TABLE OF CONTENTS

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

TEST REPORT CONTAINING:

PAGE	1-4TEST EQUIPMENT LIST
PAGE	5TEST PROCEDURE
PAGE	6-7RADIATION INTERFERENCE TEST DATA
PAGE	8OCCUPIED BANDWIDTH
PAGE	9 OCCUPIED BANDWIDTH PLOT
PAGE	10POWER LINE CONDUCTED
PAGE	11-12POWER LINE CONDUCTED PLOTS

EXHIBIT ATTACHMENTS:

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX
REPORT #: R\REC\324UT3\324UT3TestReport.doc

TABLE OF CONTENTS

EMC Equipment List

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
3-Meter OATS	TEI	N/A	N/A	Listed 1/13/03	1/13/06
3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
Receiver, Beige Tower Spectrum Analyzer	НР	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
RF Preselector	НР	85685A	3221A01400	CAL 8/31/01	8/31/03
Quasi-Peak Adapter	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
Receiver, Blue Tower Spectrum Analyzer RF Preselector	HP HP	8568B 85685A	2928A04729 2848A18049 2926A00983	CAL 4/15/03 CAL	4/15/05 4/15/05
Quasi-Peak Adapter	НР	85650A	2811A01279	4/15/03 CAL 4/15/03	4/15/05
Receiver, Silver/Grey Tower Spectrum Analyzer	НР	8566B Opt 462	3552A22064 3638A08608	CAL 10/14/02	10/14/04
RF Preselector	НР	85685A	2620A00294	CAL 10/14/02	10/14/04
Quasi-Peak Adapter	НР	85650A	3303A01844	CAL 10/14/02	10/14/04
Preamplifier	НР	8449B	3008A01075	CHAR 1/28/02	1/28/04
Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
Biconnical Antenna	Eaton	94455-1	1057	CAL 3/18/03	3/18/05
BiconiLog Antenna	EMCO	3143	9409-1043		
Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CAL 3/4/03	3/4/05
Log-Periodic Antenna	Eaton	96005	1243	CAL 5/8/03	5/8/05
Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 1 of 12

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CAL 9/26/02	9/26/05
Double-Ridged Horn Antenna	Electro-Metrics	RGA-180	2319	CAL 2/17/03	2/17/05
Horn Antenna *(at 3 meters)	Electro-Metrics	EM-6961	6246	CAL 3/31/03	3/31/05
Horn Antenna *(at 10 meters)	Electro-Metrics	EM-6961	6246	CAL 6/4/03	6/4/05
Horn Antenna	ATM	19-443-6R	None	No Cal Required	
Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
Line Impedance Stabilization	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03
Line Impedance Stabilization	Electro-Metrics	EM-7820	2682	CAL 3/12/03	3/12/05
Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CHAR 12/12/01	12/12/03
Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
System One	Audio Precision	System One	SYS1-45868	CHAR 4/25/02	4/25/04
Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
Digital Multimeter	НР	E2377A	2927J05849	CHAR 1/8/02	1/8/04
Multimeter	Fluke	FLUKE-77-3	79510405	CHAR 9/26/01	9/26/03
Peak Power Meter	НР	8900C	2131A00545	CHAR 1/26/01	1/26/03
Power Meter	НР	432A	1141A07655	CAL 4/15/03	4/15/05
Power Meter And Sensor	Bird	4421-107 4022	0166 0218	CAL 4/16/03	4/16/05
Power Sensor	НР	478A	72129	CAL 4/15/03	4/15/05

FCC ID: CLVAW771TX
REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 2 of 12

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
	Thermometer	Extech	4028	14871-2	CAL 3/7/03	3/7/05
	Hygro-Thermometer	Extech	445703	0602	CAL 10/4/02	10/4/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Frequency Counter	HP	5385A	2730A03025	CAL 3/7/03	3/7/05
	Power Sensor	Agilent Technologies	84811A	2551A02705	CHAR 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 2/15/02	2/15/04
	Sweep Generator	Wiltron	6648	101009	CAL 4/15/03	4/15/05
	Sweep Generator	Wiltron	6669M	007005	CAL 3/3/03	3/3/05
	Modulation Analyzer	НР	8901A	3435A06868	CAL 9/5/01	9/5/03
	Modulation Meter	Boonton	8220	10901AB	CAL 4/15/03	4/15/05
	Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03
	BandReject Filter	Lorch Microwave	5BR4-2400/ 60-N	Z1	CHAR 3/2/01	3/2/03
	BandReject Filter	Lorch Microwave	6BR6-2442/ 300-N	Z1	CHAR 3/2/01	3/2/03
	BandReject Filter	Lorch Microwave	5BR4-10525/ 900-S	Z1	CHAR 3/2/01	3/2/03
	High Pass Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
	High Pass Filter	Microlab	HA-20N		CHAR 2/7/03	2/7/05
	Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
П	Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
П	Frequency Counter	HP	5385A	3242A07460	CAL 3/7/03	3/7/05
	Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 3 of 12

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
Amplifier	НР	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

FCC ID: CLVAW771TX
REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 4 of 12

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC. The UUT was transmitting a test signal during the testing.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz up to 1.0GHz and 1.0MHz with a video BW of 3.0MHz above 1.0GHz. The ambient temperature of the UUT was 74.3°F with a humidity of 69%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-1992 using a 50uH LISN. Both lines were observed. The bandwidth of the spectrum analyzer was 10kHz with an appropriate sweep speed. The ambient temperature of the UUT was 74.3°F with a humidity of 69%.

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table (1.5m side). The table used for radiated measurements is capable of continuous rotation.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

The situation was similar for the conducted measurement except that the table did not rotate. The EUT was setup as described in ANSIC63.4-1992 with the EUT 40 cm from the vertical ground wall.

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 5 of 12

RULES PART NUMBER: 15.249, 15.209

REQUIREMENTS:

FIELD STRENGTH FIELD STRENGTH \$15.209

of Harmonics 30 - 88 MHz 40 dBuV/m @3M of Fundamental:

88 -216 MHz 43.5 902-928 MHZ

2.4-2.4835 GHz 216 -960 MHz 46

94 dBuV/m @3m 54 dBuV/m @3m ABOVE 960 MHz 54dBuV/m

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 50 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

TEST RESULTS: This unit DOES meet the FCC requirements.

TEST DATA: WITH HEADSET OPERATING

Meter	Ant.	Coax		Field	
Reading	Polarity	Loss	Correction	Strength	Margin
dBuv		đВ	Factor	dBuv/m	đВ
			đВ		
59.4	V	3.88	24.14	87.42	6.58
60.1	H	3.88	24.14	88.12	5.88
21.5	V	2.82	28.74	53.06	0.94
22.2	V	2.82	28.74	53.76	0.24
10.0	V	3.59	31.29	44.88	9.12
10.1	H	3.59	31.29	44.98	9.02
9.5	V	5.60	34.10	49.20	4.80
9.2	V	5.60	34.10	48.90	5.10
57.7	H	3.92	24.15	85.77	8.23
57.7	V	3.92	24.15	85.77	8.23
12.6	V	2.82	28.72	44.14	9.86
8.8	H	2.82	28.72	40.34	13.66
0.3	v	3.59	31.28	35.17	18.83
	Reading dBuv 59.4 60.1 21.5 22.2 10.0 10.1 9.5 9.2 57.7 57.7 12.6 8.8	Reading dBuv 59.4 V 60.1 H 21.5 V 22.2 V 10.0 V 10.1 H 9.5 V 9.2 V 57.7 H 57.7 V 12.6 V 8.8 H	Reading dBuv dB 59.4 V 3.88 60.1 H 3.88 21.5 V 2.82 22.2 V 2.82 10.0 V 3.59 10.1 H 3.59 9.5 V 5.60 9.2 V 5.60 57.7 H 3.92 57.7 V 3.92 12.6 V 2.82 8.8 H 2.82	Reading dBuv Polarity dB Loss dB Correction dB 59.4 V 3.88 24.14 60.1 H 3.88 24.14 21.5 V 2.82 28.74 22.2 V 2.82 28.74 10.0 V 3.59 31.29 10.1 H 3.59 31.29 9.5 V 5.60 34.10 9.2 V 5.60 34.10 57.7 H 3.92 24.15 57.7 V 3.92 24.15 12.6 V 2.82 28.72 8.8 H 2.82 28.72	Reading dBuv Polarity dB Loss factor dBuv/m dB Correction dBuv/m dB Strength dBuv/m dB 59.4 V 3.88 24.14 87.42 60.1 H 3.88 24.14 88.12 21.5 V 2.82 28.74 53.06 22.2 V 2.82 28.74 53.76 10.0 V 3.59 31.29 44.88 10.1 H 3.59 31.29 44.98 9.5 V 5.60 34.10 49.20 9.2 V 5.60 34.10 48.90 57.7 H 3.92 24.15 85.77 57.7 V 3.92 24.15 85.77 12.6 V 2.82 28.72 44.14 8.8 H 2.82 28.72 40.34

WITHOUT HEADSET OPERATING

Emission	Meter	Ant.	Coax		Field	
Frequency	Reading	Polarity	Loss	Correction	Strength	Margin
MHz	dBuv		đВ	Factor	dBuv/m	đВ
				dВ		
914.30	59.6	V	3.88	24.14	87.42	6.58
914.30	63.9	H	3.88	24.14	91.92	2.08
1,828.00	8.8	H	2.82	28.74	40.36	13.64
1,828.00	13.7	v	3.88	24.17	41.75	12.25
2,741.90	2.1	V	3.59	31.29	36.98	17.02
2,741.90	0.2	H	3.59	31.29	35.08	18.92

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 6 of 12

FCC ID: CLVAW771TX

NAME OF TEST: RADIATION INTERFERENCE

TEST PROCEDURE: ANSI STANDARD C63.4-1992 using a Hewlett Packard Model 8566B spectrum analyzer, a Hewlett Packard Model 85685A Preselector, a Hewlett Packard Model 85650A Quasi-Peak adapter, and an appropriate antenna. The bandwidth of spectrum analyzer was 100 kHz with an appropriate sweep speed and 1 MHz for frequencies above 1 GHz. When an emission was found, the table was rotated to produce the maximum signal strength. The antenna was placed in both the horizontal and vertical planes and the worse case emissions were reported. The spectrum was searched to at least the tenth (10) harmonic of the fundamental.

PERFORMED BY: JOSEPH SCOGLIO DATE: MARCH 6, 2003

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 7 of 12

FCC ID: CLVAW771TX

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.249

REQUIREMENTS: The field strength of any emissions appearing outside the band

edges and up to 10 kHz above and below the band edges shall be attenuated at least 50 dB below the level of the carrier or to

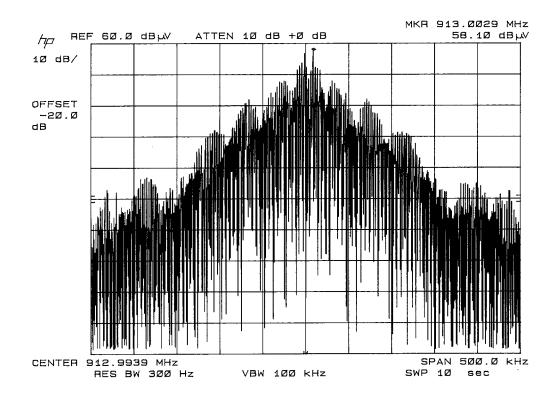
the general limits of 15.249.

THE PLOT ON THE NEXT PAGE REPRESENTS THE EMISSIONS TAKEN FOR THIS DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the attached plot was printed. The vertical scale is set to -10 dBm per division. The horizontal scale is set to 50 kHz per division.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: JOSEPH SCOGLIO DATE: MARCH 6, 2003


APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 8 of 12

OCCUPIED BANDWIDTH PLOT

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 9 of 12

FCC ID: CLVAW771TX

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

15.107 RULES PART NO.:

REQUIREMENTS:

QUASI-PEAK AVERAGE.15 - 0.5 MHz 66-56 dBuV 56-46 dBuV 0.5 - 5.056 46 5.0 - 30.60 50

TEST PROCEDURE: ANSI STANDARD C63.4-1992. The spectrum was scanned from

.15 to 30 MHz.

TEST DATA:

THE HIGHEST EMISSION READ FOR LINE 1 WAS 3.27 uV @ 150 kHz.

THE HIGHEST EMISSION READ FOR LINE 2 WAS 2.02 uV @ 210 kHz.

THE PLOTS ON THE NEXT PAGE REPRESENT THE EMISSIONS READ FOR POWERLINE CONDUCTED FOR THIS DEVICE.

TEST RESULTS: Both lines were observed. The measurements indicate that the unit DOES appear to meet the FCC requirements for this class of equipment.

PERFORMED BY: JOSEPH SCOGLIO **DATE:** MARCH 6, 2003

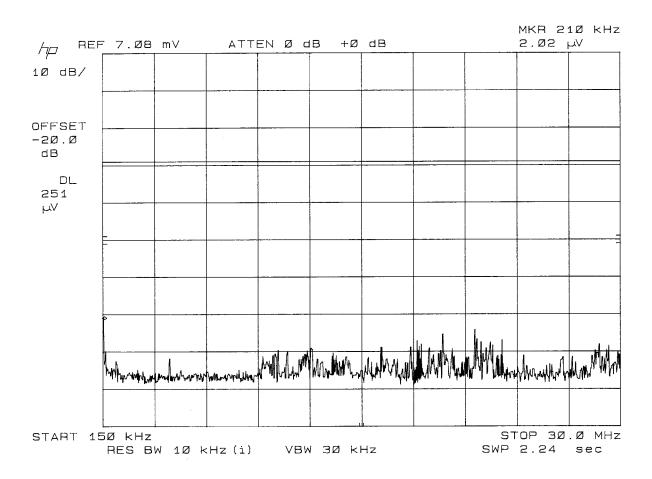
APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 10 of 12

POWER LINE CONDUCTED PLOT PEAK - LINE 1


APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 11 of 12

POWER LINE CONDUCTED PLOT PEAK - LINE 2

APPLICANT: RECOTON CORPORATION

FCC ID: CLVAW771TX

REPORT #: R\REC\324UT3\324UT3TestReport.doc

Page 12 of 12