

FCC/IC - TEST REPORT

Report Number	:	68.950.20.0154	l.01	Date of Issue	:	2020-04-22
Model	:	SPBL1				
Product Type	:	Camera				
Applicant	:	GoPro, Inc.				
Address	:	3000 Clearview	v Way, San N	lateo, CA 944	02, USA	
Production Facility	:	GoPro, Inc.				
Address	:	3000 Clearview	v Way, San N	lateo, CA 944	02, USA	
Test Result	:	Positive	□ Negative	•		
Total pages including Appendices	:	60				

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. – Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1	Table of Contents	2
2	Details about the Test Laboratory	
3	Description of the Equipment Under Test	4
4	Summary of Test Standards	5
5	Summary of Test Results	6
6	General Remarks	7
7	Test Setups	8
8	Systems test configuration	9
9	Technical Requirement	10
9.1	1 Conducted Emission	10
9.2	2 Conducted output power & EIRP	13
9.3	3 20 dB bandwidth and 99% Occupied Bandwidth	15
9.4	4 Carrier Frequency Separation	25
9.5	5 Number of hopping frequencies	
9.6	6 Dwell Time	
9.7	7 Spurious RF conducted emissions	
9.8	8 Band edge testing	46
9.9	9 Spurious radiated emissions for transmitter	
10	Test Equipment List	59
11	System Measurement Uncertainty	60

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China
FCC Designation Number:	CN5009
FCC Registration No.:	514049
ISED#:	10320A
Telephone: Fax:	86 755 8828 6998 86 755 8828 5299

3 Description of the Equipment Under Test

Product:	Camera
Model no.:	SPBL1
FCC ID:	CNFSPBL1
IC:	10193A-SPBL1
PMN:	SPBL1
HVIN:	SPBL1
Rating:	3.85VDC
RF Transmission Frequency:	2402MHz-2480MHz
No. of Operated Channel:	79
Modulation:	GFSK, π/4-DQPSK, 8DPSK
Antenna Type:	Internal Integrated Metal Antenna
Antenna Gain:	-0.7dBi max for 2.4GHz
Description of the EUT:	The Equipment Under Test (EUT) is a Camera supports 2.4GHz Bluetooth/WIFI, 5GHz WIFI functions.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES				
10-1-2018 Edition	Subpart C - Intentional Radiators				
RSS-Gen	General Requirements and Information for the Certification of Radio				
Issue 5, Amendment 1,	Apparatus				
March 2019					
RSS-247	Digital Transmission Systems (DTSS), Frequency Hopping Systems				
Issue 2 February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices				

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

Technical Requirements							
FCC Part 15 Subpart C/RSS-247 Issue 2/RSS-Gen Issue 5							
Test Condition		Test Result	Test Site				
§15.207& RSS-Gen 8.8	Conducted emission AC power port	Pass	Site 1				
§15.247(b)(1) & RSS-247 5.4(b)	Conducted output power	Pass	Site 1				
RSS-247 5.4(b)	Equivalent Isotropic Radiated Power	Pass	Site 1				
§15.247(e) & RSS-247 5.2(b)	Power spectral density	N/A					
§15.247(a)(2) & RSS-247 5.2(a) & RSS-Gen 6.7	6dB bandwidth and 99% Occupied Bandwidth	N/A					
§15.247(a)(1) & RSS-247 5.1(a) & RSS-Gen 6.7	20dB bandwidth and 99% Occupied Bandwidth	Pass	Site 1				
§15.247(a)(1) & RSS-247 5.1(b)	Min. of Hopping Channel Carrier Frequency Separation	Pass	Site 1				
§15.247(a)(1)(iii) & RSS- 247 5.1(d)	Min number of hopping frequencies	Pass	Site 1				
§15.247(a)(1)(iii) & RSS- 247 5.1(d)	Dwell Time - Average Time of Occupancy	Pass	Site 1				
§15.247(d) & RSS-247 5.5	Spurious RF conducted emissions	Pass	Site 1				
§15.247(d) & RSS-247 5.5	Band edge	Pass	Site 1				
§15.247(d) & §15.209 & RSS-247 5.5 & RSS-Gen 6.13	Spurious radiated emissions for transmitter	Pass	Site 1				
§15.203 & RSS-Gen 6.8	Antenna requirement	See note 1					

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an Integrated antenna, which gain is -0.7dBi. In accordance to §15.203 & RSS-Gen 6.8, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: CNFSPBL1, complies with Section 15.207, 15.209, 15.205, 15.247 of the FCC Part 15, Subpart C

This submittal(s) (test report) is intended for IC: 10193A-SPBL1, complies with RSS-247, RSS-GEN.

The Model: SPBL1 supports Bluetooth Low Energy/Bluetooth BR+EDR /WIFI/GPS & Galileo receiving functions, power by 3.85Vdc, 1720mAh supplied by an rechargeable Lithium Ion Battery or 5Vdc supplied by USB type C port.

The TX and RX range is 2402MHz-2480MHz for Bluetooth, 2412MHz – 2462MHz for 2.4GHzWIFI, 5180MHz – 5320MHz, 5500MHz – 5700MHz, 5745MHz – 5825MHz for 5GHzWIFI, 1575.42MHz for GNSS (only GPS and Galileo) Receiver.

This report is for the Bluetooth BR+EDR part.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

■ - Fulfills the general approval requirements.

□ - **Does not** fulfill the general approval requirements.

Sample Received Date: 2020-04-03

Testing Start Date: 2020-04-03

Testing End Date: 2020-04-20

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

Prepared by:

SED

Johnshi

John Zhi EMC Project Manager

ΤΰΛ

· Cur.

Tree Mem

Tested by:

Joe Gu EMC Project Engineer

Tree Zhan EMC Test Engineer

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

7 Test Setups

7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

8 Systems test configuration

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Laptop	Lenovo	T460S	
USB Type C cable	GoPro	0.46m (Length)	
AC Adapter	Apple	A1401	

Auxiliary Equipment Used during Test:

Test software information:

TEST SOFTWARE VERSION	QRCT (V3.0-186.0) FROM QUALCOMM
MODULATION	SETTING TX POWER
GFSK	9
П/4-DQPSK	9
8-DPSK	9

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting.

9.1 Conducted Emission

Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limit

Frequency MHz	QP Limit	AV Limit dBuV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

Conducted Emission

Product Type:CameraM/N:SPBL1Operating Condition:Charging + TXTest Specification:Power Line, LiveComment:AC 120V/60Hz (External adapter)

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.278000	46.82		60.88	14.05	L1	10.3
0.710000	43.93		56.00	12.07	L1	10.3
0.930000	45.52		56.00	10.48	L1	10.3
1.994000	41.70		56.00	14.30	L1	10.3
3.454000	42.21		56.00	13.79	L1	10.4
5.050000	40.86		60.00	19.14	L1	10.5

Remark :

Level=Reading Level + Correction Factor

Correction Factor=Cable Loss + LISN Factor

Conducted Emission

	Product Type M/N Operating Condition Test Specification Comment	:	Camera SPBL1 Charging + TX Power Line, Neutral AC 120V/60Hz (External adapter)
--	---	---	--

Frequency	MaxPeak	Average	Limit	Margin	Line	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)		(dB)
0.274000	47.70		61.00	13.30	Ν	10.3
0.426000	45.14		57.33	12.20	Ν	10.3
0.566000	42.69		56.00	13.31	Ν	10.3
0.970000	41.41		56.00	14.59	Ν	10.3
1.862000	39.50		56.00	16.50	Ν	10.4
3.690000	39.89		56.00	16.11	Ν	10.4

Remark :

*Level=Reading Level + Correction Factor

**Correction Factor=Cable Loss + LISN Factor

9.2 Conducted output power & EIRP

Test Method

- 1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the power meter by RF cable. The path loss was compensated to the results for each measurement.
- 2. Setting the highest output power level of the EUT
- 3. Record the power value.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(b), conducted output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

According to & RSS-247 5.4(b), EIRP limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤4	≤36.2

Conducted output power

Bluetooth	Mode GFSK mod	dulation Test	Result	
Frequency	Conducted Output Power	Antenna Gain	EIRP	Result
MHz	dBm	dBi	dBm	
Low channel 2402MHz	11.94	-0.7	11.24	Pass
Middle channel 2441MHz	11.77	-0.7	11.07	Pass
High channel 2480MHz	11.52	-0.7	10.82	Pass

Bluetooth Mode $\pi/4$ -DQPSK modulation Test Result

Frequency MHz	Conducted Output Power dBm	Antenna Gain dBi	EIRP dBm	Result
Low channel 2402MHz	8.77	-0.7	8.07	Pass
Middle channel 2441MHz	8.50	-0.7	7.80	Pass
High channel 2480MHz	8.20	-0.7	7.50	Pass

Bluetooth Mode 8DPSK modulation Test Result

Frequency MHz	Conducted Output Power dBm	Antenna Gain dBi	EIRP dBm	Result
Low channel 2402MHz	8.76	-0.7	8.06	Pass
Middle channel 2441MHz	8.51	-0.7	7.81	Pass
High channel 2480MHz	8.22	-0.7	7.52	Pass

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- Use the following test receiver settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

Limit [kHz]

N/A

Bluetooth Mode GFSK Modulation test result

Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	1131	890		Pass
2441	1131	890		Pass
2480	1131	893		Pass

Low channel 2402MHz

Date: 9 APR 2020 16:28:35

Date: 9 APR 2020 16:28:46

EMC_SZ_FR_23.01 FCC Release 2017-06-20

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 16 of 60

Date:9APR.2020 16:31:02

Date: 9 APR 2020 16:31:13

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 17 of 60

				High	n channe	el 24	480MI	Ηz		
Spectru	ım			-						
Ref Lev Att Count 10	/el 3	0.00 d 40	Bm Offset dB SWT	1.80 dB (18.9 µs (RBW 100 kH VBW 300 kH 	z z Mo	de Auto FF	т		
⊖1Pk Viev	N.									
20 dBm—	_					M	M1[1]		2.479	-7.92 dBm 46900 GHz 12.11 dBm
10 dBm—	-				+	~	<u> </u>		2.480	18600 GHz
0 dBm	+			M1,						
-10 dBm-	_D1	-7.88	8 dBm	7			_	\rightarrow		
-20 dBm-	-							\rightarrow		
-30 dBm-	-	-	\sim						\frown	
-40 dBm-	┯	·					_			<u> </u>
-50 dBm-	-									
-60 dBm-	-									
CF 2.48	GHz				1001	pts			Spa	n 3.0 MHz
Marker										
Type I	Ref	Trc	X-value	3	Y-value	F	unction	Fun	ction Result	
M1		1	2.4794	69 GHz	-7.92 dB	m				
M2		1	2.4801	86 GHz	12.11 dB	m				
D3	M1	1	1.1	31 MHz	-0.16 (1B				
	IJ	l					Me	asuring		N .

Date:9APR.2020 16:33:19

Spectrum								
RefLevel 30.00 dBn Att 40 dE	Offset : SWT	1.80 dB 👄 F 94.8 ⊔s 👄 🎙	RBW 20 kH ∕BW 100 kH	iz Iz Modeu	Auto EET			
Count 100/100								
●1Pk View	. <u> </u>							
				м	1[1]		2 480	8.91 dBn 05090 GH:
20 dBm				0	cc Bw		893.1068	93107 kH
				M1				
10 dBm				-XA				
			. N ^N	I" M				
0 dBm			I.N.	5				
10.10		XA	^V		M12 −			
-10 ubiii		N			- Wer			
-20 dBm		٨r			v	h		
	$ \land \land$	1				40		
-30 dBm	N					- 14	AL	
المر ا	47						5.1	
-40 dBm	V						6	
my							1 1	\sim
-50 dBm								~
50 ID								
-60 asm								
CF 2.48 GHz			1001	l pts		_	Spa	n 3.0 MHz

Date: 9 APR 2020 16:33:30

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 18 of 60

Frequency 20 dB Bandwidth 99% Bandwidth Limit Result MHz kHz kHz kHz 2402 1377 1181 Pass --2441 1377 1181 Pass --2480 Pass 1380 1181 --

Bluetooth Mode $\pi/4$ -DQPSK Modulation test result

		LOW	<i>c</i> nannei	2402IVIH	Z	
Spectrum						[
Ref Level	30.00 dB	m Offset 1.80 dB (RBW 100 kHz			
🛛 Att	40 c	iB SWT 18.9 μs (VBW 300 kHz	Mode Auto FFT		
Count 100/1	00					
●1Pk View						
				M1[1]		-10.42 di
20 d8m						2.40134000 G
20 00111			140	M2[1]		9.76 di
10 dBm			M2 X	~ .		2.40188000 0
10 0.0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0 dBm						
		ML				
10 dBm-0	1 -10.23	9 dBm			123	
					1	
-20 dBm					\rightarrow	
<u> </u>					$ \rangle$	
-30 dBm						\sim
-40 dBm						
-50 dBm						
-60 dBm						
CF 2.402 GH	Iz		1001 pt	s		Span 3.0 MH
Marker						
Type Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1	1	2.40134 GHz	-10.42 dBm			
M2	1	2.40188 GHz	9.76 dBm			
D3 M1	1	1.377 MHz	-0.02 dB			
	1			Meas	unione IIIII	430

Low channel 2402MHz

Date: 9 APR 2020 16:36:23

Date: 9 APR 2020 16:36:34

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 19 of 60

		Mid	dle chanr	nel 24	41MF	Ηz		_
Spectrum								
Ref Level	30.00 dBr 40 d	n Offset 1.80 di	3 👄 RBW 100 kH	z 7 Modo	Auto FET			
Count 100/	100	5 6 41 10.5 p.		- moue	AULO FFT			
⊖1Pk View								
				M	1[1]			10.50 dBm
20 dBm					0141		2.440	134000 GHz
			M2	M	2[1]		2 440	9.62 aBm 199000 CH2
10 dBm				$\sim\sim$		1	2.110	
0 dBm								
0 dbiii								
10 dBm-	D1 -10.380) dBm				<u><u>N</u>3</u>		
						17		
-20 dBm						+		
	~ ~	\sim \sim						\sim
-30 UBIII								
-40 dBm						_		
-50 dBm						-		
50 ID -								
-60 aBm								
CF 2.441 G	Hz		1001	pts			Spa	n 3.0 MHz
Marker	1- 1		1					
Type Ref	1	2 44024 CU	-10 ED de	Func	tion	Fund	ction Result	
M2	1	2.44088 GH	9.62 dB	m				
D3 M:	1 1	1.377 MH	0.06 0	iВ				
)(Money			7A

Date: 9 APR 2020 16:38:37

Ref Level 30.00 dBm	Offcet	90 dB 👄 B	n n n	7				
Att 40 dB	SWT 9	94.8 µs 👄 🕻	BW 100 kH	z Mode	Auto FFT			
Count 100/100								
●1Pk View					1511			6 40 dDm
				IN I	1(1)		2.441	05090 GHz
20 dBm				0	cc Bw		1.1808	19181 MH7
10 dBm-				M1				
			~	A				
0 dBm		- mal	$\nabla \nabla$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm			
10.10		5			- Y V.	2		
-10 UBIII	D	7				M.		
-20 dBm								
20 000	1							
-30 dBm								
m.m.a.A	non					L have	n A	0710
-40 dBm						V	~ hu	~ m
-50 dBm								
-60 dBm								
CF 2.441 GHz			1001	pts			Spa	n 3.0 MHz

Date: 9 APR 2020 16:38:48

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 20 of 60

							_ 1001111			
Spectru	um									
Ref Lev Att Count 11	vel 3	80.00 de 40	3m Offset 1 dB SWT 1	80 dB 18.9 µs 🖷	 RBW 100 kH VBW 300 kH 	z z N	1ode Auto FFT			
∍1Pk Viev	N									
							M1[1]		2.479	10.98 dBn 34000 GH:
20 dBm—					M2		M2[1]		2.479	9.31 dBn 88000 GH
10 dBm—				~	+	\sim	~		2	
0 dBm	+									
-10 dBm-	- D:	1 -10.69	91 dBm			_		<u>\0</u> 3		
-20 dBm-	+				_			\rightarrow		
-30 dBm-	+-	~	~~							<u> </u>
-40 dBm-					_			_		
-50 dBm-										
-60 dBm-										
00 00.00										
CF 2.48	GHz				1001	pts			Spa	n 3.0 MHz
darker	I	T	~ 1							
Type 1	Ret	1	x-value	1 04 CU2	Y-Value		Function	Fund	tion Result	
M2		1	2.479	54 GHZ	-10.98 dB	m				
D3	M1	1	1.5	38 MHz	0.06 (iB				
									and the second second	9

High channel 2480MHz

Date:9APR.2020 16:41:52

Ref Level 30.00 dBm	Offset 1	1.80 dB 👄 R	BW 20 kH	z				
Att 40 dB	SWT	94.8 µs 😑 V	'BW 100 kH	z Mode	Auto FFT			
o 1Pk View								
-				м	1[1]			6.11 dBm
20 dBm				0	cc Bw		2.480 1.1808	04800 GHz 19181 MHz
10 dBm								
			٨	Ä.				
0 dBm		11 Mm	W V		www	r2		
-10 dBm	n	<u></u>				R.		
-20 dBm	}					\rightarrow		
-30 dBm								
Martin M	inni					\sim	w.	man
							0~1	
-50 dBm								
-60 dBm								
CE 2 48 CHz			1001	nte			Sna	n 2 0 MUz

Date: 9 APR 2020 16:42:04

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Bluetooth Mode 8DPSK Modulation test result

Frequency	20 dB Bandwidth	99% Bandwidth	Limit	Result
MHz	kHz	kHz	kHz	
2402	1389	1184		Pass
2441	1389	1187		Pass
2480	1389	1187		Pass

Ref Level 30,00 dBm Offset 1.80 dB RBW 100 kHz Mode Auto FFT Count 100/100 IB:9 µs VBW 300 kHz Mode Auto FFT 20 dBm 0.401 34600 9.40134600 9.62 10 dBm 0.401 2.40134600 9.62 9.40134600 0 dBm M2[1] 2.40216600 9.62 10 dBm 01 -10.184 dBm 0.3 9.3 -20 dBm 01 -10.184 dBm 9.3 9.3 -30 dBm 01 -10.184 dBm 9.3 9.3 -30 dBm 01 -10.184 dBm 9.3 9.3 -40 dBm 01 -10.184 dBm 9.3 9.3 -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm	Spect	rum			-		-				
•• IPk View •• M1[1] •• 10.48 •• 10.48 2.402.18600 •• 0 •• 0.48 •• 0.48 •• 0.1 •• 0.184 •• 0.1 •• 0.184 •• 0.1 •• 0.1 •• 0.1 •• 0.1 •• 0.1 •• 0.1 •• 0.1 •• 0.	Ref Lo Att Count	e vel 100/1	30.00 41 00	dBm Offset : 0 dB SWT :	1.80 dB (18.9 µs (RBW 100 kHz VBW 300 kHz 	: Mode /	Auto FFT			
20 dBm M1[1] -10.48 20 dBm 2.40134600 9.82 10 dBm 2.40216600 9.82 0 dBm 01 -10.184 dBm 9.82 -20 dBm 03 0 -20 dBm 03 0 -20 dBm -30 dBm -30 -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm <t< td=""><td>😑 1Pk Vi</td><td>e₩</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	😑 1Pk Vi	e₩									
20 UB/m 0,9.22 10 dB/m 2.40218600 0 dB/m 0 0 dB/m 0.3 10 dB/m 0.3 -20 dB/m 0.3 -30 dB/m -30 dB/m -50 dB/m -50 dB/m -60 dB/m -50 dB/m -50 dB/m -50 dB/m -50 dB/m -50 dB/m -50 dB/m -50 dB/m -60 dB/m -50 dB/m -70 dB/m -70 dB/m -70 dB/m	20 d8m						М	1[1]		2.401	10.48 dBm 34600 GH;
10 dBm 0 dBm <t< td=""><td>20 UBII</td><td></td><td></td><td></td><td></td><td></td><td>M2 M</td><td>2[1]</td><td></td><td>2.402</td><td>9.82 dBn 18600 GH:</td></t<>	20 UBII						M2 M	2[1]		2.402	9.82 dBn 18600 GH:
0 dBm 01 -10.184 dBm 01 -10.184 dBm 03 03 04 00 04 00 04 00 04 00 04 00 04 00 04 00 04 00 04 04	10 aBM					\rightarrow	$\sim\sim$	~~~			
10 dBm 01 -10.184 dBm 033 -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -1001 pts Span 3.0 fb Trace Ref Track Trace Ref Y-value Eunction	0 dBm-	-			\sim	, 					
-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70	10 dBm		1 -10.	.184 dBm /	1				<u>2</u> 3		
-30 dBm -40 dBm -50 dBm -60	-20 dBm	-									
-40 dBm -50 dBm -60	-30 dBn	~	<u> </u>	\sim							~~
-50 dBm -60 dBm -60 dBm CF 2.402 GHz 1001 pts Span 3.0 M Marker Tune Ref Trr X-value Y-value Eunction Eunction Result	-40 dBm	-									
-60 dBm CF 2.402 GHz 1001 pts Span 3.0 M Marker Tune Ref Trc X-value Y-value Eunction Eunction Result	-50 dBm	-									
CF 2.402 GHz Span 3.0 M Marker Struck Ref Trol X-value Y-value Eurotion Eurotion Result	-60 dBm	-									
Marker Tune Ref Trc X-value Y-value Eurotion Eurotion Result	CF 2.4	02 GF	Iz			1001	pts			Spa	n 3.0 MHz
Type Ref Trc X-value Y-value Eurotion Eurotion Result	Marker										
Type ter ne x value i value i value i ancelon tercebit testate	Туре	Ref	Trc	X-value	э	Y-value	Func	ion	Fund	tion Result	
M1 1 2.401346 GHz -10.48 dBm	M1		1	2.4013	46 GHz	-10.48 dBr	n				
M2 1 2.402186 GHz 9.82 dBm	M2	M1	1	2.4021	86 GHz	9.82 dBr	n e				
Measuring.		1/11		1.5	0210112	0.03 0	0	Measuri			7

Low channel 2402MHz

Date: 9 APR 2020 16:46:05

Date: 9 APR 2020 16:46:16

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 22 of 60

			Ν	/lidd	le chanr	nel 2	2441N	/Hz		
Spectru	m									
Ref Lev Att Count 10	el 3 0/10	0.00 df 40 0	am Offset 1 dB SWT 1	80 dB (18.9 µs (RBW 100 kH VBW 300 kH 	z z Mo	de Auto FF	т		
∋1Pk Viev	/									
20 dBm—	+						M1[1]		2.4	-10.60 dBı 4034600 GH 9.69 dBı
10 dBm-					_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		2.4	4118600 GH
0 dBm				\sim			<u> </u>			
10 d8m-	-D1	-10.30	19 dBm /					<u></u>		
-20 dBm—	+									
-30 dBm-	ϯ	~~	\sim						<u> </u>	
-40 dBm—	+				_					-
-50 dBm—	+									
-60 dBm—	+									
CF 2.441	GHa	2			1001	pts			s	pan 3.0 MHz
Marker										
Type F	ef	Trc	X-value		Y-value	F	Function		unction Res	ult
M1		1	2.4403	46 GHz	-10.60 dB	m				
M2		1	2.4411	36 GHz	9.69 dB	m				
D3	м1	1	1.38	39 MHz	-0.04 (18				

Date:9APR.2020 16:50:12

Ref Level 30.00 dBm	Offset 1.80 dB	RBW 20 kHz					
■ Att 40 dB	SWT 94.8 μs	😑 VBW 100 kHz	Mode A	uto FFT			
Count 100/100							
DIPK VIBW			M	L[1]		2.441	6.43 dBr 04800 GH
20 dBm			00	c Bw		1.1868	13187 MH
10 dBm			M <u>1</u>				
0 dBm			Å.	20			
-10 dBm	TV	~~~~	· \$776	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2		
00 40					\mathbf{n}		
-20 aBm							
-30 dBm	m				M	n A.	
-40 dBm	r					- <u>v</u> - 44	~~~~~
-50 dBm							
-60 dBm							
CE 2 441 CH2		1001	nte			- Cna	n 2 0 MUz

Date: 9 APR 2020 16:50:23

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 23 of 60

um									
vel : nn/1i	30.00 d 40	Bm Offset dB SWT	1.80 dB 🖷 18.9 µs 🖷	RBW 100 kHz	Mode 4	uto FFT			
w									
					M	L[1]		2.479	10.96 dB 34600 GF
					M2 M3	2[1]		2.480	9.35 dB 18900 GF
			~		~~~		\sim		
		MJ	/				63		
D	1 -10.6	49 dBm					Ä		
		~							
1	~							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
GHz				1001	pts			Spa	n 3.0 MHz
Ref	Trc	X-value	9	Y-value	Funct	ion	Fun	ction Result	
	1	2.4793	46 GHz	-10.96 dBn	1				
	1	2.4801	89 GHz	9.35 dBm	1				
M1	1	1.3	39 MHz	-0.05 dE	3				
	vel : 00/11 W D D GHz GHz	vel 30.00 d 40 00/100 w D1 -10.6 GHz Ref Trc 1 1 M1 1	vel 30.00 dBm Offset : 40 dB SWT : 00/100 w D1 -10.649 dBm 01 -10.649 dBm GHz GHz Ref Trc X-valut 1 2.4491 1 2.4491 M1 1 2.4491	vel 30.00 dBm Offset 1.80 dB 40 dB SWT 18.9 µs 60/100 W 00/100 W 00/100 UV 00/1000 UV 00/100 UV 00/100 UV 00/100 UV 00/100 UV 00/100 UV 00/100 UV	vel 30.00 dBm Offset 1.80 dB RBW 100 kHz 40 dB SWT 18.9 µs VBW 300 kHz 00/100 W W W W W 01 -10.649 dBm M1 U U U 01 -10.649 dBm M1 U	vel 30.00 dBm Offset 1.80 dB RBW 100 HJ2 40 dB SWT 18.9 js v WW 300 kHz Mode A 00/100 w w w w M2 M2 M2 01 -10.649 dBm M1 M2 M2 M2 01 -10.649 dBm M1 M2 M2 M2 01 -10.649 dBm M1 M2 M2 M2 M2 01 -10.649 dBm M1 1 1.389 M42 -10.96 dBm 01 -10.49 dBm -10.96 dBm -10.96 dBm -10.96 M2 -10.96 dBm -10.96 <td>vel 30.00 dBm Offset 1.80 dB RBW 100 kHz 40 dB SWT 18.9 µs • VBW 300 kHz Mode Auto FFT 00/100 w </td> <td>vel 30.00 dBm Offset 1.80 dB RBW 100 kHz 40 dB SWT 18.9 µs • VBW 300 kHz Mode Auto FFT 00/100 W M1[1] M2[1] M2[1] 01 -10.649 dBm M1 93 M2[1] M2 01 -10.649 dBm M1 93 M2 M2 01 -10.649 dBm M1 93 M3 M3 01 -10.649 dBm M1 93 M3 M3 01 -10.649 dBm M1 1 2.479345 GHz -10.96 dBm 1 1 2.479346 GHz -10.96 dBm 1 1 -0.05 dBm 1 M1 1 3.39 MHz -0.05 dB 0 0 0</td> <td>vel 30.00 dBm Offset 1.80 dB RBW 100 kHz 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT 00/100 W M1[1] 2.479 M2 2.480 01 -10.649 dBm M2 0 M2 2.480 01 -10.649 dBm M2 0 0 0 01 -10.649 dBm M2 0 0 0 01 -10.649 dBm M2 0 0 0 0 0 01 -10.649 dBm M2 0</td>	vel 30.00 dBm Offset 1.80 dB RBW 100 kHz 40 dB SWT 18.9 µs • VBW 300 kHz Mode Auto FFT 00/100 w	vel 30.00 dBm Offset 1.80 dB RBW 100 kHz 40 dB SWT 18.9 µs • VBW 300 kHz Mode Auto FFT 00/100 W M1[1] M2[1] M2[1] 01 -10.649 dBm M1 93 M2[1] M2 01 -10.649 dBm M1 93 M2 M2 01 -10.649 dBm M1 93 M3 M3 01 -10.649 dBm M1 93 M3 M3 01 -10.649 dBm M1 1 2.479345 GHz -10.96 dBm 1 1 2.479346 GHz -10.96 dBm 1 1 -0.05 dBm 1 M1 1 3.39 MHz -0.05 dB 0 0 0	vel 30.00 dBm Offset 1.80 dB RBW 100 kHz 40 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT 00/100 W M1[1] 2.479 M2 2.480 01 -10.649 dBm M2 0 M2 2.480 01 -10.649 dBm M2 0 0 0 01 -10.649 dBm M2 0 0 0 01 -10.649 dBm M2 0 0 0 0 0 01 -10.649 dBm M2 0

High channel 2480MHz

Date: 9 APR 2020 16:52:03

Spectrum								
RefLevel 30.00 dBr Att 40 d	n Offset 1 B SWT 9	.80 dB 👄 R 4.8 µs 👄 V	BW 20 kH BW 100 kH	z z Mode i	Auto FFT			
Count 100/100								
IPK VIBW				м	1[1]		2,480	6.11 dBm 04800 GHz
20 dBm				0	cc Bw		1.1868	13187 MHz
10 dBm				M1				
0 dBm				Åл	A-0			
-10 dBm		u m	N/W Y Y	· · · · ·	merny	72 X		
00 d0m	1	*				$ \rangle$		
-20 0011								
-30 dBm	m					M	5.	60.0
"-401dBm							V 40	~~~~~
-50 dBm								
-60 dBm								
CF 2.48 GHz			1001	pts			Spa	n 3.0 MHz
					Measuri	ing		1

Date:9APR.2020 16:52:14

EMC_SZ_FR_23.01 FCC Release 2017-06-20

9.4 Carrier Frequency Separation

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. By using the Max-Hold function record the separation of two adjacent channels.
- 5. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function. Record the results.
- 6. Repeat above procedures until all frequencies measured were complete.

Limit

Limit
kHz
≥25KHz or 2/3 of the 20 dB bandwidth which is greater

Frequency	2/3 of 20 dB Bandwidth
MHz	kHz
GFSK	754
π/4-DQPSK	920
8DPSK	926

Carrier Frequency Separation

Test result: The measurement was performed with the typical configuration (normal hopping status).

GFSK Modulation test result

Modulation	Frequency	Carrier Frequency Separation	Result
	MHz	kHz	
GFSK	Нор	861	Pass
π/4-DQPSK	Нор	1148	Pass
8DPSK	Нор	1000	Pass

Date: 9 APR 2020 16:55:03

Date: 9 APR 2020 17:04:40

Date: 9 APR 2020 17:13:50

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 27 of 60

9.5 Number of hopping frequencies

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. Set the spectrum analyzer on Max-Hold Mode,
- 5. Record all the signals from each channel until each one has been recorded.
- 6. Repeat above procedures until all frequencies measured were complete.

Limit

Limit number

≥ 15

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification.

Date:9APR.2020 17:06:39

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Spectrum	·									
Ref Level	30.00 dBm	Offset 1	1.80 dB 👄	RBW 1	100 kHz	Mada	Auto Cueon			
) 1Pk View	40 UB	311	1 1115	VDVV .	500 KH2	Moue	Auto Sweep			
20 dBm										
19,48mm	พมานม	nana.	млллл	Mur	мил	MMMr.	ANNI AMA	ANANAAA	ndarrada	ለካካህላል
D dBm		1				,			.10 - 14 - 0	40-44
-10 dBm				-						
20 dBm										
30 dBm										
-40 dBm										
-50 dBm										
-60 dBm				_						
Start 2.4 G	Hz				691 r	its			Stop 2	.4835 GH
	I				- 7 - 1		Measuri	ng		1

Date:9APR.2020 17:15:04

9.6 Dwell Time

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings: RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span Set the spectrum analyzer on Max-Hold Mode,
- 4. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 5. Measure the Dwell Time by spectrum analyzer Marker function. Record the results. Dwell Time = Burst Width * Total Hops
- 6. Repeat above procedures until all frequencies measured were complete.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Dwell time

The maximum dwell time shall be 0.4 s.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];

Test Result

Modulation	Mode	BurstWidth (ms)	Total Hops	Test Result (s)	Limit (s)	Result
GFSK	DH5	2.87	70	0.201	0.4	Pass
π/4-DQPSK	2DH5	2.87	110	0.316	0.4	Pass
8-DPSK	3DH5	2.88	120	0.345	0.4	Pass

GFSK Modulation

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 32 of 60

$\pi/4$ -DQPSK Modulation

8-DPSK Modulation

9.7 Spurious RF conducted emissions

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 36 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 37 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 38 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 39 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 40 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 41 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 42 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 43 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 44 of 60

9.8 Band edge testing

Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency
- 6. Set to the maximum power setting and enable the EUT hopping mode, repeat the test.

Limit:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

Band edge

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 48 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299 Page 49 of 60

EMC_SZ_FR_23.01 FCC Release 2017-06-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China Tel. +86 755 8828 6998, Fax: +86 755 8828 5299

Page 50 of 60

9.9 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1MHz.

b) VBW $\ [3 \times RBW]$.

c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty

cycle was 50%, then 3 dB shall be added to the measured emission levels. 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205 and RSS-GEN 8.10, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (GFSK mode) test result is listed in the report.

Transmitting spurious emission test result as below:

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB/m)	
	359.23	33.21	Н	46.00	QP	12.79	20	Pass
30-	734.21	31.21	Н	46.00	QP	14.79	28	Pass
1000MHz	534.51	25.87	V	46.00	QP	20.13	26	Pass
	934.34	31.67	V	46.00	QP	14.33	30	Pass
	4728.50*	48.55	Н	74	PK	25.45	2.8	Pass
1000-	5850.50	49.96	Н	74	PK	24.04	4.1	Pass
25000MHz	4582.50*	49.30	V	74	PK	24.70	2.8	Pass
	6380.00	50.63	V	74	PK	23.37	6.2	Pass

GFSK Modulation 2402MHz Test Result

GFSK Modulation 2441MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB/m)	
	4896.00*	49.40	Н	74	PK	24.60	2.6	Pass
1000-	6336.50	50.68	Н	74	PK	23.32	6.0	Pass
25000MHz	4547.50*	49.24	V	74	PK	24.76	3.0	Pass
	5766.50	49.98	V	74	PK	24.02	3.3	Pass

GFSK Modulation 2480MHz Test Result

Frequency	Frequency	Emission Level	Polarization	Limit	Detector	Margin	Correct factor	Result
Danu	MHz	dBuV/m		dBµV/m		dBuV/m	(dB/m)	
	4748.50*	48.64	Н	74	PK	25.36	3.0	Pass
1000-	6232.00	49.20	Н	74	PK	24.80	5.6	Pass
25000MHz	3781.50*	47.35	V	74	PK	26.65	0.0	Pass
	5368.500*	48.94	V	74	PK	25.06	3.1	Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Corrected Amplitude = Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

Restricted bands of operation. test result as below:

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2310.000000	43.48	74.00	30.52	150.0	Н	234.0	-5.1
2339.187500	45.28	74.00	28.72	150.0	Н	318.0	-4.9
2390.000000	43.23	74.00	30.77	150.0	Н	177.0	-4.8

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Antenna Factor + Cable Loss - Pre-amplifier

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2310.257500	42.39	74.00	31.61	150.0	V	222.0	-5.1
2365.945000	45.32	74.00	28.68	150.0	V	304.0	-4.8
2390.090000	44.38	74.00	29.62	150.0	V	294.0	-4.8

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Antenna Factor + Cable Loss - Pre-amplifier

GFSK Modulation 2480MHz

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.500000	53.65	74.00	20.35	150.0	Н	110.0	-4.1
2486.672500	48.88	74.00	25.12	150.0	Н	348.0	-4.2
2500.000000	44.45	74.00	29.55	150.0	Н	10.0	-4.0
Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.500000	40.21	54.00	13.79	150.0	Н	110.0	-4.1

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Antenna Factor + Cable Loss – Pre-amplifier

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.500000	54.78	74.00	19.22	150.0	V	130.0	-4.2
2488.650000	47.64	74.00	26.36	150.0	V	316.0	-4.2
2500.000000	45.60	74.00	28.40	150.0	V	156.0	-4.0
Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2483.500000	40.36	54.00	13.64	150.0	V	130.0	-4.2

Remark:

Level=Reading Level + Correction Factor

Correction Factor=Antenna Factor + Cable Loss – Pre-amplifier

(The Reading Level is recorded by software which is not shown in the sheet)

EMC_SZ_FR_23.01 FCC Release 2017-06-20

10 Test Equipment List

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2020-6-28
LISN	Rohde & Schwarz	ENV4200	100249	2020-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2020-6-28
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

Radiated Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2020-6-28
High Pass Filter (HPF)	UCL	UCL-BPF1-7G	1504005103	2020-6-28
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2020-6-29
Horn Antenna	Rohde & Schwarz	HF907	102295	2020-6-22
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2020-7-12
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2020-6-28
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2020-7-16
Attenuator	Agilent	8491A	MY39264334	2020-6-28
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

RF conducted test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2020-6-28
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2020-6-28
Power Splitter	Weinschel	1580	SC319	2020-7-7
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2020-7-6
Test software	Tonscend	System for BT/WIFI	Version 2.6	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty	
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz (for test using AMN ENV432 or ENV4200)	3.62dB
Uncertainty for Radiated Spurious Emission 25MHz-	Horizontal: 4.81dB;
3000MHz	Vertical: 4.89dB;
Uncertainty for Radiated Spurious Emission 3000MHz-	Horizontal: 4.69dB;
18000MHz	Vertical: 4.68dB;
Uncertainty for Radiated Spurious Emission	Horizontal: 4.89dB;
18000MHz-40000MHz	Vertical: 4.87dB;
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB
	Frequency test involved: 0.6×10 ⁻⁷ or 1%