MEASUREMENT/TECHNICAL REPORT

HYUNDAI ELECTRONICS INDUSTRIES CO.,LTD.

MODEL: HLM-1510A

This report con	cern	s(check one) : Original grantX_ Class \ \frac{\pmathbf{Y}}{2} \ \text{tchange}
Equipment type	e: _	LCD MONITOR
Deferred grant	requ	nested per 47 CFR 0.457(d)(1)(\(\frac{1}{4}\) \(\frac{1}{3}\)? yesnoX
		If yes, defer until:
agr	ees to	o notify the Commission by
of the intended issued on that d		of announcement of the product so that the grant can be
Report prepared by	:	BONG JAE, HUR-Deputy General Manager of QA Office
Company	:	HYUNDAI ELECTRONICS INDUSTRIES CO., LTD.
Address	:	SAN 136-1, AMI-RI, BUBAL-EUB, ICHON-SI, KYOUNGKI-DO, KOREA
Phone No	:	82-336-630-3280
Fax No	:	82-336-630-3265

TABLE OF CONTENTS

PAGE

1. GENERAL INFORMATION

1.1 Product Description

The Hyundai Electronics Industries Co., Ltd. Model (referred to as the EUT in this report) is a 15"COLOR LCD Monitor HOR. Freq. 68.7 kHz w/max. Resolution of 1024; 768 Non-Interlaced.

Product specification information described herein was obtained from product data sheet or user's manual.

CHASSIS TYPE	PLASTIC
LIST OF EACH OSC. OR	12 MHz
XTAL. FREQ.(FREQ.; Ã1MHz)	20 MHz
CHIPSET BRAND AND PART NO.	Pixelworks: PW164-10R SGS-TOMSON: TDA7496L AMERIX: ICS502M AMERIX: ICS501M TEXAS:SN74LVC126A TEXAS:SN74LVC541A
SPEAKER NO	T401S01G0050
POWER REQUIREMENT	100 - 240 VAC 50/60Hz 1.5A
NUMBER OF LAYERS	MAIN BOARD 4 LAYER OSD BOARD 2 LAYER POWER BOARD 2 LAYER INVERTER BOARD 2 LAYER LCD MODULE BOARD 6 LAYER
MAX. RESOLUTION	1024 X 768 NON-INTERLACED (@ 68.7 kHz/85 Hz)
H-SYNC FREQUENCY RANGE	31.3 kHz ; -68.7kHz
V-SYNC FREQUENCY RANGE	56 Hz ; -85 Hz
LCD SIZE	15" (HYUNDAI / Type : HT15X11-100)
USB CONNECTOR	DUAL TYPE
PHONE JACK PART NO.	TC38-009-01
VIDEO CONNECTOR TYPE	D-SUB 15-PIN

1.2 Related Submittal(s) / Grant(s)

ORIGINAL SUBMITTAL ONLY

1.3 Tested System Details

The Model names for all equipment, plus descriptions used in the tested system (including inserted cards) are:

DEVICE TYPE	MANUFACTURER	MODEL NUMBER	FCC ID / DoC	CONNECTED TO
LCD COLOR MONITOR(EUT)	HYUNDAI	HLM-1510A	CKLHLM1510A	HOST
PC(HOST)	COMPAQ	DESK Pro	DoC	N/A
USB Keyboard	Gateway	SK-9900V	DoC	EUT
USB Mouse	Gateway	3872F105	DoC	EUT
KEYBOARD	H/P	SK-2502C	DoC	HOST
EAR PHONE	LAB Tec	C33	N/A	EUT
PRINTER	H/P	НР895С	DoC	HOST
MODEM	3 COM	56K FAX Modem	DoC	HOST
VIDEO CARD	ATI	ATI RAGE PRO	DoC	HOST
MOUSE	H/P	M-S34	DZL211029	HOST

1.4 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.4/1992. Radiated testing was performed at an antenna to EUT distance of 10 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data are located at the 254-1,MAEKOK-RI,HOBUP-MYUN,ICHON-SI,KYOUNGKI-DO, 467-701,KOREA. The site is constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. Detailed description of test facility was submitted to the Commission on May 22, 1997 and accepted dated July 25,1997(1300F2)

2.SYSTEM TEST CONFIGURATION

2.1 Justification

The device was configured for testing in a typical fashion (as a customer would normally use it). During the tests, the following components and I/O cards inside the E.U.T were used.

DEVICE TYPE	MANUFACTURE	MODEL/PART NUMBER
MAIN BOARD	HYUNDAI	3041000979
ODS BOARD	HYUNDAI	3010700719
POWER BOARD	HYUNDAI	CHL-060-01HD2F
INVERTER	HYUNDAI	KLS742
LCD MODULE BOARD	HYUNDAI	46-602007

2.2 EUT exercise Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use. The software, contained on a 3-1/2 inch disc, was inserted into drive A and is auto starting on power-up. Once loaded, the program sequentially exercises each system component in turn. The sequence used is :(1) Display test, (2) RS 232 test (3) Key board test,(4) Printer test,(5) FDD test,(6) HDD test. The complete cycle takes about 20 seconds and is repeated continuously. As the keyboard and mouse are strictly input devices, no data is transmitted to them during test. They are however, continuously scanned for data input activity. The video resolution modes setup and change program was used during the radiated and conducted emission testing.

2.3 Cable Description

	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (M)
PC(HOST)	N	N/A	1.8(P)
LCD COLOR MONITOR(EUT)	N	Y	1.8(P), 1.5(D)
PRINT	N	Y	2.0(P),1.5(D)
USB KEYBOARD	N/A	Y	1.8(D)
USB MOUSE	N/A	Y	0.8(D)
USB CABLE	N/A	Y	1.8(D)
KEYBOARD	N/A	Y	2.0(D)
AUDIO CABLE	N/A	Y	1.5(D)
EAR PHONE	N/A	N	2.4(D)
MODEM	N	Y	2.0(P),1.5(D)
MOUSE(PS/2)	N/A	Y	1.8(D)

The marked "(D)" means the Data Cable and "(P)" means the Power Cable.

2.4 Noise Suppression Parts on Cable.

	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
PC(HOST)	N	N/A	N	N/A
COLOR MONITOR(EUT)	Y	PC END	Y	PC END
PRINT	N	N/A	Y	BOTH END
USB KEYBOARD	Y	EUT END	N	N/A
USB MOUSE	N	N/A	N	N/A
USB CABLE	N	N/A	N	N/A
KEYBOARD	N	N/A	N	N/A
AUDIO CABLE	Y	PC END	N	N/A
EAR PHONE	N	N/A	N	N/A
MODEM	N	N/A	Y	BOTH END
MOUSE(PS/2)	N	N/A	N	N/A

REPORT NO: HEI-RF-20000317 FCC ID: CKLHLM-1510A DATE: MAR 17. 2000

2.5 Equipment Modifications

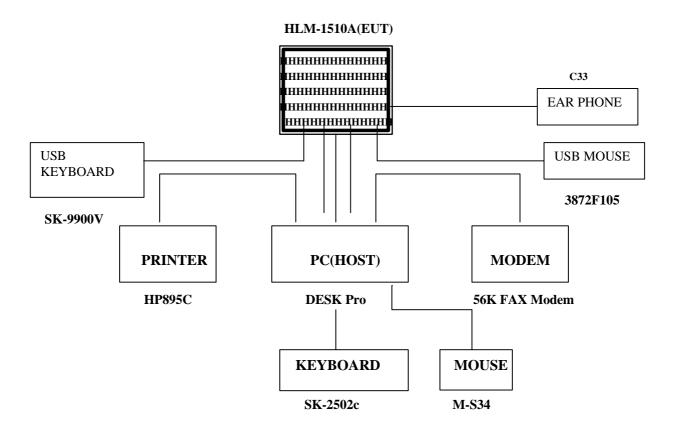
N/A

2.6 Configuration of Test system

Line Conducted Test : EUT was connected to LISN, all other supporting equipment were

connected to another LISN.

Preliminary Power line Conducted Emission tests were performed by using the procedure in ANSI C63.4/1992 7.2.3 to determine the worse


operating conditions.

Radiated Emission Test : Preliminary Radiated Emissions tests were conducted using the

procedure in ANSI C63.4/1992 8.3.1.1 to determine the worse operating condition. Final Radiated Emission tests were conducted at 3 meter

open area test site.

[Configuration of Tested System]

3. PRELIMINARY TESTS

REPORT NO: HEI-RF-20000317

3.1 AC Power line Conducted Emission Tests

During Preliminary Tests, the following operating mode were investigated

Processor Speed (MHz)	Video Resolution (w/max)		The worst operating condition
Pentium 350 MHz	1024 x 768	Non-Interlaced (68.7kHz/85Hz)	X
Pentium 350 MHz	800 x 600	Non-Interlaced (53.6 kHz/85Hz)	
Pentium 350 MHz	640 x 480	Non-Interlaced (43.3 KHz/85Hz)	
Pentium 350 MHz	640 x 350	Non-Interlaced (31.5 KHz/70Hz)	

4.2 Radiated Emission Tests

During Preliminary Tests, the following operating mode were investigated

Processor Speed (MHz)		Video Resolution (w/max)	The worst operating condition
Pentium 350 MHz	1024 x 768	Non-Interlaced (68.7kHz/85Hz)	X
Pentium 350 MHz	800 x 600	Non-Interlaced (53.6 kHz/85Hz)	
Pentium 350 MHz	640 x 480	Non-Interlaced (43.3 KHz/85Hz)	
Pentium 350 MHz	640 x 350	Non-Interlaced (31.5 KHz/70Hz)	

Tested by <u>Ja Beom, Koo</u> Date: <u>MAR. 2. 2000</u>

4. FINAL CONDUCETD AND RADIATED EMISSION TESTS SUMMARY

4.1 Conducted Emission Test

The following table shows the highest levels of conducted emissions on both polarization of hot and neutral line.

Humidity Level : 35% Temperature : 20 ; É

Limit apply to : CISPR 22

Type of Tests : CLASS B

Date : MAR. 15, 1998

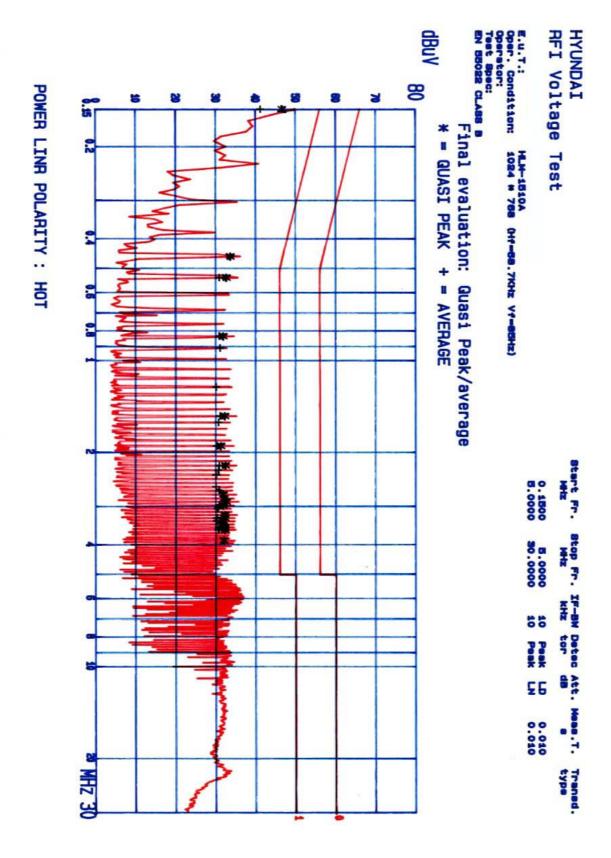
Result : PASSED BY 9.4 dB

EUT : 15" LCD COLOR MONITOR

Operating Condition : 1024 X 768 Non-Interlaced (Hf: 68.7 KHz, Vf: 85Hz)

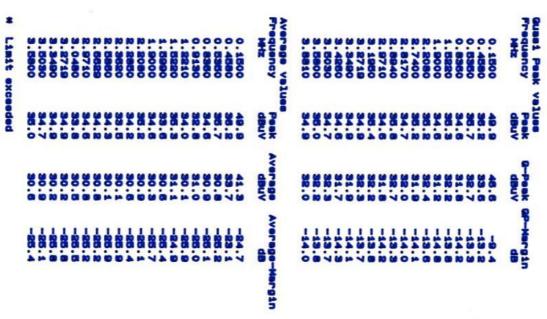
Detector : CISPR Quasi-Peak (6 dB Bandwidth : 9 KHz)

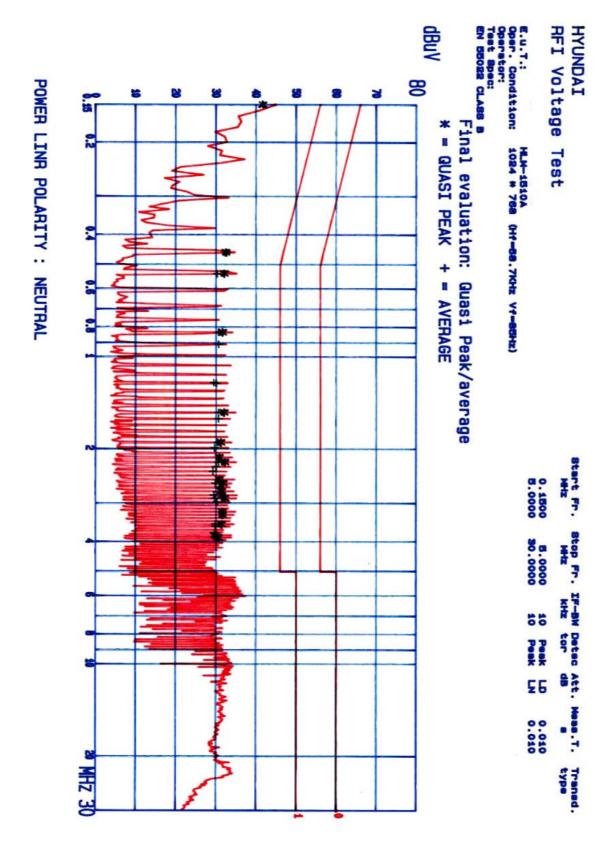
Power L	Power Line Conducted Emissions			PR 22
Frequency (MHz)	Amplitude (dBuV)	Conductor	Limit (dBuv)	Margin (dB)
0.150	46.6	нот	56	9.4
0.458	33.6	нот	46.8	-13.2
0.535	32.7	нот	46	-13.3
1.522	32.2	нот	46	-13.8
2.208	32.4	нот	46	-13.6
2.894	32.7	нот	46	-13.3
3.503	32.3	нот	46	-13.7


Line Conducted Emission Tabulated Data

NOET:

1. All video modes and resolutions were investigated and the worst-case emissions are reported Other video modes & resolution were tested and found to be in compliance.


Measured by: Ja Beom, Koo / Engineer


DATE: MAR 17. 2000

POWER LINE POLARITY: HOT

D D e e e e x x

56

8 2

HYUNDAI RFI Voltage Test

Oper. Condition: Operator: Test Spec: EN 65022 CLASS B

> HLM-1510A 1024 # 768

Limit exceeded

	0.010		7더 12 (4-881)	
		Trened.		
Average values	3.1980 3.2719 3.8030 3.8040 3.8810	n. 8940	0.4590 0.4590 0.5950 1.5950 2.5950 2.5950	Guest Peak Frequency MHz
Peak	9444	88222	44848448	Velues Peek dBuy
Average	81.7 81.7 89.7	2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	488888888	G-Peak dBuV
Average-Nargin	11111			QP-Hargin dB

4.2 Radiated Emissions Tests

The following table shows the highest levels of Radiated Emissions on both polarization of horizontal and vertical.

Humidity Level : 20 % Temperature : 18 ; É

Limit apply to : CISPR 22
Type of Tests : CLASS B
Date : MAR. 13, 2000
Result : PASSED BY 4.2 dB

EUT : 15" COLOR MONITOR

Operating Condition : 1024 X 768 Non-Interlaced (Hf : 68.7 kHz, Vf : 85 Hz)

Detector : CISPR Quasi-Peak (6 dB Bandwidth : 120 KHz)

Radiated	iated Emissions Ant. Correction Factors To		Total	CISP	R 22	
Freq. (MHz)	Ampl. (dBuV)	Pol.	Antenna & Cable Loss (dB/m)	Ampl. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
43.75	7.3	V	14.9	22.2	30.0	-7.8
96.20	8.1	Н	11.5	19.6	30.0	-10.4
125.0	7.3	V	16.1	23.4	30.0	-6.6
158.3	5.3	Н	17.3	22.6	30.0	-7.4
162.5	5.8	V	17.5	23.3	30.0	-6.7
166.4	2.3	Н	17.5	19.8	30.0	-10.2
182.6	6.0	V	18.0	24.0	30.0	-6.0
191.3	7.8	Н	18.4	25.8	30.0	-4.2
218.3	5.7	V	19.9	25.6	30.0	-4.4
408.5	3.0	Н	20.8	23.8	37.0	-13.2
469.8	8.7	Н	22.7	31.4	37.0	-6.6
501.3	3.4	V	23.4	26.8	37.0	-11.2
532.8	8.0	V	24.2	32.2	37.0	-4.8
660.5	1.5	V	28.1	30.6	37.0	-6.4
863.5	1.0	Н	30.4	31.4	37.0	-5.6
893.3	1.5	V	31.3	32.8	37.0	-4.2

NOTE:

1.All video modes and resolutions were investigated and the worst-case emissions are reported.

2.Other video modes & resolution were tested and found to be in compliance.

Measured by: Ja Beom, Koo / Engineer

DATE: MAR 17. 2000

5. Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF$$

where FS = Field Strength

RA = Receiver Amplitude

AF = **Antenna Factor**

CF = Cable Attenuation Factor

Assume a receiver reading of 21.5 dBuV is obtained. The Antenna Factor of 7.4 and a Cable Factor of 1.1 is added. The 30 dBuV/m value was mathematically converted to its corresponding level in uV/m.

$$FS = 21.5 + 7.4 + 1.1 = 30 dBuV/m$$

Level in $uV/m = Common \ Antilogarithm \ [(30 \ dBuV/m)/20] = 31.6 \ uV/m$