

Date of Issue:

2010-07-15

Page:

1/67

SAR TEST REPORT

Portable Conference Transmitter Equipment Under Test

DLT100 Model No.

Williams Sound Corp. Applicant

10321 W. 70th Street, Eden Prairie, Minnesota, 55344, USA Address of Applicant

CNMDLT100 FCC ID 1360A-DLT100 IC

Portable Device Device Category

General Population/Uncontrolled Exposure **Exposure Category**

Date of Receipt 2010-06-01 2010-06-25 Date of Test(s) 2010-07-15 Date of Issue

0.823 W/kg (Head), 1.15 W/kg (Body) Max. SAR

Standards: FCC OET Bulletin 65 supplement C

IEEE 1528, 2003

ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above.

The above test report is the accredited test results by Korea Laboratory Accreditation Scheme, which signed the ILAC-MRA.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by : Fred Jeong 2010-07-15

2010-07-15 Approved by : Charles Kim

Date of Issue : 2010-07-15
Page : 2 / 67

Contents

1. General Information

	1.1	Testing Laboratory	3
	1.2	Details of Applicant.	3
	1.3	Version of Report.	3
	1.4	Description of EUT(s)	3
	1.5	Test Environment.	4
	1.6	Operation description.	4
	1.7	Evaluation procedures.	5
	1.8	The SAR Measurement System.	6
	1.9	System Components.	8
	1.10	SAR System Verification.	9
	1.11	Tissue Simulant Fluid for the Frequency Band.	11
	1.12	Test Standards and Limits.	12
2. 1	Instrun	nents List	14
3 (Summa	ary of Results	15

APPENDIX

- A. Photographs of EUT & EUT's Test Setup
- B. DASY4 SAR Report
- C. Uncertainty Analysis
- D. Calibration certificate

Date of Issue : 2010-07-15 Page : 3 / 67

1. General Information

1.1 Testing Laboratory

SGS Testing Korea Co., Ltd.

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371 Homepage : www.kr.sgs.com/ee

1.2 Details of Manufacturer

Manufacturer : Williams Sound Corp.

Address : 10321 W. 70th Street, Eden Prairie, Minnesota, 55344, USA

Contact Person : Gregg Abram
Phone No. : 952-224-7703
Fax No. : 952-224-7786

1.3 Version of Report

Version Number	Date	Revision
00	2010-07-07	Initial issue
01	2010-07-15	Revision 01

1.4 Description of EUT(s)

EUT Type	: Portable Conference Transmitter
Model	: DLT100
Serial Number	: N/A
Mode of Operation	: 2.4GHz Transmitter
Duty Cycle	: 100 %
Body worn Accessory	: None
Tx Frequency Range	: 2402 MHz ~ 2476 MHz
Conducted Max Power	: 15.40 dBm
Battery Type	: DC 3.7 V

Date of Issue : 2010-07-15 Page : 4 / 67

1.5 Test Environment

Ambient temperature	: 21 ° C ~ 23 ° C
Tissue Simulating Liquid	: 21 ° C ~ 23 ° C
Relative Humidity	: 40 % ~ 60 %

1.6 Operation Configuration

The client provided a special driver and test program which can control the frequency and power of the module. Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement.

Date of Issue : 2010-07-15 Page : 5 / 67

1.7 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:
- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1 g and 10 g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1 % for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a

Date of Issue : 2010-07-15 Page : 6 / 67

position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1 g and 10 g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30 g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1 g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- •A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- •A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- •A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Date of Issue : 2010-07-15 Page : 7 / 67

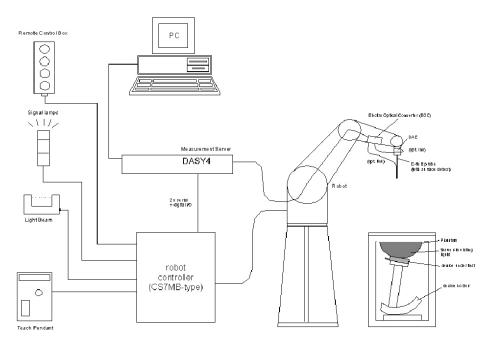


Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Date of Issue : 2010-07-15 Page : 8 / 67

1.9 System Components

ET3DV6 E-Field Probe

Construction: Symmetrical design with triangular core Built-in shielding

against static charges PEEK enclosure material (resistant to

organic solvents, e.g. glycol).

Calibration : In air from 10 MHz to 2.5 GHz In brain simulating tissue

 $(accuracy \pm 8 \%)$

Frequency: 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 3 GHz)

Directivity : ± 0.2 dB in brain tissue (rotation around probe axis)

 ± 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range : $5 \mu W/g$ to >100 mW/g; Linearity: $\pm 0.2 dB$

Srfce. Detect

ect : ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz Compliance tests of mobile

phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

Date of Issue : 2010-07-15 Page : 9/67

SAM Phantom

Construction: The SAM Phantom is constructed of a

fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually

teaching three points in the robot

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within \pm 10 % from the target SAR values. This test was done at 2450 MHz. The test for EUT was conducted within 24 hours after each validation. The obtained result from the system accuracy verification is displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range 20 °C \pm 23 °C, the relative humidity was in the range 40 % \pm 60 % and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Date of Issue : 2010-07-15 Page : 10 / 67

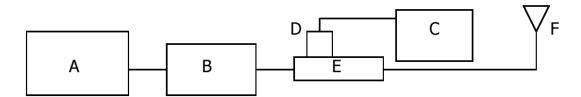


Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

System Validation Results

Validation Kit	Tissue	Target SAR 1 g from Calibration Certificate (Input Power : 250 mW)	Measured SAR 1 g (Input Power : 250 mW)	Deviation (%)	Date	Liquid Temp. (°C)
D2450V2 S/N: 734	2450 MHz Brain	12.8 W/kg	12.7 W/kg	-0.78	2010-06-25	22.1
D2450V2 S/N: 734	2450 MHz Body	13.4 W/kg	13.5 W/kg	0.75	2010-06-25	22.1

Table 1. Results system validation

Date of Issue : 2010-07-15 Page : 11 / 67

1.11 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequency band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 kHz - 3000 MHz) by using a procedure detailed in Section V.

	Tissue type	Limits / Measured	Dielectric Parameters			
f (MHz)			Permittivity	Conductivity	Simulated Tissue Temp()	
	Head	Measured, 2010-06-25	37.8	1.85	22.1	
		Recommended Limits	39.2	1.80	21.0 ~ 23.0	
2450		Deviation(%)	-3.57	2.78	-	
2430		Measured, 2010-06-25	53.0	1.95	22.1	
		Recommended Limits	52.7	1.95	21.0 ~ 23.0	
		Deviation(%)	0.57	0.00	-	

Date of Issue : 2010-07-15 Page : 12 / 67

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99 $^{+}\%$ Pure Sodium Chloride Sugar: 98 $^{+}\%$ Pure Sucrose Water: De-ionized, 16 $M\Omega^{+}$ resistivity HEC: Hydroxyethyl Cellulose DGBE: 99 $^{+}\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

1.12 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the

Date of Issue : 2010-07-15 Page : 13 / 67

frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

Date of Issue : 2010-07-15
Page : 14 / 67

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 28, 2011
Schmid& Partner Engineering AG	2450 MHz System Validation Dipole	D2450V2	734	May 27, 2012
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	December 09, 2010
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1299 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	March 31, 2011
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	September 28, 2010
Agilent	Power Sensor	Е9300Н	MY41495307 MY41495308	September 29, 2010 September 29, 2010
Agilent	Signal Generator	E4421B	MY43350132	September 29, 2010
Empower RF Systems	Power Amplifier	2001- BBS3Q7ECK	1032 D/C 0336	March 31, 2011
Agilent	Dual Directional Coupler	777D 778D	50128 50454	September 28, 2010
Microlab	LP Filter	LA-30N	N/A	September 28, 2010

Date of Issue : 2010-07-15 Page : 15 / 67

3. Summary of Results

A. Conducted Power

1. Conducted Power Table.

Mode	Average Power(dBm)			
Mode	Low	Mid	High	
2.4 GHz	13.86	14.54	15.40	

2. The EUT Position is based on normal operating condition.

B. SAR Evaluation Consideration

KDB 447498 -SAR evaluation

- output 60/f(GHz) : SAR not required

- output > 60/f(GHz) : Stand-alone SAR required

Frequency	P (dBm)	P (mW)	Stand-alone SAR
2476 MHz	15.40	34.67	Yes

Date of Issue : 2010-07-15 Page : 16 / 67

Ambient Temperature (°C)	22.1
Liquid Temperature (°C)	22.1
Date	2010-06-25

WLAN Head SAR

Head	EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR
		Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
Left Ear	Cheek	2402	1	0.068	0.719	1.6
	Cheek	2437	8	-0.030	0.823	
	Cheek	2476	16	0.019	0.776	
	Tilt	2437	8	-0.117	0.550	
Right Ear	Cheek	2437	8	-0.037	0.394	
	Tilt	2437	8	-0.001	0.295	

<Note>

- 1. If the SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 W/kg) than SAR limit, testing at low and high channel is optional.
- 3. These test positions are shown the below set up pictures. Please refer to the pictures.

Date of Issue : 2010-07-15 Page : 17 / 67

Ambient Temperature (°C)	22.1		
Liquid Temperature (°C)	22.1		
Date	2010-06-25		

WLAN Body SAR

EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR Limits
EO1 Fosition	Frequency (MHz)	Channel	Drift(dB)	(W/kg)	(W/kg)
Front Side	2437	8	-0.192	1.15	
Back Side	2437	8	0.018	0.747	1.6
Front Side	2402	1	0.067	1.08	1.0
Front Side	2476	16	-0.022	1.09	

<Note>

- 1. If the SAR measured at the middle channel for this configuration is at least 3 dB lower (0.8 W/kg) than SAR limit, testing at low and high channel is optional.
- 3. These test positions are shown the below set up pictures. Please refer to the pictures.

Date of Issue : 2010-07-15 Page : 18 / 67

Appendix

List

Appendix A	Photographs	- EUT - Test Setup
Appendix B	DASY4 Report (Plots of the SAR Measurements)	- 2450 MHzValidation Test- WLAN Test
Appendix C	Uncertainty Analysis	
Appendix D	Calibration Certificate	- PROBE - DAE - DIPOLE

Date of Issue : 2010-07-15 Page : 19 / 67

Appendix A

EUT Photographs

Front View of EUT

Rear View of EUT

Date of Issue : 2010-07-15 Page : 20 / 67

Right Side View of EUT

Left Side View of EUT

Date of Issue : 2010-07-15 Page : 21 / 67

Top Side View of EUT

Bottom Side View of EUT

Test Setup Photographs

Report File No.: F690501/RF-SAR001875-A1

Date of Issue : 2010-07-15 Page : 22 / 67

Right Ear_Cheek

Right Ear_Tilt

Date of Issue : 2010-07-15 Page : 23 / 67

Left Ear_Cheek

Left Ear_Tilt

Date of Issue : 2010-07-15 Page : 24 / 67

Front

Back

Appendix B

Test Plot - DASY4 Report

Report File No.: F690501/RF-SAR001875-A1

Date of Issue : 2010-07-15
Page : 25 / 67

Date of Issue : 2010-07-15 Page : 26 / 67

2450 MHz Validation Test Head

Test Laboratory: SGS Testing Korea File Name: 2450 MHz Head Validation.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734

Program Name: 24540 Head Validation

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.85$ mho/m; $\varepsilon_r = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

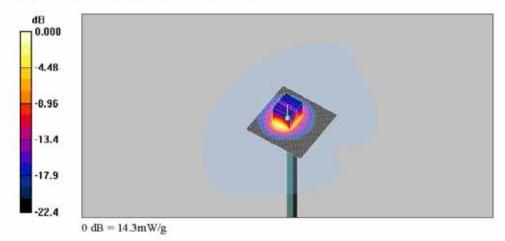
- Probe: ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450 MHz_Head_Validation/Area Scan (61x61x1): Measurement grid: dx=15mm,

dv=15mm

Maximum value of SAR (interpolated) = 15.4 mW/g

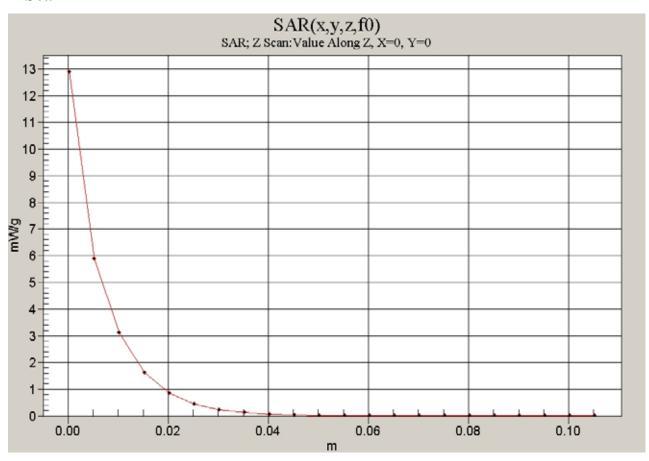
2450 MHz_Head_Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 64.0 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 27.5 W/kg

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.85 mW/g


Maximum value of SAR (measured) = 14.3 mW/g

Date of Issue : 2010-07-15 Page : 27 / 67

Z Scan

Date of Issue : 2010-07-15 Page : 28 / 67

2450 MHz Validation Test_Body

Test Laboratory: SGS Testing Korea File Name: 2450 MHz Body Validation.da4

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734

Program Name: 24540 Body Validation

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

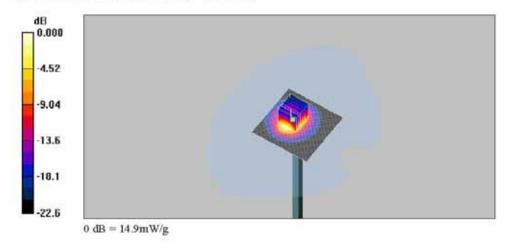
- Probe: ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450 MHz_Body_Validation/Area Scan (61x61x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 16.0 mW/g

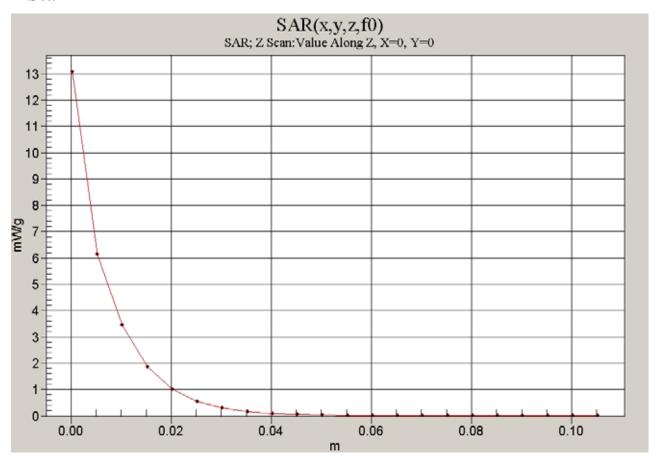
2450 MHz_Body_Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 57.2 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.07 mW/g


Maximum value of SAR (measured) = 14.9 mW/g

Date of Issue : 2010-07-15 Page : 29 / 67

Z Scan

Date of Issue: 2010-07-15 30 / 67 Page:

WLAN Head SAR Test

Test Laboratory: SGS Testing Korea

File Name: Head LE.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Head LE

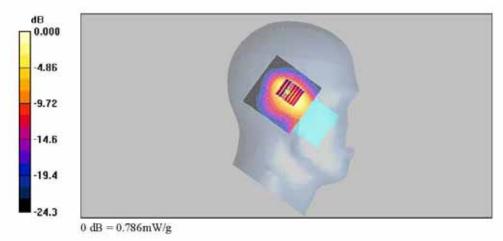
Communication System: Wireless Conference Transmitter; Frequency: 2402 MHz;Duty Cycle: 1:1

Medium parameters used: f = 2402 MHz; $\sigma = 1.79$ mho/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


LE Cheek Low/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.886 mW/g

LE_Cheek_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.2 V/m; Power Drift = 0.068 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.719 mW/g; SAR(10 g) = 0.358 mW/g Maximum value of SAR (measured) = 0.786 mW/g

Date of Issue : 2010-07-15 Page : 31/67

Test Laboratory: SGS Testing Korea

File Name: Head LE.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Head_LE

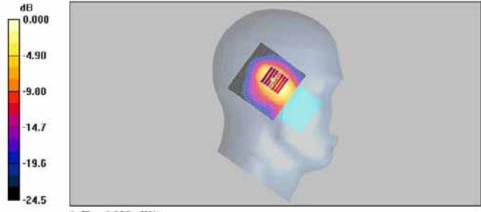
Communication System: Wireless Conference Transmitter; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f=2437 MHz; $\sigma=1.83$ mho/m; $\epsilon_f=37.9$; $\rho=1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

LE_Cheek_Mid/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.04 mW/g

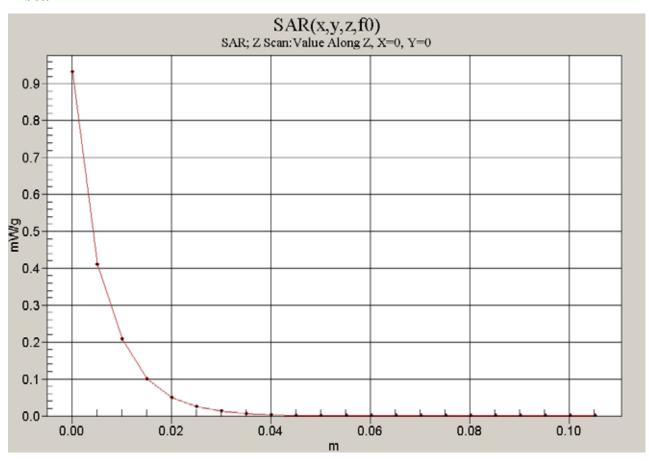

LE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.5 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 1.68 W/kg

SAR(1 g) = 0.823 mW/g; SAR(10 g) = 0.406 mW/g

Maximum value of SAR (measured) = 0.928 mW/g



0 dB = 0.928 mW/g

Date of Issue : 2010-07-15 Page : 32 / 67

Z scan

Date of Issue : 2010-07-15 Page : 33 / 67

Test Laboratory: SGS Testing Korea

File Name: Head LE.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Head LE

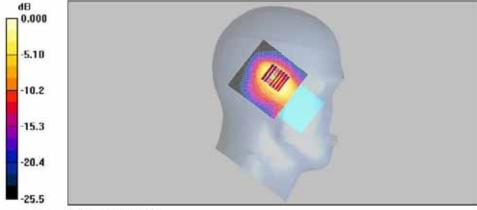
Communication System: Wireless Conference Transmitter; Frequency: 2476 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2476 MHz; $\sigma = 1.88$ mho/m; $\epsilon_{\rm f} = 37.8$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

LE_Cheek_High/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.951 mW/g


LE_Cheek_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 15.3 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 1.70 W/kg

SAR(1 g) = 0.776 mW/g; SAR(10 g) = 0.375 mW/g

Maximum value of SAR (measured) = 0.849 mW/g

0 dB = 0.849 mW/g

Date of Issue : 2010-07-15 Page : 34 / 67

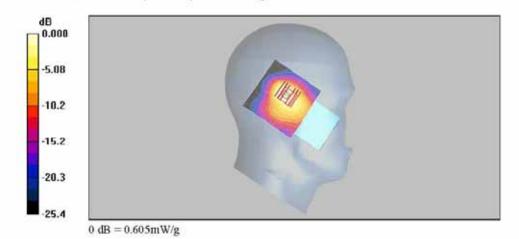
Test Laboratory: SGS Testing Korea

File Name: Head LE.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Head LE

Communication System: Wireless Conference Transmitter; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.83$ mho/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³


Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

LE_Tilt_Mid/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.664 mW/g

LE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.3 V/m; Power Drift = -0.117 dB
Peak SAR (extrapolated) = 1.20 W/kg
SAR(1 g) = 0.550 mW/g; SAR(10 g) = 0.263 mW/g
Maximum value of SAR (measured) = 0.605 mW/g

Date of Issue: 2010-07-15 35 / 67 Page:

Test Laboratory: SGS Testing Korea

File Name: Head RE.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Head RE

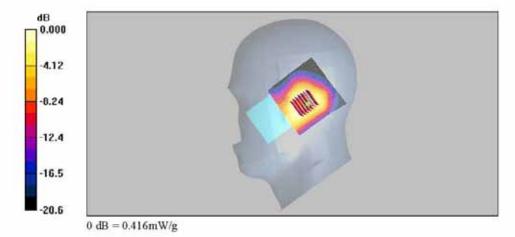
Communication System: Wireless Conference Transmitter; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.83$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

RE Cheek Mid/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.461 mW/g


RE_Cheek_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 11.0 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 0.806 W/kg

SAR(1 g) = 0.394 mW/g; SAR(10 g) = 0.217 mW/g Maximum value of SAR (measured) = 0.416 mW/g

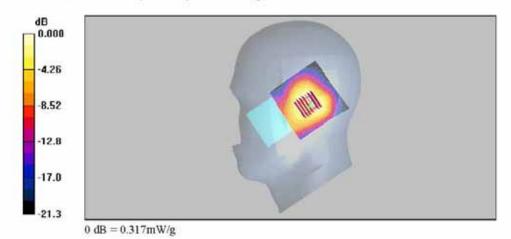
Date of Issue : 2010-07-15 Page : 36 / 67

Test Laboratory: SGS Testing Korea

File Name: Head RE.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Head RE


Communication System: Wireless Conference Transmitter; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.83$ mho/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.48, 4.48, 4.48); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

RE_Tilt_Mid/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.326 mW/g

RE_Tilt_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = -0.001 dB
Peak SAR (extrapolated) = 0.613 W/kg
SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.157 mW/g
Maximum value of SAR (measured) = 0.317 mW/g

Date of Issue: 2010-07-15 37 / 67 Page:

WLAN Body SAR Test

Test Laboratory: SGS Testing Korea

File Name: Body.da4

DUT: DLT100; Type: Bar; Serial: N/A

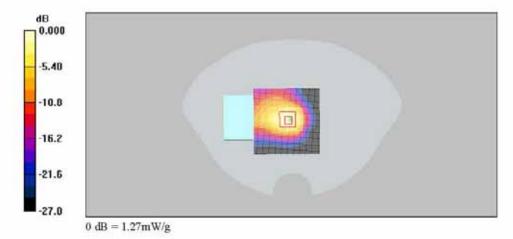
Program Name: Body

Communication System: Wireless Conference Transmitter; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.92$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Body Front Mid/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.36 mW/g

Body Front Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 23.9 V/m; Power Drift = -0.192 dB

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 1.15 mW/g; SAR(10 g) = 0.521 mW/g Maximum value of SAR (measured) = 1.27 mW/g

Date of Issue: 2010-07-15 38 / 67 Page:

Test Laboratory: SGS Testing Korea

File Name: Body.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Body

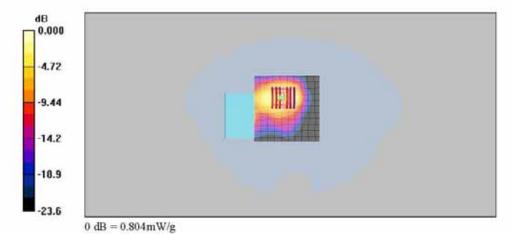
Communication System: Wireless Conference Transmitter; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; $\sigma = 1.92$ mho/m; $\varepsilon_c = 53$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body Back Mid/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.860 mW/g


Body_Back_Mid/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 5.77 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 1.55 W/kg SAR(1 g) = 0.747 mW/g; SAR(10 g) = 0.384 mW/g

Maximum value of SAR (measured) = 0.804 mW/g

Date of Issue : 2010-07-15 Page : 39 / 67

Test Laboratory: SGS Testing Korea

File Name: Body.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Body

Communication System: Wireless Conference Transmitter; Frequency: 2402 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2402 MHz; $\sigma = 1.87$ mho/m; $\epsilon_{\rm f} = 53.2$; $\rho = 1000$ kg/m³

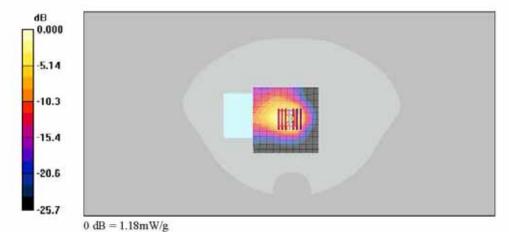
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_Front_Low/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.27 mW/g

Body_Front_Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 24.7 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 2.55 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.493 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

Date of Issue : 2010-07-15 Page : 40 / 67

Test Laboratory: SGS Testing Korea

File Name: Body.da4

DUT: DLT100; Type: Bar; Serial: N/A

Program Name: Body

Communication System: Wireless Conference Transmitter, Frequency: 2476 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2476 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³

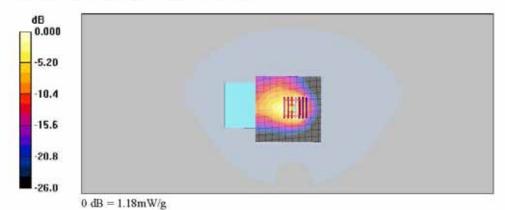
Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.07, 4.07, 4.07); Calibrated: 2010-04-28
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Body_Front_High/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 1.26 mW/g

Body_Front_High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 23.6 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.71 W/kg

SAR(1 g) = 1.09 mW/g; SAR(10 g) = 0.484 mW/g

Maximum value of SAR (measured) = 1.18 mW/g

Date of Issue : 2010-07-15
Page : 41 / 67

Appendix C

Uncertainty Analysis

a	b	С	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Sectio n in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	
Axial isotropy	E.2.2	0.5	R	1.73	0.71	0.20	
hemispherical isotropy	E.2.2	2.6	R	1.73	0.71	1.06	
Boundary effect	E.2.3	0.8	R	1.73	1	0.46	
Linearity	E.2.4	0.6	R	1.73	1	0.35	
System detection limit	E.2.5	0.25	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0	R	1.73	1	0.00	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition -Noise	E.6.1	3	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3	R	1.73	1	1.73	
Probe positioning - mechanical tolerance	E.6.2	1.5	R	1.73	1	0.87	
Probe positioning - with respect to phantom	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.3	N	1	1	2.30	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	
Output power variation - SAR drift measurement	6.62	5	R	1.73	1	2.89	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.2	N	1	0.64	0.77	5
Liquid permittivity - deviation from target values	E.3.3	5	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.1	N	1	0.6	0.66	5
Combined standard uncertainty				RSS		9.63	2754
Expanded uncertainty (95 % CONFIDENCE INTERVAL)				K=2		19.27	

Appendix D

Calibration Certificate

- PROBE
- DAE
- 2450 MHz DIPOLE

Report File No.: F690501/RF-SAR001875-A1

Date of Issue : 2010-07-15
Page : 42 / 67

Date of Issue:

2010-07-15

Page:

43 / 67

- PROBE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client SGS-KES (Dymstec)

Certificate No: ET3-1782_Apr10

Object	ET3DV6 - SN:17	782	
calibration procedure(s)		QA CAL-12.v6, QA CAL-23.v3 and edure for dosimetric E-field probes	
alibration date:	April 28, 2010		
		bry facility: environment temperature (22 ± 3)°C	and humidity < 70%.
		and the second second	en anaeman
rimary Standards	DF	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards ower meter E4419B	ID# GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
imary Standards ower meter E4419B ower sensor E4412A	ID # GB41293874 MY41495277	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Apr-11 Apr-11
nimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A	ID # GB41293874 MY41495277 MY41498087	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136)	Apr-11 Apr-11 Apr-11
nimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator	ID # GB41293874 MY41496277 MY41498067 SN: S5054 (3c)	1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 1-Apr-10 (No. 217-01136) 30-Mar-10 (No. 217-01159)	Apr-11 Apr-11 Apr-11 Mar-11
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41496277 MY41498067 SN: S5054 (3c) SN: S5058 (20b)	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-51
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41496277 MY41496057 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b)	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11
rimary Standards Flower meter E4419B Flower sensor E4412A Flower	ID # GB41293874 MY41496277 MY41498067 SN: S5054 (3c) SN: S5058 (20b)	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-51
Calibration Equipment used (M4 Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID # GB41293874 MY41495277 MY41498087 SN \$5084 (3c) SN \$5086 (20b) SN \$5129 (30b) SN 3013	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 JAE4 Recordary Standards	ID# GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01160) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Sep-10
Primary Standards Power sensor E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 JAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41496277 MY41498087 SN: 55054 (3c) SN: 55086 (20b) SN: 55129 (30b) SN: 3013 SN: 660	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01151) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-680_Sep09) Check Date (in house)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41496277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013 Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-11
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 JAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41486277 MY41498087 SN S5054 (3c) SN S5086 (20b) SN S5129 (30b) SN 3013 SN 660 ID # US3642U01700 US37390585	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01151) 30-Dec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct-10
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by	ID # GB41293874 MY41486277 MY41418087 SN S5054 (3c) SN S5086 (20b) SN S5129 (30b) SN 3013 SN 660 ID # US3642U01700 US37390685 Name Jeton Kastrati	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01161) 30-Mar-10 (No. 217-01161) 30-Dec-09 (No. ES3-3013_Dec09) 20-Seq-09 (No. DAE4-660_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09) Function Laboratory Technician	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-11 In house check: Oct-10
romary Standards rower meter E4419B rower sensor E4412A rower sensor E4412A reference 3 dB Attenuator reference 30 dB Attenuator reference 30 dB Attenuator reference Probe ES3DV2 AE4 secondary Standards UF generator HP 8048C retwork Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498587 SN S5054 (3c) SN S5086 (20b) SN S5129 (30b) SN 3013 SN 660 ID # US3642U01700 US37390585 Name	1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 1-Apr-10 (No. 217-01138) 30-Mar-10 (No. 217-01159) 30-Mar-10 (No. 217-01151) 30-Mar-10 (No. 217-01151) 30-Oec-09 (No. ES3-3013_Dec09) 29-Sep-09 (No. DAE4-860_Sep09) Check Date (in house) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Apr-11 Apr-11 Apr-11 Mar-11 Mar-11 Dec-10 Sep-10 Scheduled Check In house check: Oct-

Certificate No: ET3-1782_Apr10

Page 1 of 11

Date of Issue: 2010-07-15

Page: 44 / 67

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space convF sensitivity in TSL / NORMx,y,z diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 3 3 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 3 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003.

Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of CorivF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1782 Apr10 Page 2 of 11

Date of Issue : 2010-07-15 Page : 45 / 67

ET3DV6 SN:1782 April 28, 2010

Probe ET3DV6

SN:1782

Manufactured: April 15, 2003 Last calibrated: April 30, 2009 Modified: April 27, 2010 Recalibrated: April 28, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Date of Issue : 2010-07-15

Page: 46/67

ET3DV6 SN:1782 April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Vorm (yıV/(V/m) ²) ^A	2.01	1.74	1.86	± 10.1%
DCP (mV) ^{ff}	93.9	96.4	91.2	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^k (k=2)
10000	cw	0.00	X	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^{*} The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

¹ Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value

Date of Issue : 2010-07-15 Page : 47 / 67

ET3DV6 SN:1782 April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF.X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	43.5 ± 5%	$0.87 \pm 5\%$	6.67	6.67	6.67	0.19	2.19 ± 13.3%
835	± 50 / ± 100	$41.9 \pm 5\%$	$0.89 \pm 5\%$	6.26	6.26	6.26	0.51	2.05 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	$1.37 \pm 5\%$	5.30	5.30	5.30	0.53	2.60 ± 11.0%
1900	±50/±100	40.0 ± 5%	$1.40 \pm 5\%$	5.04	5.04	5.04	0.69	2.24 ± 11.0%
2450	±50/±100	39.2 ± 5%	$1.80 \pm 5\%$	4.48	4.48	4.48	0.99	1.71 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Date of Issue : 2010-07-15 Page : 48 / 67

ET3DV6 SN:1782 April 28, 2010

DASY - Parameters of Probe: ET3DV6 SN:1782

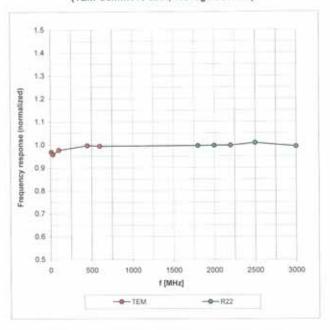
Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
450	±50/±100	56.7 ± 5%	$0.94 \pm 5\%$	7.53	7.53	7.53	0.15	2.33 ± 13.3%
835	±50/±100	55.2 ± 5%	$0.97 \pm 5\%$	6.11	6.11	5.11	0.42	2.40 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	$1.49 \pm 5\%$	4.68	4.68	4.68	0.63	3.03 ± 11.0%
1900	±50/±100	53.3 ± 5%	1.52 ± 5%	4.46	4.46	4.46	0.85	2.44 ± 11.0%
2450	±50/±100	52.7 ± 5%	1.95 ± 5%	4.07	4.07	4.07	0.99	1.40 ± 11.0%

The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1782_Apr10

Page 6 of 11

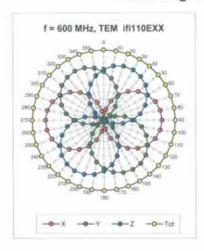


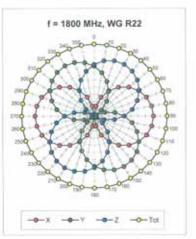
Date of Issue : 2010-07-15 Page : 49 / 67

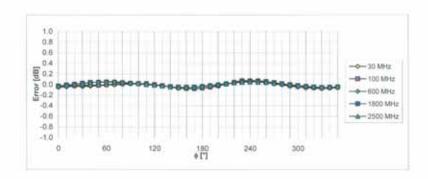
ET3DV6 SN:1782 April 28, 2010

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)




Date of Issue : 2010-07-15 Page : 50 / 67

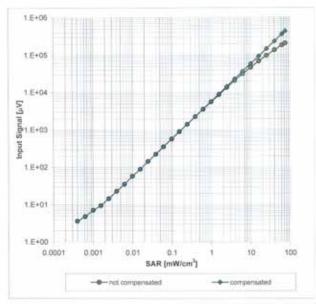
ET3DV6 SN:1782 April 28, 2010

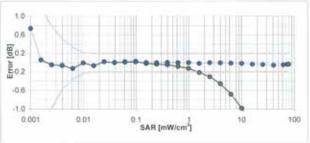
Receiving Pattern (6), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1782 Aprilo

Page 8 of 11




Date of Issue : 2010-07-15 Page : 51 / 67

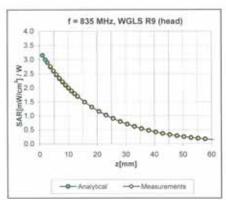
ET3DV6 SN:1782 April 28, 2010

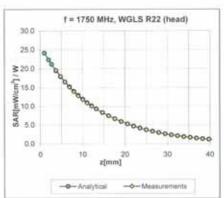
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

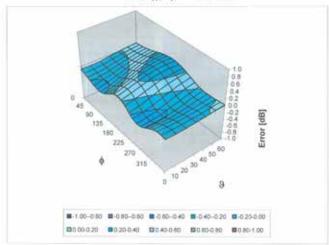
Certificate No: ET3-1782_Apr10


Page 9 of 11



Date of Issue : 2010-07-15 Page : 52 / 67

ET3DV6 SN:1782 April 28, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (¢, 3), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No. ET3-1782_Apr10

Page 10 of 11

Date of Issue : 2010-07-15 Page : 53 / 67

ET3DV6 SN:1782 April 28, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (*)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	6.8 mm
Probe Tip to Sensor X Calibration Point	2.7 mm
Probe Tip to Sensor Y Calibration Point	2.7 mm
Probe Tip to Sensor Z Calibration Point	2.7 mm
Recommended Measurement Distance from Surface	4 mm

Date of Issue:

2010-07-15

Page:

54 / 67

-DAE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Partitionte No: DAE3-567 Dec09

Doject	DAE3 - SD 000 D03 AA - SN: 567				
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	ectronics (DAE)			
Calibration date:	December 9, 2009	2 2 2 3 4 4			
		bability are given on the following pages			
All calibrations have been condu-	cted in the closed laboratory TE critical for calibration)	facility: environment temperature (22 \pm	3)°C and humidity < 70%.		
All calibrations have been conducted (M& Primary Standards	cted in the closed laboratory				
All calibrations have been conducted (M& Primary Standards Keithley Multimater Type 2001	TE critical for calibration) 10 # SN: 0810278	facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-09 (No: 9055)	3)*C and humidity < 70% Scheduled Calibration Oct-10		
All calibrations have been condu Calibration Equipment used (M& Primary Standards	cted in the closed laboratory TE critical for calibration)	facility: environment temperature (22 ± Cai Date (Certificate No.) 1-Oct-98 (No: 9055) Check Date (in house)	3)°C and humidity < 70%. Scheduled Calibration		
All calibrations have been condu- Calibration Equipment used (M& Primary Standards Kelthley Multimeter Type 2001 Secondary Standards	TE critical for calibration) ID # SN: 0810278	facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-99 (No: 9055) Check Date (in house) 05-Jun-99 (in house check)	Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10 Signature		
All calibrations have been condu- Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	cted in the closed laboratory TE critical for calibration) 10 # SN: 0810278 ID # SE UMS 006 AB 1004 Name	facility: environment temperature (22 ± Cal Date (Certificate No.) 1-Oct-99 (No: 9055) Check Date (in house) 05-Jun-99 (in house check)	Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10		

Date of Issue:

2010-07-15

Page:

55 / 67

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Date of Issue:

2010-07-15

Page:

56 / 67

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1 µV , full range = -100...+300 mV
Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	404.546 ± 0.1% (k=2)	404.281 ± 0.1% (k=2)	404.334 ± 0.1% (k=2)
Low Range	3.96697 ± 0.7% (k=2)	3.97066 ± 0.7% (k=2)	3.95911 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	7.5°±1°

Date of Issue:

2010-07-15

Page:

57 / 67

Appendix

1. [

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.8	+1.89	-0.00
Channel X + Input	19998.11	-1.59	-0.01
Channel X - Input	-19992.89	7.71	-0.04
Channel Y + Input	199957.5	-46.16	-0.02
Channel Y + Input	19992.42	-7.98	-0.04
Channel Y - Input	-19994.34	4.96	-0.02
Channel Z + Input	199931.6	-61,88	-0.03
Channel Z + Input	19990.70	-8.50	-0.04
Channel Z - Input	-19992.89	-0.04	-0.04

Range	Reading (µV)	Difference (µV)	Error (%)
nel X + Input	2000.7	0.61	0.03
nnel X + Input	199.14	-0.86	-0.43
nnel X - Input	-200.82	-0.72	0.36
nnel Y + Input	2000.0	-0.11	-0.01
nnel Y + Input	198.97	-1.13	-0.56
nnel Y - Input	-201.08	-1.18	0.59
nnel Z + Input	1999.4	-0.87	-0.04
nnel Z + Input	198.62	-1,48	-0.74
nnel Z - Input	-201.26	-1.36	0.68
nnel Z + Input	198.62	-1,48	

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	3.98	2.30
	- 200	-0.74	-2.83
Channel Y	200	-0.27	-0.39
	- 200	-0.32	-0.95
Channel Z	200	4,97	4.65
	- 200	-6.07	-6.68

3. Channel separation

neters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		1.57	-1.52
Channel Y	200	3.06		3.39
Channel Z	200	3.26	-0.28	

Date of Issue: 2010-07-15

Page: 58 / 67

4. AD-Converter Values with inputs shorted

	High Range (LSB)	Low Range (LSB)
Channel X	16355	16407
Channel Y	16166	16176
Channel Z	15925	16100

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec

nput 10MΩ	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.19	-1.19	0.58	0.37
Channel Y	-0.59	-1.52	0.73	0.36
Channel Z	-1.05	-2.18	-0.05	0.34

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <251A

7. Input Resistance

iiput nesistance	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	203.2
Channel Y	0.1999	202.8
Channel Z	0.1999	201.0

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Date of Issue: 2010-07-15 59 / 67 Page:

- 2450 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS (Dymstec)

Accreditation No.: SCS 108

Certificate No: D2450V2-734 May10

Object	D2450V2 - SN: 7	34	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	May 27, 2010		
		robability are given on the following pages ar by facility: environment temperature $(22 \pm 3)^n$	
Calibration Equipment used (M&	TE critical for calibration)		
	V.	Cal Date (Certificate No.)	Scheduled Calibration
Primary Standards	TE critical for calibration)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10
Primary Standards Power meter EPM-442A	ID#		
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Oct-10 Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5086 (20g)	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158)	Oct-10 Oct-10 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162)	Oct-10 Oct-10 Mar-11 Mar-11
DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Mar-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100065	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01162) 30-Apr-10 (No. ES3-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292763 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 30-Mar-10 (No. 217-01158) 30-Mar-10 (No. 217-01152) 30-Apr-10 (No. 553-3205_Apr10) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Oct-10 Oct-10 Mar-11 Mar-11 Apr-11 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Date of Issue:

2010-07-15

Page:

60 / 67

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Date of Issue:

2010-07-15

Page:

61 / 67

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.76 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	12.8 mW / g
SAR normalized	normalized to 1W	51.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	51.7 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.03 mW / g
SAR normalized	normalized to 1W	24.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.2 mW /g ± 16.5 % (k=2)

Date of Issue: 2010-07-15 Page: 62 / 67

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.6 ± 6 %	1.97 mho/m ± 6 %
Body TSL temperature during test	(21.8 ± 0.2) °C	2,2	****

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR normalized	normalized to 1W	53.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	53.5 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.31 mW / g
SAR normalized	normalized to 1W	25.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	25.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-734_May10

Page 4 of 9

Date of Issue : 2010-07-15 Page : 63 / 67

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 3.2]Ω	
Return Loss	- 26.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.8 \Omega + 4.4 j\Omega$	
Return Loss	- 27.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	May 07, 2003	

Certificate No: D2450V2-734_May10

Page 5 of 9

Date of Issue : 2010-07-15 Page : 64 / 67

DASY5 Validation Report for Head TSL

Date/Time: 25.05.2010 14:48:31

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.76 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

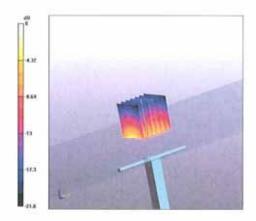
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

- · Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

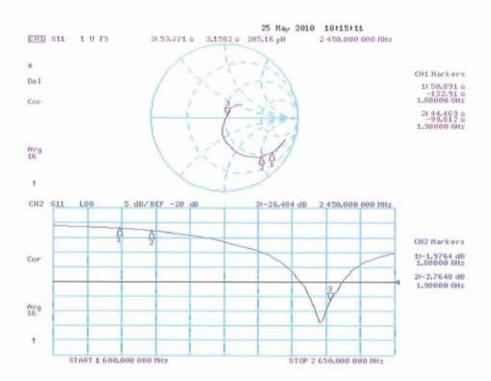

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.2 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 26.1 W/kg

SAR(1 g) = 12.8 mW/g; SAR(10 g) = 6.03 mW/g

Maximum value of SAR (measured) = 16.7 mW/g


0 dB = 16.7 mW/g

Certificate No: D2450V2-734_May10

Date of Issue : 2010-07-15 Page : 65 / 67

Impedance Measurement Plot for Head TSL

Date of Issue : 2010-07-15 Page : 66 / 67

DASY5 Validation Report for Body

Date/Time: 27.05.2010 10:14:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:734

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_r = 53.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

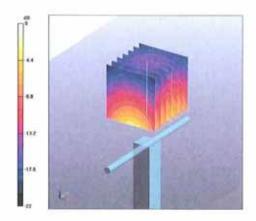
· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 61

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

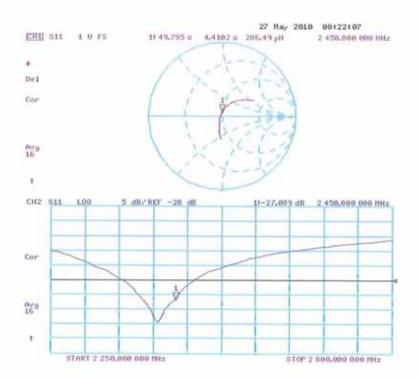

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.7 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.4 mW/g; SAR(10 g) = 6.31 mW/g

Maximum value of SAR (measured) = 17.4 mW/g



0 dB = 17.4 mW/g

Date of Issue : 2010-07-15 Page : 67 / 67

Impedance Measurement Plot for Body TSL

