
REPORT NO: TRE170 EUT: Camera

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Testing Laboratory Name:	Shenzhen Huatongwei International Inspection Co., Ltd

Address...... 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to itsplacement and context.

Note:

Shenzhen Huatongwei International Inspection Co., Ltd is UL accredited lab and UL accepts its test data.

Contents

1. TI	EST STANDARDS AND REPORT VERSION	4
1.1.	Test Standards	4
1.2.	Report version	4
2. SI	UMMARY	5
2.1. 2.2.		5
		6
3.1.	Address of the test laboratory	
3.2.		6 6
4. S/	AR MEASUREMENT SYSTEM & TEST EQUIPMENT	7
4.1.	SAR MEASUREMENT SYSTEM	7
4.2. 4.3.		8 10
		10
-	AR TEST CONFIGURATION	12
6.1.		12
6.2.		12
7. D	EVICE UNDER TEST (DUT) INFORMATION	13
7.1.		13
7.2. 7.3.		13 13
		13
	F EXPOSURE CONDITIONS (TEST CONFIGURATIONS)	15
10.	DIELECTRIC PROPERTY MEASUREMENTS & SYSTEM CHECK	13
10.1		17
10.1		17
11.	POWER LEVEL SETTING	21
11.1	. WI-FI 2.4GHz	21
11.2 11.3		22 24
12.		25
12.1		25
12.1		25
12.3	. Bluetooth	28
13.	MEASURED AND REPORTED (SCALED) SAR RESULTS	29
13.1 13.2		31 32
2. SI	MULTANEOUS TRANSMISSION SAR ANALYSIS	38
APPEN	DIX А _ РНОТО	39
APPEN	DIX B _ SYSTEM CHECK PLOTS	41
APPEN	DIX C _ HIGHEST TEST PLOTS	42
APPEN	DIX D _ CALIBRATION CERTIFICATES	43

1. Test standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

IEEE Std C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

IEEE Std 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

FCC Published RF exposure KDB proceadures:

KDB 248227 D01: 802.11Wi-Fi SAR v02r02 KDB 447498 D01: General RF Exposure Guidance v06 KDB 690783 D01: SAR Listings on Grants v01r03 KDB 865664 D01: SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02: RF Exposure Reporting v01r02

1.2. Report version

Version No.	Version No. Date of issue Description	
1.0	June 1, 2017	\
1.1	September 30,2017	 Update the output power of BLE on page28 Correct the tune up values of 2.4G wifi used for scaling purpose on page 15

2. Summary

2.1. Client Information

Applicant:	GoPro, Inc.
Address:	3000 Clearview Way, San Mateo, CA 94402, USA
FCC ID:	CNFSBDC1
Manufacturer:	Chicony Electronics (Dongguan) Co., Ltd.
Address:	San Zhong Quan Li Qu, Qingxi, Dongguan, Guangdong, China 523651

2.2. Product Description

Name of EUT:	Camera				
Trade Mark:	GoPro				
Model/Type reference:	SDBC1				
Power supply:	3.8Vdc				
Device Category:	Class B				
Product stage:	DVT				
RF Exposure Environment:	General Population/Uncontrolled Exposure (1g SAR limit: 1.6 W/kg)				
Hardware version:	Rev A				
Software version:	MF6.04.00.01.03				
Maximum SAR Value					
Separation Distance:	Head using scenario	Body using scenario			
Separation Distance:	5mm	0mm			
Maximum SAD Value (1a):	Head using scenario Body using scenario				
Maximun SAR Value (1g):	0.893 1.389				

Remark:

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

3. Test Environment

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 3902.01

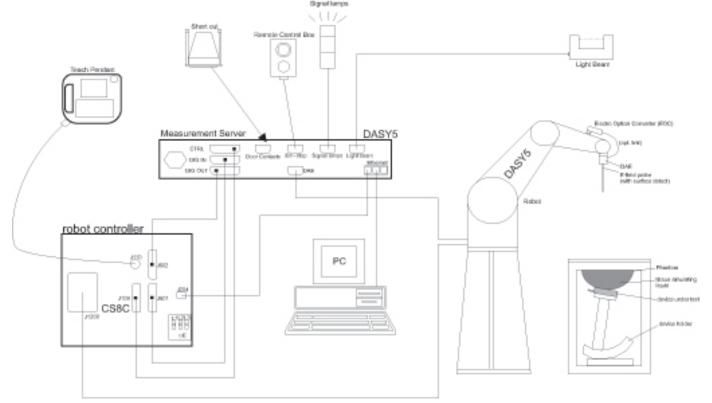
Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478.

IC-Registration No.: 5377B

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered byCertification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B.


ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under t est in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine m easurement ar ound the hots pot. The s ophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and I EC 62209 s tandards, w hereby 3 dB is a r equirement w hen c ompliance is as sessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^\circ\pm1^\circ$	$20^\circ\pm1^\circ$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within t he s ame pr ocedure. When the measurement i s done, t he Zo om S can ev aluates t he averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

			\leq 3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm 2 - 3 GHz: ≤ 5 mm [*]	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4 \text{ GHz:} \le 4 \text{ mm}$ $4 - 5 \text{ GHz:} \le 3 \text{ mm}$ $5 - 6 \text{ GHz:} \le 2 \text{ mm}$	
	$\begin{array}{ c c c c c } \hline graded \\ grid \\ \hline & \Delta z_{Zoom}(1): \ between \\ 1^{st} \ two \ points \ closest \\ to \ phantom \ surface \\ \hline & \Delta z_{Zoom}(n \geq 1): \\ between \ subsequent \\ points \\ \hline \end{array}$	1st two points closest	≤ 4 mm	$3 - 4$ GHz: ≤ 3 mm $4 - 5$ GHz: ≤ 2.5 mm $5 - 6$ GHz: ≤ 2 mm	
		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *1-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a us er to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z S can measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

4.3. Equipments Used during the Test

				Calib	Calibration		
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval (year)		
Data Acquisition Electronics DAE3	SPEAG	DAE3	427	December 9, 2016	1		
E-field Probe	SPEAG	EX3DV4	7383	December 27, 2016	1		
System Validation Dipole D2450V2	SPEAG	D2450V2	977	January 14, 2016	3		
System Validation Dipole D5GHzV2	SPEAG	D5GHzV2	1231	January 13, 2016	3		
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/		
Power meter	Agilent	E4417A	E4417A GB41292254 October 22, 2016		1		
Power sensor	Agilent			October 22, 2016	1		
Power sensor	Agilent	E9327A	US40441621	October 22, 2016	1		
Network analyzer	Agilent	8753E	US37390562	October 18, 2016	1		

Note:

1) Per KDB865664D01 requirements for dipole calibration, the test laboratory has adopted threeyear extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

a) There is no physical damage on the dipole;

b) System check with specific dipole is within 10% of calibrated value;

c) The most recent return-loss result, measured at least annually, deviates by no more than 20% from the previous measurement.

d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

6. SAR Test Configuration

6.1. Head using scenario

The EUT supports to fix onto a helmet or a holder for using around the head, so the SAR evaluation for head using scenario is necessary, a conservative 5mm separation distance is selected for SAR evaluation.

6.2. Body using scenario

The EUT also supports to fix around body for using, so the SAR evaluation for body using scenario is necessary, and it maybe extreme close to the human body, a 0mm separation distance is selected for SAR evaluation.

7. Device Under Test (DUT) Information

7.1. DUT Description

The EUT is a camera with IEEE 802.11a/b/g/n/ac, and Bluetooth radio.			
Battery Options Rechargeable Lithium-ion battery, Rating 3.8 Vdc, 2620mAh, 9.95Wh			
Accessory	None		

7.2. Wireless Technology

Wireless technology	Frequency band	Operating mode	Duty factor use for SAR testing
Wi-Fi	2.4 GHz	802.11b 802.11g 802.11n(20M) 802.11n(40M)	99%
Wi-Fi	5 GHz	802.11a 802.11n(20M) 802.11n(40M) 802.11ac(20M) 802.11ac(40M) 802.11ac(80M)	96.1%
вт	2.4 GHz	DH5 2DH5 3DH5 BLE	70%

7.3. Maximum Output Power from Tune-up Procedure

KDB 447498 sec.4.1.d) at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit.

RF Air interface	Mode	Max. RF Output Power(dBm)
	802.11b	11
Wi-Fi 2.4 GHz	802.11g	13
VVI-F1 2.4 GHZ	802.11n(20M)	13
	802.11n(40M)	13
	802.11a	11
	802.11n(20M)	11
Wi-Fi 5 GHz	802.11n(40M)	12
	802.11ac(20M)	11
	802.11ac(40M)	12
	802.11ac(80M)	11
	DH5	6
ВТ	2DH5	6
	3DH5	6
	802.11b 802.11g 802.11n(20M) 802.11n(40M) 802.11a 802.11n(20M) 802.11n(20M) 802.11n(20M) 802.11n(20M) 802.11ac(20M) 802.11ac(20M) 802.11ac(20M) 802.11ac(40M) 802.11ac(80M) DH5 2DH5	6

8. Stand-alone SAR test exclusion

Per FCC KDB 447498D01: the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for product specific 10-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Mode	Positon	Pmax (dBm)	Pmax (mW)	Seperation Distance(mm)	f(GHz)	Caculation result	Exclusion threshold	SAR test exclusion (Yes/No)
рт	Head	6.00	3.98	5	2.441	1.24	3.0	Yes
BT	Body	6.00	3.98	5	2.441	1.24	3.0	Yes

9. RF Exposure Conditions (Test Configurations)

Per FCC KDB 447498D01: the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\left[\sqrt{f(GHz)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for product specific 10-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

For	2.4G	Wi-Fi	
			1

Position	Frequency	Power (dBm)	Power (mW)	Separation Distance (mm)	Calculation Result	Threshold	SAR Test (Yes/No)
Front surface	2437	13.00	15.85	5.0	6.23	3.0	Yes
Back surface	2437	13.00	15.85	5.0	6.23	3.0	Yes
Left edge	2437	13.00	15.85	56.5	0.55	3.0	No
Right edge	2437	13.00	15.85	7.6	4.10	3.0	Yes
Top edge	2437	13.00	15.85	5.1	6.11	3.0	Yes
Bottom edge	2437	13.00	15.85	57.5	0.54	3.0	No

For 5G Wi-Fi U-NII-2A Band

Position	Frequency	Power (dBm)	Power (mW)	Separation Distance (mm)	Calculation Result	Threshold	SAR Test (Yes/No)
Front surface	5270	12.00	15.85	5.0	7.28	3.0	Yes
Back surface	5270	12.00	15.85	5.0	7.28	3.0	Yes
Left edge	5270	12.00	15.85	56.5	0.64	3.0	No
Right edge	5270	12.00	15.85	7.6	4.79	3.0	Yes
Top edge	5270	12.00	15.85	5.1	7.13	3.0	Yes
Bottom edge	5270	12.00	15.85	57.5	0.63	3.0	No

For 5G Wi-Fi U-NII-2C Band

Position	Frequency	Power (dBm)	Power (mW)	Separation Distance (mm)	Calculation Result	Threshold	SAR Test (Yes/No)
Front surface	5630	12.00	15.85	5.0	7.52	3.0	Yes
Back surface	5630	12.00	15.85	5.0	7.52	3.0	Yes
Left edge	5630	12.00	15.85	56.5	0.67	3.0	No
Right edge	5630	12.00	15.85	7.6	4.95	3.0	Yes
Top edge	5630	12.00	15.85	5.1	7.37	3.0	Yes
Bottom edge	5630	12.00	15.85	57.5	0.65	3.0	No

For 5G Wi-Fi U-NII-3 Band

Position	Frequency	Power (dBm)	Power (mW)	Separation Distance (mm)	Calculation Result	Threshold	SAR Test (Yes/No)
Front surface	5755	12.00	15.85	5.0	7.60	3.0	Yes
Back surface	5755	12.00	15.85	5.0	7.60	3.0	Yes
Left edge	5755	12.00	15.85	56.5	0.67	3.0	No
Right edge	5755	12.00	15.85	7.6	5.00	3.0	Yes
Top edge	5755	12.00	15.85	5.1	7.46	3.0	Yes
Bottom edge	5755	12.00	15.85	57.5	0.66	3.0	No

10. Dielectric Property Measurements & System Check

10.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium us ed during measurement must all so be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The di electric parameters m ust be measured b efore the tissue-equivalent m edium is us ed in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue di electric parameters w ere m easured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)		Head	Body		
raiget requeitcy (Mirz)	۶ _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.80	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.90	55.2	0.97	
900	41.5	0.97	55.0	1.05	
915	41.5	0.98	55.0	1.06	
1450	40.5	1.20	54.0	1.30	
1610	40.3	1.29	53.8	1.40	
1800 – 2000	40.0	1.40	53.3	1.52	
2450	39.2	1.80	52.7	1.95	
3000	38.5	2.40	52.0	2.73	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

IEEE Std 1528-2013 Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results:

				ramete		Delta(%)				
Liquid	Freq.	Meas	ured	Targ	get			Limit (%)	Temp. (℃)	Test Date
		€r	σ	€r	σ	€r	σ		. ,	
	2360	40.00	1.69	39.36	1.72	1.63	-1.86	±5	22.5	
Head 2450	2450	39.90	1.80	39.20	1.80	1.79	-0.06	±5	22.5	May 25, 2017
	2540	39.44	1.90	39.09	1.90	0.90	0.21	±5	22.5	
	2360	51.76	1.85	52.82	1.86	-2.01	-0.81	±5	22.5	
Body 2450	2450	51.76	1.95	52.70	1.95	-1.78	0.15	±5	22.5	May 25, 2017
	2540	51.34	2.07	52.59	2.08	-2.38	-0.58	±5	22.5	
	5160	34.73	4.47	36.03	4.61	-3.61	-2.99	±5	22.7	
Head 5250	5250	34.63	4.56	35.93	4.71	-3.62	-3.18	±5	22.7	May 28, 2017
	5340	34.50	4.64	35.83	4.80	-3.71	-3.25	±5	22.7	
	5160	48.69	5.18	49.07	5.25	-0.77	-1.26	±5	22.3	
Body 5250	5250	48.56	5.28	48.95	5.36	-0.80	-1.51	±5	22.3	May 26, 2017
	5340	48.38	5.39	48.96	5.46	-1.18	-1.30	±5	22.3	
	5510	35.55	4.79	35.63	4.97	-0.22	-3.62	±5	22.7	
Head 5600	5600	35.34	4.89	35.53	5.07	-0.53	-3.49	±5	22.7	May 27, 2017
	5690	35.27	4.99	35.43	5.16	-0.45	-3.39	±5	22.7	
	5510	48.23	5.76	48.59	5.66	-0.74	1.71	±5	22.3	
Body 5600	5600	48.07	5.88	48.47	5.77	-0.83	1.96	±5	22.3	May 26, 2017
	5690	47.89	6.00	48.35	5.87	-0.95	2.18	±5	22.3	
	5660	35.40	4.94	35.46	5.13	-0.17	-3.72	±5	22.7	
Head 5750	5750	35.32	5.01	35.36	5.22	-0.11	-4.10	±5	22.7	May 28, 2017
	5840	35.17	5.11	35.27	5.30	-0.28	-3.55	±5	22.7	
	5660	47.16	5.89	48.39	5.84	-2.54	0.87	±5	22.3	May 26, 2017
Body 5750	5750	47.11	6.00	48.27	5.94	-2.40	1.04	±5	22.3	
	5840	46.94	6.14	48.16	6.03	-2.53	1.87	±5	22.3	

10.2. System Check

SAR s ystem v erification i s required t o c onfirm measurement ac curacy, ac cording t o the tissue dielectric m edia, p robe c alibration poi nts and ot her s ystem operating parameters required f or measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be u sed for device testing. When multiple probe calibration points are required to c over s ubstantially I arge t ransmission bands , i ndependent s ystem v erifications ar e required for each probe calibration point. A system v erification must be performed before e ach series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional s ystem v erification s hould be c onsidered ac cording to t he c onditions of the t issue equivalent medium and measured tissue di electric par ameters, t ypically every t hree t o four day s when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm (above 1GHZ) and 15mm (below 1GHz) from dipole center to the simulating liquid surface.
- For area scan, standard grid spacing for head measurements is 15 mm in x- and ydimension(≤2GHz), 12 mm in x- and y-dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz).
- For zoom scan, Δx_{zoom} , $\Delta y_{zoom} \le 2$ GHz ≤ 8 mm, 2-4GHz ≤ 5 mm and 4-6 GHz- ≤ 4 mm; $\Delta z_{zoom} \le 3$ GHz ≤ 5 mm, 3-4 GHz- ≤ 4 mm and 4-6GHz- ≤ 2 mm.
- Distance between probe sensors and phantom surface was set to 3 mm except for 5 GHz band. For 5GHz band, Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was set to 100 mW or 250 mW depend on the certificate of the dipoles.
- The results are normalized to 1 W input power.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

System Dipole	T.S. Liquid		Measur	ed Results	Target	Dalta	Lingit	Tomp	
Serial #			Zoom Scan (W/Kg)	Normalize to 1W (W/Kg)	(Ref. value)	Delta (%)	Limit (%)	Temp. (℃)	Test Date
	Head 2450	1-g	12.4	49.6	52.50	-5.52	±10	22.5	May 25, 2017
977	Tieau 2430	10-g	5.92	23.68	24.50	-3.35	±10	22.5	Way 23, 2017
911	Body 2450	1-g	13.2	52.8	51.70	2.13	±10	22.5	May 25, 2017
	BOUY 2450	10-g	6.29	25.16	24.30	3.54	±10	22.5	Way 25, 2017
	Head 5250	1-g	8.66	86.6	80.50	7.58	±10	22.7	May 29, 2017
	Head 5250	10-g	2.53	25.3	23.10	9.52	±10	22.7	May 28, 2017
	Pody 5250	1-g	7.15	71.5	76.10	-6.04	±10	22.3	May 26, 2017
	Body 5250	10-g	2.08	20.8	21.40	-2.80	±10	22.3	May 26, 2017
	Hood 5600	1-g	9.08	90.8	83.80	8.35	±10	22.7	May 27, 2017
1231	Head 5600	10-g	2.63	26.3	24.00	9.58	±10	22.7	May 27, 2017
1231	Dody 5600	1-g	7.87	78.7	80.40	-2.11	±10	22.3	May 26, 2017
	Body 5600	10-g	2.25	22.5	22.50	0.00	±10	22.3	May 26, 2017
	Head 5750	1-g	8.38	83.8	81.70	2.57	±10	22.7	May 29, 2017
		10-g	2.4	24	23.10	3.90	±10	22.7	May 28, 2017
	Dody 5750	1-g	6.94	69.4	77.00	-9.87	±10	22.3	May 26, 2017
	Body 5750	10-g	1.98	19.8	21.50	-7.91	±10	22.3	May 26, 2017

11. Power level setting

11.1. Wi-Fi 2.4GHz

Test Mode	Setting TX Power	Setting data rate (Mbps)	TX Pattern	TX Power Control
	9	CCK_1Mbps	PN7_PATTERN	TXPowerForce_OLPC
IEEE 802.11b	9	CCK_1Mbps	PN7_PATTERN	TXPowerForce_OLPC
	9	CCK_1Mbps	PN7_PATTERN	TXPowerForce_OLPC
	12	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC
IEEE 802.11g	12	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC
	12	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC
	12	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC
IEEE 802.11n HT20	12	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC
	12	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC
	12	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC
IEEE 802.11n HT40	12	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC
	12	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC

11.2. Wi-Fi 5GHz

	UNII-1 / UNII-2A						
Test Software Version		QRCT (V3.0-002	30) from QUALCC	DMM			
Test Mode	Setting TX Power	HT Mode	TX Pattern	TX Power Control			
	11	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC			
802.11a	11	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC			
	11	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC			
	11	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC			
802.11n HT20	11	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC			
	11	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC			
	12	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC			
802.11n HT40	12	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC			
	12	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC			
	12	VHT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC			
802.11ac HT20	12	VHT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC			
	12	VHT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC			
	12	VHT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC			
802.11ac HT40	12	VHT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC			
	12	VHT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC			
	11	VHT80_1_MCS_0_80	PN7_PATTERN	TXPowerForce_OLPC			
802.11ac HT80	11	VHT80_1_MCS_0_80	PN7_PATTERN	TXPowerForce_OLPC			
	11	VHT80_1_MCS_0_80	PN7_PATTERN	TXPowerForce_OLPC			

UNII-2C / UNII-3						
Test Software Version		QRCT (V3.0-002	30) from QUALCO	ОММ		
Test Mode	Setting TX Power	HT Mode	TX Pattern	TX Power Control		
	12	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC		
802.11a	12	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC		
	12	NO HT_6Mbps	PN7_PATTERN	TXPowerForce_OLPC		
	12	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC		
802.11n HT20	12	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC		
	12	HT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC		
	13	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC		
802.11n HT40	13	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC		
	13	HT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC		
	12	VHT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC		
802.11ac HT20	12	VHT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC		
	12	VHT20_MCS_0_20	PN7_PATTERN	TXPowerForce_OLPC		
	13	VHT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC		
802.11ac HT40	13	VHT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC		
	13	VHT40+MCS_0_40	PN7_PATTERN	TXPowerForce_OLPC		
	12	VHT80_1_MCS_0_80	PN7_PATTERN	TXPowerForce_OLPC		
802.11ac HT80	12	VHT80_1_MCS_0_80	PN7_PATTERN	TXPowerForce_OLPC		
	12	VHT80_1_MCS_0_80	PN7_PATTERN	TXPowerForce_OLPC		

11.3. Bluetooth

BLE

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Software Version	Version QRCT (V3.0-00230) from QUALCOMM					
Modulation Type	Setting TX Power					
GFSK	GFSK MAX					

ΒT

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test Software Version	QRCT (V3.0-00230) from QUALCOMM				
Modulation Type	Setting TX Power	Packet Type			
GFSK	8	DH5_339			
8-DPSK	8	3DH5_1021			

12. Conducted Output Power Measurement

12.1. Wi-Fi 2.4GHz (DTS Band)

Measured Results

Band	Mode	Date Rate	Ch.#	Freq.(MHz)	Avg. Pwr.(dBm)	SAR Test (Yes/No)	
			1	2412	10.35		
	802.11b	1Mbps	6	2437	10.45	Yes	
			11	2462	10.24		
	802.11g		1	2412	12.33		
		6Mbps	6	2437	12.27	No	
2.4G			11	2462	12.12		
2.40	802.11n		1	2412	12.15		
	(20M)	6.5Mbps	6	2437	12.23	No	
	(20101)		11	2462	12.38		
	802.11n		3	2422	12.27		
	(40M)	13.5Mbps	6	2437	12.56	No	
	(40101)		9	2452	12.35		

12.2. Wi-Fi 5GHz (U-NII Band)

Band	Mode	Date Rate	Ch.#	Freq.(MHz)	Avg. Pwr.(dBm)	SAR Test (Yes/No)	
			36	5180	10.78		
	802.11a	6Mbps	40	5200	10.74	No	
	002.118	olviops	44	5220	10.54	NO	
			48	5240	9.98		
		6.5Mbps	36	5180	10.63		
	802.11n (20M) 802.11n		40	5200	10.53	No	
			44	5220	10.47	No	
			48	5240	9.95		
U-NII-1		802.11n 13 5Mbps	38	5190	11.96	No	
U-INII- I	(40M)	13.5Mbps	46	5230	11.05	INU	
			36	5180	10.45		
	802.11ac	6.5Mbps	40	5200	10.34	No	
	(20M)	0.5ivibps	44	5220	10.24		
			48	5240	9.93		
	802.11ac	12 5Mbra	38	5190	11.91	Ne	
	(40M)	13.5Mbps	46	5230	11.25	No	
	802.11ac (80M)	29.3Mbps	42	5210	10.94	No	

Band	Mode	Date Rate	Ch.#	Freq.(MHz)	Avg. Pwr.(dBm)	SAR Test (Yes/No)	
			52	5260	10.71		
	802.11a	6Mbps	56	5280	10.91	No	
	002.11a	olviops	60	5300	10.77	NO	
			64	5320	10.75		
	802.11n (20M)	6 bivinns	52	5260	10.35		
			56	5280	10.66	No	
			60	5300	10.71	No	
			64	5320	10.55		
U-NII-2A	802.11n	802.11n (40M) 13.5Mbps	54	5270	11.72	Yes	
U-INII-ZA	(40M)		62	5310	11.47	res	
			52	5260	10.23		
	802.11ac	6 5Mbpa	56	5280	10.89	No	
	(20M)	6.5Mbps	60	5300	10.76		
			64	5320	10.85		
	802.11ac	12 5Mbpo	54	5270	11.45	No	
	(40M)	13.5Mbps	62	5310	11.84	No	
	802.11ac (80M)	29.3Mbps	58	5290	10.88	No	

Band	Mode	Date Rate	Ch.#	Freq.(MHz)	Avg. Pwr.(dBm)	SAR Test (Yes/No)
			100	5500	10.68	
			104	5520	10.61	
			108	5540	10.78	
			112	5560	10.65	
			116	5580	10.96	
	802.11a	GMbbb	120	5600	10.31	No
	002.11a	6Mbps	124	5620	10.52	INU
			128	5640	10.43	
			182	5660	10.55	
			136	5680	10.65	
			140	5700	10.87	
			144	5720	10.81	
			100	5500	10.63	
			104	5520	10.55	
			108	5540	10.67	
			112	5560	10.81	
	802.11n		116	5580	10.99	
		6.5Mbps	120	5600	10.76	. .
	(20M)		124	5620	10.34	No
	()		128	5640	10.57	
			182	5660	10.68	
			136	5680	10.71	
			140	5700	10.77	
			144	5720	10.68	
		02 11p	102	5510	11.59	
U-NII-2C			110	5550	11.67	
0 111 20	802.11n		118	5590	11.77	
	(40M)	13.5Mbps	126	5630	11.95	Yes
	(1011)		134	5670	11.78	
			142	5710	11.87	
			100	5500	10.74	
			100	5520	10.89	
			104	5540	10.58	
			112	5560	10.74	-
			116	5580	10.91	
	802.11ac		120	5600	10.69	
	(20M)	6.5Mbps	124	5620	10.53	No
	(2011)		128	5640	10.49	
			182	5660	10.43	
			136	5680	10.79	
			140	5700	10.93	
			140	5700	10.93	
			144	5510	11.64	
			1102	5550	11.93	
	802.11ac		118	5590	11.56	
	(40M)	13.5Mbps	126	5630	11.67	Yes
			134	5670	11.92	
			134	5710	11.92	
	802.11ac	20 21/16-20	106	5530	10.78	No
	(80M)	29.3Mbps	122 138	5610	10.75	No
	· /			5690	10.66	

Measured Results

Band	Mode	Date Rate	Ch.#	Freq.(MHz)	Avg. Pwr.(dBm)	SAR Test (Yes/No)	
			149	5745	10.95		
			153	5765	10.77		
	802.11a	6Mbps	157	5785	10.69	No	
			161	5805	10.54		
			165	5825	10.93		
			149	5745	10.93		
	802.11n (20M)		153	5765	10.67		
		6.5Mbps	157	5785	10.78	No	
			161	5805	10.65		
			165	5825	10.91		
U-NII-3	802.11n	13.5Mbps	151	5755	11.93	Yes	
	(40M)	13.5Mups	159	5795	11.69	res	
			149	5745	10.77		
	802.11ac		153	5765	10.68	No	
	(20M)	6.5Mbps	157	5785	10.96		
	(20101)		161	5805	10.59		
			165	5825	10.68		
	802.11ac	13.5Mbps	151	5755	11.98	No	
	(40M)		159	5795	11.69	INU	
	802.11ac (80M)	29.3Mbps	155	5775	10.77	No	

12.3. Bluetooth

BT 2450	Tune-	e- Average Conducted Power (dBm				
DI 2430	up	0CH	39CH	78CH		
DH5	6	4.13	4.41	4.28		
2DH5	6	2.98	3.13	2.95		
3DH5	6	2.79	3.21	3.04		

BT 2450	Tune-	Average Conducted Power (dBm)				
DI 2400	up	0CH	39CH	78CH		
BLE	6	-0.52	-0.18	-0.02		

13. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

KDB 447498 D01 General RF Exposure Guidance:

A) Per KDB447498 D01v05r02, all SAR measurement results are scaled to the maximum tune-up tolerance limit to demonstrate SAR compliance.

B) Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz.
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
- ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz.

Per KDB865664 D01:

For each frequency band, repeated SAR measurement is required only when the measured SAR is $\geq 0.8W/Kg$; if the deviation among the repeated measurement is $\leq 20\%$, and the measured SAR < 1.45W/Kg, only one repeated measurement is required.

Per KDB 248227 D01:

For Wi-Fi SAR testing, a communication link is set up with the testing software for Wi-Fi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. The RF signal utilized in SAR measurement has 100% duty cycle and its crest factor is 1. The test procedures in KDB 248227D01 are applied. (Refer to KDB 248227D01 for more details)

Initial Test Position Procedure

For exposure condition with multiple test position, such as handsets operating next to the ear, devices with hotspot mode or UMPC mini-tablet , procedures for <u>initial test position</u> can be applied. Using the transmission mode determined by the DSSS procedure or <u>initial test configuration</u>, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated(peak) SAR is used as the initial test position. When reported SAR for the <u>initial test position</u> is ≤ 0.4 W/kg, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8 W/kg or all test position are measured. For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Initial Test Configuration Procedure

An <u>initial test configuration</u> is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2 of KDB 248227D01). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the <u>initial test position</u> procedure is applied to minimize the number of test positions required for SAR measurement using the <u>initial test configuration</u> transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the <u>initial test configuration</u>.

When the reported SAR of the <u>initial test configuration</u> is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is \leq 1.2 W/kg or all required channels are tested.

Sub Test Configuration Procedure

SAR measurement requirements for the remaining 802.11transmission mode configurations that have not been tested in the <u>initial test configuration</u> are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units.

When the highest reported SAR for the initial test configuration, according to the initial test position or

fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to <u>initial test configuration</u> specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required for that <u>subsequent test configuration</u>.

Wi-Fi 2.4G SAR Test Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.

A) 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel (section 3.1 of of KDB 248227D01) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

B) 2.4GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3 of of KDB 248227D01). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

C) SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

13.1. Wi-Fi 2.4GHz (DTS Band)

Test Positon			Power (dBm)	SAR	Value		Duty	
(Body 5mm- Head using scenario)	Test Mode	Channel/ Frequency	Tune-up	Meas.	1g (Area Scan)	1g (Zoom Scan)	Power Drift	Factor (%)	Scaled (W/Kg)
Front Surface	802.11b	6/2437	11.00	10.45	0.104	١	0.16	99.0	١
Back Surface	802.11b	6/2437	11.00	10.45	0.103	١	0.20	99.0	/
Top Edge	802.11b	6/2437	11.00	10.45	0.252	١	0.10	99.0	/
Right Edge	802.11b	6/2437	11.00	10.45	0.362	0.349	0.20	99.0	0.400
Test Positon			Power (dBm)		SAR Value			Duty	
(Body 0mm- Body using scenario)	Test Mode	Channel/ Frequency	Tune-up	Meas.	1g (Area Scan)	1g (Zoom Scan)	Power Drift	Factor (%)	Scaled (W/Kg)
Front Surface	802.11b	6/2437	11.00	10.45	0.100	١	0.18	99.0	١
Back Surface	802.11b	6/2437	11.00	10.45	0.090	١	0.13	99.0	١
Top Edge	802.11b	6/2437	11.00	10.45	0.220	١	0.09	99.0	١
Right Edge	802.11b	6/2437	11.00	10.45	0.297	0.283	0.12	99.0	0.324

For head using scenario:

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11b	11	12.59	0.400	١	Yes
802.11g	13	19.95	/	0.634	No
802.11n	13	19.95	\	0.634	No

For body using scenario:

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11b	11	12.59	0.324	١	Yes
802.11g	13	19.95	١	0.514	No
802.11n	13	19.95	1	0.514	No

Note:

1) Per KDB248227D01, SAR is measured for 2.4 GHz 802.11b DSSS using the initial test position procedure.

2) The highest reported SAR for DSSS adjusted by the ratio of OFDM 802.11g/n to DSSS specified maximum output power and the adjusted SAR is < 1.2 W/kg, so SAR for 802.11g/n is not required.

13.2. Wi-Fi 5GHz (U-NII Band)

SAR test results of WiFi 5G U-NII-2A.

Test Positon			Powe	r (dBm)	SAR	Value		Duty	
(Body 5mm- Head using scenario)	Test Mode	Channel/ Frequency	Tune -up	Meas.	1g (Area Scan)	1g (Zoom Scan)	Power Drift	Duty Factor (%)	Scaled (W/Kg)
Front Surface	802.11n 40M	54/5270	12.00	11.72	0.157	١	0.13	96.1	١
Back Surface	802.11n 40M	54/5270	12.00	11.72	0.139	١	-0.01	96.1	١
Top Edge	802.11n 40M	54/5270	12.00	11.72	0.228	١	0.07	96.1	١
Right Edge	802.11n 40M	54/5270	12.00	11.72	0.342	0.353	0.09	96.1	0.392
Test Positon			Powe	r (dBm)	SAR	Value			
					OAN	Talao	Power Drift	Duty	
(Body 0mm- Body using scenario)	Test Mode	Channel/ Frequency	Tune -up	Meas.	1g (Area Scan)	1g (Zoom Scan)		Duty Factor (%)	Scaled (W/Kg)
Body using			Tune		1g (Area	1g (Zoom		Factor	
Body using scenario)	Mode 802.11n	Frequency	Tune -up	Meas.	1g (Area Scan)	1g (Zoom	Drift	Factor (%)	
Body using scenario) Front Surface	Mode 802.11n 40M 802.11n	Frequency 54/5270	Tune -up 12.00	Meas.	1g (Area Scan) 0.305	1g (Zoom	Drift -0.05	Factor (%) 96.1	

For head using scenario:

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11n 40M	12	15.85	0.392	١	Yes
802.11a	11	12.59	1	0.311	No
802.11n 20M	11	12.59	1	0.311	No
802.11ac 20M	11	12.59	١	0.311	No
802.11ac 40M	12	15.85	1	0.392	No
802.11ac 80M	11	12.59	/	0.311	No

For body using scenario:

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11n 40M	12	15.85	0.573	١	Yes
802.11a	11	12.59	١	0.455	No
802.11n 20M	11	12.59	1	0.455	No
802.11ac 20M	11	12.59	١	0.455	No
802.11ac 40M	12	15.85	1	0.573	No
802.11ac 80M	11	12.59	١	0.455	No

Note:

1) Per KDB 248227D01, as the same maximum output power is specified for U-NII-1 and U-NII-2A bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. As the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration.

2) The 802.11n 40M mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. as the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required.

Test Positon		<u>G U-NII-2C.</u>	Power (dBm)		SAR Value				
(Body 5mm- Head using scenario)	Test Mode	Channel/ Frequency	Tune- up	Meas.	1g (Area Scan)	1g (Zoom Scan)	Power Drift	Duty Factor (%)	Scaled (W/Kg)
Front Surface	802.11n 40M	126/5630	12.00	11.95	0.250	١	0.13	96.1	١
Back Surface	802.11n 40M	126/5630	12.00	11.95	0.274	١	0.01	96.1	١
Top Edge	802.11n 40M	126/5630	12.00	11.95	0.407	0.403	0.04	96.1	0.424
Right Edge	802.11n 40M	126/5630	12.00	11.95	0.579	0.628	0.19	96.1	0.661
Test Positon			Power	(dBm)		Value		Duty	
(Body 0mm- Body using scenario)	Test Mode	Channel/ Frequency	Tune- up	Meas.	1g (Area Scan)	1g (Zoom Scan)	Power Drift	Factor (%)	Scaled (W/Kg)
Front Surface	802.11n 40M	126/5630	12.00	11.95	0.502	١	0.13	96.1	١
Back Surface	802.11n 40M	126/5630	12.00	11.95	0.540	0.587	0.02	96.1	0.618
Top Edge	802.11n 40M	126/5630	12.00	11.95	0.788	0.924	0.14	96.1	0.973
Right Edge	802.11n 40M	126/5630	12.00	11.95	1.190	1.320	0.16	96.1	1.389
Right Edge	802.11n 40M	142/5710	12.00	11.87	0.959	1.090	0.17	96.1	1.169
Top Edge	802.11n 40M	142/5710	12.00	11.87	0.769	0.900	0.00	96.1	0.965
Right Edge- Repeated	802.11n 40M	126/5630	12.00	11.95	1.230	1.320	0.16	96.1	1.389
		Su	bsequent	test confi	guration				
Front Surface	802.11ac 40M	110/5550	12.00	11.93	0.404	١	0.19	96.1	١
Back Surface	802.11ac 40M	110/5550	12.00	11.93	0.447	0.458	0.13	96.1	0.484
Top Edge	802.11ac 40M	110/5550	12.00	11.93	0.687	0.767	-0.09	96.1	0.811
Right Edge	802.11ac 40M	110/5550	12.00	11.93	0.995	1.090	0.18	96.1	1.153
Top Edge	802.11ac 40M	134/5670	12.00	11.92	0.678	0.751	-0.04	96.1	0.796
Right Edge	802.11ac 40M	134/5670	12.00	11.92	0.946	1.070	0.04	96.1	1.134

Note:

1. For body using scenario, the ratio of the repeated SAR to original SAR is 1.320 / 1.320 = 100%, the deviation is within 20%, so only one repeated measurement is required.

For head using scenario:

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11n 40M	12	15.85	0.661	١	Yes
802.11a	11	12.59	1	0.525	No
802.11n 20M	11	12.59	1	0.525	No
802.11ac 20M	11	12.59	١	0.525	No
802.11ac 40M	12	15.85	1	0.661	No
802.11ac 80M	11	12.59	1	0.525	No

For body using scenario:

Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11n 40M	12	15.85	1.389	١	Yes
802.11a	11	12.59	1	1.103	No
802.11n 20M	11	12.59	1	1.103	No
802.11ac 20M	11	12.59	١	1.103	No
802.11ac 40M	12	15.85	1	1.389	Yes
802.11ac 80M	11	12.59	Ι	1.103	No

Note:

The 802.11n 40M mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. as the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR of 802.11ac 40M is > 1.2 W/kg at body using scenario, SAR test for the 802.11ac 40M is required for body using scenario. SAR test for the other 802.11 modes are not required.

Test Positon			Power (dBm)		SAR Value			Duty	
(Body 5mm- Head using scenario)	Test Mode	Channel/ Frequency	Tune -up	Meas.	1g (Area Scan)	1g (Zoom Scan)	Power Drift	Factor (%)	Scaled (W/Kg)
Front Surface	802.11n 40M	151/5755	12.00	11.93	0.242	١	0.03	96.1	١
Back Surface	802.11n 40M	151/5755	12.00	11.93	0.419	١	0.12	96.1	١
Top Edge	802.11n 40M	151/5755	12.00	11.93	0.434	0.223	0.02	96.1	0.236
Right Edge	802.11n 40M	151/5755	12.00	11.93	0.718	0.844	0.11	96.1	0.893
Right Edge	802.11n 40M	159/5795	12.00	11.69	0.487	0.592	0.10	96.1	0.662
Right Edge- Repeated	802.11n 40M	151/5755	12.00	11.93	0.652	0.711	-0.15	96.1	0.752
Test Positon			Power (dBm)		SAR Value			Duty	
(Body 0mm- Body using scenario)	Test Mode	Channel/ Frequency	Tune -up	Meas.	1g (Area Scan)	1g (Zoom Scan)	Power Drift	Factor (%)	Scaled (W/Kg)
Front Surface	802.11n 40M	151/5755	12.00	11.93	0.557	١	-0.11	96.1	١
Back Surface	802.11n 40M	151/5755	12.00	11.93	0.669	0.749	0.04	96.1	0.792
Top Edge	802.11n 40M	151/5755	12.00	11.93	0.766	0.873	0.17	96.1	0.923
Right Edge	802.11n 40M	151/5755	12.00	11.93	1.010	1.130	0.12	96.1	1.195
Right Edge	802.11n 40M	159/5795	12.00	11.69	0.804	0.907	0.18	96.1	1.014
Top Edge	802.11n 40M	159/5795	12.00	11.69	0.526	0.640	0.15	96.1	0.715

SAR test results of WiFi 5G U-NII-3.

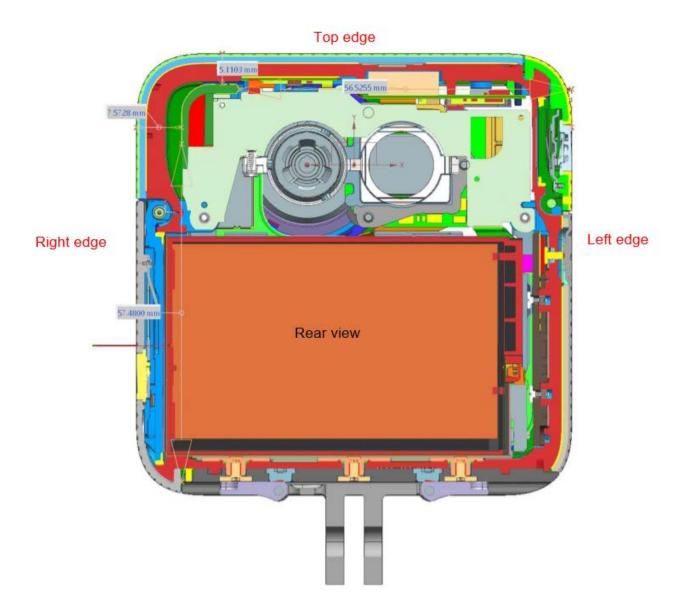
Note:

- 1. For Head using scenario, the ratio of the repeated SAR to original SAR is 0.711 / 0.844 = 84.24%, the deviation is within 20%, so only one repeated measurement is required.
- 2. For body using scenario, the ratio of the repeated SAR to original SAR is 1.010 / 1.130 = 89.38%, the deviation is with 20%, so only one repeated measurement is required.

For head using scenario:

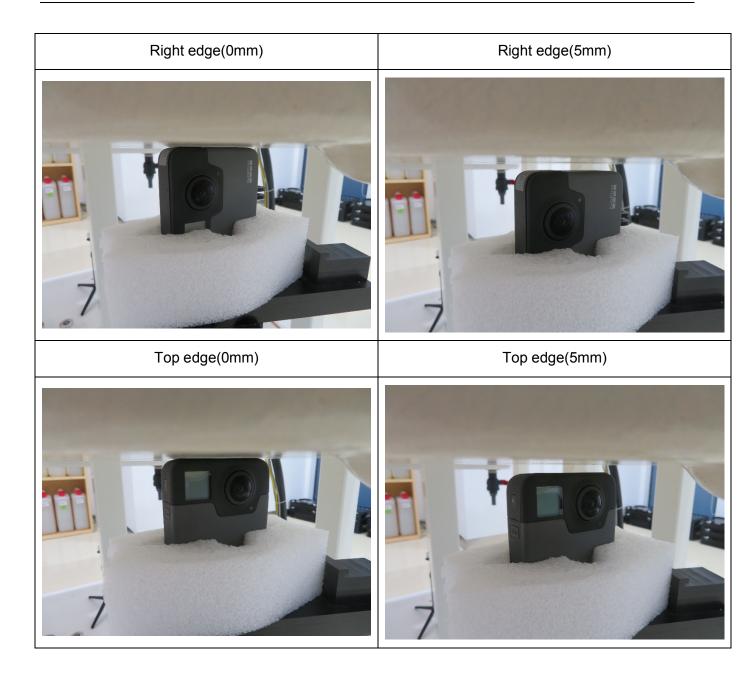
Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11n 40M	12	15.85	0.893	١	Yes
802.11a	11	12.59	1	0.709	No
802.11n 20M	11	12.59	1	0.709	No
802.11ac 20M	11	12.59	١	0.709	No
802.11ac 40M	12	15.85	1	0.893	No
802.11ac 80M	11	12.59	1	0.709	No

For body using scenario:


Mode	Tune-up (dBm)	Tune-up (mW)	Highest Reported SAR (W/Kg)	Adjusted SAR (W/Kg)	SAR test (Yes/No)
802.11n 40M	12	15.85	1.195	١	Yes
802.11a	11	12.59	1	0.949	No
802.11n 20M	11	12.59	1	0.949	No
802.11ac 20M	11	12.59	١	0.949	No
802.11ac 40M	12	15.85	1	1.195	No
802.11ac 80M	11	12.59	Ι	0.949	No

Note:

The 802.11n 40M mode is selected as Initial Test Configuration for SAR test according to the specified maximum output power. as the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required.


2. Simultaneous Transmission SAR Analysis

The antenna diagram inside the device is showed as below, because there is only one antenna, so simultaneous transmission is not exist.

Appendix A _ Photo

Test position				
Front surface(0mm)	Front surface(5mm)			
Back surface(0mm)	Back surface(5mm)			

Appendix B _ System Check Plots

System Performance Check-2450MHz-Head

System Performance Check-2450MHz-Body

System Performance Check-D5GHz-5250MHz-Head

System Performance Check-D5GHz-5250MHz-Body

System Performance Check-D5GHz-5600MHz-Head

System Performance Check-D5GHz-5600MHz-Body

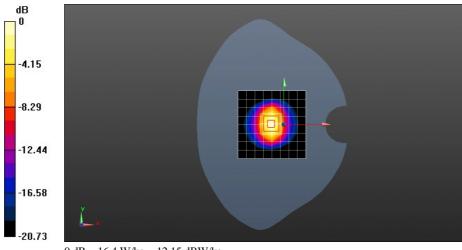
System Performance Check-D5GHz-5750MHz-Head

System Performance Check-D5GHz-5750MHz-Body

SystemPerformanceCheck-2450MHz-Head

Communication System: UID 0, CW (0); Frequency: 2450 MHz Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.799 \text{ S/m}$; $\varepsilon_r = 39.896$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 SN7383; ConvF(7.45, 7.45, 7.45); Calibrated: 2016/12/27;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: SAM v5.0; Type: QD000P40CD; Serial: TP:1805
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Configuration/D2450V2/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 16.2 W/kg

Configuration/D2450V2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 89.57 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 24.5 W/kg SAR(1 g) = 12.4 W/kg; SAR(10 g) = 5.92 W/kg

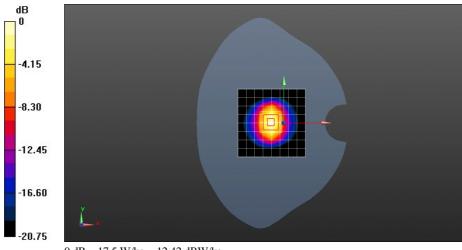
Maximum value of SAR (measured) = 16.4 W/kg

0 dB = 16.4 W/kg = 12.15 dBW/kg

SystemPerformanceCheck-2450MHz-Bdoy

Communication System: UID 0, CW (0); Frequency: 2450 MHz Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.953 \text{ S/m}$; $\varepsilon_r = 51.765$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 SN7383; ConvF(7.63, 7.63, 7.63); Calibrated: 2016/12/27;
- Sensor-Surface: 3mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: SAM v5.0; Type: QD000P40CD; Serial: TP:1805
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

Configuration/D2450V2/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 17.2 W/kg

Configuration/D2450V2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.50 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.29 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

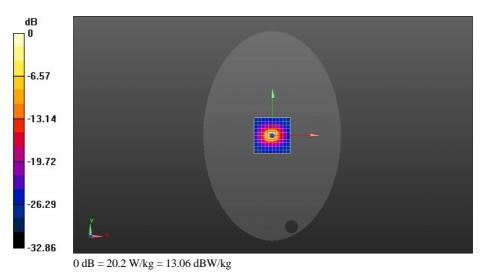
0 dB = 17.5 W/kg = 12.42 dBW/kg

SystemPerformanceCheck-D5GHz_5250MHz-Head

Communication System: UID 0, CW (0); Frequency: 5250 MHz Medium parameters used (interpolated): f = 5250 MHz; σ = 4.56 S/m; ϵ_r = 34.632; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7383; ConvF(5.2, 5.2, 5.2); Calibrated: 2016/12/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 19.8 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.68 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.66 W/kg; SAR(10 g) = 2.53 W/kg

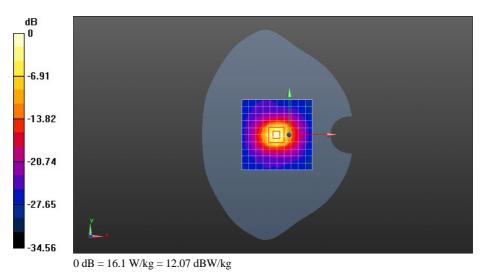
Maximum value of SAR (measured) = 20.2 W/kg

SystemPerformanceCheck-D5GHz_5250MHz-Bdoy

Communication System: UID 0, CW (0); Frequency: 5250 MHz Medium parameters used (interpolated): f = 5250 MHz; σ = 5.279 S/m; ϵ_r = 48.562; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:

- Probe: EX3DV4 SN7383; ConvF(4.63, 4.63, 4.63); Calibrated: 2016/12/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: SAM v5.0; Type: QD000P40CD; Serial: TP:1805
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5250 MHz/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 17.4 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5250 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

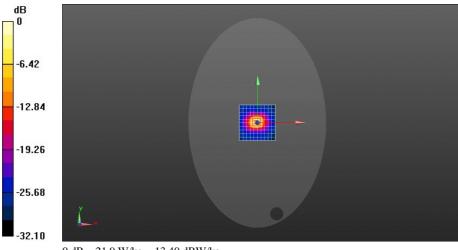
Reference Value = 66.03 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 7.15 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 16.1 W/kg

SystemPerformanceCheck-D5GHz_5600MHz-Head

Communication System: UID 0, CW (0); Frequency: 5600 MHz Medium parameters used: f = 5600 MHz; $\sigma = 4.893 \text{ S/m}$; $\varepsilon_r = 35.343$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 SN7383; ConvF(4.69, 4.69, 4.69); Calibrated: 2016/12/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 20.2 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

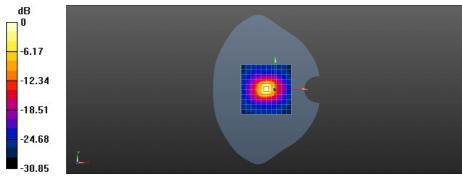
Reference Value = 70.23 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 37.1 W/kgSAR(1 g) = 9.08 W/kg; SAR(10 g) = 2.63 W/kg Maximum value of SAR (measured) = 21.9 W/kg

0 dB = 21.9 W/kg = 13.40 dBW/kg

SystemPerformanceCheck-D5GHz_5600MHz-Bdoy

Communication System: UID 0, CW (0); Frequency: 5600 MHz Medium parameters used: f = 5600 MHz; σ = 5.883 S/m; ϵ_r = 48.075; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 SN7383; ConvF(3.99, 3.99, 3.99); Calibrated: 2016/12/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: SAM v5.0; Type: QD000P40CD; Serial: TP:1805
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 20.0 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

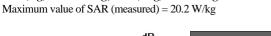
Reference Value = 67.31 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 31.1 W/kg SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 18.4 W/kg

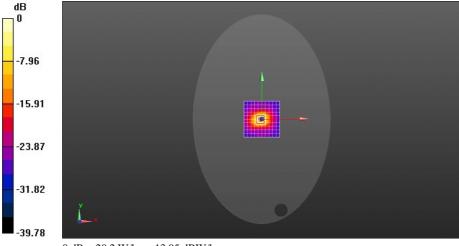
0 dB = 18.4 W/kg = 12.64 dBW/kg

SystemPerformanceCheck-D5GHz_5750MHz-Head

Communication System: UID 0, CW (0); Frequency: 5750 MHz Medium parameters used: f = 5750 MHz; σ = 5.006 S/m; ϵ_r = 35.317; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 SN7383; ConvF(4.9, 4.9, 4.9); Calibrated: 2016/12/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:xxxx
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 17.5 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW/Zoom Scan (4x4x1.4mm, graded),

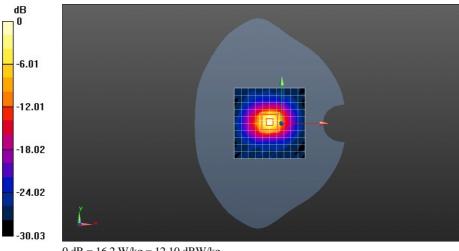
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.03 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 35.9 W/kg **SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.4 W/kg**

0 dB = 20.2 W/kg = 13.05 dBW/kg

SystemPerformanceCheck-D5GHz_5750MHz-Bdoy

Communication System: UID 0, CW (0); Frequency: 5750 MHz Medium parameters used: f = 5750 MHz; $\sigma = 6.002 \text{ S/m}$; $\varepsilon_r = 47.109$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY Configuration:


- Probe: EX3DV4 SN7383; ConvF(4.33, 4.33, 4.33); Calibrated: 2016/12/27;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0
- Electronics: DAE3 Sn427; Calibrated: 2016/12/9
- Phantom: SAM v5.0; Type: QD000P40CD; Serial: TP:1805
- DASY52 52.10.0(1442); SEMCAD X 14.6.10(7413)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 16.6 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.58 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 6.94 W/kg; SAR(10 g) = 1.98 W/kg Maximum value of SAR (measured) = 16.2 W/kg

0 dB = 16.2 W/kg = 12.10 dBW/kg

Appendix C _ Highest Test Plots

GoPro SBDC1 2.4G Wi-Fi 11CH right edge 5mm-Head using scenario

GoPro SBDC1 2.4G Wi-Fi 11CH right edge 0mm-Body using scenario

GoPro SBDC1 5G Wi-Fi 802.11n 40M 54CH right edge 5mm-Head using scenario

GoPro SBDC1 5G Wi-Fi 802.11n 40M 54CH right edge 0mm-Body using scenario

GoPro SBDC1 5G Wi-Fi 802.11n 40M 126CH right edge 5mm-Head using scenario

GoPro SBDC1 5G Wi-Fi 802.11n 40M 126CH right edge 0mm-Body using scenario-repeated

GoPro SBDC1 5G Wi-Fi 802.11n 40M 151CH right edge 5mm-Head using scenario

GoPro SBDC1 5G Wi-Fi 802.11n 40M 151CH right edge 0mm-Body using scenario

GoPro SBDC1 BT DH5 39CH right edge 5mm-Head using scenario

GoPro SBDC1 BT DH5 39CH right edge 0mm-Body using scenario