No. I14N01258-SAR Page 1 of 113

SAR TEST REPORT

No. I14N01258-SAR

For

MFOURTEL MEXICO S.A. DE C.V.

GSM/GPRS WCDMA Mobile Telephone

M4 SS4041

With

Hardware Version: XL-V2.0

Software Version: M4_SS4041_S10_Ver200

FCC ID: CLNSS4041

Issued Date: 2014-11-14

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of TMC Beijing.

Test Laboratory:

TMC Beijing, Telecommunication Metrology Center of MIIT

No. 52, Huayuan Bei Road, Haidian District, Beijing, P. R. China 100191.

Tel:+86(0)10-62304633-2079, Fax:+86(0)10-62304633 Email:welcome@emcite.com. www.emcite.com

©Copyright. All rights reserved by TMC Beijing.

Revision Version

Report Number	Revision	Date	Memo
I14N01258-SAR	00	2014-11-14	Initial creation of test report

TABLE OF CONTENT

1 TEST LABORATORY	6
1.1 TESTING LOCATION	6
1.2 TESTING ENVIRONMENT	6
1.3 Project Data	6
1.4 Signature	6
2 CLIENT INFORMATION	7
2.1 Applicant Information	7
2.2 MANUFACTURER INFORMATION	7
3 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE)	8
3.1 About EUT	
3.2 INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST	
3.3 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST	
4 STATEMENT OF COMPLIANCE	9
5 TEST METHODOLOGY	10
5.1 Applicable Limit Regulations	
.2 APPLICABLE MEASUREMENT STANDARDS	
6 SPECIFIC ABSORPTION RATE (SAR)	11
6.1 Introduction	
6.2 SAR DEFINITION	
7 TISSUE SIMULATING LIQUIDS	12
7.1 TARGETS FOR TISSUE SIMULATING LIQUID	
7.2 DIELECTRIC PERFORMANCE	
8 SYSTEM VERIFICATION	14
8.1 System Setup	
8.2 System Verification	
8.3 JUSTIFICATION FOR EXTENDED SAR DIPOLE CALIBRATIONS	
9 MEASUREMENT PROCEDURES	17
9.1 Tests to be performed	
9.2 GENERAL MEASUREMENT PROCEDURE	
9.3 WCDMA MEASUREMENT PROCEDURES FOR SAR	
9.4 BLUETOOTH & WI-FI MEASUREMENT PROCEDURES FOR SAR	
9.5 NEAR FIELD COMMUNICATION	
9.6 Power Drift	
10 AREA SCAN BASED 1-G SAR	
10.1 REQUIREMENT OF KDB	
10.2 FAST SAR ALGORITHMS	

11 CONDUCTED OUTPUT POWER	23
11.1 MANUFACTURING TOLERANCE	
11.2 GSM MEASUREMENT RESULT	
12.2 WCDMA MEASUREMENT RESULT	
11.4 WI-FI AND BT MEASUREMENT RESULT	
12 SIMULTANEOUS TX SAR CONSIDERATIONS	27
12.1 Introduction	
12.2 TRANSMIT ANTENNA SEPARATION DISTANCES	
12.3 STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
13 EVALUATION OF SIMULTANEOUS	29
14 SAR TEST RESULT	30
14.1 SAR results for Fast SAR	
14.2 SAR results for Standard procedure	
11 CONDUCTED OUTPUT POWER	
16 MEASUREMENT UNCERTAINTY	39
16.1 MEASUREMENT UNCERTAINTY FOR NORMAL SAR TESTS (30	0MHz~3GHz)
17 MAIN TEST INSTRUMENTS	41
ANNEX A GRAPH RESULTS	42
ANNEX B SYSTEM VERIFICATION RESULTS	62
ANNEX C SAR MEASUREMENT SETUP	69
C.1 Measurement Set-up	
C.2 DASY4 OR DASY5 E-FIELD PROBE SYSTEM	
C.3 E-FIELD PROBE CALIBRATION	
ANNEX D POSITION OF THE WIRELESS DEVICE IN	RELATION TO THE PHANTOM75
ANNEX F SYSTEM VALIDATION	79

ANNEX G	PROBE CALIBRATION CERTIFICATE	80
ANNEX H	DIPOLE CALIBRATION CERTIFICATE	91

1 Test Laboratory

1.1 Testing Location

Company Name:	TMC Shenzhen, Telecommunication Metrology Center of MIIT		
Address:	No. 12building, Shangsha Innovation and Technology Park, Futian		
	District, Shenzhen, P. R. China		
Postal Code:	518048		
Telephone:	+86-755-33322000		
Fax:	+86-755-33322001		

1.2 Testing Environment

Temperature:	18°C~25 °C,
Relative humidity:	30%~ 70%
Ground system resistance:	< 0.5 Ω
Ambient noise & Reflection:	< 0.012 W/kg

1.3 Project Data

Project Leader:	Zhang Bojun	
Test Engineer:	Cao Junfei	
Testing Start Date:	November 3 th , 2014	
Testing End Date:	November 12 th , 2014	

1.4 Signature

tilk

Cao Junfei (Prepared this test report)

Zhang Bojun (Reviewed this test report)

Lu Minniu Director of the laboratory (Approved this test report)

2 Client Information

2.1 Applicant Information

Company Name:	MFOURTEL MEXICO S.A. DE C.V.		
Address /Post:	Av. Ejército Nacional 436 Piso 3 Chapultepec Morales Miguel Hidalgo		
	Distrito Federal 11570		
City:	CHAPULTEPEC MORALES		
Postal Code:	11570		
Country:	Mexico		
Contact:	Lixin		
Email:	xin.li@ck-telecom.com		
Telephone:	0755-26739100 ext.8515		
Fax:	0755-26739600		

2.2 Manufacturer Information

Company Name:	CK TELECOM LTD.			
Address /Post:	Technology Road.High-Tech Development Zone. Heyuan,			
	Guangdong,P.R.China			
City:	Heyuan			
Postal Code:	517000			
Country:	P.R.China			
Contact:	Xin Li			
Email:	xin.li@ck-telecom.com			
Telephone:	0755-26739100 ext.8515			
Fax:	0755-26739600			

3 Equipment Under Test (EUT) and Ancillary Equipment (AE)

3.1 About EUT			
Description:	GSM/GPRS WCDMA Mobile Telephone		
Model name:	M4 SS4041		
Marketing name:	M4		
Operating mode(s):	GSM 850/1900, WCDMA 850/1900, WiFi, BT		
	824.2 – 848.8 MHz (GSM 850)		
	1850.2 – 1909.8 MHz (GSM 1900)		
Tested Tx Frequency:	826.4-846.6MHz(WCDMA 850)		
	1852.4-1908MHz(WCDMA 1900)		
Test Modulation	(GSM)GMSK		
GPRS class	12		
GPRS capability Class:	A		
EGPRS Multislot Class: 12, Downlink only			
	GSM850: tested with power level 5		
Devuer elecer	GSM1900: tested with power level 0		
Power class:	WCDMA: class 3, tested with power control all up		
	bits		
Test device Production information:	Production unit		
Device type:	Portable device		
Antenna type:	Integrated antenna		
Accessories/Body-worn configurations:	/		
Hotspot mode:	/		
Form factor:	13.7cm × 6.8cm		

3.2 Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
EUT1	IMEI1: 355616029869090	XL-V2.0	M4_SS4041_S10_Ver200

*EUT ID: is used to identify the test sample in the lab internally.

3.3 Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
AE1	Battery	M2150A	GY4114092300001	GuangYu

*AE ID: is used to identify the test sample in the lab internally.

4 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for MFOURTEL MEXICO S.A. DE C.V. WCDMA digital mobile phone PHILIPS I908 are as follows:

Exposure Configuration	Technology Band	Highest Reported SAR	Equipment Class
Exposure conliguration	rechnology Danu	1g (W/Kg)	
	EGSM 850	0.563	
Llood	PCS 1900	0.445	
Head (Separation Distance 0mm)	WCDMA 850	0.438	PCE
(Separation Distance offin)	WCDMA 1900	0.428	
	WiFi 2.4GHz	0.586	
	EGSM 850	0.713	
Redu worn	PCS 1900	1.229	
Body-worn (Separation Distance 10mm)	WCDMA 850	0.545	PCE
	WCDMA 1900	1.165	
	WiFi 2.4GHz	0.155	

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1999.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of **Table 4.1**, and the values are: **1.229** W/kg (1g).

Table 4.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna (W/Kg)	WiFi(W/Kg)	Sum(W/Kg)	
Highest reported SAR value for Head	Right hand, Touch cheek	0.563	0.586	1.149	
Highest reported SAR value for Body	Rear	1.229	0.155	1.384	

Table 4.9. The sum of reported OAR values for main antenna and Didetooth										
	Position	Main antenna (W/Kg)	BT*(W/Kg)	Sum(W/Kg)						
Highest reported SAR value for Head	Right hand, Touch cheek	0.563	0.40	0.963						
Highest reported SAR value for Body	Rear	1.229	0.20	1.429						

Table 4.3: The sum of reported SAR values for main antenna and Bluetooth

BT* - Estimated SAR for Bluetooth (see the table 13.2)

According to the above tables, the maximum sum of reported SAR values is **1.429 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 13.

5 TEST METHODOLOGY

5.1 Applicable Limit Regulations

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

.2 Applicable Measurement Standards

IEEE 1528–2013: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

KDB447498 D01: General RF Exposure Guidance v05r02: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D06: SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB248227 D01 Hotspot Mode SAR v02 r03: SAR Measurement Procedures for 802.11a/b/g transmitters.

KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r01: RF Exposure Compliance Reporting and Documentation Considerations

6 Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and *E* is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7 Tissue Simulating Liquids

7.1 Targets for tissue simulating liquid

Frequency	Liquid Type	Type Conductivity ± 5% Range		Permittivity	± 5% Range					
(MHz)		(σ)	± 5 /6 Mange	(3)	± 5 % Range					
835	Head	0.90	0.86~0.95	41.5	39.4~43.6					
835	Body	0.97	0.92~1.02	55.2	52.4~58.0					
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0					
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0					
2450	Head	1.80	1.71~1.89	39.2	37.3~41.1					
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3					
			100 2100		0010					

Table 7.1: Targets for tissue simulating liquid

7.2 Dielectric Performance

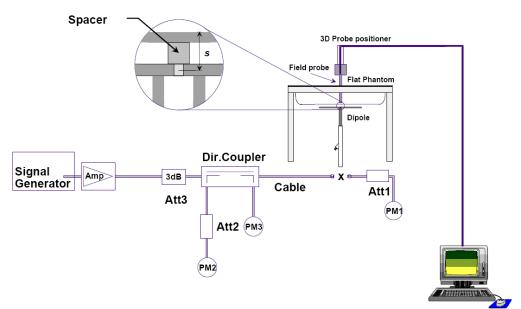
Table 7.2: Dielectric Performance of Tissue Simulating Liquid


Measurement Date	Tuno	Fraguanay	Permittivity	Drift	Conductivity	Drift
(yyyy-mm-dd)	Туре	Frequency	٤	(%)	σ (S/m)	(%)
2014-11-05	Head	835 MHz	41.648	0.36	0.909	1.00
2014-11-03	Body	835 MHz	55.564	0.66	0.989	1.96
2014-11-04	Head	1900 MHz	41.05	2.62	1.443	3.07
2014-11-12	Body	1900 MHz	52.68	-1.16	1.534	0.92
2014-11-12	Head	2450 MHz	39.35	0.38	1.798	-0.11
2014-11-11	Body	2450 MHz	51.643	-0.95	1.852	-0.05

Note: The liquid temperature is 22.0 °C.

Picture 7-1: Liquid depth in the Head Phantom (850 MHz)

Picture 7-1: Liquid depth in the Head Phantom (850 MHz)


Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz)

8 System verification

8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Measurement		Target val	ue (W/kg)	Measured v	value (W/kg)	Devi	ation					
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g					
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average					
2014-11-05	850 MHz	6.17	9.43	6.44	9.84	4.38%	4.35%					
2014-11-04	1900 MHz	21.1	40.6	20.84	39.4	-1.23%	-2.96%					
2014-11-12	2450 MHz	24.7	53.2	24.68	53.2	-0.08%	0.00%					

Table 8.1: System Verification of Head (1W)

Measurement		Target val	ue (W/kg)	Measured	value (W/kg)	Devia	ation					
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g					
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average					
2014-11-03	850 MHz	6.33	9.55	6.4	9.64	1.11%	0.94%					
2014-11-12	1900 MHz	21.4	40.4	21.6	40.8	0.93%	0.99%					
2014-11-11	2450 MHz	23.9	51.3	23.96	51.2	0.25%	-0.19%					

Table 8.2: System Verification of Body (1W)

8.3 Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< - 20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 865664 D01:

Dipole D850V2 SN: 4d057											
	Head Liquid										
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ							
10/24/2012	-29.5	/	52.1	/							
10/23/2013	-28.4	3.7	50.3	1.8							
Body Liquid											
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ							
10/24/2012	-26.2	/	48.1	/							
10/23/2013	-25.8	1.5	46.7	1.4Ω							
	Dipole D1900	/2 SN: 50	1088								
	Head I	Liquid									
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ							
10/17/2012	-29.3	-29.3 / 53.2		/							
10/16/2013	-28.2	3.7	51.5	1.7							
	Body I	_iquid									
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ							
10/17/2012	-29.1	/ 49.9		/							
10/16/2013	-28.6	1.7	48.5	1.3							
	Dipole D2450)V2 SN: 8	373								
	Head I	Liquid									
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ							
10/18/2012	-28.9	/	52.1	/							
10/17/2013	-27.8	3.8	50.3	1.8							
	Body I	_iquid									
Date of Measurement	Return Loss(dB)	Δ%	Impedance (Ω)	ΔΩ							
10/18/2012	-32.8	/	49.5	/							
10/17/2013	-32.1	2.1	48.1	1.4Ω							

9 Measurement Procedures

9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

Step 1: The tests described in 9.2 shall be performed at the channel that is closest to the centre of

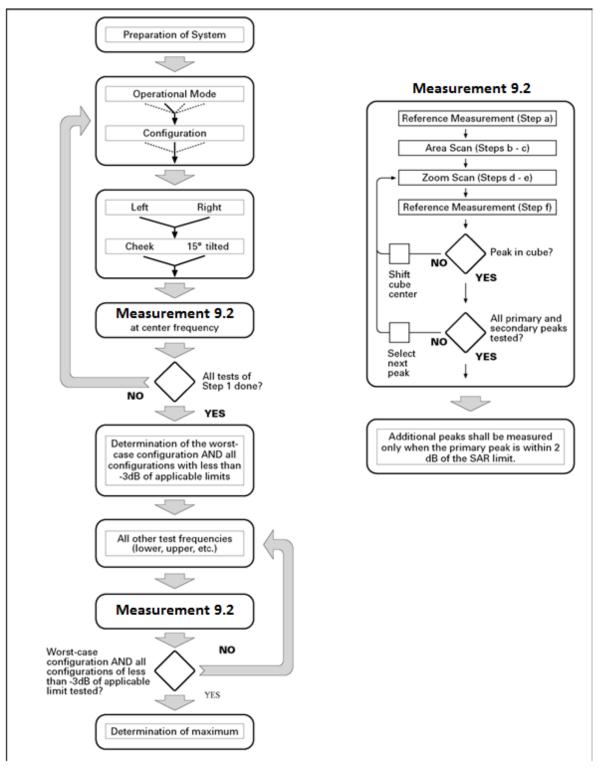
the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., N_c > 3), then all


frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

No. I14N01258-SAR Page 18 of 114

Picture 9.1 Block diagram of the tests to be performed

9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

			\leq 3 GHz	> 3 GHz		
Maximum distance from (geometric center of pro		-	5 ± 1 mm	$\frac{1}{2}\cdot\delta\cdot\ln(2)\pm0.5~mm$		
Maximum probe angle f normal at the measurem	-	-	30°±1°	20°±1°		
			$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
Maximum area scan spa	tial resoluti	on: Δx _{Area} , Δy _{Area}	When the x or y dimension of t measurement plane orientation, measurement resolution must b dimension of the test device wi point on the test device.	, is smaller than the above, the $e \le $ the corresponding x or y		
Maximum zoom scan sp	oatial resolu	tion: Δx_{Zoom} , Δy_{Zoom}	$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm 4 – 6 GHz: ≤ 4 mm		
	uniform g	nid: ∆z _{Zoom} (n)	$\begin{array}{c} 3 - 4 \text{ GHz:} \leq 4 \text{ m} \\ \leq 5 \text{ mm} & 4 - 5 \text{ GHz:} \leq 3 \text{ m} \\ 5 - 6 \text{ GHz:} \leq 2 \text{ m} \end{array}$			
Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Zoom}(1)$: between 1^{st} two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
surface	grid	$\Delta z_{Zoom}(n>1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$			
Minimum zoom scan volume	x, y, z	1	\geq 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		
Note: δ is the penetration 2011 for details.	n depth of a	plane-wave at normal inc	cidence to the tissue medium; see	draft standard IEEE P1528-		

* When zoom scan is required and the <u>reported</u> SAR from the area scan based *I-g SAR estimation* procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.3 WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH & DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

Sub-test	$oldsymbol{eta}_{c}$	$oldsymbol{eta}_d$	β_d (SF)	$oldsymbol{eta}_{c}/oldsymbol{eta}_{d}$	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 5 HSDPA Data Devices:

For Release 6 HSPA Data Devices

Sub- test	eta_{c}	eta_d	eta_d	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$eta_{\scriptscriptstyle ec}$	$eta_{\scriptscriptstyle ed}$	eta_{ed}	eta_{ed}	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	2.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	eta_{ed1} :47/15 eta_{ed2} :47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	3.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4 Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.5 Near Field Communication

Near-Field Communication (NFC) is a set of standards for smartphones and other mobile devices to establish radiocommunication with each other by touching them together or bringing them into close proximity, usually no more than a few centimeters, which can be considered as collections of dipoles with a fixed phase relationship creates a stationary electromagnetic field pulsating at 13.56 MHz. Here we measure the NFC antenna by inducing its electric potential into the worst case of main antenna test position, and then evaluate the combined SAR test results.

9.6 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.2 to Table 14.21 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10 Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11 Conducted Output Power

11.1 Manufacturing tolerance Note: Target Value is Average Output Power Value.

	Table 11.1:	GSM Speech	
	GSI	VI 850	
Channel	Channel 251	Channel 190	Channel 128
Target (dBm)	32	32	32
Tune-up (dBm)	33	33	33
	GSN	1 1900	
Channel	Channel 810	Channel 661	Channel 512
Target (dBm)	29	29	29
Tune-up (dBm)	30	30	30

Table 11.2: GPRS and EGPRS

		850 MHz GPRS (GM	1SK)	
	Channel	Channel 810	Channel 661	Channel 512
1 Txslot	Target (dBm)	32	32	32
1 1 2 5101	Tune-up (dBm)	33	33	33
2 Txslots	Target (dBm)	30	30	30
2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 2 2 2	Tune-up (dBm)	31	31	31
3Txslots	Target (dBm)	28	28	28
31,251015	Tune-up (dBm)	29	29	29
4 Txslots	Target (dBm)	28	28	28
4 1 2 2 10 2	Tune-up (dBm)	29	29	29
		1900 MHz GPRS (GI	MSK)	
	Channel	Channel 810	Channel 661	Channel 512
1 Txslot	Target (dBm)	29	29	29
1 1 2 2 101	Tune-up (dBm)	30	30	30
2 Txslots	Target (dBm)	28	28	28
2 1 2 51015	Tune-up (dBm)	29	29	29
3Txslots	Target (dBm)	26	26	26
31 851018	Tune-up (dBm)	27	27	27
4 Txslots	Target (dBm)	24	24	24
4 1 X SIULS	Tune-up (dBm)	25	25	25

		Conducted Power (dBm)				
U	MTS Band V	Channel 4233	Channel 4183	Channel 4132		
DMC	Target (dBm)	23	23	23		
RMC	Tune-up (dBm)	24	24	24		
	Target (dBm)	22	22	22		
HSDPA	Tune-up (dBm)	23	23	23		
	Target (dBm)	21	21	21		
HSUPA	Tune-up (dBm)	23	23	23		
		Conducted Power (dBm)				
U	MTS Band II	Channel 9538	Channel 9400	Channel 9262		
DMC	Target (dBm)	22	22	22		
RMC	Tune-up (dBm)	23	23	23		
	Target (dBm)	21	21	21		
HSDPA	Tune-up (dBm)	22	22	22		
	Target (dBm)	20	20	20		
HSUPA	Tune-up (dBm)	22	22	22		

Table 11.3: WCDMA

Table 11.4: WiFi

Channel		Channel 1	Channel 7	Channel 13
WiFi	Target (dBm)	16	16	16
802.11b	Tune-up (dBm)	17	17	17
WiFi	Target (dBm)	9.5	10.5	9.5
802.11g	Tune-up (dBm)	12	13	12
WiFi	Target (dBm)	9	10	9.5
802.11n(20)	Tune-up (dBm)	11.5	13	12
WiFi	Target (dBm)	6	8	6.5
802.11n(40)	Tune-up (dBm)	8.5	10.5	9

Table 11.5: Bluetooth

	Channel	Channel 1	Channel 7	Channel 13
GFSK	Target (dBm)	5	5	5
GFSK	Tune-up (dBm)	6	6	6
BLE	Target (dBm)	-2	-2	-2
	Tune-up (dBm)	-1	-1	-1

11.2 GSM Measurement result

During the process of testing, the EUT was controlled via Agilent Digital Radio Communication tester (E5515C) to ensure the maximum power transmission and proper modulation. This result contains conducted output power for the EUT. In all cases, the measured peak output power should be greater and within 5% than EMI measurement.

		Conducted Power (dBm)	
GSM		,	
850MHz	Channel 251(848.6MHz)	Channel 190(836.8MHz)	Channel 128(824.2MHz)
ODUNITZ	31.72	31.61	31.58
GSM	Channel 810(1909.8MHz)	Channel 661(1880MHz)	Channel 512(1850.2MHz)
1900MHz	29.67	29.64	29.63

Table 11.6: The conducted power measurement results for GSM

Table 11.7:	The conducted	power measurement	results for GPRS and EGPRS
-------------	---------------	-------------------	----------------------------

PCS850	Measu	ured Power	(dBm)	calculation	Averaç	ged Power	(dBm)
GPRS (GMSK)	251	190	128		251	190	128
1 Txslot	32.1	32.1	32.0	-9.03dB	23.07	23.07	22.97
2 Txslots	30.4	30.3	30.3	-6.02dB	24.38	24.28	24.28
3Txslots	28.8	28.8	28.7	-4.26dB	24.54	24.54	24.44
4 Txslots	27.8	27.8	27.7	-3.01dB	24.79	24.79	24.69
PCS1900	Measu	ured Power	(dBm)	calculation	Averaged Power (dBm)		(dBm)
GPRS (GMSK)	810	661	512		810	661	512
1 Txslot	29.4	29.4	29.4	-9.03dB	20.37	20.37	20.37
2 Txslots	27.5	27.4	27.4	-6.02dB	21.48	21.38	21.38
3Txslots	25.4	25.4	25.3	-4.26dB	21.14	21.14	21.04
4 Txslots	24.5	24.4	24.4	-3.01dB	21.49	21.39	21.39

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

According to the conducted power as above, the body measurements are performed with 4Txslots for PCS1900.

Note: According to the KDB941225 D03, "when SAR tests for EDGE or EGPRS mode is necessary, GMSK modulation should be used".

12.2 WCDMA Measurement result

Table 11.8:	The conducted Power	for WCDMA

	C Dand II	Co	onducted Power (dl	3m)		
UMTS Band II		9538 (1907.6MHz)	9400 (1880MHz)	9262 (1852.4MHz)		
RMC	12.2kbps RMC	22.79	22.83	22.82		
	Sub - Test 1	21.43	21.43	21.42		
HSDPA	Sub - Test 2	21.43	21.45	21.44		
HSDFA	Sub - Test 3	21.46	21.46	21.44		
	Sub - Test 4	21.45	21.45	21.43		
	Sub - Test 1	19.43	19.48	19.46		
	Sub - Test 2	19.51	19.49	19.47		
HSUPA	Sub - Test 3	20.47	20.50	20.50		
	Sub - Test 4	18.86	18.85	18.86		
	Sub - Test 5	21.47	21.43	21.40		
шмт	S Band V	Conducted Power (dBm)				
Ulwi 1		4233 (846.6MHz)	4182 (836.4MHz)	4132 (826.4MHz)		
RMC	12.2kbps RMC	23.76	23.55	23.58		
	Sub - Test 1	22.69	22.63	22.65		
HSDPA	Sub - Test 2	22.69	22.65	22.67		
HSDFA	Sub - Test 3	22.71	22.63	22.68		
	Sub - Test 4	22.69	22.61	22.65		
	Sub Test - 1	20.64	20.56	20.63		
	Sub Test - 2	20.62	20.53	20.58		
HSUPA	Sub Test - 3	21.66	21.57	21.57		
	Sub Test - 4	21.14	20.02	20.07		
	Sub Test - 5	22.61	22.59	22.60		

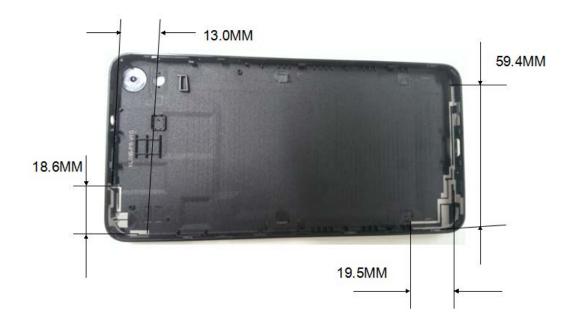
11.4 Wi-Fi and BT Measurement result

Table 11.9: The conducted Power for BT(BLE)

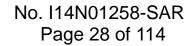
	Measured Power (dBm)				
modle\Channel	Ch 0 Ch 39 Ch 78 (2402 MHz) (2441 Mhz) (2480 MH				
GFSK	5.45	5.34	5.50		
π /4 DQPSK	5.23	5.03	5.12		
8DPSK	5.29	5.25	5.32		
BLE	-2.55	-2.25	-2.54		

Table 11.10: The conducted Power for WIFI

	M	Measured Power (dBm)					
modle\Channel	Ch 1 (2412 MHz)						
802.11b	16.43	16.51	16.68				
802.11g	11.64	12.84	11.88				
802.11n (20MHz)	11.47	12.76	11.81				
802.11n (40MHz)	8.43	10.48	8.60				



12 Simultaneous TX SAR Considerations


12.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2 Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3 Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

Appendix A

SAR Test Exclusion Thresholds for 100 MHz – 6 GHz and \leq 50 mm

Approximate SAR Test Exclusion Power Thresholds at Selected Frequencies and Test Separation Distances are illustrated in the following Table.

MHz	5	10	15	20	25	mm
150	39	77	116	155	194	
300	27	55	82	110	137	
450	22	45	67	89	112	
835	16	33	49	66	82	
900	16	32	47	63	79	
1500	12	24	37	49	61	SAR Test Exclusion
1900	11	22	33	44	54	Threshold (mW)
2450	10	19	29	38	48	
3600	8	16	24	32	40	
5200	7	13	20	26	33	
5400	6	13	19	26	32	
5800	6	12	19	25	31	

Picture 12.2 Power Thresholds

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 10m test separation distances is 19mW.

Table 12.1:	Standalone SAR test exclusion considerations
-------------	--

Band/Mode	F(GHz)	Position	SAR test exclusion	RF o pov	utput wer	SAR test exclusion
			threshold (mW)	dBm	mW	
Bluetooth	2.441	Head	9.60	5.50 3.5		Yes
Diueloolii		Body	19.20	5.50	3.55	Yes
WiFi	0.440	Head	9.60	16.68	46.56	No
VVIFI	2.442	Body	19.20	16.68	46.56	No

13 Evaluation of Simultaneous

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f_{(GHz)}/x}$] W/kg for test separation distances ≤ 50 mm;

Where x = 7.5 for 1-g SAR, AND X = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Position	F	Distance	Upper limi	Estimated _{1g}	
Position	(GHz)	(mm)	dBm	mW	(W/kg)
Head	2.441	5	5.50	3.55	0.40
Body	2.441	10	5.50	3.55	0.20

Table 13.1: Estimated SAR for Bluetooth

* - Maximum possible output power declared by manufacturer

Table 13.2: The sum of reported SAR values for main antenna and WiFi

	Position	Main antenna (W/Kg)	WiFi(W/Kg)	Sum(W/Kg)
Highest reported SAR value for Head	Right hand, Touch cheek	0.563	0.586	1.149
Highest reported SAR value for Body	Rear	1.229	0.155	1.384

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 13.3: The sum of reported SAR values for main antenna and Bluetooth

	Position	Main antenna (W/Kg)	BT*(W/Kg)	Sum(W/Kg)	
Highest reported SAR value for Head	Right hand, Touch cheek	0.563	0.40	0.963	
Highest reported SAR value for Body	Rear	1.229	0.20	1.429	

BT* - Estimated SAR for Bluetooth (see the table 13.2)

Conclusion:

According to the above tables, the sum of reported SAR values is < 1.6W/kg. So the simultaneous transmission SAR with volume scans is not required.

14 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or > 1.2W/kg. The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR $\times 10^{(P_{Target} - P_{Measured})/10}$

Where P_{Target} is the power of manufacturing upper limit;

P_{Measured} is the measured power in chapter 11.

Table 14.1: Duty Cycle

Mode	Duty Cycle
Speech for GSM850/1900	1:8.3
GPRS&EGPRS for GSM850	1:4
GPRS&EGPRS for GSM1900	1:4

14.1 SAR results for Fast SAR

Table 14.2: SAR Values (GSM 850 MHz Band - Head)

Freque	ency	Mode/Band	Test	Conducte d Power	Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	Speech	Left Touch	31.61	33	/	0.216	0.297	0.314	0.432	0.09
836.6	190	Speech	Left Tilt	31.61	33	/	0.165	0.227	0.237	0.326	0.18
836.6	190	Speech	Right Touch	31.61	33	1	0.290	0.399	0.392	0.540	-0.12
836.6	190	Speech	Right Tilt	31.61	33	/	0.165	0.227	0.237	0.326	0.16
848.8	251	Speech	Right Touch	31.58	33	Fig.1	0.302	0.419	0.406	0.563	-0.10
824.2	128	Speech	Right Touch	31.72	33	/	0.165	0.222	0.237	0.318	-0.08

Table 14.3: SAR Values (GSM 850 MHz Band – Body)

Freque	ency	Mode/Band	Test	Conducte d Power	Max. tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	190	GPRS (4)	Front	27.8	29	/	0.162	0.214	0.246	0.324	0.05
836.6	190	GPRS (4)	Rear	27.8	29	Fig.2	0.295	0.389	0.541	0.713	-0.06
848.8	251	GPRS (4)	Rear	27.8	29	/	0.272	0.359	0.491	0.647	-0.02
824.2	128	GPRS (4)	Rear	27.7	29	/	0.411	0.554	0.525	0.708	-0.01
836.6	190	Speech	Rear Headset	27.8	29	/	0.259	0.341	0.367	0.484	-0.05

Freque	ency	Mode/Band	Test	Conducte d Power	Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift	
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)	
1880	661	Speech	Left Touch	29.64	30	Fig.3	0.203	0.278	0.325	0.445	0.17	
1880	661	Speech	Left Tilt	29.64	30	/	0.099	0.135	0.173	0.237	0.18	
1880	661	Speech	Right Touch	29.64	30	/	0.124	0.170	0.192	0.263	0.12	
1880	661	Speech	Right Tilt	29.64	30	/	0.092	0.126	0.169	0.231	0.16	
1909.8	810	Speech	Left Touch	29.63	30	/	0.179	0.245	0.310	0.425	0.10	
1850.2	512	Speech	Left Touch	29.67	30	/	0.144	0.196	0.247	0.336	0.12	

Table 14.4: SAR Values (GSM 1900 MHz Band - Head)

Table 14.5: SAR Values (GSM 1900 MHz Band – Body)

Freque	ency	Mode/Band	Test	Conducte d Power	Max. tune- up Power	Figure No.	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.		Position	(dBm)	(dBm)	NO.	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	661	GPRS (4)	Front	24.4	25	/	0.222	0.255	0.368	0.423	0.15
1880	661	GPRS (4)	Rear	24.4	25	Fig.4	0.556	0.638	1.070	1.229	0.12
1909.8	810	GPRS (4)	Rear	24.5	25	/	0.489	0.549	0.870	0.976	0.10
1850.2	512	GPRS (4)	Rear	24.4	25	/	0.505	0.580	0.890	1.022	0.08
1850.2	661	Speech	Rear Headset	24.4	25	/	0.444	0.510	0.851	0.977	0.09

Frequ	uency	Mode/Band	Test	Conducte d Power	Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift		
MHz	Ch.	P	Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)		
836.6	4183	RMC	Left Touch	23.55	24	/	0.244	0.271	0.324	0.359	0.09		
836.6	4183	RMC	Left Tilt	23.55	24	/	0.143	0.159	0.205	0.227	0.12		
836.6	4183	RMC	Right Touch	23.55	24	/	0.298	0.331	0.395	0.438	0.08		
836.6	4183	RMC	Right Tilt	23.55	24	/	0.156	0.173	0.224	0.248	0.10		
846.6	4233	RMC	Right Touch	23.76	24	Fig.1	0.307	0.324	0.412	0.435	0.02		
826.4	4132	RMC	Right Touch	23.58	24	/	0.282	0.311	0.378	0.416	0.05		

Table 14.6: SAR Values (WCDMA 850 MHz Band - Head)

Table 14.7: SAR Values (WCDMA 850 MHz Band – Body)

Frequ	uency	Mode/Band	de/Band		Max. tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
836.6	4183	RMC	Front	23.55	24	/	0.039	0.043	0.051	0.057	0.13
836.6	4183	RMC	Rear	23.55	24	/	0.327	0.363	0.417	0.463	0.08
846.6	4233	RMC	Rear	23.76	24	/	0.252	0.266	0.327	0.346	0.04
826.4	4132	RMC	Rear	23.58	24	/	0.253	0.279	0.325	0.358	0.05
846.6	4183	Speech	Rear Headset	23.55	24	Fig.5	0.386	0.428	0.491	0.545	0.04

Frequency		Mode/Band	Test	Conducte d Power	Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift	
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)	
1880	9400	RMC	Left Touch	22.83	23	/	0.247	0.257	0.398	0.414	0.09	
1880	9400	RMC	Left Tilt	22.83	23	/	0.133	0.138	0.240	0.250	0.10	
1880	9400	RMC	Right Touch	22.83	23	/	0.129	0.134	0.200	0.208	0.12	
1880	9400	RMC	Right Tilt	22.83	23	/	0.104	0.108	0.182	0.189	0.15	
1908	9538	RMC	Right Touch	22.79	23	Fig.6	0.253	0.266	0.408	0.428	0.16	
1852.4	9262	RMC	Right Touch	22.82	23	/	0.172	0.179	0.274	0.286	0.10	

Table 14.8: SAR Values (WCDMA 1900 MHz Band - Head)

Table 14.9: SAR Values (WCDMA 1900 MHz Band – Body)

Frequency		Mode/Band	Test	Conducte d Power	Max. tune- up Power	Figure No.	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift
MHz	Ch.		Position	(dBm)	(dBm)	NO.	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	9400	RMC	Front	22.83	23	/	0.213	0.222	0.355	0.369	0.12
1880	9400	RMC	Rear	22.83	23	Fig.7	0.599	0.623	1.120	1.165	0.03
1908	9538	RMC	Rear	22.79	23	/	0.550	0.577	0.943	0.990	0.05
1852.4	9262	RMC	Rear	22.82	23	/	0.515	0.537	0.887	0.925	0.04
1880	9400	RMC	Rear	22.83	23	/	0.507	0.527	0.921	0.958	0.02
1852.4	9400	Speech	Rear Headset	22.82	23	/	0.509	0.531	0.927	0.966	0.06

No. I14N01258-SAR Page 35 of 114

Frequ MHz	lency Ch.	Mode/Ban d	Test Position	Conducte d Power (dBm)	Max. tune- up Power (dBm)	Figur e No.	Measured SAR(10g) (W/kg)	Reported SAR(10g) (W/kg)	Measure d SAR(1g) (W/kg)	Reported SAR(1g) (W/kg)	Power Drift (dB)		
2442	6	802.11 b	Left Touch	16.51	17	/	0.098	0.110	0.190	0.213	0.15		
2442	6	802.11 b	Left Tilt	16.51	17	/	0.060	0.067	0.114	0.128	0.18		
2442	6	802.11 b	Right Touch	16.51	17	/	0.210	0.235	0.435	0.487	0.10		
2442	6	802.11 b	Right Tilt	16.51	17	/	0.149	0.167	0.288	0.322	0.12		
2472	11	802.11 b	Right Touch	16.68	17	/	0.216	0.233	0.537	0.578	0.19		
2412	1	802.11 b	Right Touch	16.43	17	Fig.5	0.245	0.279	0.514	0.586	0.15		

Table 14.10: SAR Values (WiFi 802.11b - Head)

Table 14.11: SAR Values (WiFi 802.11b - Body)

Frequency			— (Conducte	Max. tune-	Figure	Measure	Reported	Measured	Reported	Power
MHz	Ch.	Mode/Band	Test Position	d Power (dBm)	up Power (dBm)	Figure No.	d SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2442	6	802.11 b	Front	16.51	17	/	0.056	0.063	0.101	0.113	0.15
2442	6	802.11 b	Rear	16.51	17	/	0.053	0.059	0.106	0.119	0.10
2472	11	802.11 b	Rear	16.68	17	/	0.056	0.060	0.115	0.124	0.11
2442	1	802.11 b	Rear	16.43	17	Fig.8	0.056	0.064	0.136	0.155	0.14

No. I14N01258-SAR Page 36 of 114

14.2 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Frequency		Mode/Band	Test	Conducte d Power	Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift		
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)		
848.8	251	Speech	Right Touch	31.58	33	Fig.1	0.302	0.419	0.406	0.563	-0.10		
Table 14.13: SAR Values (GSM 850 MHz Band – Body)													
Frequency		Mode/Band	Test	Conducte d Power	Max. tune- up Power	Figure No.	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift		
MHz	Ch.		Position	(dBm)	(dBm)	INO.	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)		
836.6	190	GPRS (4)	Rear	27.8	29	Fig.2	0.295	0.389	0.541	0.713	-0.06		
No	ote: The	distance betw	een the El	JT and the p	hantom bot	tom is 10	mm.						
			Tabl	e 14.14: S	AR Value	s (GSM	1900 MHz	Band - He	ad)				
Freque	ency	Mode/Band	Test	Conducte d Power	Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift		
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)		
1880	661	Speech	Left Touch	29.64	30	Fig.3	0.203	0.278	0.325	0.445	0.17		
			Table	e 14.15: S	AR Values	s (GSM	1900 MHz	Band – Bo	dy)				

Table 14.12: SAR Values (GSM 850 MHz Band - Head)

Conducte Max. tune-Power Measured Reported Measured Reported Frequency Test Figure Mode/Band d Power up Power SAR(10g) SAR(10g) SAR(1g) SAR(1g) Drift Position No. (dBm) . (dBm) (W/kg) (W/kg) (W/kg) (W/kg) (dB) MHz Ch. 25 0.638 1.229 1880 661 GPRS (4) Rear 24.4 Fig.4 0.556 1.070 0.12

Frequ	uency	Mode/Band	Mode/Band Test Position		Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift	
MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)	
836.6	4183	RMC	Right Touch	23.55	24	/	0.298	0.331	0.395	0.438	0.08	
	Table 14.17: SAR Values (WCDMA 850 MHz Band – Body)											
Frequ	uency	Mode/Band	Test	Conducte d Power	Max. tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g)	Measured SAR(1g)	Reported SAR(1g)	Power Drift	
MHz	Ch.		Position		(dBm)	No.	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)	
846.6	4183	Speech	Rear Headset	23.55	24	Fig.5	0.386	0.428	0.491	0.545	0.04	

Table 14.16: SAR Values (WCDMA 850 MHz Band - Head)

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.18: SAR Values (WCDMA 1900 MHz Band - Head)

	Frequ	uency	Mode/Band	Test	Conducte d Power	Max tune- up Power	Figure	Measured SAR(10g)	Reported SAR(10g	Measured SAR(1g)	Reported SAR(1g)	Power Drift
	MHz	Ch.		Position	(dBm)	(dBm)	No.	(W/kg))(W/kg)	(W/kg)	(W/kg)	(dB)
	1908	9538	RMC	Right Touch	22.79	23	Fig.6	0.253	0.266	0.408	0.428	0.16

Table 14.19: SAR Values (WCDMA 1900 MHz Band – Body)

Frequ	uency	Mode/Band Ot Dever Jup Pow		Max. tune- up Power	Power No	Measured SAR(10g)	SAR(10g) SAR(10g)		Reported SAR(1g)	Power Drift	
MHz	Ch.		Position	on (dBm)	(dBm)	NO.	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(dB)
1880	9400	RMC	Rear	22.83	23	Fig.7	0.599	0.623	1.120	1.165	0.03

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.20: SAR Values (WiFi 802.11b - Head)

Frequ	lency			Conducte	Max. tune-		Measured	Reported	Measure	Reported	Power
MHz	Ch.	Mode/Ban d	Test Position	d Power (dBm) (dBm)	Figur e No.	SAR(10g) (W/kg)	SAR(10g) (W/kg)	d SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)	
2412	1	802.11 b	Right Touch	16.43	17	Fig.5	0.245	0.279	0.514	0.586	0.15

Table 14.21: SAR Values (WiFi 802.11b - Body)

Frequ	iency			Conducte	Max. tune-		Measure	Reported	Measured	Reported	Power
MHz	Ch.	Mode/Band	Test Position	d Power (dBm)	up Power (dBm)	Figure No.	d SAR(10g) (W/kg)	SAR(10g) (W/kg)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2442	1	802.11 b	Rear	16.43	17	Fig.8	0.056	0.064	0.136	0.155	0.14

Note: The distance between the EUT and the phantom bottom is 10mm.

15 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Г	_							
	Frequ	ency		T 4	Oni si sa I			Second
	MHz	Ch.	Mode	Test Position	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Repeated SAR (W/kg)
	1880	661	GPRS (4)	Rear	1.070	0.995	1.08	/

Table 15.1: SAR Measurement Variability for Body GSM 1900 (1g)

Frequ MHz	uency Ch.	Mode	Test Position	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)
1880	9400	RMC	Rear	1.120	0.991	1.13	/

Table 15.2: SAR Measurement Variability for Body WCDMA 1900 (1g)

Note: The distance between the EUT and the phantom bottom is 10mm.

16 Measurement Uncertainty

16.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
			Measu	rement system	n	1				
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	∞
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	∞
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
5	Detection limit	В	1.0	Ν	1	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	∞
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	∞
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	∞
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	∞
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	∞
11	Probe positioned mech. restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	œ
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
			Test s	ample related						
14	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
15	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
16	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
			Phant	om and set-up)		-	-	-	
17	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
18	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	∞
19	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
20	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	∞
21	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
	Combined standard uncertainty		$\sqrt{\sum_{i=1}^{21}c_i^2u_i^2}$					9.25	9.12	257
	nded uncertainty idence interval of)	ι	$u_e = 2u_c$					18.5	18.2	

16.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

					<u></u>					
No.	Error Description	Туре	Uncertainty value	Probably Distribution	Div.	(Ci) 1g	(Ci) 10g	Std. Unc.	Std. Unc.	Degree of
						0	0	(1g)	(10g)	freedom
	surement system	_								
1	Probe calibration	В	5.5	Ν	1	1	1	5.5	5.5	8
2	Isotropy	В	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	8
3	Boundary effect	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	8
4	Linearity	В	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	8
5	Detection limit	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
6	Readout electronics	В	0.3	R	$\sqrt{3}$	1	1	0.3	0.3	8
7	Response time	В	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	8
8	Integration time	В	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	8
9	RF ambient conditions-noise	В	0	R	$\sqrt{3}$	1	1	0	0	8
10	RF ambient conditions-reflection	В	0	R	$\sqrt{3}$	1	1	0	0	8
11	Probe positioned mech. Restrictions	В	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
12	Probe positioning with respect to phantom shell	В	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	8
13	Post-processing	В	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
14	Fast SAR z-Approximation	В	7.0	R	$\sqrt{3}$	1	1	4.0	4.0	∞
			Test	sample relate	d					
15	Test sample positioning	А	3.3	Ν	1	1	1	3.3	3.3	71
16	Device holder uncertainty	А	3.4	Ν	1	1	1	3.4	3.4	5
17	Drift of output power	В	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	8
		1	Phan	tom and set-u	р	1	1		1	
18	Phantom uncertainty	В	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	8
19	Liquid conductivity (target)	В	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	8
20	Liquid conductivity (meas.)	А	2.06	Ν	1	0.64	0.43	1.32	0.89	43
21	Liquid permittivity (target)	В	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	8
22	Liquid permittivity (meas.)	А	1.6	Ν	1	0.6	0.49	1.0	0.8	521
Combined standard uncertainty		<i>u</i> _c ' =	$\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$					10.1	9.95	257
Expanded uncertainty (confidence interval of 95 %)			$u_e = 2u_c$					20.2	19.9	

No. I14N01258-SAR Page 41 of 114

17 MAIN TEST INSTRUMENTS

Table 17.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	Agilent E5071C	MY46103759	December 27,2013	One year
02	Power meter	NRVD	101253	March 8,2014	
03	Power sensor	NRV-Z5	100333	March 6,2014	One year
04	Signal Generator	E4438C	MY45095825	January 14, 2014	One year
05	Amplifier	VTL5400	0404	No Calibration Requeste	ed
06	BTS	E5515C	GB47460133	September 4, 2014	One year
07	E-field Probe	SPEAG ES3DV3	3151	September 1, 2014	One year
08	DAE	SPEAG DAE4	786	November 25, 2013	One year
09	Dipole Validation Kit	SPEAG D835V2	4d069	August 28, 2014	Two year
10	Dipole Validation Kit	SPEAG D900V2	1d051	July 24, 2014	Two year
11	Dipole Validation Kit	SPEAG D1800V2	2d145	July 18, 2014	Two year
12	Dipole Validation Kit	SPEAG D1900V2	5d101	July 23, 2014	Two year
13	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2014	Two year

END OF REPORT BODY

ANNEX A Graph Results

GSM850 Right Cheek High

Date: 2014-11-5 Electronics: DAE4 Sn786 Medium: Head 900 MHz Medium parameters used (interpolated): f = 848.8 MHz; σ = 0.939 S/m; ϵ_r = 41.723; ρ = 1000 kg/m³ Ambient Temperature:21.7°C Liquid Temperature:21.2°C Communication System: GSM Frequency: 848.8 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3151 ConvF(6.04, 6.04, 6.04);

Right Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.447 W/kg

Right Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.221 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.542 W/kg SAR(1 g) = 0.406 W/kg; SAR(10 g) = 0.302 W/kg Maximum value of SAR (measured) = 0.426 W/kg

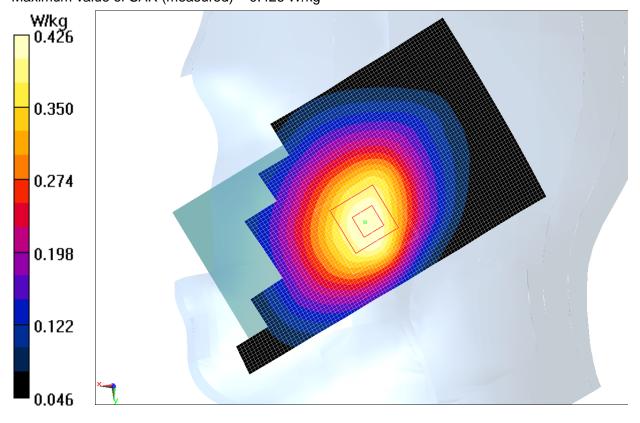


Fig.1 850 MHz CH251

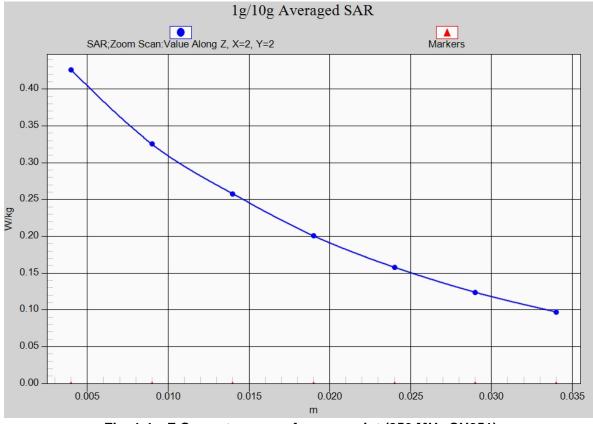
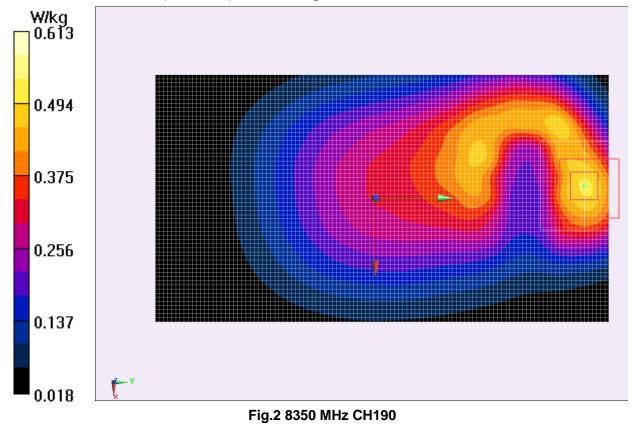


Fig. 1-1 Z-Scan at power reference point (850 MHz CH251)

GSM850 Body Rear Middle

Date: 2014-11-3 Electronics: DAE4 Sn786 Medium: Body 900 MHz Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.973 S/m; ϵ_r = 55.704; ρ = 1000 kg/m³ Ambient Temperature:20.9°C Liquid Temperature:20.74°C Communication System: 4 slot GPRS Frequency: 836.6 MHz Duty Cycle: 1:2.08 Probe: ES3DV3 - SN3151 ConvF(6.14, 6.14, 6.14);


Rear side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.503 W/kg

Rear side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.765 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.965 W/kg

SAR(1 g) = 0.541 W/kg; SAR(10 g) = 0.295 W/kg

Maximum value of SAR (measured) = 0.613 W/kg

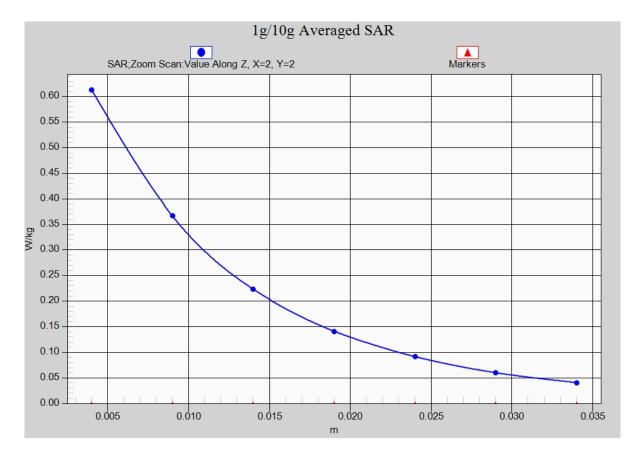


Fig.2-1 Z-Scan at power reference point (850 MHz CH190)

GSM1900 Left Cheek Middle

Date: 2014-11-4 Electronics: DAE4 Sn786 Medium: Head 1900 MHz Medium parameters used: f = 1880 MHz; σ = 1.421 S/m; ϵ_r = 41.513; ρ = 1000 kg/m³ Ambient Temperature:20.5°C Liquid Temperature:20.0°C Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.3 Probe: ES3DV3 - SN3151 ConvF(5.16, 5.16, 5.16);

Left Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.357 W/kg

Left Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.378 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.510 W/kg SAR(1 g) = 0.325 W/kg; SAR(10 g) = 0.203 W/kg Maximum value of SAR (measured) = 0.352 W/kg

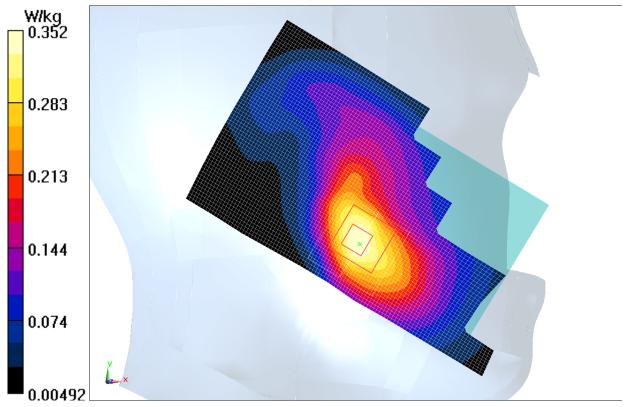


Fig.1 1900 MHz CH661

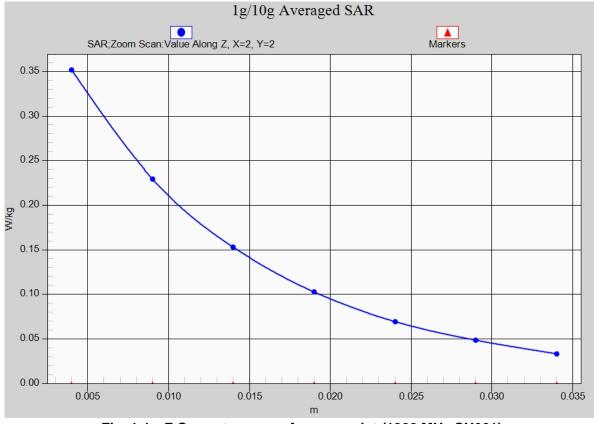


Fig. 1-1 Z-Scan at power reference point (1900 MHz CH661)

GSM1900 Body Rear side Middle

Date: 2014-11-12

Electronics: DAE4 Sn786

Medium: Body 1900MHz

Medium parameters used: f = 1880 MHz; σ = 1.514 S/m; ϵ_r = 52.663; ρ = 1000 kg/m³

Ambient Temperature:21.7°C Liquid Temperature:21.2°C

Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2.08

Probe: ES3DV3 - SN3151 ConvF(4.77, 4.77, 4.77);

Rear side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.08 W/kg

Rear side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.518 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 2.00 W/kg SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.556 W/kg

Maximum value of SAR (measured) = 1.13 W/kg

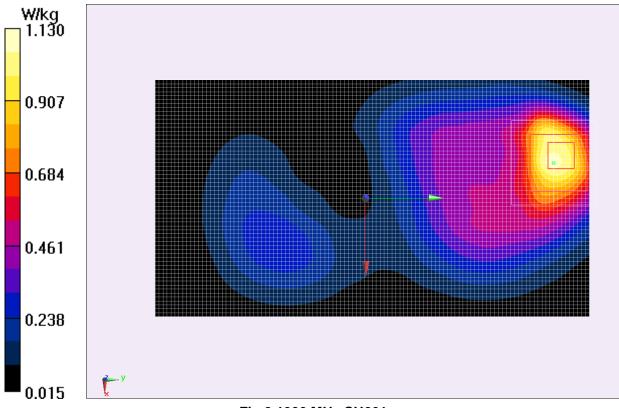


Fig.2 1900 MHz CH661

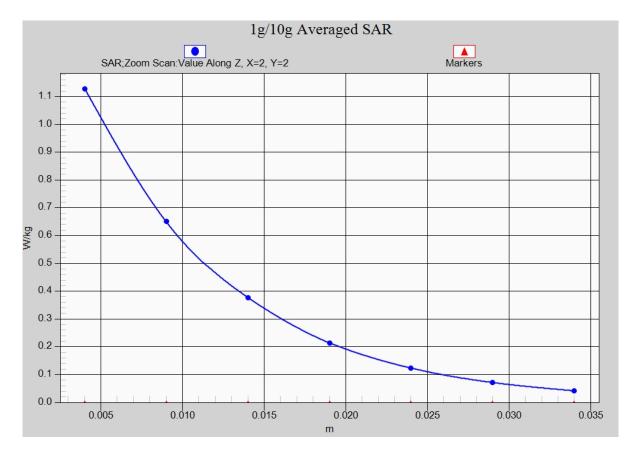


Fig.2-1 Z-Scan at power reference point (1900 MHz CH661)

WCDMA 850 Right Cheek High

Date: 2014-11-5 Electronics: DAE4 Sn786 Medium: Head 900 MHz Medium parameters used (interpolated): f = 846.6 MHz; σ = 0.934 S/m; ϵ_r = 41.521; ρ = 1000 kg/m³ Ambient Temperature:23.1°C Liquid Temperature:22.6°C Communication System: WCDMA Frequency: 846.6 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.04, 6.04, 6.04);

Right CheekHigh/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.452 W/kg

Right CheekHigh/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.503 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.544 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.307 W/kg

Maximum value of SAR (measured) = 0.431 W/kg

Fig. 1 Right Hand Touch Cheek WCDMA 850MHz CH4233

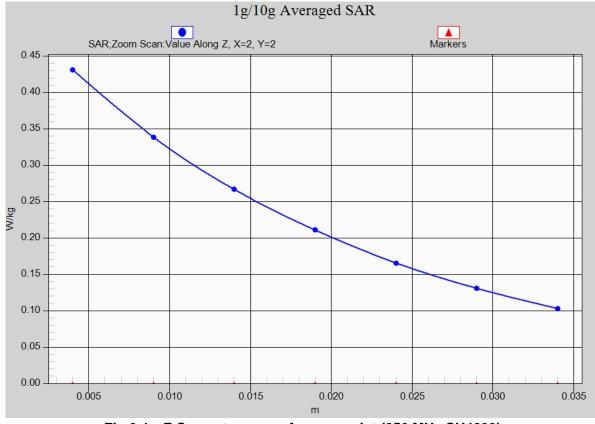
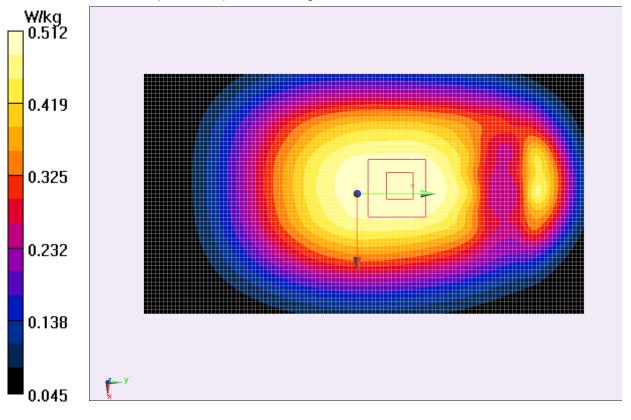


Fig.2-1 Z-Scan at power reference point (850 MHz CH4233)


WCDMA850 Body Rear Middle with Headset

Date: 2014-11-3 Electronics: DAE4 Sn786 Medium: Body 900 MHz Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.973S/m; ϵ_r = 55.704; ρ = 1000 kg/m³ Ambient Temperature:21.7°C Liquid Temperature:21.2°C Communication System: WCDMA Frequency: 836.6 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.14, 6.14, 6.14);

Rear side Middle Speech/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.519 W/kg

Rear side Middle Speech/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 22.874 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.591 W/kg SAR(1 g) = 0.491 W/kg; SAR(10 g) = 0.386 W/kg Maximum value of SAR (measured) = 0.512 W/kg

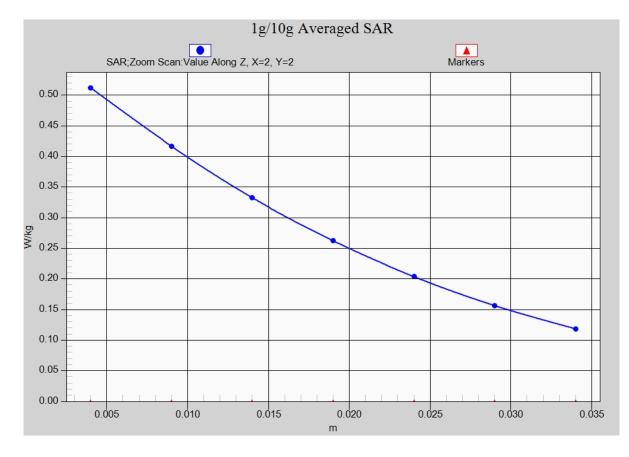


Fig.2-1 Z-Scan at power reference point (W850 MHz CH4183)

WCDMA 1900 Left Cheek High

Date: 2014-11-4 Electronics: DAE4 Sn786 Medium: Head 1900 MHz Medium parameters used: f = 1908 MHz; σ = 1.458 S/m; ϵ_r = 41.035; ρ = 1000 kg/m³ Ambient Temperature:21.8°C Liquid Temperature:21.3°C Communication System: WCDMA Frequency: 1908 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(5.16, 5.16, 5.16);

Left Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.444 W/kg

Left Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.521 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 0.645 W/kg SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.253 W/kg Maximum value of SAR (measured) = 0.441 W/kg

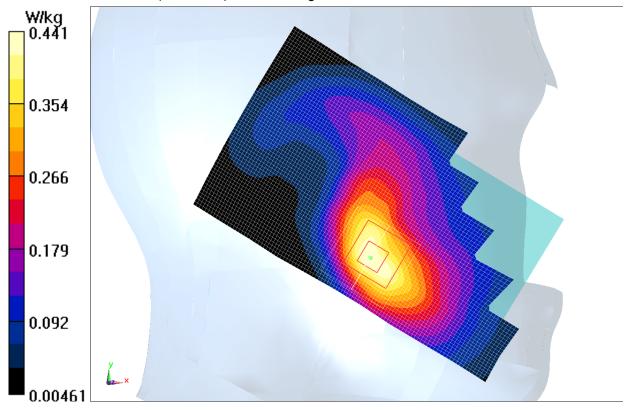


Fig. 3 Left Hand Touch Cheek WCDMA 1900MHz CH9538

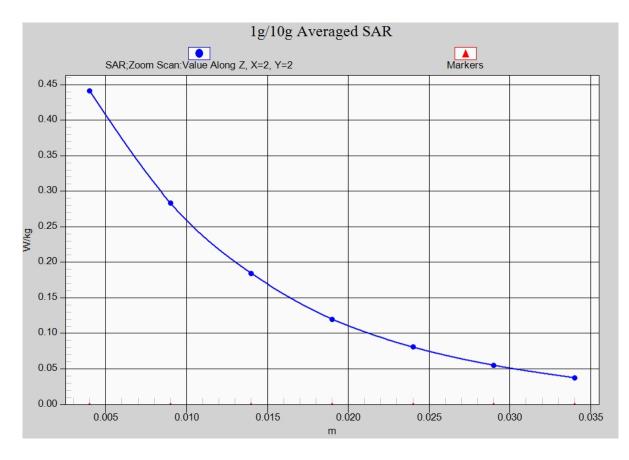
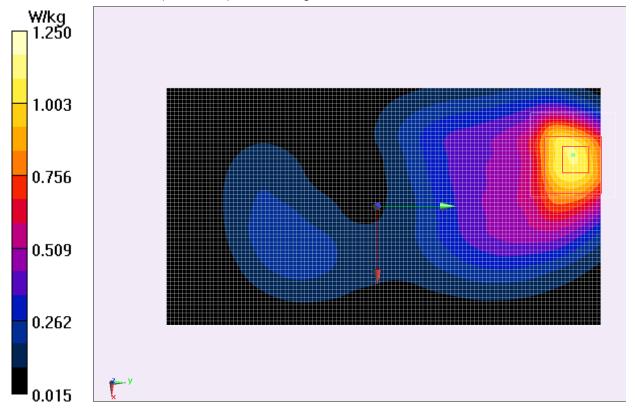


Fig.2-1 Z-Scan at power reference point (W1900 MHz CH9538)


WCDMA1900 Body Rear Middle

Date: 2014-11-12 Electronics: DAE4 Sn786 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz; σ = 1.494 S/m; ϵ_r = 52.663; ρ = 1000 kg/m³ Ambient Temperature:21.8°C Liquid Temperature:21.3°C Communication System: WCDMA Frequency: 1880 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.77, 4.77, 4.77);

Rear side Middle/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.10 W/kg

Rear side Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.756 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.04 W/kg SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.599 W/kg

Maximum value of SAR (measured) = 1.25 W/kg

Fig. 4 Body WCDMA 1900MHz CH9400

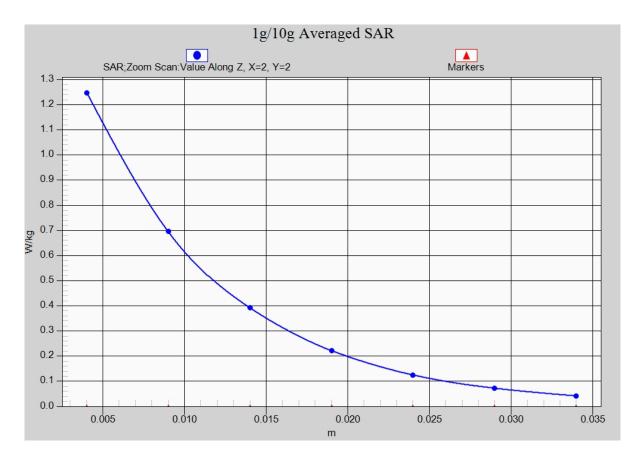


Fig.2-1 Z-Scan at power reference point (W1900 MHz CH9400)

WiFi 802.11b 1Mbps Right Cheek Channel 11

Date: 2014-11-12 Electronics: DAE4 Sn786 Medium: Head 2450 MHz Medium parameters used: f = 2462 MHz; σ = 1.873 S/m; ϵ_r = 38.573; ρ = 1000 kg/m³ Ambient Temperature:21.7°C Liquid Temperature:21.2°C Communication System: WiFi Frequency: 2462 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.71, 4.71, 4.71);

right/Cheek High/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.673 W/kg

right/Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.281 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.537 W/kg; SAR(10 g) = 0.216 W/kg Maximum value of SAR (measured) = 0.628 W/kg

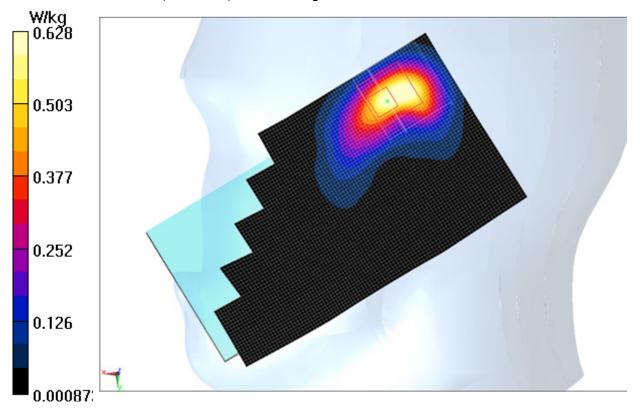
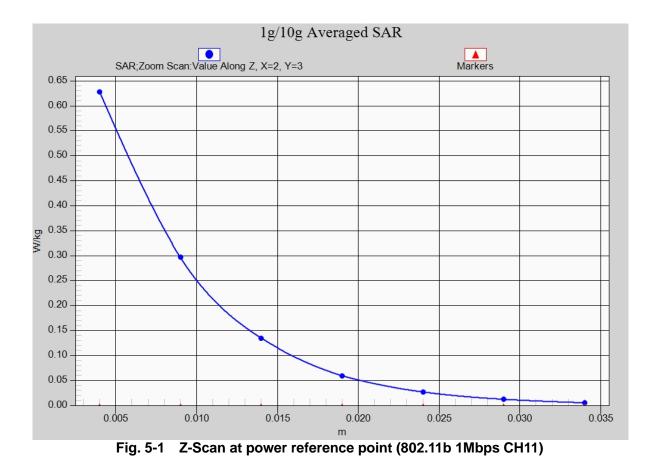



Fig.5 802.11b 1Mbps CH11

WiFi 802.11b 1Mbps Body Rear Channel 1

Date/Time: 2014-11-11 Electronics: DAE4 Sn786 Medium: Body 2450 MHz Medium parameters used: f = 2412 MHz; σ = 1.807 S/m; ϵ_r =51.737; ρ = 1000 kg/m³ Ambient Temperature:21.7°C Liquid Temperature:21.2°C Communication System: WiFi Frequency: 2412 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.71, 4.71, 4.71);

Rear side Low/Area Scan (61x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.141 W/kg

Rear side Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.889 V/m; Power Drift = 0.14 dB Peak SAR (extrapolated) = 0.338 W/kg SAR(1 g) = 0.136 W/kg; SAR(10 g) = 0.056 W/kg Maximum value of SAR (measured) = 0.142 W/kg

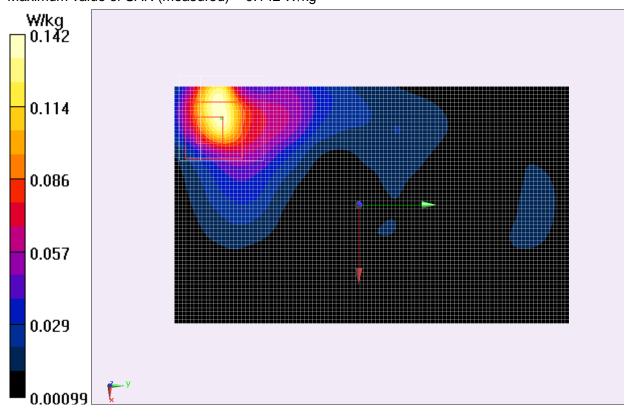


Fig.6 802.11b 1Mbps CH1

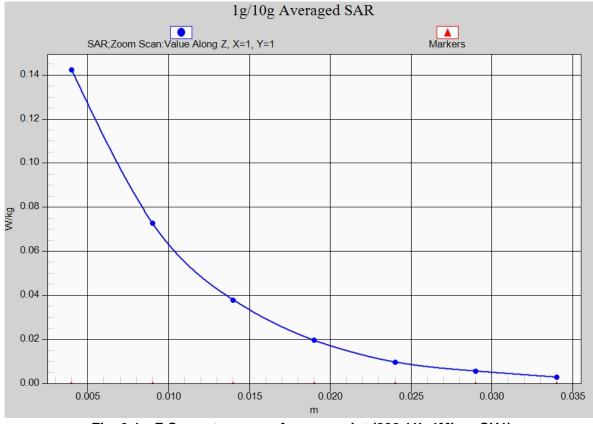
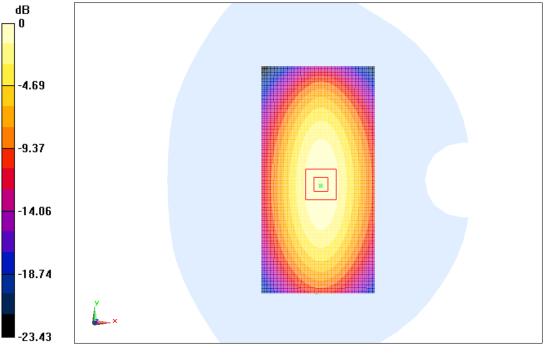


Fig. 6-1 Z-Scan at power reference point (802.11b 1Mbps CH1)


ANNEX B System Verification Results

835MHz

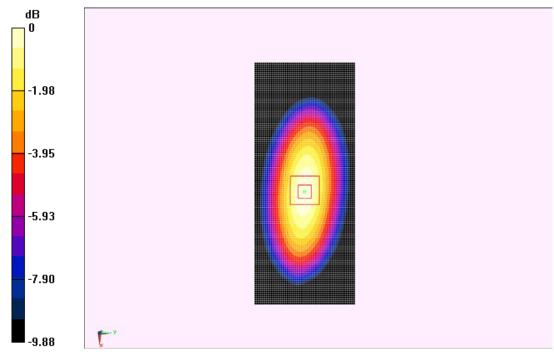
Date/Time: 2014-11-5 Electronics: DAE4 Sn786 Medium: Head 900 Medium parameters used (interpolated): f = 835 MHz; σ = 0.909 mho/m; ϵ r = 41.648; ρ = 1000 kg/m³ Ambient Temperature:23.7°C Liquid Temperature:23.2°C Communication System: CW_TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.04, 6.04, 6.04);

System Validation /Area Scan (81x161x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 51.802 V/m; Power Drift = 0.10 dB SAR(1 g) = 2.43 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (interpolated) = 2.62 mW/g

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.802 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 3.63 W/kg SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.61 mW/g Maximum value of SAR (measured) = 2.67 mW/g

0 dB = 2.62 mW/g = 8.37 dB mW/g

Fig.B.1 validation 835MHz 250mW



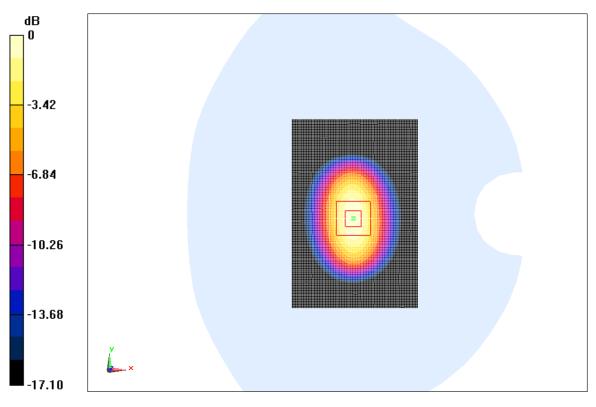
835MHz

Date: 2013-11-3 Electronics: DAE4 Sn786 Medium: Body 850 MHz Medium parameters used: f = 835 MHz; σ = 0.989 mho/m; ϵ_r = 55.564; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C Liquid Temperature: 22.0°C Communication System: CW Frequency: 835 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(6.14, 6.14, 6.14);

System Validation /Area Scan (81x171x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 51.811 V/m; Power Drift = 0.08 dB Fast SAR: SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (interpolated) = 2.61 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.811 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 2.63 W/kg

0 dB = 2.61 W/kg = 8.33 dBW/kg

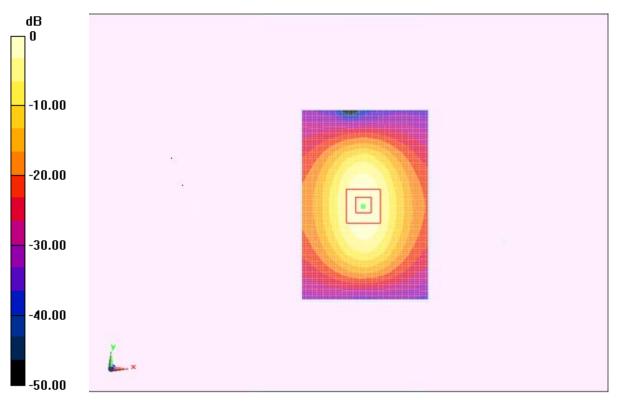



1900MHz Date/Time: 2014-11-4 Electronics: DAE4 Sn786 Medium: Head 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.443 S/m; ϵ r = 41.05; ρ = 1000 kg/m³ Ambient Temperature:23.7°C Liquid Temperature:23.2°C Communication System: CW_TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(5.16, 5.16, 5.16);

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 94.388 V/m; Power Drift = -0.08 dB Fast SAR: SAR(1 g) = 9.95 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (interpolated) = 11.2 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.388 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 17.76 W/kg SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.21 W/kg Maximum value of SAR (measured) = 11.1 W/kg

0 dB = 11.2 W/kg = 20.98 dB W/kg

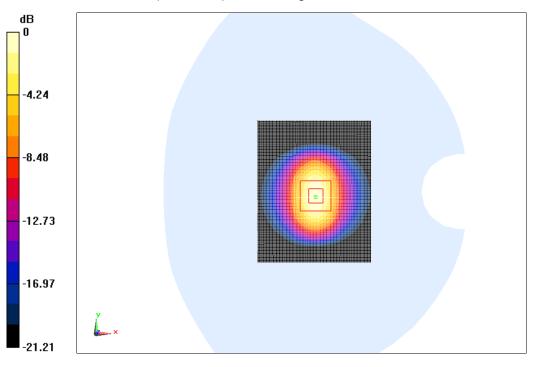


1900MHzDate: 2013-11-12Electronics: DAE4 Sn786Medium: Body 1900 MHzMedium parameters used: f = 1900 MHz; σ = 1.537 mho/m; ϵ_r = 52.678; ρ = 1000 kg/m³Ambient Temperature: 22.4°CLiquid Temperature: 21.9°CCommunication System: CW Frequency: 1900 MHz Duty Cycle: 1:1Probe: ES3DV3 - SN3151 ConvF(4.77, 4.77, 4.77);

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 84.861 V/m; Power Drift = -0.07 dB Fast SAR: SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.34 W/kg Maximum value of SAR (interpolated) = 11.5 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.861 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 17.43 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.40 W/kg Maximum value of SAR (measured) = 11.6 W/kg

0 dB = 11.5 W/kg = 21.21 dBW/kg



2450MHz

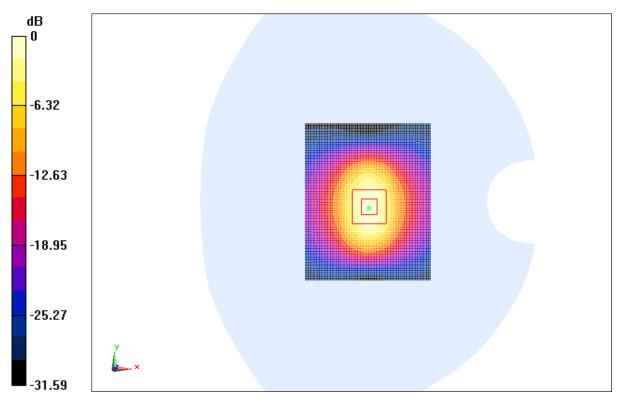
Date/Time: 2014-11-12 Electronics: DAE4 Sn786 Medium: Head 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.798 S/m; ϵ r = 39.331; ρ = 1000 kg/m³ Ambient Temperature:22.8°C Liquid Temperature:22.3°C Communication System: CW_TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.71, 4.71, 4.71);

System Validation /Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 92.78 V/m; Power Drift = 0.11 dB Fast SAR: SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (interpolated) = 16.7 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.78 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 27.90 W/kg SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.17 W/kg Maximum value of SAR (measured) = 16.7 W/kg

0 dB = 16.7 W/kg = 24.45 dB W/kg

Fig.B.5 validation 2450MHz 250mW



2450MHz

Date: 2013-1-11 Electronics: DAE4 Sn786 Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.973 mho/m; ϵ_r = 53.28; ρ = 1000 kg/m³ Ambient Temperature: 22.6°C Liquid Temperature: 22.1°C Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1 Probe: ES3DV3 - SN3151 ConvF(4.42, 4.42, 4.42);

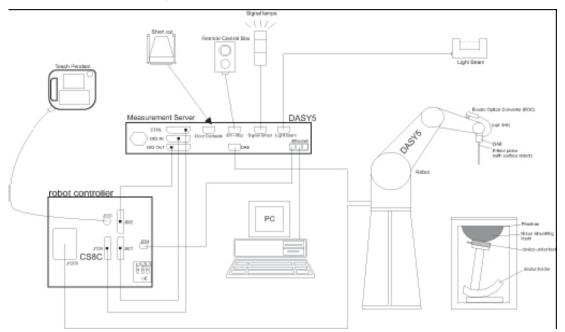
System Validation/Area Scan (81x101x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 94.708 V/m; Power Drift = -0.05 dB Fast SAR: SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.97 W/kg Maximum value of SAR (interpolated) = 14.8 W/kg

System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.708 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 25.94 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.99 W/kg Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.8 W/kg = 23.41 dB W/kg

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
850	Head	2.43	2.46	1.2
850	Body	2.37	2.41	1.6
1900	Head	13.2	13.3	1
1900	Body	10.1	10.2	0.7
2450	Head	14.7	14.8	0.7
2450	Body	12.8	12.9	1.5


Table B.1 Comparison between area scan and zoom scan for system verification

ANNEX C SAR Measurement Setup

C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2nd ord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

· · · · · · · · · · · · · · · · · · ·	
Model:	ES3DV3, EX3DV4
Frequency	10MHz — 6.0GHz(EX3DV4)
Range:	10MHz — 4GHz(ES3DV3)
Calibration:	In head and body simulating tissue at
	Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB(30 MHz to 6 GHz) for EX3DV4
	± 0.2 dB(30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg — 100W/kg
Probe Length:	330 mm
Probe Tip	
Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)
Tip-Center:	1 mm (2.0mm for ES3DV3)
Application:	SAR Dosimetry Testing
	Compliance tests of mobile phones
	Dosimetry in strong gradient fields

Picture C.2 Near-field Probe

Picture C.3 E-field Probe

C.3 E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed