2.2.4	4.11	N	1	1	4.11	9
Device holder uncertainty	7.2.2.4.2	3.60	N	1	1	3.60	5
Drift of output power (measured SAR drift)	7.2.3.5	5.00	R	1.73	1	2.89	
Phantom and Setup							
Phantom uncertainty (shape and thickness tolerances)	7.2.2.2	6.10	R	1.73	1	3.52	00
Liquid conductivity (meas.)	7.2.3.3	1.53	N	1	0.43	0.66	5
Liquid permittivity (meas.)	7.2.3.4	3.07	N	1	0.49	1.50	5
Liquid conductivity(target)	7.2.3.3	5.00	R	1.73	0.43	1.24	00
Liquid permittivity(target)	7.2.3.4	5.00	R	1.73	0.49	1.41	
Combined standard uncertainty				RSS		10.55	189
Expanded uncertainty							
(95% CONFIDENCE INTERVAL)				K=2		21.09	

Page: 10 of 59


8.4 Uncertainty of SAR equipments for measurement Body 300 MHz to 3GHz(IEC 62209-2)

A	Ь	с	D	e = f(d, k)	g	i = c x g / e	k			
Source of Uncertainty	Description 62209-2	Tolerance/ Uncertainty value	Probability Distribution	Div.	Ci	Standard uncertainty	Vi or Veff			
	(0.3 ~ 3 GHz)	± %			(10 g)	± %, (10 g)				
Measurement System										
Probe calibration	7.2.2.1	6.30	N	1	1	6.30	- 00			
Isotropy	7.2.2.2	1.87	R	1.73	1	1.08				
Linearity	7.2.1.3	0.60	R	1.73	1	0.35				
Probe modulation response	7.2.2.4	2.40	R	1.73	1	1.39	00			
Detection limits	7.2.2.6	1.00	R	1.73	1	0.58				
Boundary effect	7.2.2.6	1.00	R	1.73	1	0.58	00			
Readout electronics	7.2.2.7	0.30	N	1	1	0.30	00			
Response time	7.2.2.8	0.80	R	1.73	1	0.46	00			
Integration time	7.2.2.9	2.60	R	1.73	1	1.50	00			
RF ambient conditions–noise	7.2.4.5	3.00	R	1.73	1	1.73	00			
RF ambient conditions-reflections	7.2.4.5	3.00	R	1.73	1	1.73	00			
Probe positioner mech. restrictions	7.2.3.1	0.40	R	1.73	1	0.23	00			
Probe positioning with respect to phantom shell	7.2.3.3	2.90	R	1.73	1	1.67	00			
Post-processing	7.2.5	2.00	R	1.73	1	1.15	00			
Test Sample Related										
Device holder uncertainty	7.2.3.4.2	3.60	N	1	1	3.60	5			
Test sample positioning	7.2.3.4.3	4.11	N	1	1	4.11	9			
Power scaling	L.3	0.00	R	1.73	1	0.00	00			
Drift of output power (measured SAR drift)	7.2.2.10	5.00	R	1.73	1	2.89	00			
Phantom and Setup										
Phantom uncertainty (shape and thickness tolerances)	7.2.3.2	7.50	R	1.73	1	4.33	00			
Algorithm for correcting SAR for deviations in permittivity and conductivity	7.2.4.3	1.90	N	1	0.84	1.60	80			
Liquid conductivity (meas.)	7.2.4.3	1.53	N	1	0.71	1.09	5			
Liquid permittivity (meas.)	7.2.4.3	3.07	N	1	0.26	0.80	5			
Liquid conductivity-temperature uncertainty	7.2.4.4	3.36	R	1.73	0.71	1.38	00			
Liquid permittivity-temperature uncertainty	7.2.4.4	0.40	R	1.73	0.26	0.06	00			
Combined standard uncertainty	7.3.1			RSS		10.93	218			
Expanded uncertainty	7.3.2									
(95% CONFIDENCE INTERVAL)				K=2		21.86				

9. The SAR Measurement System

<SAR System Configuration>

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension foraccommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing,
 AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit
 is battery powered withstandard or rechargeable batteries. The signal is optically transmitted to the
 EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe
 positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page: 12 of 59

9.1 Isotropic E-field Probe EX3DV4

<EX3DV4 E-field Probe>

Construction: Symmetrical design with triangular core Built-in shielding

against static charges PEEK enclosure material (resistant to

organic solvents, e.g. DGBE).

Calibration : In air from 10 MHz to 6 GHz In brain simulating tissue

 $(accuracy \pm 6.3 \%)$

Frequency: 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 6 GHz)

Directivity : ± 0.2 dB in brain tissue (rotation around probe axis)

 ± 0.4 dB in brain tissue (rotation normal to probe axis)

DynamicRange : $5 \mu \text{W/g to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$

Srfce. Detect : ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Dimensions: Overall length: 337 mm

Tip length: 9 mm Body diameter: 10 mm Tip diameter: 2.5 mm

Distance from probe tip to dipole centers: 2 mm

Application: High precision dosimetric measurements in any exposure

scenario (e.g., very strong gradient fields). Only probe which enables compliance testing frequencies up to 6 GHz with

precision of better 30%.

Page: 13 of 59

9.2 Phantom

<SAM Twin Phantom>

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

Phantom specification:

DescriptionThe shell corresponds to the specifications of the SpecificAnthropomorphicMannequin (SAM) phantom defined in IEEE 1528-2003, IEC 62209-1 and IEC62209-2. It enables the dosimetric evaluation of left and right hand phone usage as well as bodymounted usage at the flat phantom region.

A cover prevents evaporation of the liquid. Referencemarkings on the phantomallow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness $2 \pm 0.2 \text{ mm}$ ($6 \pm 0.2 \text{ mm}$ at ear point)

Filling Volume Approx.25 liters

Dimensions Length: 1 000 mm, Width: 500 mm, Height: 850 mm (Adjustable feet)

Page: 14 of 59

9.3 Device Holder for Transmitters

<Device Holder for Transmitters>

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. An accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions, in which the devices must be measured, are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity = 3 and loss tangent = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Page: 15 of 59

10. System Verification

10.1 Tissue Verification

The dielectric properties for this Tissue Simulant Liquids were measured by using the Speag DAK-3.5 in conjunction with Agilent E5071B Network Analyzer. The Conductivity (σ) and Permittivity (ρ) are listed in Table 1.For the SAR measurement given in this report. The temperature variation of the Tissue Simulant Liquids was (22 ± 2) °C.

Freq. (MHz)	Tissue Type	Limit/Measured	Permittivity (ρ)	Conductivity (σ)	Temp (℃)
2 402	Body	Recommended Limit	52.76 ± 5 % (50.13 ~ 55.40)	1.91 ± 5 % (1.81 ~ 2.00)	22 ± 2
	_ = = = 5	Measured, 2014-10-10	51.39	1.91	21.17
2 440	Body	Recommended Limit	52.71 ± 5 % (50.08 ~ 55.35)	$1.94 \pm 5 \%$ (1.84 ~ 2.04)	22 ± 2
		Measured, 2014-10-10	51.28	1.96	21.17
2 450	Body	Recommended Limit	52.70 ± 5 % (50.07 ~ 55.34)	$1.95 \pm 5 \%$ (1.85 ~ 2.05)	22 ± 2
	3	Measured, 2014-10-10	51.23	1.97	21.17
2 476	6 Body	Recommended Limit	52.67± 5 % (50.04 ~ 55.30)	1.92± 5 % (1.82 ~ 2.02)	22 ± 2
	3	Measured, 2014-10-10	51.35	2.00	21.17
2 402	Head	Recommended Limit	39.28± 5 % (37.32 ~ 41.25)	1.76± 5 % (1.67 ~ 1.85)	22 ± 2
		Measured, 2014-10-13	38.61	1.76	22.55
2 440	Head	Recommended Limit	39.22± 5 % (37.26 ~ 41.18)	$1.79 \pm 5 \%$ (1.70 ~ 1.88)	22 ± 2
		Measured, 2014-10-13	38.46	1.80	22.55
2 450	Head	Recommended Limit	39.20 ± 5 % (37.24 ~ 41.16)	$1.80 \pm 5 \%$ $(1.71 \sim 1.89)$	22 ± 2
		Measured, 2014-10-13	38.40	1.81	22.55
2 476	Head	Recommended Limit	39.17± 5 % (37.21 ~ 41.13)	$1.83 \pm 5 \%$ $(1.74 \sim 1.92)$	22 ± 2
		Measured, 2014-10-13	38.25	1.84	22.55

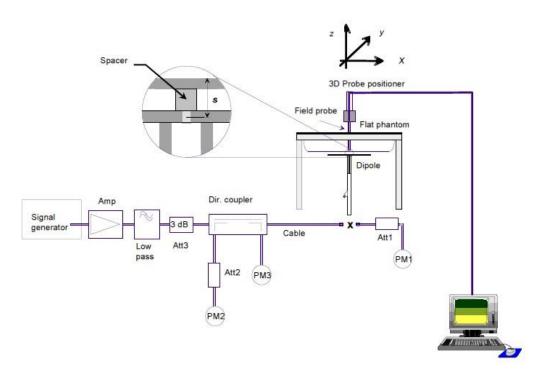
<Table 1.Measurement result of Tissue electric parameters>

Page: 16 of 59

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients					Frequen	cy (MHz)				
(% by weight)	4:	50	8:	35	9	15	19	000	24	150
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: $99^+\%$ Pure Sodium Chloride Sugar: $98^+\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^+$ resistivity HEC: Hydroxyethyl Cellulose DGBE: $99^+\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]


Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Report No.: EMC-FCC-A0012 Page: 17 of 59

10.2 Test System Verification

The microwave circuit arrangement for system verification is sketched below picture. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10% from the target SAR values. These tests were done at 2450 MHz. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table Table 2 (A power level of 250 mW was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range (22 \pm 2) $^{\circ}$ C, the relative humidity was in the range (50 \pm 20) % and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Validation	Dipole Ant.	Frequency	Tissue	Limit/Measurement (Normalized to 1 W)			
Kit	S/N	(MHz)	Type		1 g	10 g	
				Recommended Limit	50.9 ± 10 %	23.6 ± 10 %	
D2450V2	895	2450	MSL_2450	(Normalized)	(45.81 ~ 55.99)	(21.24 ~ 25.96)	
				Measured, 2014-10-10	54.80	25.28	
				Recommended Limit	52.5 ± 10 %	24.5 ± 10 %	
D2450V2	895	2450	HSL_2450	(Normalized)	(47.25 ~ 57.75)	$(22.05 \sim 26.95)$	
				Measured, 2014-10-13	56.00	25.60	

<Table 2.Test System Verification Result>

Page: 18 of 59

11. Operation Configurations

For the Wireless Transceiver SAR tests, a communication link is set up with the operating mode for can be controlled by EUT. The Absolute Radio Frequency Channel Number is allocated to 1, 8 and 16 respectively in the case of $2402 \sim 2476$ MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

Page: 19 of 59

12. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surfacedetermines the closest measurement point to phantom surface. The minimum distance of probe sensors surface is 2 mm. This distance cannot be smaller than the Distance of sensor calibration points toprobe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan hasmeasured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is arequirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r03.

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution to x or y dimension of the test dimeasurement point on the test.	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Page: 20 of 59

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures 5x5x7 points within a cube whose base faces are centered on the maxima found in a preceding area scanjob within the same procedure. When the measurement is done, the Zoom Scan evaluates theaveraged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measument 100 MHz to 6 GHz v01r03.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{c} \Delta z_{Zoom}(1)\text{: between} \\ 1^{st} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Zoom}(n \geq 1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$		≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
			$\leq 1.5 \cdot \Delta z$	Z _{Zoom} (n-1)
Minimum zoom scan volume	X V 7		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

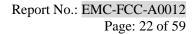
Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent powerreference measurement within the same procedure, and with the same settings. The Power DriftMeasurement gives the field difference in dB from the reading conducted within the last PowerReference Measurement. This allows a user to monitor the power drift of the device under test within abatch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensionalgrid. In order to get a reasonable extrapolation, the extrapolated distance should not belarger than the step size in Z-direction.

* Z Scan Report on Liquid Measure the height Annex A.4 Liquid Depth photo to replace


^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Page: 21 of 59

13. Test Equipment Information

Test Platform	SPEAG DASY5 System					
Description	SAR Test System (Frequency range 300MHz-6GHz)					
Software Reference	DASY5: V52.8.8.1222, SEMCAD: V14.6.10 (7331)					
Hardware Reference						
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration		
DASY5 Robot	TX90XL Speag	F12/5L7FA1/A/01	N/A	N/A		
DASY5 Controller	TX90XL Speag	F12/5L7FA1/C/01	N/A	N/A		
Phantom	TwinSAM Phantom	1724	N/A	N/A		
Phantom	TwinSAM Phantom	1728	N/A	N/A		
Mounting Device	Mounting Device	None	N/A	N/A		
DAE	DAE4	1342	2014-07-24	2015-07-24		
Probe	EX3DV4	3928	2014-01-15	2015-01-15		
Dipole Validation Kits	D2450V2	895	2014-07-24	2016-07-24		
Network Analyzer	E5071B	MY42403524	2014-07-15	2015-07-15		
Dielectric Assessment Kit	DAK-3.5	1078	2014-08-19	2015-08-19		
Dual Directional Coupler	772D	2839A00719	2014-08-29	2015-08-29		
Signal Generator	E4438C	MY42080486	2014-02-11	2015-02-11		
Power Amplifier	2055 BBS3Q7E9I	1005D/C0521	2014-05-15	2015-05-15		
Dual Power Meter	E4419B	GB43312301	2014-07-17	2015-07-17		
Power Sensor	8481H	3318A19377	2014-08-30	2015-08-30		
Power Sensor	8481H	3318A19379	2014-08-30	2015-08-30		
LP Filter	LA-30N	40058	2014-08-28	2015-08-28		
Humidity/DataRecorder	MHB-382SD	73871	2014-08-26	2015-08-26		

14. RF Average Conducted Output Power

Frequency (MHz)	RF Output Power (dBm)	Max. tune up power (dBm)	Scaling Factor
2 402	14.00	16.00	1.585
2 440	14.37	16.00	1.455
2 476	14.03	16.00	1.574

15. SAR Test Results

15.1 SAR Result for Body(Separation Distance is 0 mm gap)

Freque	ency	Average	Max. tune	Scaling	EUT	Distance	Measured	Scaled	1g SAR
MHz	Ch.	Power (dBm)	up power (dBm)	Factor	Position	(mm)	1 g SAR (W/kg)	1 g SAR (W/kg)	Limit (W/kg)
2 440	8	14.37	16.00	1.455	Front	0	0.670	0.975	
2 440	8	14.37	16.00	1.455	Back	0	0.651	0.947	1.6
2 402	1	14.00	16.00	1.585	Front	0	0.860	1.36	1.6
2 476	16	14.03	16.00	1.574	Front	0	0.499	0.785	

15.2 SAR Result for Head

Freque	ency	Average Power	Max. tune	Scaling	Scaling EUT		Measured 1 g SAR	Scaled	1g SAR Limit
MHz	Ch.	(dBm)	up power (dBm)	Factor Po	Posit	cion	(W/kg)	1 g SAR (W/kg)	(W/kg)
2 440	8	14.37	16.00	1.455	Right	Cheek	0.223	0.334	
2 440	8	14.37	16.00	1.455	Right	Tilt	0.132	0.192	
2 440	8	14.37	16.00	1.455	Left	Cheek	0.567	0.825	1.6
2 440	8	14.37	16.00	1.455	Left	Tilt	0.244	0.355	1.6
2 402	1	14.00	16.00	1.585	Left	Cheek	0.737	1.17	
2 476	16	14.03	16.00	1.574	Left	Cheek	0.431	0.678	

16. Test System Verification Results

System check for 2450MHz-Body (2014-10-10)

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:895

Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Communication System: UID 0, cw1; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.979 \text{ S/m}$; $\varepsilon_r = 51.422$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

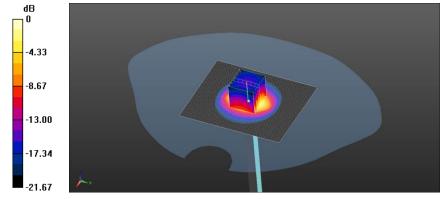
- Probe: EX3DV4 SN3928; ConvF(6.84, 6.84, 6.84); Calibrated: 2014-01-15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-

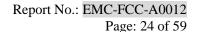
Probe)/Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 20.4 W/kg

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-


Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 102.9 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (measured) = 20.2 W/kg

0 dB = 20.2 W/kg = 13.05 dBW/kg

System check for 2450MHz-Head(2014-10-13)

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:895

Procedure Name: d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)

Communication System: UID 0, cw1; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.808 \text{ S/m}$; $\varepsilon_r = 38.403$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

• Probe: EX3DV4 - SN3928; ConvF(6.91, 6.91, 6.91); Calibrated: 2014-01-15;

• Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1342; Calibrated: 2014-07-24

Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724

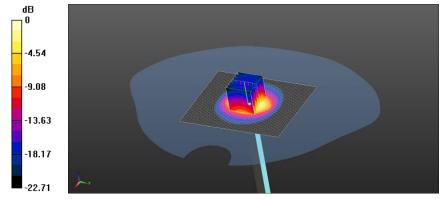
• Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-

Probe)/Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 21.6 W/kg

System Performance Check at Frequencies/d=10mm, Pin=250 mW, dist=2.0mm (EX-


Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 111.4 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.4 W/kg

Maximum value of SAR (measured) = 21.4 W/kg

0 dB = 21.4 W/kg = 13.30 dBW/kg

Report No.: EMC-FCC-A0012 Page: 25 of 59

17. Test Results

Body_2402MHz_Body_Front_Gap0mm

DUT: DLT300; Type: Potable Conference Transmitter; Serial: N/A

Procedure Name: FHSS_ch1_f2 402_Body Front_gap 0mm

Communication System: UID 0, FHSS (0); Frequency: 2402 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2402 MHz; $\sigma = 1.905$ S/m; $\varepsilon_r = 51.54$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

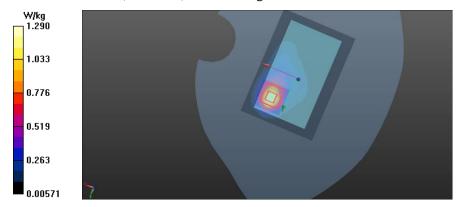
- Probe: EX3DV4 SN3928; ConvF(6.84, 6.84, 6.84); Calibrated: 2014-01-15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin 1728; Type: QD000P40CD; Serial: TP:1728
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

DLT300/FHSS_ch1_f2 402_Body Front_gap 0mm/Area Scan (71x101x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.36 W/kg

DLT300/FHSS_ch1_f2 402_Body Front_gap 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.03 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.860 W/kg; SAR(10 g) = 0.402 W/kg

Maximum value of SAR (measured) = 1.29 W/kg

Report No.: EMC-FCC-A0012 Page: 26 of 59

Head_2402MHz_ Left_Cheek

DUT: DLT300; Type: Portable Conference Transmitter; Serial: N/A

Procedure Name: FHSS_ch1_f2 402_Left cheek

Communication System: UID 0, FHSS (0); Frequency: 2402 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2402 MHz; $\sigma = 1.756$ S/m; $\varepsilon_r = 38.608$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY5 Configuration:

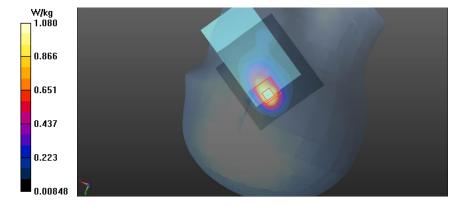
- Probe: EX3DV4 SN3928; ConvF(6.91, 6.91, 6.91); Calibrated: 2014-01-15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1342; Calibrated: 2014-07-24
- Phantom: SAM twin SN1724; Type: QD000P40CD; Serial: TP:1724
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

DLT300/FHSS_ch1_f2 402_Left cheek_gap 0mm/Area Scan (71x81x1): Interpolated grid:

dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 1.21 W/kg

DLT300/FHSS_ch1_f2 402_Left cheek_gap 0mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.470 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.44 W/kg

SAR(1 g) = 0.737 W/kg; SAR(10 g) = 0.360 W/kg

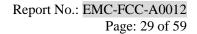
Maximum value of SAR (measured) = 1.08 W/kg

Annex A. Photographs

Annex A.1 EUT

Front View

Back View



Right side View

Left side View

Top side View

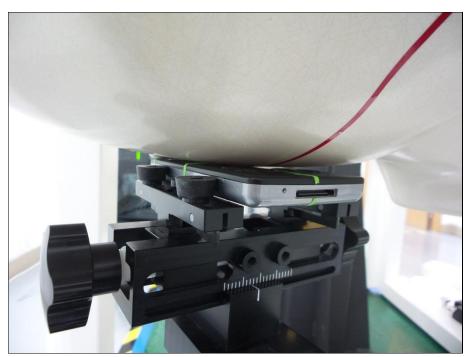
Bottom side View

Annex A.2 Photographs of Test Setup

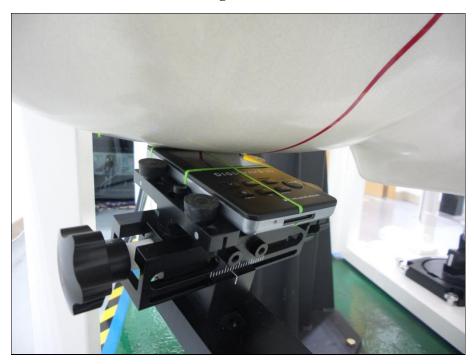
Photograph of the SAR measurement System

Annex A.3 Test Position

Body_Front



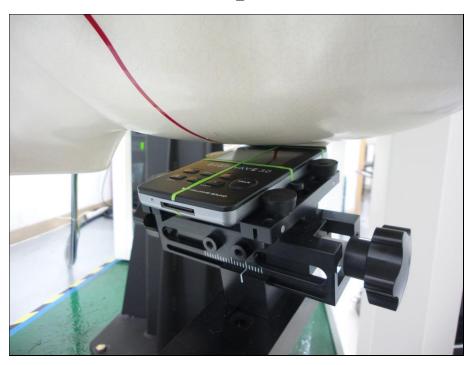
Body_Back



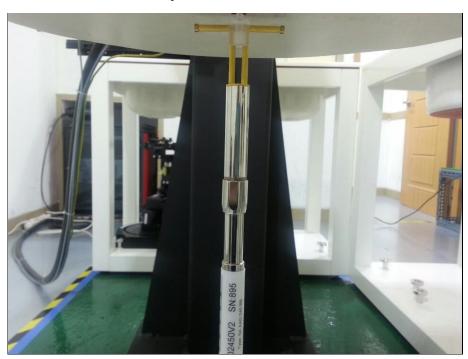
Right_Cheek



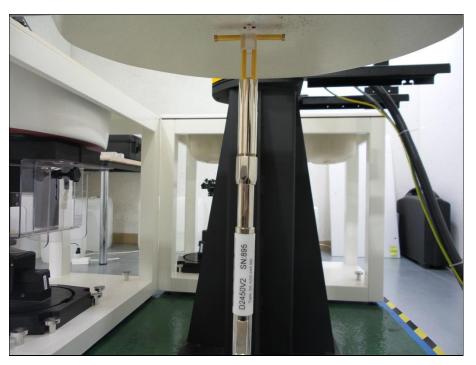
Right_Tilt



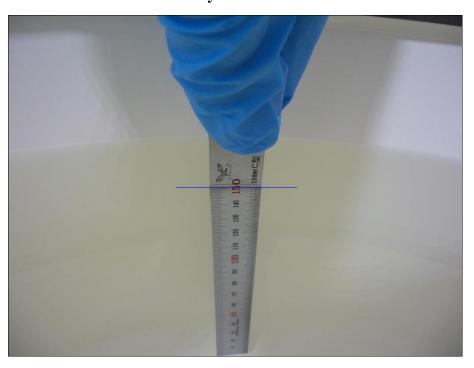
Left_Cheek

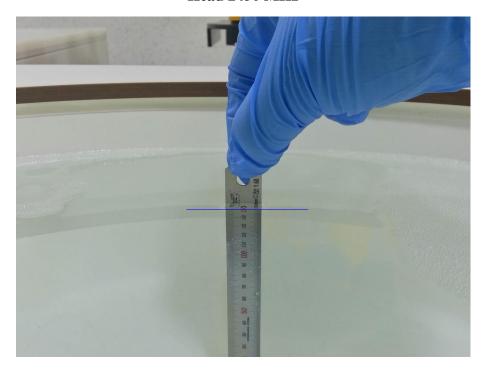


Left_Tilt



Body Validation 2450 MHz


Head Validation 2450 MHz



Annex A.4 Liquid Depth

Body 2450 MHz

Head 2450 MHz

Page: 36 of 59

Annex B. Calibration certificate

Annex B.1 Probe Calibration certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

EMC Compliance (Dymstec)

Certificate No: EX3-3928_Jan14

S

C

S

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3928

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6
Calibration procedure for dosimetric E-field probes

Calibration date: January 15, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013_Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660_Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: January 15, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3928_Jan14

Page 1 of 11

Page: 37 of 59

Calibration Laboratory of Schmid & Partner Engineering AG sstrasse 43, 8004 Zurich, Switzerland

Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF DCP CF

diode compression point crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., 9 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

- Calibration is Performed According to the Following Standards:
 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3928 Jan14 Page 2 of 11

Page: 38 of 59

; '.

EX3DV4 - SN:3928

January 15, 2014

Probe EX3DV4

SN:3928

Manufactured: Calibrated:

March 8, 2013 January 15, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3928_Jan14

Page 3 of 11

Page: 39 of 59

EX3DV4- SN:3928

January 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.50	0.23	0.56	± 10.1 %
DCP (mV) ^B	97.4	89.0	98.9	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√μV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	CW	X	0.0	0.0	1.0	0.00	167.7	±2.5 %
1000		Y	0.0	0.0	1.0		181.5	
-17		Z	0.0	0.0	1.0		168.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3928_Jan14

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page: 40 of 59

EX3DV4-SN:3928

January 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	10.24	10.24	10.24	0.14	1.58	± 13.4 %
850	41.5	0.92	9.41	9.41	9.41	0.76	0.59	± 12.0 %
900	41.5	0.97	9.33	9.33	9.33	0.42	0.83	± 12.0 %
1750	40.1	1.37	7.88	7.88	7.88	0.62	0.66	± 12.0 %
1900	40.0	1.40	7.62	7.62	7.62	0.33	0.92	± 12.0 %
2450	39.2	1.80	6.91	6.91	6.91	0.35	0.87	± 12.0 %
2600	39.0	1.96	6.73	6.73	6.73	0.46	0.71	± 12.0 %
5200	36.0	4.66	5.09	5.09	5.09	0.30	1.80	± 13.1 %
5300	35.9	4.76	4.80	4.80	4.80	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.83	4.83	4.83	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.46	4.46	4.46	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.76	4.76	4.76	0.35	1.80	± 13.1 %

Certificate No: EX3-3928_Jan14

Page 5 of 11

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^r At frequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^a Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Page: 41 of 59

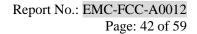
FX3DV4-SN:3928

January 15, 2014

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	10.53	10.53	10.53	0.06	1.20	± 13.4 %
850	55.2	0.99	9.33	9.33	9.33	0.80	0.64	± 12.0 %
900	55.0	1.05	9.21	9.21	9.21	0.52	0.77	± 12.0 %
1750	53.4	1.49	7.65	7.65	7.65	0.38	0.88	± 12.0 %
1900	53.3	1.52	7.31	7.31	7.31	0.31	0.98	± 12.0 %
2450	52.7	1.95	6.84	6.84	6.84	0.77	0.55	± 12.0 %
2600	52.5	2.16	6.61	6.61	6.61	0.80	0.50	± 12.0 %
5200	49.0	5.30	4.39	4.39	4.39	0.40	1.90	± 13.1 %
5300	48.9	5.42	4.21	4.21	4.21	0.40	1.90	± 13.1 %
5500	48.6	5.65	3.96	3.96	3.96	0.45	1.90	± 13.1 %
5600	48.5	5.77	4.07	4.07	4.07	0.30	1.90	± 13.1 %
5800	48.2	6.00	4.10	4.10	4.10	0.45	1.90	± 13.1 %

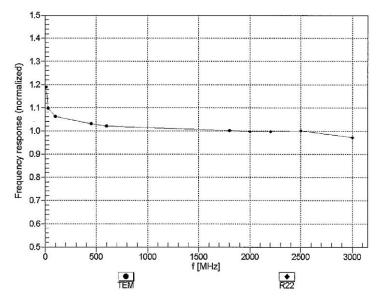

Certificate No: EX3-3928_Jan14

Page 6 of 11

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Full frequencies below 3 GHz, the validity of tissue parameters (a and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. Aft requencies above 3 GHz, the validity of tissue parameters (a and o) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



EX3DV4-- SN:3928

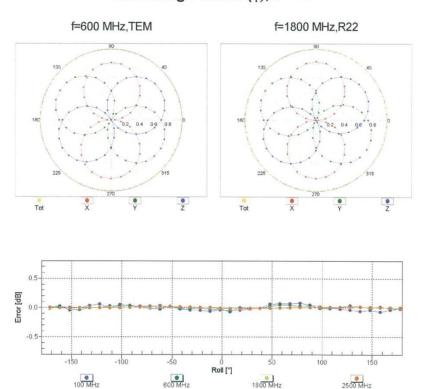
January 15, 2014

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3928_Jan14

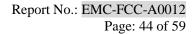
Page 7 of 11



January 15, 2014

2500 MHz

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

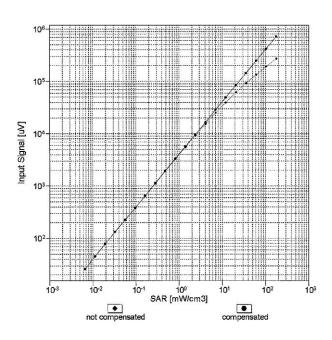


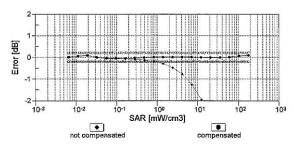
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3928_Jan14

100 MHz

Page 8 of 11





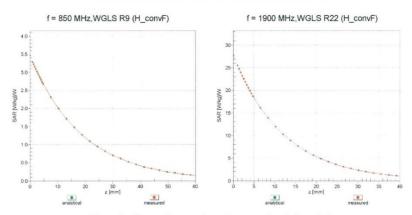
EX3DV4- SN:3928

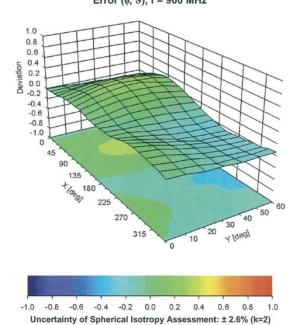
January 15, 2014

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

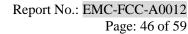
Certificate No: EX3-3928_Jan14


Page 9 of 11



EX3DV4- SN:3928 January 15, 2014

Conversion Factor Assessment



Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

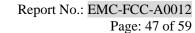
Certificate No: EX3-3928_Jan14

Page 10 of 11

cm . .

EX3DV4-SN:3928

January 15, 2014


DASY/EASY - Parameters of Probe: EX3DV4 - SN:3928

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-112
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	. 1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3928_Jan14

Page 11 of 11

Annex B.2 DAE Calibration certification

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

EMC Compliance (Dymstec)

Certificate No: DAE4-1342_Jul14

Accreditation No.: SCS 108

Object	DAE4 - SD 000 D0	04 BM - SN: 1342	
Calibration procedure(s)	QA CAL-06.v26 Calibration proced	lure for the data acquis	sition electronics (DAE)
Calibration date:	July 24, 2014		결 작성검토승인 재 X ## ##h
			e-physical units of measurements (SI). ving pages and are part of the certificate.
All calibrations have been conduc	cted in the closed laboratory	facility: environment temperat	ture (22 ± 3) °C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards		01-Oct-13 (No:13976)	Oct-14
	SN: 0810278	01-001-13 (NO.13976)	000-14
Keithley Multimeter Type 2001	ľ		
Keithley Multimeter Type 2001 Secondary Standards	ID#	Check Date (in house)	Scheduled Check In house check: Jan-15
Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	ID # SE UWS 053 AA 1001		Scheduled Check
Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	Scheduled Check In house check: Jan-15
Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	Check Date (in house) 07-Jan-14 (in house check) 07-Jan-14 (in house check)	Scheduled Check In house check: Jan-15 In house check: Jan-15

Certificate No: DAE4-1342_Jul14

Page 1 of 5

Page: 48 of 59

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an
 input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1342_Jul14 Page 2 of 5

Page: 49 of 59

DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB =

Calibration Factors	х	Y	z
High Range	404.079 ± 0.02% (k=2)	404.229 ± 0.02% (k=2)	404.193 ± 0.02% (k=2)
Low Range	3.97194 ± 1.50% (k=2)	3.97818 ± 1.50% (k=2)	3.97832 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	36.5 ° ± 1 °

Certificate No: DAE4-1342_Jul14

Page 3 of 5

Page: 50 of 59

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	199994.48	-2.71	-0.00
Channel X + Input	20003.12	2.03	0.01
Channel X - Input	-19998.22	2.56	-0.01
Channel Y + Input	199994.97	-2.37	-0.00
Channel Y + Input	20000.20	-0.94	-0.00
Channel Y - Input	-20001.55	-0.79	0.00
Channel Z + Input	199993.69	-3.29	-0.00
Channel Z + Input	20000.13	-0.86	-0.00
Channel Z - Input	-20001.35	-0.58	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X + In	out	2000.66	-0.29	-0.01
Channel X + In	out	201.58	0.18	0.09
Channel X - Inp	out	-198.71	-0.04	0.02
Channel Y + In	put	2001.16	0.25	0.01
Channel Y + In	put	201.20	-0.03	-0.02
Channel Y - Inp	out	-199.87	-1.04	0.53
Channel Z + In	put	2001.06	0.27	0.01
Channel Z + In	put	200.54	-0.49	-0.24
Channel Z - Inj	out	-200.16	-1.24	0.62

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	11.07	9.27
	- 200	-8.95	-10.56
Channel Y	200	0.81	0.58
	- 200	-2.58	-2.76
Channel Z	200	1.15	0.69
	- 200	-2.73	-3.02

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	4.50	-2.81
Channel Y	200	9.68	-	6.17
Channel Z	200	10.07	7.09	

Certificate No: DAE4-1342_Jul14

Page 4 of 5

Page: 51 of 59

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	15949	15477
Channel Y	16473	14871
Channel Z	15667	14031

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.59	-0.36	1.97	0.56
Channel Y	-0.70	-1.87	0.51	0.54
Channel Z	-0.60	-1.90	0.78	0.60

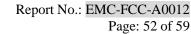
6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)


Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1342_Jul14

Page 5 of 5

Annex B.3 Dipole Calibration certification

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

EMC Compliance (Dymstec)

Certificate No: D2450V2-895_Jul14

Object	D2450V2 - SN: 89	95	
Calibration procedure(s)	QA CAL-05.v9 Calibration proceed	dure for dipole validation kits abo	ove 700 MHz
Calibration date:	July 24, 2014		
The measurements and the unce	rtainties with confidence pr	onal standards, which realize the physical un obability are given on the following pages an	d are part of the certificate.
All calibrations have been conduc	ted in the closed laborator	y facility: environment temperature (22 ± 3)°C	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
	E critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	1	Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827)	Scheduled Calibration Oct-14
Primary Standards Power meter EPM-442A	ID#		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A	ID # GB37480704 US37292783	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)	Oct-14 Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 MY41092317	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID# GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ESS-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID #	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. E53-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16
Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06	ID # GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # 100005 US37390585 S4206	09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 30-Apr-14 (No. DAE4-601_Apr14) Check Date (in house) 04-Aug-99 (in house check Oct-13) 18-Oct-01 (in house check Oct-13)	Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Apr-15 Scheduled Check In house check: Oct-16 In house check: Oct-14

Certificate No: D2450V2-895_Jul14

Page 1 of 8

Page: 53 of 59

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-895_Jul14

Page 2 of 8

Page: 54 of 59

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		1222

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	100
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.6 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		-

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.01 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.6 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-895_Jul14

Page: 55 of 59

Appendix (Additional assessments outside the scope of SCS108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 1.6 jΩ	
Return Loss	- 29.5 dB	

Antenna Parameters with Body TSL

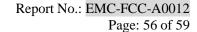
Impedance, transformed to feed point	$50.6 \Omega + 3.7 jΩ$	
Return Loss	- 28.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.


No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	June 19, 2012	

Certificate No: D2450V2-895_Jul14

Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 24.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; σ = 1.85 S/m; ϵ_r = 37.8; ρ = 1000 kg/m³

Phantom section: Flat Section

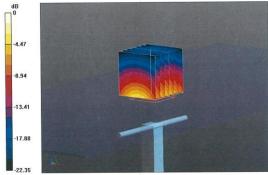
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

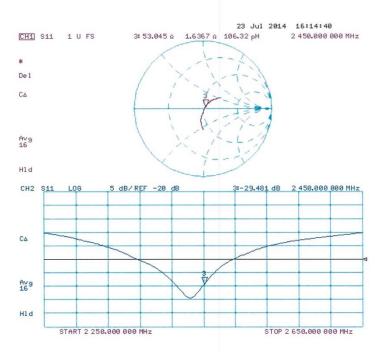
Electronics: DAE4 Sn601; Calibrated: 30.04.2014


Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

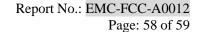
DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.2 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.9 W/kg


SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.2 W/kgMaximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg



Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-895_Jul14

Page 6 of 8

DASY5 Validation Report for Body TSL

Date: 16.07.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 895

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 50.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

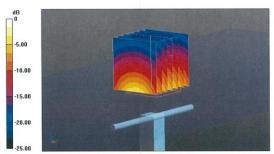
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

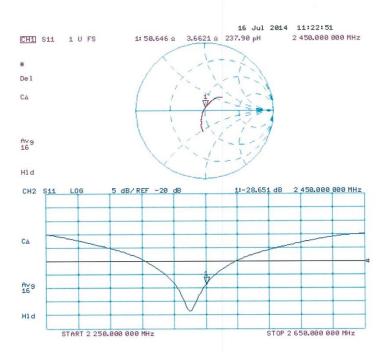
Electronics: DAE4 Sn601; Calibrated: 30.04.2014


Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.39 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.01 W/kg


Maximum value of SAR (measured) = 17.3 W/kg

0 dB = 17.3 W/kg = 12.38 dBW/kg

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-895_Jul14

Page 8 of 8