

FCC Part 24(E) Test Report
for

Hyundai Electronics Industries Co., Ltd.
on the
Single Band PCS
Model: HGP-230

Test Report: J99006681a Date of Report: April 5, 1999

Tested by:	Xi-ming Yang	
Reviewer:	C. K. Li	

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be

reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

Table of Contents

1	JOH	B DESCRIPTION
	1.1	Client Information
		Equipment under test (EUT)
	1.3	Test plan reference
	1.4	System test configuration
	1.4.	System block diagram & Support equipment
	1.4.	
	1.4.	
	1.5	Modifications required for compliance
2	TES	ST SUMMARY
3	EFI	FECTIVE RADIATED POWER
	3.1	Test Description
	3.2	Test Procedure
	3.3	Test Results
	3.4	Modifications made during testing
	3.5	Test Instrumentation
4	MO	DULATION CHARACTERISTICS
	4.1	Test Description
5	OC	CUPIED BANDWIDTH
	5.1	Test description
	5.2	Test Procedure 1
	5.3	Test Results
	5.4	Modifications made during testing
	5.5	Test instrumentation
6	SPI	URIOUS EMISSION AT ANTENNA TERMINALS
	6.1 6.2	Test description
	6.3	Test Results
		Modifications made during testing
	6.5	Test instrumentation
7		DIATED SPURIOUS EMISSIONS
	7.1	Test description
	7.2	Test Procedure
	7.3	Test Results
	7.4	Modifications made during testing
	7.5	Test instrumentation
8		EQUENCY STABILITY
	8.1	Test description
	8.2	Test Procedure

8.2.1 F	Frequency Stability vs. Temperature
8.2.2 F	Frequency Stability vs. Voltage
8.3 Test	Results
	fications made during testing
8.5 Test i	nstrumentation
9 AC LINE	CONDUCTED EMISSIONS
0.1 55	
9.1 Test of	description1
9.2 Test l	Procedure
9.3 Test l	Results
	fications made during testing
9.5 Test i	nstrumentation
10 LIST OF	

1 JOB DESCRIPTION

1.1 Client Information

The EUT has been tested at the request of

Company: Hyundai Electronics Industrial Co., Ltd/

San 136-1, Amiri, Bubal-Eub,

Ichon-Si

Kyungki-Do, Korea

 Name of contact:
 M.K. Kim

 Telephone:
 (619) 613-6000

 Fax:
 (619) 613-6005

1.2 Equipment under test (EUT)

Equipment type: Single Band PCS CDMA Phone

Equipment class: Licensed Portable Transmitter (Held to ear)

Model number(s): HGP-230

FCC ID: CKLHGP-230

Manufacturer: SAME as above.

Use of Product : Voice communications

Production is planned: [X] Yes, [] No

Technical Specifications:

Type of Emission	1M25F9W
Modulation	CDMA
Range of RF Output	0.5 W (Peak EIRP)
Means for variation of operating power	Continuously variable
The dc voltage applied to and current	Collector Voltage: 3.6 Vdc
into the several elements of the final	
RF amplifying device	Collector Current: 400 mA
Frequency Range	1851.25 to 1908.75 MHz
Max. number of Channels	1200
Antenna	¹ / ₄ 8 Helical over ¹ / ₄ 8 whip
Detachable antenna?	No
External input	Audio

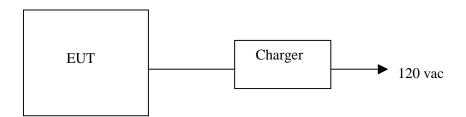
Frequency Tolerance	0.4 ppm
1 requestey 1 oferance	o.+ ppm

EUT receive date: 4/1/99

EUT received condition: Good condition prototype

Test start date: 4/2/99

Test end date: 4/5/99


1.3 Test plan reference

FCC Part 2.1033, FCC Part 24 (E)

1.4 System test configuration

1.4.1 System block diagram & Support equipment

The diagram shown below details the placement of the equipment under test on the turntable.

Support equipment					
Equp. #	Equp. # Equipment Manufacturer Model # S/N # FCC ID				
1	Battery charger	Hyunda1	NA	NA	NA

1.4.2 Justification

The system was configured for testing in a typical manner in accordance with ANSI C63.4 standard.

1.4.3 Mode(s) of operation

The EUT was powered from fully charged batteries. During tests, EUT was operating at continuous transmitting mode.

1.5 Modifications required for compliance

No modifications were implemented by Intertek Testing Services.

2 TEST SUMMARY

FCC RULE	DESCRIPTION OF TEST	RESULT	PAGE
	Transmitter S	Section	
2.1046 24.232(b)	RF Power Output (Effective Isotropic Radiated Power	0.5 W (Peak)	7
2.1047	Modulation Characteristics	N/A	8
2.1049	Occupied Bandwidth	1 MHz	9
2.1051	Field Strength of Spurious Radiation	n Passes	10
2.1053 24.236	Field Strength of Spurious Radiation	Worst case Freq.: 7520 MHz Margin: 19.1 dB	11
2.1055 24.235	Frequency Stability Vs. Temperature Vs. Voltage	0.4 ppm 0.0 ppm	15
15.107	Line Conducted Emissions	N/A	N/A
	Digital Sec	tion	
15.109(a)	Radiated Emissions	Worst case Freq.: 279.9 MHz Margin: -9.2 dB	13

3 EFFECTIVE RADIATED POWER

3.1 Test Description

Parameter:	FCC § 2.1046
Requirement:	FCC § 24.232(b)
Effective Isotropic Radiated Power (EIRP):	< 2 watts peak

3.2 Test Procedure

The EUT was positioned on a non-conductive turntable, 0.8m above the ground plane on an open test site.

The radiated emission at the fundamental frequency was measured at 3m distance with a test antenna and spectrum analyzer. During the measurement, the resolution and video bandwidth of the spectrum analyzer were set to 1 MHz. To maximize emissions, the system was rotated through 360°, the antenna height was varied from 1m to 4m, and the antenna polarization was changed.

The ERP was calculated using equation:

Where E = Field Strength (V/m),

D = Distance between two antennae(m)

$$E = \frac{\sqrt{30 \cdot P \cdot G}}{D}$$

G = Numeric Gain of Antenna (1 for isotropic antenna), P = ERP (W) = EIRP (G=1)

3.3 Test Results

Test Cor	iditions:	Antenna Gain, $G = 1.0$			Distance, $D = 3$		
Frequency	Reading	Antenna Factor	Preamp Gain	Cable Loss	Field Strength	EIRP	
MHz	$dB(\mu V)$	dB(1/m)	dB	dB	$dB(\mu V/m)$	W	
1851.2	93.7	26.2	0	2.3	122.20	0.498	
1880.0	92.7	26.2	0	2.3	121.20	0.395	
1908.8	91.4	26.2	0	2.3	119.90	0.293	

Note: $Field\ Strength = Reading + Antenna\ Factor - preamp + Cable\ loss$

3.4 Modifications made during testing

None

3.5 Test Instrumentation

[x] Hewlett Packard HP8566B Spectrum Analyzer (S.A.)

[x] EMCO 3115 Horn Antenna [] HP Pre-amp

4 MODULATION CHARACTERISTICS

Test Description 4.1

Parameter:	FCC § 2.1047
Requirement:	Not Applicable

5 OCCUPIED BANDWIDTH

5.1 Test description

Parameter:	FCC §2.1049
Requirement:	FCC § 24.238
Emission Bandwidth Limits:	At least 26 dB below the transmitter Power

5.2 Test Procedure

The antenna was disconnected from the transmitter and the short cable was connected to the transmitter RF output.

The RF output was connected to the input of the spectrum analyzer through sufficient attenuation. The resolution bandwidth (RBW) of the spectrum analyzer was set up to at least 1 MHz inside the frequency block. In the 1 MHz bands immediately outside and adjacent to the frequency block, the RBW may be reduced to at least 1% of emission bandwidth of the fundamental emission.

5.3 Test Results

Please see Exhibit 9 for the occupied bandwidth plots:

Plot Number	Description
9-1-1	Low Channel, 6 dB Bandwidth
9-1-2	Low Channel, 20 dB Bandwidth
9-2-1	Mid Channel, 6 dB Bandwidth
9-2-2	Mid Channel, 20 dB Bandwidth
9-3-1	High Channel, 6 dB Bandwidth
9-3-2	High Channel, 20 dB Bandwidth

5.4 Modifications made during testing

None

5.5 Test instrumentation

- [X] Leader LFG-1300S Function Generator
- [X] HP 8566B Spectrum Analyzer
- [X] HP 7470A Plotter

6 SPURIOUS EMISSION AT ANTENNA TERMINALS

6.1 Test description

Parameter:	FCC §2.1051
Requirement:	FCC §
Emission Limits:	43 + 10log (P) dB

6.2 Test Procedure

The antenna was disconnected from the transmitter and the short cable was connected to the transmitter RF output.

The RF output was connected to the input of the spectrum analyzer through sufficient attenuation.

6.3 Test Results

Please see Exhibit 10 for the antenna conducted spurious emission plots:

Plot Number	Description
10-1(X)	1-100 MHz
10-2(X)	100-1000 MHz
10-3(X)	1-1.85 GHz
10-4(X)	1.85 GHz band edge or 1.91 GHz band edge
10-5(X)	1.85-1.91 GHz
10-6(X)	1.91-2.5 GHz
10-7(X)	2.5 GHz –20 GHz

X=L: low channel, M: Mid channel, H: High channel

6.4 Modifications made during testing

None

6.5 Test instrumentation

[X] Leader LFG-1300S Function Generator

[X] HP 8566B Spectrum Analyzer

[X] HP 7470A Plotter

7 RADIATED SPURIOUS EMISSIONS

7.1 Test description

Parameter:	FCC §2.1053
Requirement:	FCC § 24.236, § 24.238

7.2 Test Procedure

The transmitter was placed on a wooden turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3 orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated, with measurement equipment RBW setting at 1 MHz.

The spurious harmonic attenuation was calculated as the difference between E in dB(uV/m) at the fundamental frequency and at the spurious emission frequency.

Spurious attenuation in $dB = 43 + 10Log_{10}$ (power out in Watts)

7.3 Test Results

Please see the following pages for

[X] Spurious harmonic attenuation

[X] FCC Part 15.109 Radiated Emission

SPURIOUS HARMONIC ATTENUATION

Company:	Hyundai Electronics
Project #:	J99006681
Model:	HGP 230
Engineer:	Xi-Ming Yang
Date of test:	April 2, 1999

Test Conditi	ion: cor	ntinue tran	smitting						
Frequency MHz	Antenna Pol H/V	Reading Factor dB(uV)	Antenna dB(1/m)	Cable Loss dB	PreAmp dB	Distance Factor dB(uV/m)	Field Strength dB	Spurious Attenuation dB	Margin dB
		<u>ub(u+)</u>	GD (1/111)		<u> </u>	<u>ab(a v/iii)</u>		<u></u>	
Fundamenta	al Frequenc	cy =1851.2	25 MHz, Fi	eld Stre	ngth =118.5	dBuV/m			
3703.4	H	21.4	32.0	2.8	0.0	0.0	56.2	62.3	25.4
5553.8	H	48.0	34.4	3.7	-28.3	0.0	57.8	60.7	23.8
7404.9	H	46.0	37.5	4.6	-28.0	0.0	60.1	58.4	21.5
9256.2	H	37.0	37.9	5.1	-27.0	0.0	53.0	65.5	28.6
11107.0	H	46.0	38.4	5.9	-39.9	0.0	50.4	68.1	31.2
12958.5	H	37.0	40.2	6.1	-39.2	0.0	44.1	74.4	37.5
14810.3	H	34.0	39.0	6.7	-37.4	0.0	42.3	76.2	39.3
16661.4	H	35.0	39.5	7.0	-39.4	0.0	42.1	76.4	39.5
18512.6	H	38.0	40.2	7.5	-23.3	-9.5	52.9	65.6	28.7
Fundamenta	al Frequenc	ev =1880.0	MHz. Fie	ld Stren:	gth =117.8 d	lBuV/m			
		.,							
3760.1	Н	20.0	32.0	2.8	0.0	0.0	54.8	63.0	26.8
5640.0	Н	45.3	34.4	3.7	-28.3	0.0	55.1	62.7	26.5
7520.0	H	48.4	37.5	4.6	-28.0	0.0	62.5	55.3	19.1
9400.0	H	40.8	37.9	5.1	-27.0	0.0	56.8	61.0	24.8
11280.0	H	46.0	38.4	5.9	-39.9	0.0	50.4	67.4	31.2
13160.0	H	35.0	40.2	6.1	-39.2	0.0	42.1	75.7	39.5
15040.0	H	35.6	39.0	6.7	-37.4	0.0	43.9	73.9	37.7
16920.0	H	35.0	39.5	7.0	-39.4	0.0	42.1	75.7	39.5
18800.0	H	38.0	40.2	7.5	-23.3	-9.5	52.9	64.9	28.7
Fundamenta	al Frequenc	v =1908.7	5 MHz. Fi	eld Strei	noth =117.3	dRuV/m			
<u> </u>	ar r requein	., -1700.1	C IVIIII II		<u> </u>	424 1/III			
3817.5	Н	20.1	32.0	2.8	0.0	0.0	54.9	62.4	26.2
5736.3	H	44.9	34.4	3.7	-28.3	0.0	54.7	62.6	26.4
7635.1	H	47.2	37.5	4.6	-28.0	0.0	61.3	56.0	19.8
9543.9	H	37.0	37.9	5.1	-27.0	0.0	53.0	64.3	28.1
11452.5	H	44.4	38.4	5.9	-39.9	0.0	48.8	68.5	32.3
13361.3	H	36.0	40.2	6.1	-39.2	0.0	43.1	74.2	38.0
15270.0	H	35.0	39.0	6.7	-37.4	0.0	43.3	74.0	37.8
17178.8	H	34.0	39.5	7.0	-39.4	0.0	41.1	76.2	40.0
19087.5	Н	37.0	40.2	7.5	-23.3	-9.5	51.9	65.4	29.2

Note:	1.	All measurement were ma	ade at 3 meters	unless otherw	ise specified in	the "Distance	E Factor .	9.5dB = 1	m)
11010.	1.	1 111 III Casarcincin were in	ade at 5 meters	unicos otner w	isc specifica in	uic Distance	or actor.	7.5uD - 1	

2. All readings are average readings.

FCC PART 15.109 RADIATED EMISSION

Test Condition: Receiving mode

Frequency range investigated: 30 to 1000 MHz.

Frequency	Antenna Polarity	Reading	Antenna Factor	Cable Loss	Pre-amp	Corrected Reading	Limit	Margin
MHz	H/V	dB(uV)	dB(1/m)	dB	dB	dB(uV/m)	dB(uV/m)	dB
108.0	V	13.0	11.9	0.0	0.0	24.9	43.5	-18.6
135.0	Н	16.9	11.6	0.0	0.0	28.5	43.5	-15.0
279.9	Н	13.0	23.8	0.0	0.0	36.8	46.0	-9.2
422.0	V	14.0	22.6	0.0	0.0	36.6	46.0	-9.4
486.0	Н	10.0	22.3	0.0	0.0	32.3	46.0	-13.7
594.0	Н	10.0	23.9	0.0	0.0	33.9	46.0	-12.1

Note: 1. All measurement were made at 3 meters

Negative signs (-) in the margin column signify levels below the limit. 2.

7.4 Modifications made during testing

None

7.5 Test instrumentation

- [X] CDI B100/200/300 Biconical Antennas
- [X] EMCO Bi-logcon Antenna
- [X] EMCO 3115 Horn Antenna
- [X] HP 8566B Spectrum Analyzer
- [X] Preamplifiers

8 FREQUENCY STABILITY

8.1 Test description

Parameter:	FCC §2.1055
Requirement:	FCC § 24.235
Frequency Tolerance:	Sufficient to ensure that the fundamental emission stays within the authorized frequency block

8.2 Test Procedure

The ppm frequency error of the transmitter was calculated by:

$$ppm\ error = \left(\frac{MCF}{ACF} - 1\right) \cdot 10^6$$

Where MCF is the Measured Carrier Frequency in MHz ACF is the Assigned Carrier Frequency in MHz

8.2.1 Frequency Stability vs. Temperature

The equipment under test was connected to an external DC power supply and the RF output was connected to a frequency counter via feedthrough attenuators. The EUT was placed inside the temperature chamber.

After the temperature stabilized for approximately 20 minutes, the frequency of the output signal was recorded from the counter.

8.2.2 Frequency Stability vs. Voltage

At room temperature (25 ± 5 °C), an external variable DC power supply was connected to the EUT. The frequency of the transmitter was measured for 115%, 100% and 85% of the nominal operating input voltage.

8.3 **Test Results**

Frequency Stability vs Temperature					
ACF (MHz):	1880.000056				
Temperature, C	MCF (MHz)	PPM Error			
50	1880.00051	0.241489355			
40	1880.00036	0.161702123			
30	1879.99991	-0.077659572			
20	1879.99996	-0.051063828			
10	1880.00026	0.108510635			
0	1880.0006	0.289361693			
-10	1880.00068	0.331914884			
-20	1880.0005	0.236170206			
-30	1880.0008	0.395744669			

Frequency Stability vs Voltage					
ACF (MHz):	ACF (MHz): 1880.000056				
%	Voltage	MCF (MHz)	PPM Error		
115	4.20	1880.000056	0.00		
100	3.60	1880.000056	0.00		
Battery Endpoint	3.20	1880.000056	0.00		

Modifications made during testing **8.4**

None

8.5 **Test instrumentation**

[X] Data provided by applicant	
[] Temperature Chamber, -50C to +100C [] Hewlett Packard 5383A Frequency Cou [] Tektronix 2784 Spectrum Analyzer [] Goldstar DC Power Supply, GR303	nter

9 AC LINE CONDUCTED EMISSIONS

9.1 Test description

Parameter:	ANSI C63.4
Requirement:	FCC § 15.107

9.2 Test Procedure

The EUT was connected to the DC power supply, that was connected to the AC line through the LISNs.

Both HOT and NEUTRAL leads were tested.

9.3 Test Results

[X] Passed. The test result is attached in Exhibit 12.

9.4 Modifications made during testing

None

9.5 Test instrumentation

[] HP 8566B Spectrum Analyzer
[] LISN

10 LIST OF EXHIBITS

The following exhibits are listed as reference only and are submitted as separate attachments:

Exhibit 1	ID Label Format, ID Label Location
Exhibit 2a	Equipment Photographs (External)
Exhibit 2b	Equipment Photographs (Internal)
Exhibit 3	Block Diagram
Exhibit 4	Circuit Diagram
Exhibit 5	Theory of Operation. Description of all circuitry and devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation, and for limiting power.
Exhibit 6	Tune up Procedure over the power range
Exhibit 7	Test Setup Photos
Exhibit 8	Instruction Manual
Exhibit 9	RF Power Output Plots
Exhibit 10	Bandwidth Plots
Exhibit 11	Spurious Emission at Antenna Terminals
Exhibit 12	SAR Report
Exhibit 13	AC Conducted Emission Test Data