2. System Configuration

Chapter 2. System Configuration

2.1 Components

A list of components and optional accessories is shown below.

Components of the Display Unit

Table 2.1.1 The list of components of the Display Unit

		Unit	Type name	Q'ty	Remarks	
LCD		(JMR-92XX/JAN-92XX)	NWZ-208		26inch LCD monitor	
	monitor	(JMR-72XX/JAN-72XX)	NWZ-207	1	19inch LCD monitor	
To	ouch Panel	(JMR-92XX/JAN-92XX)	NWZ-208-TP	1	Option 26inch	
monitor		(JMR-72XX/JAN-72XX)	NWZ-207-TP		Option 19inch	
			NCM-928	1	Standard Equipment	
	Power Supply Uni	t	NBD-913	1	Standard Equipment	
			NDC-1590	1	Standard Equipment	
		8GB System SSD	CDD-752	1		
		256GB Data SSD	CDD-753	1	1	
		DVD Drive	CDD-754	1	1	
		HASP	CYC-344	1	1	
		e-Token	CYC-735	1	1	
	Central Control	Central Processing Circuit	CDC-1410	1	Included in the	
	Unit	CCU Interface Circuit	CMH-2406	1	NDC-1590	
Control		CCU Interface Terminal	CQD-2286	1	1	
Unit		CCU Interconnection	CML-902	1	1	
Ornic		COM Express Board	CMC-1406	1	1	
		WES7P Licence	CYC-847	1 1	1	
		TMSL Licence	CYC-848	1	1	
		TIVOL LICENCE	NCE-5605	1	Standard Equipment	
		Operation Circuit A	CCK-1050	1	Standard Equipment	
	Trackball	Trackball	CCK-1050		-	
	Operation			1	Inclueded in the	
	Unit	Operation Circuit SW	CCK-1069	1	NCE-5605	
		Operation Circuit CN	CCK-1070	1	4	
		TOPU Interconnection	CMD-1103	1	0.5.405.505045.4500	
		[a	NCE-5625	1	Option(NCE-5625 or CWB-1593)	
Kevboai	rd Operation Unit	Operation Circuit B	CCK-1059	1	Included in the NCE-5625	
,	•	Option Keyboard	CCK-1061	1		
		KOPU Interconnection	CMD-1106	1		
L	arge Tray		CWB-1593	1	Option(NCE-5625 or CWB-1593)	
		QUINT-PS/1AC/24DC/20	-	1		
	UPS QUINT-BAT/24DC/3.4AH		-	1	Option	
	Or S	QUINT-DC-UPS/QUINT20	-	1	Ориоп	
		ME-MAX-NEF/QUINT20	-	1		
			NQE-1143	1	Option	
		Serial LAN Circuit	CMH-2370	max 2	Option	
		Analog Option Circuit	CMJ-560	1	Option	
	lunation	Gyro Interface Circuit	CMJ-554	1	Option	
	Junction	Radar Interface Circuit	CQD-2273	1	Option	
	Box	Scanner AC Power Cable	CML-836AC		Amu and of the control of	
		Scanner AC Power Cable(F)	CML-836ACF	\neg	Any one of these cables	
		Scanner DC Power Cable		1	include to the	
		Scanner DC Power Cable(F)	CML-836DC CML-836DCF		CQD-2273	
Sensor LAN Switch Unit			NQA-2443	max 2	Option In case of standalone type 26inch:max 2 19inch:only 1	
		16Port Switch HUB	CQL-221	1	Included in the	
		Sensor LAN Switch Interconnection	n CML-841	1	NQA-2443	

Table 2.1.2 The list of components of the Display Unit

	Unit			Remarks
	26inch Display Mount Kit	CWA-246	1	For 26inch Monitor
Stand alone type	19inch Display Mount Kit	CWA-245	'	For 19inch Monitor
Stand-alone type Frame & Cables	Display Unit Interconnection	CML-901	1	Cables for stand-alone
	Relay Terminal	CQD-2312	1	For AC/DC Power distribution
	Touch Panel Interconnection	CML-839	1	Option
	26inch Desktop Frame	CWB-1595	1	For 26inch Monitor
Desktop type	19inch Desktop Frame	CWB-1594	'	For 19inch Monitor
Frame & Cables	OPU Desktop Frame	CWB-1596	1	For operation unit
Frame & Cables	Display Unit Interconnection(F)	CML-901-F	1	Longer than CML-901
	Touch Panel Interconnection(F)	CML-839-F	1	Option
Flush-mount type	Display Unit Interconnection(F)	CML-901-F	1	Longer than CML-901
Cables	Touch Panel Interconnection(F)	CML-839-F	1	Option
letere wite b. I. leit	4ch	NQE-3141-4A	1	Option
Interswitch Unit	8ch NQE-3141-8A		1	Option
Power Control Unit	-	NQE-3167	1	Option
Digital Cignal Canyonton	32ch	NCT-82		Option
Digital Signal Converter	64ch	NCT-83	1	Option
Buzzer Unit		CGC-25	1	Option TCS Buzzer
Remote monitor display	RGB Video Distribution Amplifier	VAC-2001HB-A	1	Option
connection	Monitor Extension Kit	CFQ-5957	1	Option
Cover	(JMR-92XX/JAN-92XX)	CWB-1621	1	Ontion
Cover	(JMR-72XX/JAN-72XX)	CWB-1619	 1	Option
l le e el	(JMR-92XX/JAN-92XX)	CWB-1620	1	Option
Hood	(JMR-72XX/JAN-72XX)	CWB-1618	1	Option
Accessory	CD Cleaner	7ZZNA0426B	1	Packing 1 box
•	NBD-913 Spare Parts	7ZXNA4021	1	Packing 1 box
	CMH-2370 Spare Parts	7ZXNA4020	1	Option
Spare Parts	CMJ-554 Spare Parts	7ZXNA4022	1	Option
·	7HPNA4003 Printer spare parts	7ZXNA4011	1	Option
	NCT-82/83 Spare Parts	7ZXNA4017	1	Option
Deinton	Printer	7HPNA4003	1	Ontion
Printer	L-Type Stopper(Printer fixture)	QL-58	1	Option

Manuals

Table 2.1.3 The list of Manuals

Model	Title	Code	Remarks
	JMR-7200/9200 Series Marine Radar Equipment	7ZPNA4446*1	Standard
	Instruction Manual <basic operation=""> (1/3) *English</basic>	72F NA4440 T	Equipment
	JMR-7200/9200 Series Marine Radar Equipment	7ZPNA4447*1	Standard
	Instruction Manual <function> (2/3) *English</function>	72110(4447)	Equipment
	JMR-7200/9200 Series Marine Radar Equipment	7ZPNA4448*1	Standard
	Instruction Manual <reference> (3/3) *English</reference>	72110111101	Equipment
JMR-7200/9200	JMR-7200/9200 Series Marine Radar	7ZPNA4395*1	Standard
Series	Equipment Quick Operation Guide *English	12.101.000	Equipment
Selles	JMR-7200/9200 Series JAN-7201/9201 Marine Radar Equipment	7ZPNA4461*1	Option
	ECDIS Additional Manual for Chart Installation *English	72110111011	Орион
	JMR-7200/9200 Series JAN-7201/9201 JAN-7202/9202	7ZPNA4466*1	Option
	Marine Radar Equipment ECDIS Conning Display Installation Manual *English	12.101.100	07
	JMR-7200/9200 Series JAN-7201/9201 JAN-7202/9202	7ZPNA4467*1	Option
	Marine Radar Equipment ECDIS Conning Display Field Service Manual *English	12.1011101	
	JAN-7201/9201 ECDIS	7ZPNA4449*1	Standard
	Instruction Manual <basic operation=""> (1/3) *English</basic>	12.101110	Equipment
	JAN-7201/9201 ECDIS	7ZPNA4450*1	Standard
	Instruction Manual <function> (2/3) *English</function>	72110111001	Equipment
	JAN-7201/9201 ECDIS	7ZPNA4451*1	Standard
	Instruction Manual <reference> (3/3) *English</reference>		Equipment
	JAN-7201/9201 ECDIS Quick Operation Guide *English	7ZPNA4405*1	Standard
			Equipment
	JMR-7200/9200 Series JAN-7201/9201	7ZPNA4461*1	Option
JAN-7201/9201	Marine Radar Equipment ECDIS Additional Manual for Chart Installation *English		
	JAN-7201/9201 ECDIS Additional Manual for Automatic Sailing	7ZPNA4462*1	Option
	YOKOGAWA Autopilot PT500A TCS model Category B/C *English		
	JAN-7201/9201 ECDIS Additional Manual for Automatic Sailing	7ZPNA4463*1	Option
	TOKYO KEIKI Autopilot PR-6000/9000 TCS model Category B/C *English		·
	JAN-7201/9201 ECDIS Type Specific ECDIS Training Reference for TCS *English	7ZPNA4464*1	Option
	JMR-7200/9200 Series JAN-7201/9201 JAN-7202/9202		
	Marine Radar Equipment ECDIS Conning Display Installation Manual *English	7ZPNA4466*1	Option
	JMR-7200/9200 Series JAN-7201/9201 JAN-7202/9202		
	Marine Radar Equipment ECDIS Conning Display Field Service Manual *English	7ZPNA4467*1	Option
	I Radai Equipment ECDIS Conting Display Field Service Mandai English		Standard
	JAN-7202/9202 Conning Display Instruction Manual *English	7ZPNA4452*1	Equipment
	JMR-7200/9200 Series JAN-7201/9201 JAN-7202/9202		Equipment
JAN-7202/9202	Marine Radar Equipment ECDIS Conning Display Installation Manual *English	7ZPNA4466*1	Option
	JMR-7200/9200 Series JAN-7201/9201 JAN-7202/9202		
	Marine Radar Equipment ECDIS Conning Display Field Service Manual *English	7ZPNA4467*1	Option
	I/VARC) is added to the end of each type name		

^{*1} Revision symbol(A,B,C..) is added to the end of each type name.

Radar Antenna Types and Specifications

Table 2.1.4 The list of Radar Antenna Types and Specifications

Radar antenna type	Radio wave type	ft	Transmitter- receiver unit	Transmitting power	Band	Power supply	Rate of rotation	Category
NKE-1632	P0N,Q0N	12	-	250W	S	AC	24rpm	CAT 1C
NKE-2632	P0N,Q0N	8	-	250W	S	AC	24rpm	CAT 1C
NKE-2632-H	P0N,Q0N	8	-	250W	S	AC	48rpm	CAT 1C
NKE-1139	P0N	12	NTG-3230	30kW	S	AC	24rpm	CAT 1C
NKE-1130	P0N	12	-	30kW	S	AC	24rpm	CAT 1C
NKE-1129-9	P0N	9	NTG-3225	25kW	Х	AC	24rpm	CAT 1C
NKE-1129-7	P0N	7	NTG-3225	25kW	Х	AC	24rpm	CAT 1C
NKE-1125-9	P0N	9	-	25kW	Х	AC	24rpm	CAT 1C
NKE-1125-6	P0N	6	-	25kW	Х	AC	24rpm	CAT 1C
NKE-2254-6HS	P0N	6	-	25kW	Х	DC	48rpm	CAT 1C
NKE-2103-6	P0N	6	-	10kW	Х	DC	27rpm	CAT 1C
NKE-2103-6HS	P0N	6	-	10kW	Χ	DC	48rpm	CAT 1C

General Type Name

Table 2.1.5 The list of General Type Name

		1		1	Τ
General type name	Model	Radar antenna	Transmitter- receiver unit	Display	Ship's mains
JMR-9272-S *		NKE-1632	-		Specify
JMR-9282-S *		NKE-2632	-		100-115VAC
JMR-9282-SH *		NKE-2632-H	-		or
JMR-9230-S3	-	NKE-1139	NTG-3230		220-240VAC
JMR-9230-S		NKE-1130	-		when ordering.
JMR-9225-9X3		NKE-1129-9	NTG-3225		50/60 Hz
JMR-9225-7X3	RADAR/MFD	NKE-1129-7	NTG-3225	26inch	Single phase
JMR-9225-9X		NKE-1125-9	-	NWZ-208	
JMR-9225-6X		NKE-1125-6	_	14472 200	24VDC
314114-9223-07		NICE-1125-0	_		(For backup)
JMR-9225-6XH		NKE-2254-6HS	-		AC wide range
JMR-9210-6X		NKE-2103-6	-		Input
JMR-9210-6XH		NKE-2103-6HS	-		
JAN-9201	ECDIS	-	-		24VDC
JAN-9202	Conning	-	-		(For backup)
JMR-7272-S		NKE-1632	-		Specify
JMR-7282-S		NKE-2632	-		100-115VAC
JMR-7282-SH		NKE-2632-H	-		or
JMR-7230-S3		NKE-1139	NTG-3230		220-240VAC
JMR-7230-S		NKE-1130	-		when ordering.
JMR-7225-9X3		NKE-1129-9	NTG-3225		50/60 Hz
JMR-7225-7X3	RADAR/MFD	NKE-1129-7	NTG-3225	19inch	Single phase
JMR-7225-9X		NKE-1125-9	-	NWZ-207	
JMR-7225-6X		NKE-1125-6	_	11112 201	24VDC
514II (1225-07)		11120-0	_		(For backup)
JMR-7225-6XH		NKE-2254-6HS	-		AC wide range
JMR-7210-6X		NKE-2103-6	-		Input
JMR-7210-6XH		NKE-2103-6HS	-		
JAN-7201	ECDIS	-	-		24VDC
JAN-7202	Conning	-	-		(For backup)

^{*} JMR-9272-S and JMR-9282-S/SH are Solid state RADARs.

Option list of radar antenna

Table 2.1.6 Option list of radar antenna

Name	Model name	Remarks
	NJU-84	For S-band radars excluding NKE-1632, 2632 and
Performance monitor		2632-H
	NJU-85	For X-band radars
4 unit switching interswitch	NQE-3141-4A	Separate unit
8 unit switching interswitch	NQE-3141-8A	Separate unit (special order)
Power control unit NQE-3		Separate unit

Note:

- 1. The drive motor for the radar antenna is available in 100-115VAC 50/60 Hz single phase or 220-240VAC 50/60 Hz single phase type for NKE-1632/2632/1139/1130/1129/1125/2254/2103 series. Please specify the power source type when ordering.
- 2. The radar antenna can be equipped with anti-icing system (neck heater) as an option, and '-D' shall be suffixed to the type name ('-D' or '-E' shall be suffixed to NKE-1632, NKE-2632, and

NKE-2632-H.). '-D' · · · 100 V ac (50/60Hz) '-E' · · · 220 V ac (50/60Hz)

Reference:

The suffix(s) in the type name is/are changed by applying motor voltage, anti-icing system, etc.

(Example) NKE-1130-1D

D: Attached anti-icing system
1: Motor voltage 100-115Vac (50/60Hz)
2: Motor voltage 220-240Vac (50/60Hz)

- 3. When using the ship's mains of 440VAC as the radar power source, a step-down transformer shall be used.
- 4. The following are the each unit name on the one's plate:

Rader antenna SCANNER UNIT

Transmitter-receiver unit TRANSMITTER-RECEIVER UNIT

Display section MONITOR UNIT

Track ball operation section TRACK BALL OPERATION UNIT Keyboard operation section KEYBOARD OPERATION UNIT Central processing section CENTRAL CONTROL UNIT Power supply section POWER SUPPLY UNIT

Junction box JUNCTION BOX

Rader LAN switch section RADAR LAN SWITCH UNIT Sensor LAN switch section SENSOR LAN SWITCH UNIT

Cradle frame CRADLE FRAME

5. In JMR-9225-9X3/JMR-9225-7X3 and JMR-7225-9X3/JMR-7225-7X3, the following type name of JRC is used for the waveguide between the transmitter-receiver unit and the radar antenna.

Waveguide Length Type name of JRC FR-9 20MT H-7AWRD0003 FR-9 30MT H-7AWRD0004

6. In JMR-9230-S3 and JMR-7230-S3, the following type name of JRC is used for the coaxial cable between the transmitter-receiver unit and the radar antenna.

Coaxial cable Length Type name of JRC HF-20D 30MT HF-20D (30MT)

2.2 Power System Diagram

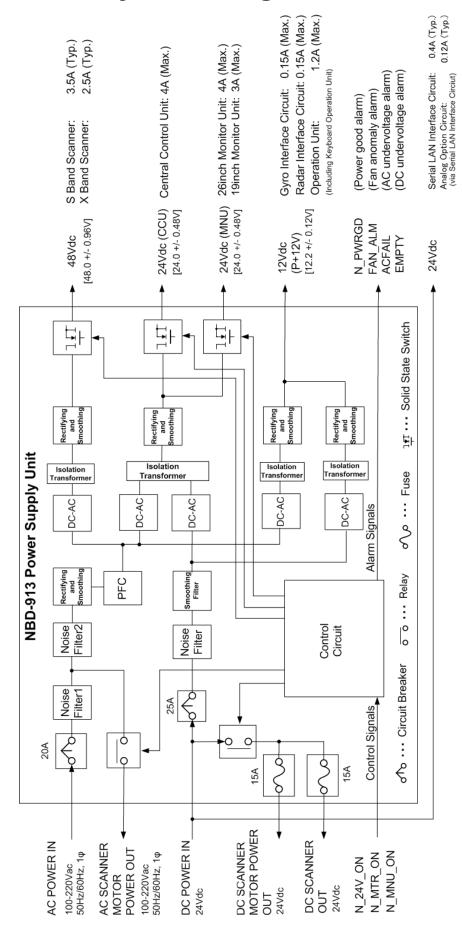


Fig. 2.2.1 The Power System Diagram

Table. 2.2.1 General Specification of Power Supply Unit NBD-913

GENERAL SPECIFICATION	NBD-913: Power Supply Unit
AC Input	
Voltage	100 to 115VAC, 50/60Hz, single phase
	220 to 240VAC, 50/60Hz, single phase
Voltage Range	85 to 264VAC
Overvoltage Protection	295VAC ±2V
Input Current	Max 6.8A(100VAC) / 3.4A(220VAC)
Over current Protection	YES
DC Input	
Voltage	24VDC
Voltage Range	21.6 to 31.2VDC
Overvoltage Protection	42V
Input Current	Max 16A
Over current Protection	YES
Rated Output	
Output 1	12.0V ±0.24V 2A
Output 2A (for CCU)	24.0V ±0.48V 4A
Output 2B (for MNU)	24.0V ±0.48V 6A
Output 3 (for TXRX)	48.0V ±0.96V 4A
Mechanical	
Dimension	Width 400 x Depth 240 x Height 85 (mm)
Mass	4.2kg
FAN	2
Environment	
Operational Temperature	-15°C to +55°C
Operational Humidity	40°C RH 93%
Vibration	Sweep 2Hz to 13.2Hz at ± 1mm, 13.2Hz to
	100Hz at 7m/s2 and for 2h on each resonance,
	otherwise 2h at 30Hz in all three axes
EMC	IEC60945-Ed4.0
Ingress Protection Rating	IP20

The power system diagram is shown in Fig. 2.2.1.

PSU (Power Supply Unit: NBD-913) supplies power to the Scanner Unit and Display Unit which consists of MNU(Monitor Unit), CCU (Central Control Unit), OPU(Operation Unit), and JB(Junction Box). The lists of Input/Output features of the PSU are given in Table 2.2.2 and Table 2.2.3.

Table 2.2.2 The list of PSU input section

Input	Detail				
AC Input					
Voltage	100 to 115Vac				
	220 to 240Vac				
Voltage ranges	85 to 264VAC				
Overvoltage Protection	295VAC±2V,				
Frequency	50Hz / 60Hz				
Input Current	Max 6.8A(100VAC) / 3.4A(220VAC)				
Over current Protection	equipped				
DC Input					
Voltage	24Vdc				
Voltage ranges	21.6 to 31.2Vdc				
Overvoltage Protection	42V				
Input Current	Max 16A				
Over current Protection	equipped				
Control Signals					
	CCU power control signal.				
N_24V_ON	Open Collector Input.				
	Logic Level L: 24Vdc (CCU) ON.				
	Scanner unit power control signal.				
N MTR ON	Open Collector Input.				
N_WITK_ON	Logic Level L: 100-220Vac, 48Vdc, 24Vdc (M+. M-), and				
	24Vdc (1A, 2A) ON.				
	Monitor unit power control signal.				
N_MNU_ON	Open Collector Input.				
	Logic Level L: 24Vdc (MNU) ON.				

Table 2.2.3 The list of PSU output section

Output	For	Detail		
AC Output		2 3 1 1 1 1		
100-220Vac	AC Scanner	Through output.		
50/60Hz	Motor	Overcurrent protection by a circuit breaker.		
Single phase		S volcament protocolon by a should broaken		
DC Output				
		Overvoltage and overcurrent protection by a solid		
48Vdc	AC Scanner	state switch.		
24Vdc	DC Scanner	Through output.		
(M+, M-)	Motor	Overcurrent protection by a blade fuse.(15A)		
24Vdc		Through output.		
(1A, 2A)	DC Scanner	Overcurrent protection by a blade fuse.(15A)		
		Overvoltage and overcurrent protection by a solid		
24Vdc (CCU)	CCU	state switch.		
		Overvoltage and overcurrent protection by a solid		
24Vdc (MNU)	MNU	state switch.		
12Vdc	CCU, OPU,	Standby output.		
(P+12V)	GIF, RIF			
Alarm Signals				
		AC input low voltage alarm.		
A O FA II	0011	Open Collector Output		
AC FAIL	CCU	Logic Level H (within 40ms) :100-220Vac IN is less		
		than 75Vac typ.		
		DC input low voltage alarm.		
DO EMPTY	0011	Open Collector Output		
DC EMPTY	CCU	Logic Level H (within 40ms) : 24Vdc IN is less than		
		18Vdc typ.		
		Fan anomaly alarm.		
FAN_ALM	CCU	Open Collector Output		
		Logic Level H: the Fan motor anomaly.		
		Power good signal.		
		Open Collector Output.		
N_PWRGD	CCU	Logic Level H: PSU has low output voltage under		
		output anomaly (overvoltage, overcurrent) or inner		
		temperature anomaly.		

PSU Input Section

To drive PSU, AC power input, DC power input, and control signal inputs are required.

The ship's AC power supply is input to each stabilized power supply circuit via a circuit breaker and a line filter, and generates the required voltage. If only DC power (24Vdc) is input to PSU, It will not generate 48Vdc. Each power supply circuit is a highly efficient switching power supply circuit.

PSU is equipped with overvoltage protection. If the input voltage exceeds the set upper limit, the circuit breaker trips to prevent the excessive voltage from being applied to the system. It is not necessary to change input voltage setting of 100 or 220Vac because PSU has a wide range AC input.

Control signals are used to control the outputs which are 100-220Vac, 48Vdc, 24Vdc(M+, M-), 24Vdc(1A, 2A), 24Vdc(MNU), 24Vdc(CCU). They are open collector signals.

The control signals are the follows:

N_24V_ON : CCU power control signal

N_MTR_ON : Scanner unit power control signal N_MNU_ON : Monitor unit power control signal

PSU Output Section

The Outputs of PSU are 100-220Vac, 48Vdc, 24Vdc (M+, M-), 24Vdc (1A, 2A), 24Vdc (MNU), 24Vdc (CCU), 12Vdc (P+12V), and alarm signals.

12Vdc (P+12V) power supply operates even when the operating unit is turned off. This power supply is used in functions such as the control circuit of the power supply circuit and the interswitch control function.

When the power switch of OPU is turned on, PSU used in the system is activated and outputs power at the following voltages:

24Vdc (MNU) : for Monitor Unit

24Vdc (CCU) : for Central Control Unit

100-220Vac and 48Vdc power supply for the AC scanner power are output independently from the power for the system itself. When N_MTR_ON the scanner unit power control signal is input from the interswitch unit, 100-220Vac and 48Vdc power supply come on. Where the interswitch function is not used, these actions are linked to the power switch of OPU. 48Vdc power supply is used in the internal control circuit of the AC scanner unit and in the transmitter-receiver unit. It is the same for DC scanner power. In DC scanner, 24Vdc (M+, M-) and 24Vdc (1A, 2A) are used.

Each power supply output has output overcurrent protection, so that if there is a short circuit of the load or the rated output is exceeded, protective functions are activated and shut down the output.

The system is equipped with a function to provide notification that the ship's AC power supply is shut off. Connecting the system to the ship's battery (24V) makes it possible for an alarm to be sounded from the OPU when the ship's AC power supply is shut down.

The alarm signals are the follows:

ACFAIL : AC input undervoltage alarm
DC EMPTY : DC input undervoltage alarm

FAN_ALM : Fan anomaly alarm N_PWRGD : Power good signal

2.3 Function System Diagrams

2.3.1 Scanner unit / transmitter-receiver unit

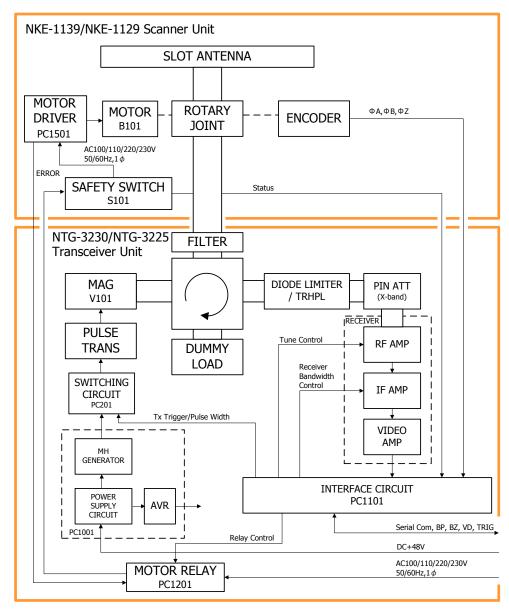


Fig. 2.3.1 Function Diagram of 3-unit Scanner/Transmitter-Receiver unit

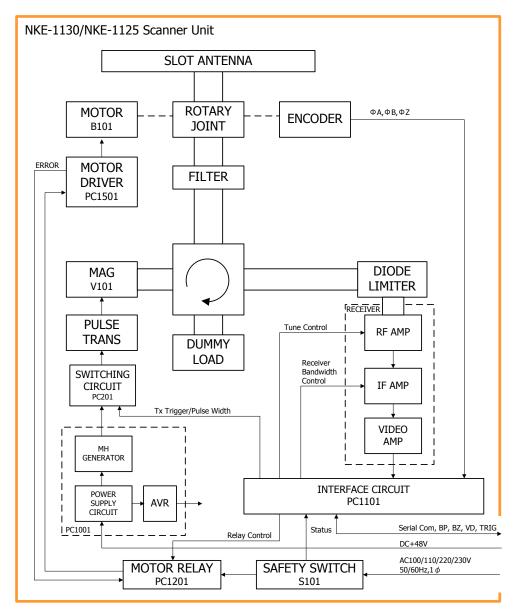
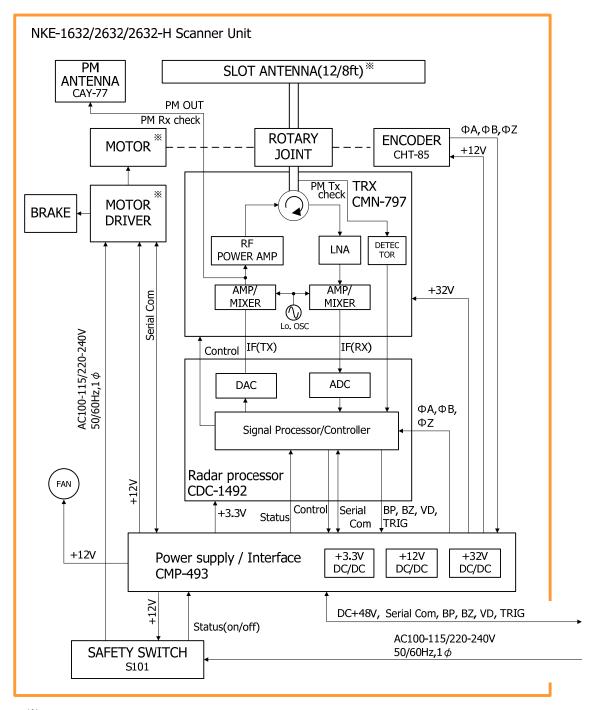



Fig. 2.3.2 Function Diagram of 2-unit Scanner/Transmitter-Receiver unit

SLOT ANTENNA: 12ft(for NKE-1632) 8ft(for NKE-2632/2632-H) MOTOR : MDBW10832(for NKE-1632/2632)

MDBW10967(for NKE-2632-H) MOTOR DRIVER: CBD-1949(for NKE-1632/2632)

CBD-1950(for NKE-2632-H)

Fig. 2.3.3 Function Diagram of Solid state Scanner/Transmitter-Receiver unit

Fig. 2.3.1, Fig. 2.3.2, and Fig. 2.3.3 show the function system diagram for the scanner unit / transmitter-receiver unit of 3-unit, 2-unit, and 2-unit solid state respectively. In the 3-unit type, the transmitter-receiver unit is installed indoors, away from the scanner unit. In the 2-unit type, the transmitter-receiver unit is installed inside the scanner unit.

Magnetron Scanner Unit

When the +48V power supply in the display unit starts, the power supply circuit in the transmitter-receiver unit activates and power is supplied to the circuits in the scanner unit and the transmitter-receiver unit. Once the power supply starts, the CPU in the interface circuit starts and perform initial settings. Then the preheating of the magnetron begins, and the transmitter-receiver unit waits for a communication signal to be sent from the display unit. When it receives the communication signal from the display unit, a communication link is established, and the scanner unit and the transmitter-receiver unit are subsequently controlled from the display unit.

While the magnetron is preheating, the interface circuit sets the operation of the various circuits in the transmitter-receiver unit according to the initial setting values it receives from the display unit. When the preheating is complete, the transmitter-receiver unit notifies the display unit. When the user performs the operation to start transmission, the display unit sends the transmission start command via the communication line and the transmitter-receiver unit starts the rotation of the antenna motor and begins transmission.

A transmission timing pulse is generated in the interface circuit, which is input to the modulator switching circuit for high voltage switching. The pulse transformer further increases the voltage of the high-voltage pulse, and the high voltage is applied to the magnetron. In this way, pulse-modulated microwaves are obtained. The pulse width of the radar wave and the pulse-repetition frequency are specified by means of control commands from the display unit.

The radar wave passes through a duplexer circuit that uses a circulator and then through a rotary joint, before being transmitted into the air from the antenna. A signal reflected from a target is input from the antenna to the receiving block using the duplexer function. The received signal is amplified before being converted to the IF frequency, after which logarithmic detection is performed and the signal becomes a radar video signal. If the receiving tuning function is set to the auto mode, the interface circuit processes the received signal and automatically controls the tuning voltage so as to match the optimum local frequency.

When the interface circuit turns on the scanner unit relay, AC power is supplied to the motor driver circuit and the antenna motor rotates. If the safety switch is off, the power supplied to the motor driver is forcibly shut off, stopping the rotation of the antenna motor. The beam azimuth of the antenna is detected by the encoder.

The received radar video signal, the transmission timing signal, and the antenna rotation signal are all sent to the display unit. The radar video signal is an unprocessed log-compressed signal. The antenna rotation signal is an incremental signal which uses the 2048 pulse/rotation pulse and the azimuth reference pulse.

When a set period of time has elapsed after the communication signal from the display unit has

stopped, the interface circuit switches to the protection mode and forcibly stops transmission and the rotation of the antenna.

When the radiator is subjected to external force of wind (corresponding wind speed is greater than 51.5m/s) that exceed the ability to drive the scanner unit, the scanner unit stop to drive the motor. Because a built-in overload protection circuit is activated. If the scanner unit rotates by the wind in a counterclockwise direction, the TXRX[Reverse] alarm will be appeared, and stop to transmit. If the scanner unit rotates by the wind in a clockwise direction, the scanner unit stops to drive the motor. Therefore the TXRX[AZI] alarm will be appeared when the wind is calm down.

When the corresponding wind speed is less than or equal to 51.5m/s, the break circuit (in the scanner unit) can reduce the scanner rotation speed to 11rpm less than, therefore the radar can transmit normally.

Solid state Scanner Unit

Fig. 2.3.3 shows the Function diagram of Solid state scanner unit.

Solid state scanner unit consists of motor drive unit, transceiver/receiver unit, and power supply unit. It constructs 2-unit type marine radar equipment by connecting with the display unit.

When the +48V power supply in the display unit starts, the power supply circuit in the solid state scanner unit activates and power is supplied to each circuits of it. Once the power supply starts, the CPU in the Radar processor unit CDC-1492 starts and performs initial settings. Then it waits for a communication signal to be sent from the display unit. Solid state scanner does not need preheating. When it receives the communication signal from the display unit, a communication link is established, and the scanner units are subsequently controlled from the display unit.

When the Radar processor received range table data that includes information such as the pulse width of the radar wave and the pulse-repetition frequency, it starts the function setting sequence corresponding to designated transmission and reception spec. When the function setting sequence is finished, the Radar processor notifies the transmission and reception preparation completion status to the display unit.

When the user performs the operation to start transmission, the display unit sends the transmission start command via the communication line and the scanner unit starts the rotation of the antenna motor and begins transmission.

Since solid state scanner unit does not use a magnetron, it needs no preheating. Therefore, it can begin transmission and reception immediately after the end of above settings. In this time, the transmission control signals such as the transmission trigger signal that synchronized with the transmission IF signal flow together, and perform the operation timing control of TRX module. The transmission IF signal consists of unmodulated pulse signal P0N and frequency modulation pulse signal Q0N.

TRX module performs time division transmission control. That allows P0N narrow pulse width signal to be used for detection at the range scale which would be the blind echo in the main-bang of Q0N wide pulse width signal. Transmission RF signal is amplified to approx.250W peak-power by the power amplifier unit constituted of RF FETs, and it is outputs as the transmission signal from TRX module via circulator. This signal is input to the antenna port via coaxial cable, and then it is transmitted into the air from the antenna.

A part of the signal is reflected from a target and received by the antenna. The signal received by the antenna propagates the coaxial cable which is the same as transmitting, and it is input to receiver unit of the TRX module as the reception signal via the circulator.

After amplification the signal level by Low Noise Amplifier, the reception RF signal that is input to the receiver unit is downconverted into the reception IF signal by frequency converter unit. Then it is amplified to desired signal level again, flows into the AD converter via the BPF of the radar processor.

The digital signal that has converted by the AD converter is supplied to the Radar processor, and it undergoes the digital signal processing such as pulse compression processing, coherent integration processing, and, P0N and Q0N transmission synthesis processing. After conversion into analog signal by the DA converter, this processed digital signal is input to the display unit as the radar video signal. Simultaneously, the bearing pulse signal, the heading line signal, and the transmission trigger signal are input together.

The performance monitor function that monitors the degradation state of transmission and reception performance of the radar equipment is follows. In order to monitor the transmission system, the level detector unit monitors the output level of the power amplifier unit. In order to monitor the reception system, the radar antenna monitors the reception level of the PM signal which is emitted to the air by the TRX module via the PM antenna CAY-77.

Since AC power for the motor driven is supplied via the safety switch, it can be forced outage of the motor when it is turned off under maintenance. The state of the safety switch is always monitored as the status signal, and it is sent to the display unit. Though the motor and motor driver circuit are varied by the Radar antenna type, the setting of motor power 100Vac or 220Vac is set by jumper plug of the motor driver circuit.

2.3.2 Display unit

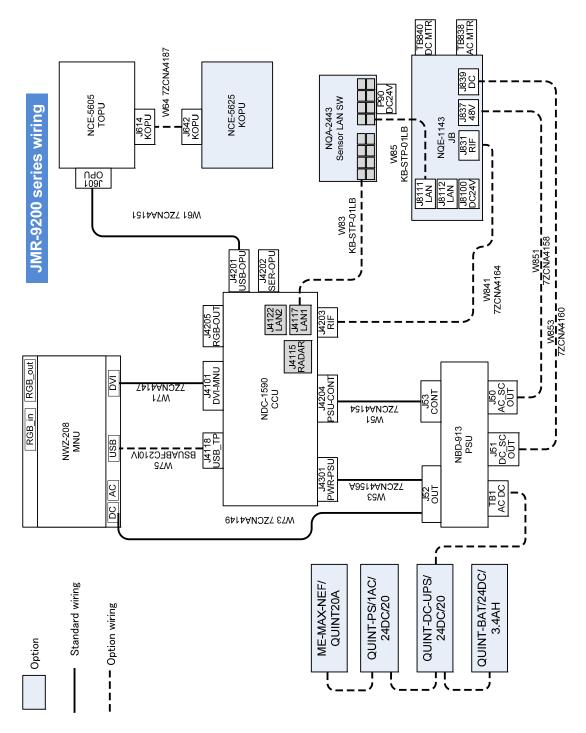


Fig. 2.3.4 Block diagram of Display unit (26inch)

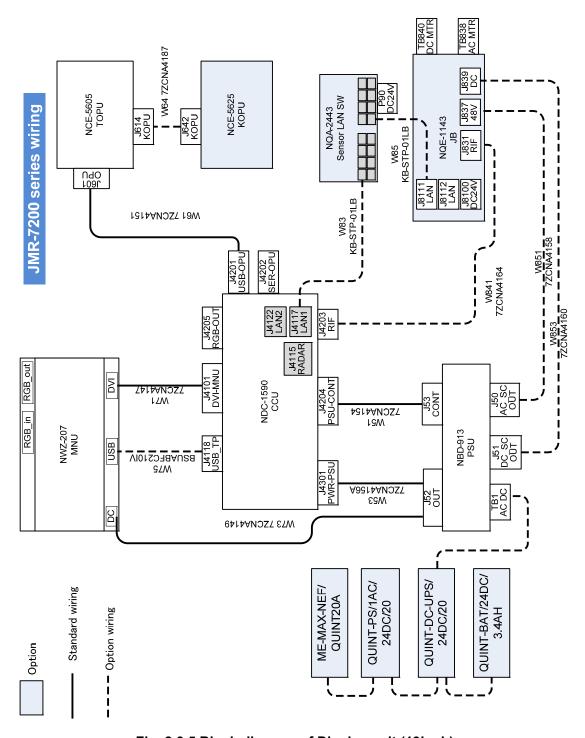


Fig. 2.3.5 Block diagram of Display unit (19inch)

The function system diagram of Display Unit is shown in Fig. 2.3.4 and Fig. 2.3.5

Display Unit is composed of following units:

MNU: Monitor Unit NWZ-208 (26inch)

NWZ-207 (19inch)

CCU: Central Control Unit NDC-1590 PSU: Power Supply Unit NBD-913 TOPU: Trackball Operation Unit NCE-5605 KOPU : Keyboard Operation Unit NCE-5625(*) Sensor LAN Switch Unit NQA-2443(*)

JB: Junction Box NQE-1143(*), (**)

(*) Option.

(**) JB may include following circuits and they depend on the system:

SLC : Serial LAN Interface Circuit CMH-2370 AOC: Analog Option Circuit CMJ-560 GIF: Gyro Interface Circuit CMJ-554 RIF: Radar Interface Circuit CQD-2273

Starting the system

Turning on the power switch of TOPU starts PSU, 24Vdc (MNU) and 24Vdc (CCU) are supplied to MNU and CCU respectively. After starting its OS up, CCU initializes the various parameters and DSPs and it provides the functions such as Radar processing and display function, Electronic Chart Display function, Ship's sensors Information display function and more.

After that, CCU sets the internal status according to the sensor data input from the various communication lines, such as the GYRO and GPS, and issues an initialization command to the transmitter-receiver unit via the communication line to initialize the transmitter-receiver unit. This concludes the initialization of the system.

Circuit functions

Operation circuit detects the operating status of the switches and dials of the TOPU and KOPU and sends the operation data to the CCU through the communication line.

SLC: Serial LAN Interface Circuit converts serial signals sent by ship's various sensors into LAN data packets. It sends that signal to CCU via an Ethernet cable.

AOC: Analog Option Circuit mediates Ship's analog sensor signals to CCU via SLC. It has four input ports. You can choose the kind of input type for each port which are -10V to 10V voltage input or 4-20mA current loop input.

GIF: Gyro Interface Circuit processes the gyro signal, which is in the synchro or step format, calculates the true azimuth, and sends the true azimuth data to the radar processing circuit at regular intervals using serial communication. As long as the GIF circuit is receiving the gyro signal, it is supplied with power and the CPU operates even if the display unit power is turned off. Therefore, even if the display unit power is turned off, the GIF circuit can continue to calculate the true azimuth.

RIF : Radar Interface Circuit mediates radar signals from transmitter-receiver unit or interswitch unit to CCU. Also, it mediates the power such as 100-220Vac, 48Vdc, and 24Vdc from PSU to scanner motor and transmitter-receiver unit.

Basic radar operations

In magnetron radar, the preheating of the magnetron of the transmitter-receiver unit is required. It takes several tens of seconds. When the preheating of the magnetron is complete, the display unit will be on standby state for transmitting. In solid state radar, no preheating is required. the display unit will be standby state at the same time as starting up.

By clicking the TX/STBY button in the screen or pressing that button on the KOPU, the system will be in transmission state. CCU issues a start transmission command to the transmitter-receiver unit, the transmitter-receiver unit starts transmitting, and the antenna starts to rotate. The radar signals sent by the transmitter-receiver unit are input to CCU via RIF. Unwanted waves are suppressed by powerful DSPs and advanced signal processing technologies. The radar image will always be displayed optimal in every range.

The switches and dials on KOPU can be used to change the settings of the signal processing in CCU and the screen display, the results of which are immediately reflected in the radar image display.

Interswitch Function

The interswitch NQE-3141 allows the user to freely switch the connections between multiple display units and the scanner unit, so that even if there is a problem with one display unit, the operation of the system as a whole is maintained. For example, without the interswitch function, if a problem occurred in the No.1: S-band display unit, it would become impossible to use the S band radar, which would affect maritime safety in adverse weather conditions. With the inter switch function, however, it is possible to connect the functioning No. 1 scanner unit to the No. 2 display unit, and continue to use S band radar. The inter switch is easily operated from the radar screen.

CCU automatically detects, when the system is started, whether or not there is an interswitch. If there is, it operates in the interswitch mode. If there is no inter switch, or if the interswitch or its cable is damaged, preventing the inter switch from being detected, CCU automatically operates in the standalone mode.

2.4 I/O Specifications

2.4.1. CCU: Central Control Unit NDC-1590 I/O Specifications

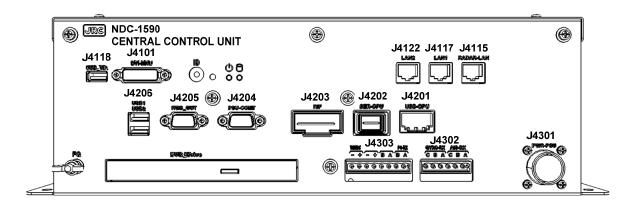


Fig. 2.4.1 CCU front view

Table 2.4.1 CCU I/O specifications 1

Label	Name	Pin	Signal Name	I/O	Specification	Detail	
J4101	DVI-MNU	_	DVI-MNU	I/O	DVI-D	Internal wiring	
04101	DVI WING		BVIIVIIVO	",0	WUXGA	michial wining	
J4118	USB. T.P.		USB. T.P.	I/O	USB 2.0	Internal wiring	
J4201	USB-OPU	_	USB-OPU	I/O	Operation Unit	Internal wiring	
J4202	SER-OPU	_	SER-OPU	I/O	Operation Unit	Internal wiring	
J4203	CCU-RIF	_	CCU-RIF	I/O	Radar Interface	Internal wiring	
					Circuit		

Table 2.4.2 CCU I/O specifications 2

Label	Name	Pin	Signal Name	I/O	Specification	Detail
		1	AC FAIL	IN	Open Collector	3.3Vdc, 10k ohm
		ı		IIN	Input	Internal Pull-up.
		2	DC EMPTY	IN	Open Collector	3.3Vdc, 10k ohm
		2	DC EIVIPTT	IIN	Input	Internal Pull-up.
		3	FAN ALM	IN	Open Collector	3.3Vdc, 10k ohm
		3	FAIN ALIVI	IIN	Input	Internal Pull-up.
	J4204 PSU-CONT				Open Collector	
		4	N PWRGD	IN		3.3Vdc, 10k ohm
14204			_		Input	Internal Pull-up.
J4204		5	SG	-	-	-
		6	SG	-	-	-
		7 N_24V_ON	N 24V ON	OUT	Open Collector	Logic level L:
			N_24V_ON		Output	24Vdc (Motor) ON
					Open Collector	Logic level L:
		8	N_MTR_ON	OUT	•	ACOUT_L/N and
					Output	48Vdc ON
		9	N_MNU_O	OUT	Open Collector	Logic level L:
		ั้ง	N	001	Output	24Vdc(MNU) ON
J4206	USB1		USB1	I/O	USB 2.0	Internal wiring
34200	USB2	_	USB2	1/0	030 2.0	milemai wiinig

Table 2.4.3 CCU I/O specifications 3

Detail
Detail
See Fig. 2.4.2 CCU
GPS-RX detail
See Fig. 2.4.3
CCU SDME-RX
detail
Choose
Normally-open/
closed by TB2.
See Fig. 2.4.4 CCU
PWR FAIL detail
Choose
Normally-open/
closed by TB2.
-
See Fig. 2.4.5 CCU
WMRST detail

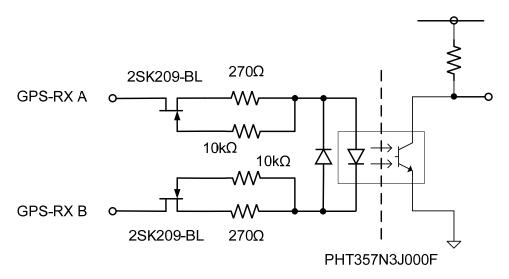


Fig. 2.4.2 CCU GPS-RX detail

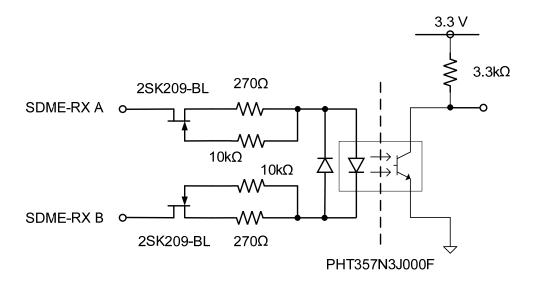


Fig. 2.4.3 CCU SDME-RX detail

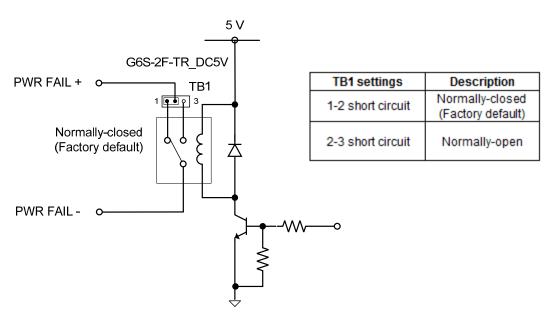


Fig. 2.4.4 CCU PWR FAIL detail

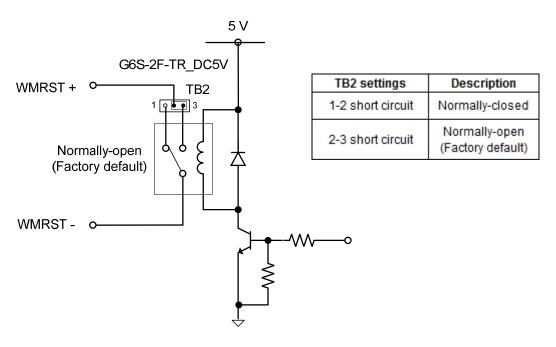


Fig. 2.4.5 CCU WMRST detail

Table 2.4.4 CCU I/O specifications 4

			Signal			
Label	Name	Pin	Name	I/O	Specification	Detail
		Α		IN	IEC61162-2	By TB5,
		A		IIN	Α	
	AIS-RX	В	AIS-RX	Z	IEC61162-2	
	AIS-NA	Б	AIG-RA	IIN	В	
		C		IEC61162-2	See Fig. 2.4.6	
		C		_	С	CCU AIS-RX detail
J4302		_			IEC61162-2	By TB6,
		Α		IN	A choose Term	choose Termination
					enabled or	
	GYRO-RX		GYRO-RX		IEC61162-2	disabled.
		В		IN	В	See Fig. 2.4.7
					IEC61162-2	CCU GYRO-RX
		С		_	С	detail

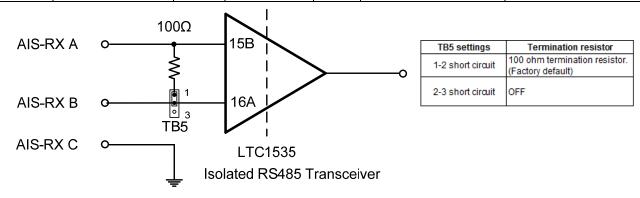


Fig. 2.4.6 CCU AIS-RX detail

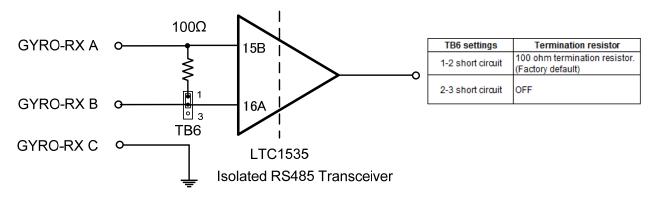


Fig. 2.4.7 CCU GYRO-RX detail

Table 2.4.5 CCU I/O specifications 5

Label	Name	Pin	Signal Name	I/O	Specification	Detail
		1	P+12V	IN	12Vdc	
		2	P+12VE	IN	Common wire for P+12V	CCU Front View
		3	+24V	IN	04)/-1-	
J4301	PWR-PSU	4	+24V	IN	24Vdc Common wire for	
		5	+24VE	IN		
		6	+24VE	IN	+24V	
		7	F.G.	IN	F.G.	
	RADAR-	RADAR- LAN		I/O	IEC61162-450	10BASE-T
J4115						/ 100BASE-TX
						/ 1000BASE-T
	LAN1					10BASE-T
J4117		-	-	I/O	IEC61162-450	/ 100BASE-TX
						/ 1000BASE-T
		LAN2 -	-			10BASE-T
J4122				I/O		/ 100BASE-TX

2.4.2. PSU: Power Supply Unit NBD-913 I/O specifications

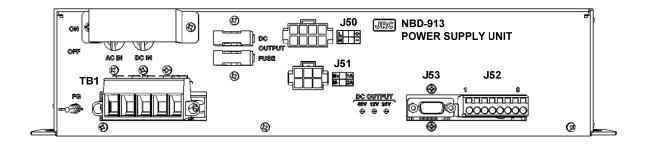


Fig. 2.4.8 PSU front view

Table 2.4.6 PSU I/O specifications 1

Label	Name	Pin	Signal Name	I/O	Specification	Detail
	A CINI	1	AC IN : L	IN	100-220Vac ,	Overvoltage
	ACIN	Name	protection by a circuit breaker			
TB1	N.C.	3	-	-	N.C.	-
	D 0111	4	DC IN +	IN	IN 24Vdc +	Overvoltage
	DCIN	5	DC IN -	IN	24Vdc -	protection by a circuit breaker
					100-220Vac,	
		1	ACOUT: L	OUT	50/60Hz,	-
					single phase	
		2	N.C.	-	N.C.	-
		3	+	OUT	48Vdc +	-
J50	AC SCANNER	4	N.C.	-	N.C.	-
330	POWER				100-220Vac,	
		5	ACOUT: N	OUT	50/60Hz,	-
					single phase	
		6	F.G.	-	F.G.	-
		7	-	OUT	48Vdc -	-
		8	N.C.	-	N.C.	-

Table 2.4.7 PSU I/O specifications 2

Label	Name	Pin	Signal Name	I/O	Specification	Detail
		1	M+	OUT	24Vdc + (Motor)	15A Fuse
		2	N.C.	-	N.C.	-
151	DC SCANNER	3	1A	OUT	24Vdc +	15A Fuse
J51	POWER	4	M-	OUT	24Vdc - (Motor)	-
		5	N.C.	-	N.C.	-
		6	2A	OUT	24Vdc -	-
		1	24V	OUT	24Vdc+ (MNU)	-
		2	GND	-	24Vdc- (MNU)	-
		3	F.G.	-	F.G.	-
150	CCU_MNU	4	24V	OUT	24Vdc+ (CCU)	-
J52	POWER	5	GND	-	24Vdc- (CCU)	-
		6	12V	OUT	P+12V +	-
		7	GND	-	P+12V -	-
		8	F.G.	-	F.G.	-

Table 2.4.8 PSU I/O specifications 3

	Table 2.4.0 P30 I/O specifications 3								
Label	Name	Pin	Signal Name	I/O	Specification	Detail			
		1	AC FAIL	OUT	Open Collector Output	Logic level H (within 40ms) : AC IN is less			
					Output	than 75Vac typ.			
		2	DC EMPTY	OUT	Open Collector Output	Logic level H (within 40ms): DC IN is less than 18Vdc typ.			
		3	FAN ALM	OUT	Open Collector Output	Logic level H: The Fan motor anomaly.			
J53	PSU_CONT	4	N_PWRGD	OUT	Open Collector Output	Logic level H: PSU has low output voltage under output anomaly such as overvoltage, overcurrent or inner temperature anomaly. It is enabled while N_MTR_ON is L. If it is H, N_PWRGD is forced to be L except under inner temperature anomaly.			
		5	SG	-	-	-			
		6	SG	-	-	-			
		7		IN	Open Collector Input	Logic level L: 24Vdc (CCU) ON			
		8	N_MTR_ON	IN	Open Collector Input	Logic level L: ACOUT(L/N), 48Vdc(+,-), 24Vdc(M+, M-), and 24Vdc(1A, 2A) ON			
		9	N_MNU_ON	IN	Open Collector Input	Logic level L: 24Vdc (MNU) ON			

2.4.3. SLC: Serial LAN Interface Circuit CMH-2370

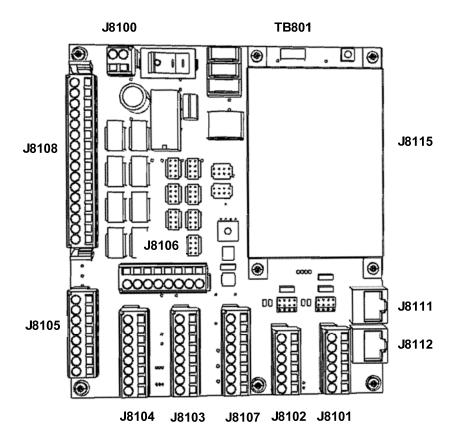


Fig. 2.4.9 SLC top view

Table 2.4.9 SLC I/O specifications 1

Label	Name	Pin	Signal Name	I/O	Specification	Detail
		1	24V+		21.6Vdc to	Reverse connection
J8100	DC24V IN	2	24V_GND	POWER	31.2Vdc 400mA(Typ.)	protection by 3A blade fuses (FS1, FS2).

Table 2.4.10 SLC I/O specifications 2

			Signal		Cilications 2	5.4 "					
Label	Name	Pin	Name	I/O	Specification	Detail					
		1	TX10A	OUT	IEC61162-2	By TB3, choose					
		'	17(10/1	001	Α	full duplex mode					
		2	TX10B	OUT	IEC61162-2	or half duplex					
		_			В	mode.					
		3	TX10C	-	IEC61162-2						
					С	By TB15,					
10404	IEC61162-2	4	RX10A	IN	IEC61162-2	Choose					
J8101	Ch.1				A	Termination enabled or					
					IEC61162-2	disabled.					
		5	RX10B	IN	В	disabled.					
						See					
		6	RX10C	-	JE 004400 0	Fig. 2.4.10 SLC					
					IEC61162-2 C	IEC61162-2					
						TXRX detail					
	IEC61162-2		1	TX9A	OUT	IEC61162-2	By TB2, choose				
		ļ	1737	001	Α	full duplex mode					
		2	TX9B	OUT	IEC61162-2	or half duplex					
			17.05		В	mode.					
		3	TX9C	_	IEC61162-2						
										С	By TB14,
10400		4	RX9A	IN	IEC61162-2	Choose					
J8102	Ch.0				A	Termination					
		5	RX9B	IN	IEC61162-2	enabled or disabled.					
		3	TOOD	111	В	disabled.					
						See					
		6	DVCC	-	IEC61162-2	Fig. 2.4.10 SLC					
			RX9C		С	IEC61162-2					
						TXRX detail					

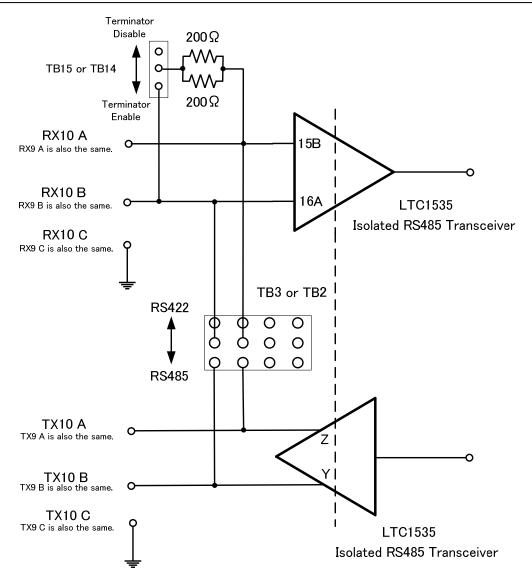


Fig. 2.4.10 SLC IEC61162-2 TXRX detail

Table 2.4.11 SLC I/O specifications 3

					Specifications	
Label	Name	Pin	Signal Name	I/O	Specification	Detail
Label	Name	F 1111	Name	1/0	IEC61162-1	Detail
		1	RX1A	IN		
					A	See
		2	RX1B	IN	IEC61162-1	Fig. 2.4.11 SLC
					В	IEC61162-1 RX1 detail
		3	TX1A	OUT	IEC61162-1	
				A	See	
		4	TX1B	OUT	IEC61162-1	Fig. 2.4.12 SLC
J8105	IEC61162-1		IVID		В	IEC61162-1 TX1 detail
00.00	1/2	5	RX2A	IN	IEC61162-1	
			IXXZA	111	Α	See
			RX2B	INI	IEC61162-1	Fig. 2.4.11 SLC
		6	RAZD	IN	В	IEC61162-1 RX1 detail
		7	TVOA	OUT	IEC61162-1	
			TX2A	OUT	А	See
		8	TX2B	OUT	IEC61162-1	Fig. 2.4.12 SLC
			TX2B	OUT	В	IEC61162-1 TX1 detail
		1	D)/0.4		IEC61162-1	
			RX3A	IN	Α	See
			D)/(0D		IEC61162-1	Fig. 2.4.11 SLC
		2	RX3B	IN	В	IEC61162-1 RX1 detail
					IEC61162-1	
		3	TX3A	OUT	Α	See
					IEC61162-1	Fig. 2.4.12 SLC
10.40.4	IEC61162-1	4	TX3B	OUT	В	IEC61162-1 TX1 detail
J8104	3/4	_			IEC61162-1	
		5	RX4A	IN	А	See
		_			IEC61162-1	Fig. 2.4.11 SLC
		6	RX4B	IN	В	IEC61162-1 RX1 detail
					IEC61162-1	
		7	TX4A	OUT	A	See
					IEC61162-1	Fig. 2.4.12 SLC
		8	TX4B	OUT	В	IEC61162-1 TX1 detail
[<u> </u>		<u> </u>		

Table 2.4.12 SLC I/O specifications 4

			Specifications	<i>,</i>		
Labal	Nama	D:	Signal	1/0	On a sifi soft sur	Dotoil
Label	Name	Pin	Name	I/O	Specification	Detail
		1	RX5A	IN	IEC61162-1	
					A	See
		2	RX5B	IN	IEC61162-1	Fig. 2.4.11 SLC
			10.05		В	IEC61162-1 RX1 detail
		3	TX5A	OUT	IEC61162-1	
				0	Α	See
			TVED	OUT	IEC61162-1	Fig. 2.4.12 SLC
J8103	IEC61162-1	4	TX5B	OUT	В	IEC61162-1 TX1 detail
J6103	5/6	_	D)/04		IEC61162-1	
		5	RX6A	IN	Α	See
		_	->/		IEC61162-1	Fig. 2.4.11 SLC
		6	RX6B	IN	В	IEC61162-1 RX1 detail
					IEC61162-1	
		7	TX6A	OUT	A	See
			TVOD		IEC61162-1	Fig. 2.4.12 SLC
		8	TX6B	OUT	В	IEC61162-1 TX1 detail
					IEC61162-1	
		1	RX7A	IN	Α	See
					IEC61162-1	Fig. 2.4.11 SLC
		2	RX7B	IN	В	IEC61162-1 RX1 detail
					IEC61162-1	
		3	TX7A	OUT	Α	See
					IEC61162-1	Fig. 2.4.12 SLC
	IEC61162-1	4	TX7B	OUT	В	IEC61162-1 TX1 detail
J8106	7/8				IEC61162-1	
	776		RX8A	IN	A	See
					IEC61162-1	Fig. 2.4.11 SLC
			RX8B	IN	В	IEC61162-1 RX1 detail
					IEC61162-1	-302
		7	TX8A	OUT	A	See
					IEC61162-1	Fig. 2.4.12 SLC
			TX8B	OUT	В	IEC61162-1 TX1 detail
					ט	ILCOTTOZ-TTAT GETAIL

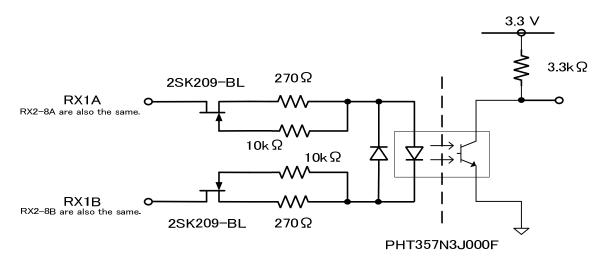


Fig. 2.4.11 SLC IEC61162-1 RX1 detail

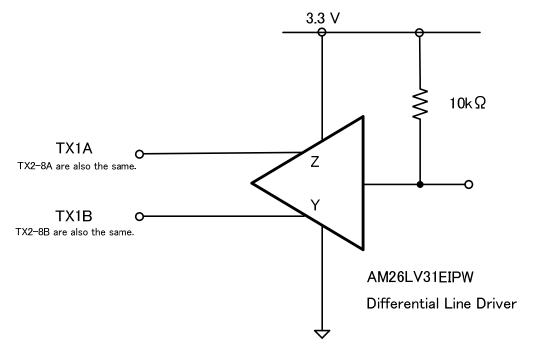


Fig. 2.4.12 SLC IEC61162-1 TX1 detail

Table 2.4.13 SLC I/O specifications 5

			Signal			
Label	Name	Pin	Name	I/O	Specification	Detail
		1	IN1	IN		
		2	GND	-		5V, 1k ohm
		3	IN2	IN		Internal Pull-up.
J8107	Contact In	4	GND	-	Dry Contact Input	
36107	Contact in	5	IN3	IN	5V/50mA	See
		6	GND	-		Fig. 2.4.13 SLC Contact
		7	IN4	IN		In detail.
		8	GND	-		

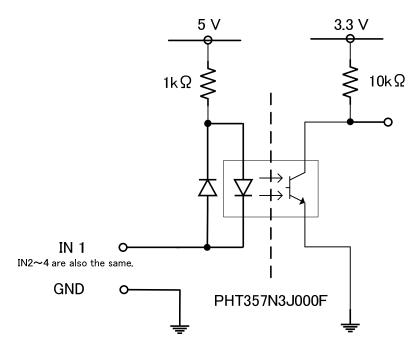
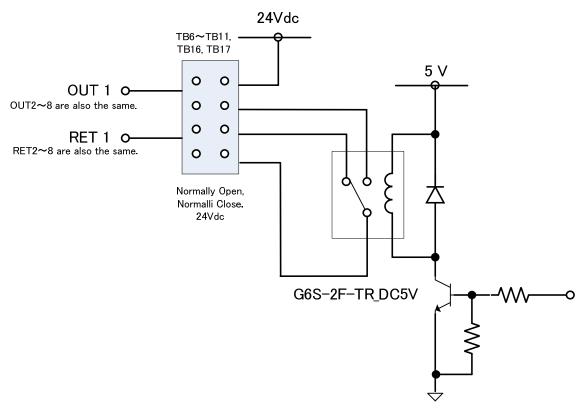


Fig. 2.4.13 SLC Contact In detail


Table 2.4.14 SLC I/O specifications 6

		115 0				
Label	Name	Pin	Signal Name	I/O	Specification	Detail
		1	OUT1	-	Dry Contact 1 or 24V Supply 1 for Buzzer Max. 2A Dry Contact 2 or 24V Supply 2 for Buzzer Max. 2A Dry Contact 3 or 24V Supply 3 for Buzzer Max. 2A	Choose Normally Open, Normally Close, or 24VDC by TB6.
		2	RET1	-		See Fig. 2.4.14 SLC Contact Out detail.
		3	OUT2	-		Choose Normally Open, Normally Close, or 24VDC Output by TB7.
J8108	Contact	4	RET2	-		See Fig. 2.4.14 SLC Contact Out detail.
00100	Out	5	OUT3	-		Choose Normally Open, Normally Close, or 24VDC Output by TB8.
		6	RET3	-		See Fig. 2.4.14 SLC Contact Out detail.
		7	OUT4	-	Dry Contac 4 or 24V Supply 4 for	Choose Normally Open, Normally Close, or 24VDC Output by TB9.
		8	RET4	-	Buzzer Max. 2A	See Fig. 2.4.14 SLC Contact Out detail.

Table 2.4.15 SLC I/O specifications 7

Label	Name	Pin	Signal Name	I/O	Specification	Detail
		9	OUT5	-	Dry Contact 5 or 24V Supply 5 for	Choose Normally Open, Normally Close, or 24VDC Output by TB17.
		10	RET5	-	Buzzer Max. 2A	See Fig. 2.4.14 SLC Contact Out detail.
		11	OUT6	-	Dry Contact 6 or 24V Supply 6 for Buzzer Max. 2A Dry Output 7 or 24V Supply 7 for Buzzer Max. 2A	Choose Normally Open, Normally Close, or 24VDC Output by TB16.
J8108	Contact	12	RET6	-		See Fig. 2.4.14 SLC Contact Out detail.
J8108	Out	13	OUT7	-		Choose Normally Open, Normally Close, or 24VDC Output by TB11.
		14	RET7	-		See Fig. 2.4.14 SLC Contact Out detail.
		15		-	Dry Contact 8 or 24V Supply 8 for	Choose Normally Open, Normally Close, or 24VDC Output by TB10.
		16	RET8	-	Buzzer Max. 2A	See Fig. 2.4.14 SLC Contact Out detail.

These 24Vdc output for buzzer are overcurrent protected by a common 15A blade fuse. (FS3)

	Normaly Close Output			Normaly O	Normaly Open Output			24V Output for BUZZER		
Matche	d TB	▎┌╌┼	OUTx					24V TBx-TBxx		
each Terr	nina l	TBx-TBxx,	TRY-TRYY RETX			OUTx RETx			OUTX	
		TB6-TB11			TB6-TB11			TB6-TB11	<u> </u>	
P8108		TB16, TB17	TB4/	TB5	TB16, TB17	TB4	/TB5	TB16, TB17	TB4/	TB5
1 OUT1 2 RET1	TB6	Short Terminals	TB4		Short Terminals	TB4		Short Terminals	TB4	#1-#5 for OUT1
3 OUT2		as below			as below			as below	'	#2-#6
4 RET2	TB7		4321	Open		4321	0	N.C Output	4321	for OUT2
5 OUT3 6 RET3	TB8		0000			0000	Open	8 = 0 		#3-#7 for OUT3
7 OUT4	TB9	8 = 0 0 = 4	8765		8 = 0 0 = 4	8765		6-80-2	8'765	#4-#8
8 RET4 9 OUT5	103	7 = 0 0 = 3 6 = 0 0 = 2			731 123	0,00		5 = 0 = 1	0,00	for OUT4 #1-#5
10 RET5	TB17	5 4 1 1 1	TB5		5 =0 0= 1	TB5			TB5	for OUT5
11 OUT6 12 RET6	TB16		4321	Open		4321		N.O Output		#2-#6 for OUT6
13 OUT7			4321	Open		4321	Open	8 21 16 4		#3 - #7
14 RET7	TB11		0000			0000		6 6 0 0 2		for OUT7
15 OUT8 16 RET8	TB10		8765			8765		5 -00- 1	8765	#4 - #8 for OUT8

Fig. 2.4.14 SLC Contact Out detail.

Table 2.4.16 SLC I/O specifications 8

			Signal			
Label	Name	Pin	Name	1/0	Specification	Detail
						10BASE-T
J8111	LAN ch.0	-	-	I/O	IEC61162-450	/ 100BASE-TX
						10BASE-T
J8112	LAN ch.1	-	-	I/O	IEC61162-450	/ 100BASE-TX
J8115	GIF_SLC	-	-	I/O	Gyro Interface Circuit	Internal wiring
TB801	SLC-AOC	-	-	I/O	Analog Option Circuit	Internal wiring

Note: The number of LAN port that you can use is only 1 port, either J8111 or J8112.

2.4.4. AOC : Analog Option Circuit CMJ-560 I/O specifications

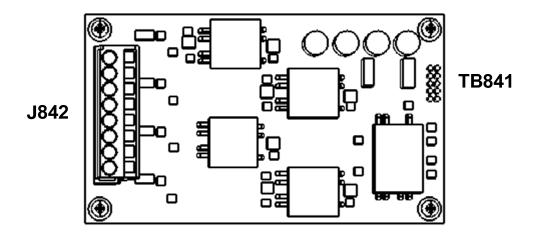


Fig. 2.4.15 AOC top view

Table 2.4.17 AOC I/O specifications 1

Label	Name	Din	Signal Name	I/O	Specification	Detail
Label	Ivaille	FIII	IVAILLE	1/0	Specification	Detail
TB841	AOC_SLC	-	-	I/O	Serial LAN Circuit	Internal wiring

Table 2.4.18 AOC I/O specifications 2

Label	Name	Pin	Signal Name	I/O	Specification	Detail
	1100	1	AN1+	IN	+/- 10V Input	Choose +/- 10V Input or 4-20mA Input by TB2,
					or 4-20mA Current	TB6, and TB7. See Fig. 2.4.16 and
	Analog J842 Sensor Input	2	AN1-	IN	Loop Input	2.5 DIP-SW and Jumper Pin Settings.
		3	AN2+	IN	+/- 10V Input or	Choose +/- 10V Input or 4-20mA Input by TB3, TB6, and TB7
		4	AN2-	IN	4-20mA Current Loop Input	See Fig. 2.4.16 and 2.5 DIP-SW and Jumper Pin Settings.
J842		5	AN3+	IN	+/- 10V Input or	Choose +/- 10V Input or 4-20mA Input by TB4, TB6, and TB7
		6	AN3-	IN	4-20mA Current Loop Input	See Fig. 2.4.16 and 2.5 DIP-SW and Jumper Pin Settings.
		7	AN4+	IN	+/- 10V Input or 4-20mA Current	Choose +/- 10V Input or 4-20mA Input by TB5, TB6, and TB7
					Loop Input	See Fig. 2.4.16 and 2.5 DIP-SW and Jumper Pin Settings.

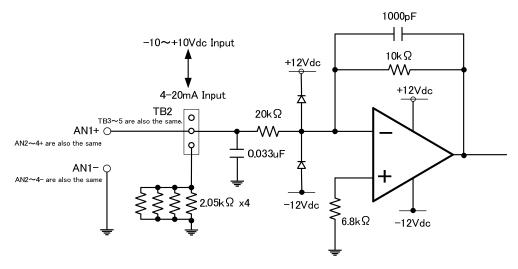


Fig. 2.4.16 AOC input detail.

2.4.5. GIF: Gyro Interface Circuit CMJ-554 I/O specifications

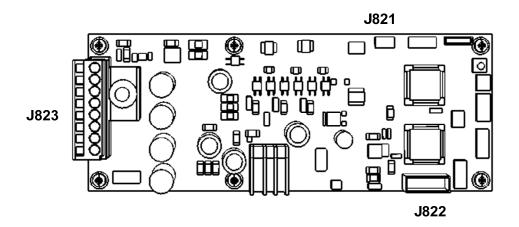


Fig. 2.4.17 GIF top view

Table 2.4.19 GIF I/O specifications 1

Label	Name	Pin	Signal Name	I/O	Specification	Detail
J821	SLC_GIF	-	-	I/O	Serial LAN	Internal wiring
	_				Circuit	
J822	RIF GIF			I/O	Radar Interface	Internal wiring
J022	KIF_GIF	-	-	20	Circuit	

Table 2.4.20 GIF I/O specifications 2

Label	Name	Pin	Signal Name	I/O	Specification	Detail
		1	1_R1	IN		Choose Sync Gyro or Step
		2	2_S1	IN		Gyro Input by TB1.
		3	3_S2	IN	Synchro/Step	
Gyro	Gyro	4	S3	IN	Gyro	Sync Gyro: AC24 - 115V
	Gylo				Compass	(50 / 60 / 400Hz)
		5	5_R2	IN	Input	Step Gyro: DC21.6 - 70V
J823						36x / 90x / 180x / 360x
	-	6	N.C.	-	N.C.	-
						0-50V, Vth = 2V.
		7	P+	IN		5V, 1k ohm Internal Pull-up
	Log				Pulse Log	100p / 200p / 400p/ 800p
	Log				Input	
		8	P-	IN		See Fig. 2.4.18 GIF Log
						Input detail.

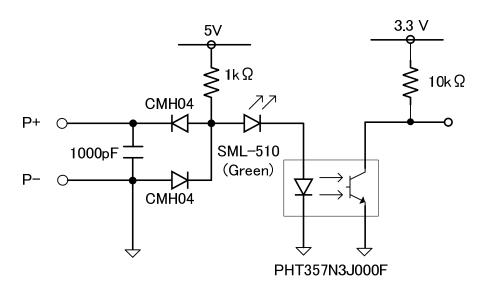


Fig. 2.4.18 GIF Log Input detail.

2.4.6. RIF :Radar Interface Circuit CQD-2273 I/O specifications

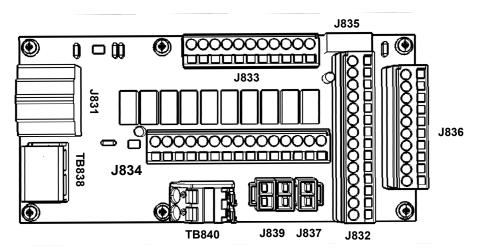


Fig. 2.4.19 SLC Contact In detail

Table 2.4.21 RIF I/O specifications 1

Label	Name	Pin	Signal Name	I/O	Specification	Detail
J831	CCU I/F	-	CCU I/F	I/O	Central Control Unit	Internal wiring

Table 2.4.22 RIF I/O specifications 2

Label	Name	Pin	Signal	I/O	Specification 2	Detail		
			Name	0	opcomostion.	201311		
		1	VD+	IN	Radar Video Signal.			
					0 to -2.6V			
			\ /D	18.1	(except NKE-2103)	See Fig. 2.4.20		
		2	VD-	IN	0.1. 4.0)/ (NUCE 0400)	RIF VD TRG signals		
					0 to -1.8V (NKE-2103)	detail.		
		3	TRG+	IN		Pulse Width:		
					Dadar Triggar Signal	1us to 4.4us		
					Radar Trigger Signal 0 to +13.6V (min. 10.6V)	See Fig. 2.4.20		
		4	TRG-	IN	0 10 1 13.00 (111111. 10.00)	RIF VD TRG signals		
						detail.		
						2048 pulses /		
		5	BP+	IN		1 rotation		
							Bearing Pulse	
		6		IN	0 to +5V, Pull-up	See Fig. 2.4.21		
			BP-			RIF BP BZ signals		
						detail		
J832	SCANNER		7 BZ+	IN		1 pulse / 1 rotation		
						5V, 510ohm		
					Bearing Zero	Internal Pull-up.		
					Open Collector Input.			
			IN	Open Concetor Input.	See Fig. 2.4.21			
					RIF BP BZ signals			
						detail		
		9	MTR+	I/O	RS-485, UART			
		9	IVITICT	1/0	9600 to 38400 bps			
		10	MTD	1/0	Start bit: 1bit	_		
			MTR-	I/O	Stop bit: 2bits			
		11	MTRG	_	Parity bit: Even Parity			
				_	Data bit: 8bits			
		12	N.C.	-	N.C.	-		
		13	DC+	OUT	48Vdc	Depends on		
		14	DC-	OUT	Or OAV	the Scanner Type		
		14	DO-	001	24Vdc			

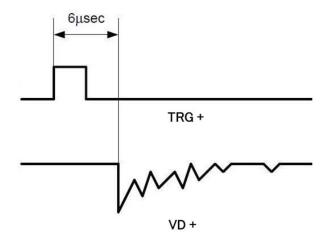


Fig. 2.4.20 RIF VD TRG signals detail

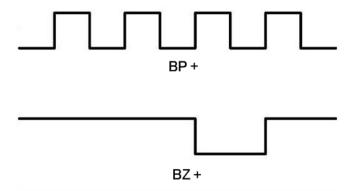


Fig. 2.4.21 RIF BP BZ signals detail

Table 2.4.23 RIF I/O specifications 3

Label	Name	Pin	Signal Name	I/O	Specification	Detail	
		1	ISWO_VD+	OUT			
		2	ISWO_VD-	OUT			
		3	ISWO_TRG+	OUT			
		4	ISWO_TRG-	OUT			
		5	ISWO_BP+	OUT			
J833	ISW_OUT	6	ISWO_BP-	OUT	Interswitch Unit	-	
		7	ISWO_BZ+	OUT			
		8	ISWO_BZ-	OUT			
		9	ISWO_MTR+	I/O			
		10	ISWO_MTR-	I/O			
		11	ISWO_MTRG	I/O			
		1	ISWI_VD+	IN			
				2	ISWI_VD-	IN	
		3	ISWI_TRG+	IN			
		4	ISWI_TRG-	IN			
		5	ISWI_BP+	IN			
		6	ISWI_BP-	IN			
		7	ISWI_BZ+	IN			
J834	ISW_IN	8	ISWI_BZ-	IN	Interswitch Unit	-	
		9	ISWI_MTR+	I/O			
		10	ISWI_MTR-	I/O			
		11	ISWI_MTRG	I/O			
		12	PWROUT	OUT			
		13	PWROUTE	OUT			
		14	PWRIN	IN			
		15	PWRINE	IN			

Table 2.4.24 RIF I/O specifications 4

Label	Name	Pin	Signal Name	I/O	Specification	Detail	
J835	GYRO I/F	ı	GYRO I/F	I/O	Gyro Interface Circuit	Internal wiring	
		1			0 to -2.6V	See	
		'	VD_OUT+	OUT	Output Z : 50 ohm	Fig. 2.4.22 RIF	
		2	VD_OUT-	OUT	50dB / V	VD_OUT detail	
		3			0 to 4V	See	
		-	TRG_OUT+	OUT	Output Z : 50 ohm	Fig. 2.4.23 RIF	
J836	EV OUT	4	TRG_OUT-	OUT	Pulse width : 1us	TRG_OUT detail	
J836	EX_OUT	5	BP_OUT+	OUT	Open Collector	See	
		6	BP_OUT-	OUT	Output	Fig. 2.4.24 RIF	
		7	BZ_OUT+	OUT	5V, 1k ohm Pull-up	BP BZ_OUT	
		8	BZ_OUT-	OUT	is recommended.	detail	
		9	GND	ı	GND	-	
		10	N.C.	-	N.C.	-	
J837	AC_SC_IN		AC_SC_IN				
3037	(DC48V)	1	(DC48V)	1	Power Supply Unit	Internal wiring	
	AC_MTRPWR	1	C	OUT	100-220Vac ,		
TB838	(AC100/220V)		_		50/60Hz,	Depends on	
	(AC100/220V)	2	V	OUT	Single phase	PSU AC IN	
J839	DC_SC_IN		DC_SC_IN				
1009	(DC24V PSU)	<u>-</u>	(DC24V PSU)	-	Power Supply Unit	Internal wiring	
TB840	DC_MTRPWR	1	+	OUT			
10040	(DC24V MTR)	2	_	OUT	24Vdc	PSU DC IN	

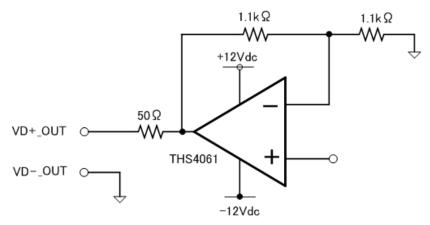


Fig. 2.4.22 RIF VD_OUT detail

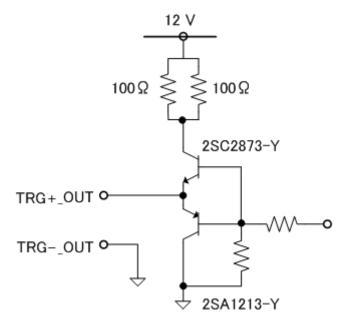


Fig. 2.4.23 RIF TRG_OUT detail

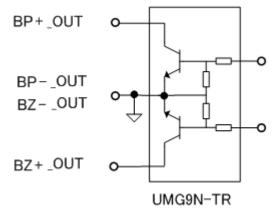


Fig. 2.4.24 RIF BP BZ_OUT detail

2.5 DIP-SW and Jumper Pin Settings

2.5.1. Setting for CQD-2273 Radar Interface Circuit

TB1: INTERSWITCH CONTROL SETTING

SETTING

SCANNER J835

SCANNER J832

J831

ACIOC/220V)

PSU

PSU

PSU

TB838

TB840

TB840

TB840

TB840

TB839

TB840

Fig. 2.5.1 CQD-2273 Radar Interface Circuit

Table. 2.5.1 Radar Interface Circuit TB1 Settings

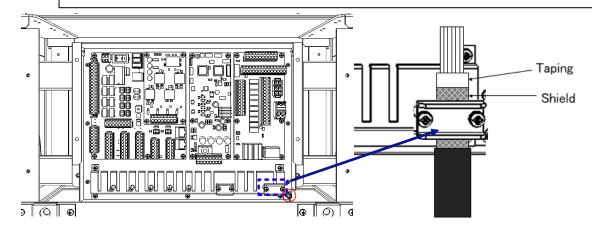
Radar Interface Circu	uit TB1 Settings	Description				
1-2 SHORT CIRCUIT	ISW_AUTO (Factory default)	You can switch the scanner unit to be used on your Display unit via the Interswitch unit.				
2-3 SHORT CIRCUIT	ISW_ONLY (Not allowed)	Scanner signals always come down to your Display unit via the Interswitch unit. You can switch them on your Display unit in service menu.				
OPEN	ISW_OFF (Not allowed)	Scanner signals come down to your Display unit directly. Since they do not come through the Interswitch unit, you cannot switch them.				

If it is not suggested from JRC office, do not set the TB1 of Radar Interface Circuit to "2-3 SHORT CIRCUIT" or "OPEN".

• It may cause a lower radar system performance.

Connection procedure with Scanner Units

1. Connect the scanner unit to J832 and TB838 or TB840 as follows.


J832: Radar signals. TB838: AC motor power. TB840: DC motor power.

AC Motor Scanner Unit:	
NKE-1139、NKE-1130、NKE-1632、NKE-2632、NKE-2632-H、	J832 and TB838
NKE-1129-7、NKE-1129-9、NKE-1125-6、NKE-1125-9	
DC Motor Scanner Unit:	
NKE-2254-6HS, NKE-2103-6, NKE-2103-6HS	J832 and TB840

- For the procedures for processing the equipment cable end, see **Chapter 2 of Installation Manual.**
- Fix the shield part of the equipment cable with pressing by metal fittings which is surrounded by a dotted line frame in the figure below. Connect the shield to the thumbscrew surrounded by the circle.(Recommended crimp terminals V5.5)

So that the braided shield is not short-circuited to the power supply terminal block, please insulate the cable and fix with cable tie. Please put the Extra length of the cable to the bottom of the display unit so that the not shorted to

- 2. When connecting the interswitch unit, see **INSTALLATION MANUAL 5.1 Installation of Interswitch Unit**.
- 3. When connecting the ECDIS, see INSTALLATION MANUAL 3.8 Connection with ECDIS.

2.5.2. Settings for CMJ-554 Gyro Interface Circuit

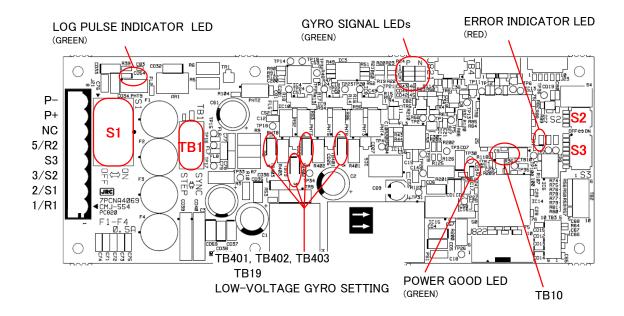


Fig. 2.5.2 CMJ-554 Gyro Interface circuit

Table. 2.5.2 GIF TB1 settings

TB1 Settings	Description
SYNC	Synchro type Gyro compass
STEP	Step type Gyro compass

Table. 2.5.3 GIF TB401, TB402, TB403, TB19 settings

TB401, TB402, TB403, TB19 Settings	Description
1-2 SHORT CIRCUIT	Factory default
2-3 SHORT CIRCUIT	Low voltage settings

Table. 2.5.4 GIF TB10 settings

TB10 Settings	Description
SHORT CIRCUIT	Factory default
OPEN	Not allowed

If it is not suggested from JRC office, do not set the TB10 of Gyro Interface Circuit to "OPEN".

• It may cause a lower radar system performance.

Table. 2.5.5 GIF S1 settings

S1 Settings	Description
OFF	Gyro signals will be disconnected.
ON	Gyro signals will be connected.

Table. 2.5.6 GIF S2 settings

	1	2	3	4		
GYRO SIM	Simulator ON	ON				
GTRO SIM	Simulator OFF	OFF				
LOG SIM	Simulator ON		ON			
LOG SIM	Simulator OFF					
	NC					

Table. 2.5.7 GIF S3 settings

	S3 Settings	1	2	3	4	5	6	7	8
GYRO	GYRO TYPE "STEP"	ON							
SETTING	GYRO TYPE "SYNC"	OFF							
	RATIO 36x		ON	ON					
GYRO	RATIO 90x		ON	OFF					
RATIO	RATIO 180x		OFF	ON					
	RATIO 360x		OFF	OFF					
GYRO	Direction 'REVERSE'				ON				
DIRECTION	Direction 'NO	'		OFF					
GYRO	LO	NG				ON			
ALARM	QU	DRT				OFF			
TIME	3110	JKI				OFF			
LOG	100 11 1511						ON		
ALARM	LOG ALARM O						OFF		
	RATIO 100P							ON	ON
LOG	RATIO 200P						ON	OFF	
SETTING	RATIO 400P						OFF	ON	
		RATIC	800P					OFF	OFF

Connection procedure with Gyro Compass

1. Turn S1 off

Gyro Compass and Gyro Interface Circuit will be disconnected.

2. Switch TB1 for the type of your Gyro Compass

Synchro type Gyro Compass: Set TB1 to "SYNC"
Step type Gyro Compass: Set TB1 to "STEP"

3. Set S3 as follows for your Gyro Compass and Speed Log according to Table. 2.5.7 GIF S3 settings.

S2-1 : Gyro type (STEP / SYNC)

S2-2/3 : Gyro speed ratio

S2-4 : The direction of rotation

S2-5 : Gyro alarm time (LONG / SHORT)

S2-6 : Log alarm (ON / OFF)

S2-7/8 : Log settings

4. Set TB401-403 and TB19 as follows if your Gyro Compass signals are less than 22V.

1-2 SHORT CIRCUIT: Factory default.

2-3 SHORT CIRCUIT: Set this if voltages of step Gyro signals are less than 22V.

5. Connect your Gyro Compass and Speed Log to J823 of CMJ-554 Gyro Interface Circuit as follows.

Table. 2.5.8 GIF input section

Gyro and Log	J823	Description		
Synobro Cyro	D1 C1 C2 C2 and D2	24 - 115Vac		
Synchro Gyro	R1, S1, S2, S3 and R2.	(50 / 60 / 400Hz)		
Ston Cyro	1, 2, 3 and 5	21.6 - 70V		
Step Gyro	(5 for common)			
Dulas Lag	D. D	0-50V, Vth = 2V.		
Pulse Log	P+, P-	(5V, 1k ohm Internal Pull-up)		

6. Turn S1 on

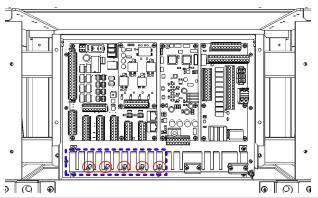
Your Gyro compass will be connected to the Gyro interface circuit.

- 7. Check your Radar Echo and True Bearing Value to make sure that your Gyro Compass is working correctly.
- 8. Set S3-4 to "REVERSE" if your Radar Echo and True Bearing have Reverse rotation.

Table. 2.5.9 shows the setting examples for some gyro compasses.

Table. 2.5.9 Setting examples for some gyro compasses

item	Gyro Compasses	Repeater Motors Excitation Voltage		Gyro Select Swiches (S3, TB1 located on the CMJ-554)							
Manufacture	-9	(For reference only)		1	2	3		ettings 5	6	7	TB1 setting
Manuracture	ES-2/11 GLT-100~103/105/106K/107/1104, NJZ-501(R501)	Synchro Motor INMS (TS63N7E13) (36X)	115V AC 60Hz	OFF	_	ON	- 4	31	OI_	,,	SYNC
東京計器 TOKYO KEIKI (JAPAN) スペリー Sperry (U.S.A)	ES-11A, GM-11/11A/21/110/120, MS-2000/3000 PR-222R/226/237/237-L /1*8*/2022/2023/22**, TG-200	Synchro Motor TSAN60E11 (90X)	110V AC 60Hz	OFF	OFF	ON					SYNC
	GLT-201/202/203, MK-14/14T, MKE-1/14T, MOD-1/2/T, PR-500/2502/2503/2507/2507L /3507/4507/5507, SR-130/140, TG-100/5000	Step Motor GA-2001G Drawing# 103590810 600 excitation (180X)	70V DC	ON	ON	OFF					STEP
	ES-16	Step Motor	35V DC								ļ
	SR-120/220 CMZ-700D ES140/160 PR-26**/6*6*/6*7*, SR-140/160 TG-6000/8000	GA-2001G Drawing# 103590820 150 excitation (180X)	24V DC	ON	ON	OFF					STEP
	C-1A/2/3/E, HOKUSHIN PLATH-55/C, PLATH HKRK-C3	Synchro Motor YM-14 TS-19 (360X)	60V AC 60Hz	OFF	OFF	OFF	OFF				SYNC
横河電機 YOKOGAWA (JAPAN)	C1JR, C-1JUNIOR, CMZ-200A/300, D-1, IPS, IPS-2-H2/2B/2B-H2C/5, KM008, KR-053, PLATH NAVIGAT-1, PT11-H2/21/21-H2	Synchro Motor PY76-N2 (360X)	100V AC 50/60Hz	OFF	OFF	OFF					SYNC
アーマーブラウン ARMA BROWN (France)	1351, MK-1∼7/10/20, MKL-1, NOD-4, NB-23-88, SERIE, SGB-1000	Step Motor BZ-2191 (180X)	50V DC	ON	ON	OFF					STEP
アンシッツ ANSCHUTZ (Germany)	110-301, 139-31, ANSCHUTZ-1~6/12/14/Z, GM-BH, K8051, NB23-126, Z0658U	Synchro Motor NB23-91 (360X)	50V AC 50Hz	OFF	OFF	OFF					SYNC
プラート社 C. PLATH (Germany)	NAVIGAT 763-331E, PLATH NAVIGAT-II/III	Synchro Motor YM14A (360X)	50V AC 50Hz	OFF	OFF	OFF					SYNC


^{*:} Numeric Number

2.5.3. Settings for CMH-2370 Serial LAN Interface Circuit

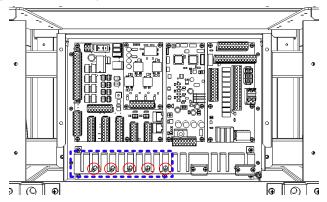
IEC61162-1 Connections

Connect the communication signals from sensors to the IEC61162-1 port located on the CMH-2370 in JUNCTION BOX NQE-1143. Received signals from sensors will be connected to terminals RX_A and RX_B which is IEC61162 standards. Transmit signals to sensors will be connected to terminals TX_A and TX_B which are IEC61162 standards. The number of port for IEC61162-1 on CMH-2370 is 8 ports including each receiver and transmitter allocated at J8103-J8106 on CMH-2370.

- See **Fig. 2.5.5** Connector location of CMH-2370 Serial LAN interface circuitabout location of J8103-J8106 on CMH-2370.
- To configure the port, refer to Chapter 4 of Installation Manual
- Fix the signal cable with the clamp surrounded by the doted line in the figure below.
- Connect the cable shield to the hex spacer surrounded by the circle in the figure below. (Recommended crimp terminals V5.5)

So that the braided shield is not shorted to the power supply terminal block, please insulate the cable and fix with cable tie. Please put the Extra length of the cable to the bottom of the display unit so that the not shorted to the UPS or SENSOR LAN switch unit.

Table. 2.5.10 Terminal Assign of J8103-J8106


Terminal Number	J8105	J8104	J8103	J8106
1	RX1A	RX3A	RX5A	RX7A
2	RX1B	RX3B	RX5B	RX7B
3	TX1A	TX3A	TX5A	TX7A
4	TX1B	TX3B	TX5B	TX7B
5	RX2A	RX4A	RX6A	RX8A
6	RX2B	RX4B	RX6B	RX8B
7	TX2A	TX4A	TX6A	TX8A
8	TX2B	TX4B	TX6B	TX8B

IEC61162-2 Connections

Connect the communication signals from sensors to the IEC61162-2 port located on the CMH-2370 in JUNCTION BOX NQE-1143. Communication signals from sensors will be connected to terminals RX_A, RX_B and RX_C which are IEC61162 standards. Communication signals to sensors will be connected to terminals TX_A, TX_B and TX_C which is IEC61162 standards.

The number of port for IEC-61162-2 on CMH-2370 is two ports including each receiver and transmitter allocated at J8101 and J8102 on CMH-2370.

- See **Fig. 2.5.5** Connector location of CMH-2370 Serial LAN interface circuitabout location of J8101-J8102 on CMH-2370.
- To configure the port, refer to Chapter 4 of Installation Manual
- Fix the signal cable with the clamp surrounded by the doted line in the figure below.
- Connect the cable shield to the hex spacer surrounded by the circle in the figure below.
 (Recommended crimp terminals V5.5)

So that the braided shield is not shorted to the power supply terminal block, please insulate the cable and fix with cable tie. Please put the Extra length of the cable to the bottom of the display unit so that the not shorted to the UPS or SENSOR LAN switch unit.

Table. 2.5.11 Terminal Assign of J8101 and J8102

Terminal Number	J8102	J8101
1	TX9A	TX10A
2	TX9B	TX10B
3	TX9C	TX10C
4	RX9A	RX10A
5	RX9B	RX10B
6	RX9C	RX10C

ex. Data communication example of AIS:

AIS data will be displayed on the radar screen by connecting sensor data from AIS to RX_A, RX_B and RX_C.

By connecting to AIS from TX_A, TX_B and TX_C, it is possible to stop the AIS alarm displayed on the radar screen.

Communication Type and termination

Communication type of IEC61162-2 can be selected full duplex (IEC61162-2) mode or half duplex (RS-485) mode by TB2 and TB3 setting on CMH-2370.

To select communication type for channel9, terminal of TB2 will be short-circuited by Short Plug. To select communication type for channel10, terminal of TB3 will be short-circuited by Short Plug. To set TB2 and TB3, refer to **Table. 2.5.12** and **Fig. 2.4.10** SLC IEC61162-2 TXRX detail.

 Type
 Short terminal No. of TB2 and TB3

 Full duplex
 5-9, 6-10, 7-11, 8-12

 (IEC61162-2)
 9 TB2/3 12

 The position where inserting a short plug

 Half Duplex
 5-1, 6-2, 7-3, 8-4

 (RS-485)
 9 TB2/3 12

 The position where inserting a short plug

 1
 0

 1
 0

 1
 0

Table. 2.5.12 Setting of communication type

And the termination of receiver can be removable for multi connections by TB14 and TB15 setting on CMH-2370.

To set the termination for channel9, terminal of TB14 will be short-circuited by Short Plug.

To set the termination for channel10, terminal of TB15 will be short-circuited by Short Plug.

To set TB14 and TB15, refer to **Table. 2.5.13** Short terminal to select communication typeand **Fig. 2.4.10** SLC IEC61162-2 TXRX detail.

Table. 2.5.13 Short terminal to select communication type

Termination	Short terminal No. of TB14 and TB15			
w Termination	2-3 (Factory default)			
w/o Termination	1-2			

Note: The location of TB2, TB3, TB14, TB15, Refer to Fig. 2.5.5.

LAN Connection

CMH-2370 converts the serial data from each sensor into LAN protocol. And the data converted by CMH-2370 transfer to DISPLAY UNIT via SENSOR LAN UNIT NQE-2443. It can transfer the data not only received from sensors to DISPLAY UNIT but also transmitted to sensor from DISPLAY UNIT.

CMH-2370 will be connected to NQE-2443 each RJ-45 by an Ethernet cable.

If it is not suggested from JRC office, do not connect PC or other maker's system to JRC-LAN.

•Connecting PC or other maker's system may cause a lower system performance.

Either J8111 or J8112 selected by S4 will be used as an active LAN port.

And, you can select the data format either IEC61162-450 or JRC Formant by S4.

To set S4, refer to Table. 2.5.14.

The location of J8111, J8112 and S4, refer to Fig. 2.5.5

Fix the signal cable with the clamp surrounded by the dotted line in the figure below.

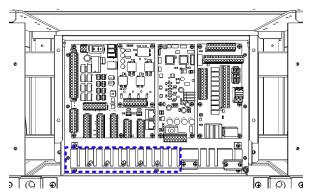


Table. 2.5.14 SLC S4 setting table

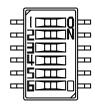


Fig. 2.5.3 Outline of S4

SW1	LAN Setting	OFF	Main Channel	Use J8111		
SWI		ON	Sub Channel	Use J8112		
SW2	LAN Type	OFF	Standard	IEC61162-450		
		ON	JRC	JRC Format		
SW3	Always set to OFF					
SW4	Always set to OFF					
SW4	Always set to OFF					
SW6	Always set to OFF					

To apply the setting, please restart CMH-2370 with the S1, because it will be reflected in the startup.

If some number of CMH-2370s have been installed and connected to the same SENSOR LAN UNIT NQE-2443, you should change IP address of each CMH-2370 by S3 setting. Refer to **Table. 2.5.15.**

CMH-2370 to be connected to the IAS (Integrated Automation System) or AMS (Alert Management System) is set the operation mode: ALC (Alert LAN Converter). Also in this case, set the IP address in refer to **Table. 2.5.15.**

Fig. 2.5.4 Outline of S3

The location of S3, refer to Fig. 2.5.5.

Table. 2.5.15 IP Address setting table

S3 Mode No.		No	IEC61	162-450	JRC Format		
Position	Wode	NO.	Main LAN	Sub LAN	Main LAN	Sub LAN	
0		SLC1	172. 16 .60.107	172. 17 .60.107	192.168. 60 .107	192.168. 61 .107	
1		SLC2	172. 16 .60.108	172. 17 .60.108	192.168. 60 .108	192.168. 61 .108	
2		SLC3	172. 16 .60.109	172. 17 .60.109	192.168. 60 .109	192.168. 61 .109	
3		SLC4	172. 16 .60.110	172. 17 .60.110	192.168. 60 .110	192.168. 61 .110	
4		SLC5	172. 16 .60.111	172. <mark>17</mark> .60.111	192.168. 60 .111	192.168. 61 .111	
5	SLC	SLC6	172. 16 .60.112	172. 17 .60.112	192.168. 60 .112	192.168. 61 .112	
6	SLC	SLC7	172. 16 .60.113	172. 17 .60.113	192.168. 60 .113	192.168. 61 .113	
7		SLC8	172. 16 .60.114	172. 17 .60.114	192.168. 60 .114	192.168. 61 .114	
8		SLC9	172. 16 .60.115	172. 17 .60.115	192.168. 60 .115	192.168. 61 .115	
9		SLC10	172. 16 .60.116	172. 17 .60.116	192.168. 60 .116	192.168. 61 .116	
Α		SLC11	172. 16 .60.117	172. 17 .60.117	192.168. 60 .117	192.168. 61 .117	
В		SLC12	172. 16 .60.118	172. 17 .60.118	192.168. 60 .118	192.168. 61 .118	
С		ALC1	172. 16 .60.119	172. 17 .60.119	192.168. 60 .119	192.168. 61 .119	
D	AL C	ALC2	172. 16 .60.120	172. 17 .60.120	192.168. 60 .120	192.168. 61 .120	
Е	ALC	ALC3	172. 16 .60.121	172. 17 .60.121	192.168. 60 .121	192.168. 61 .121	
F		ALC4	172. <mark>16</mark> .60.122	172. 17 .60.122	192.168. 60 .122	192.168. 61 .122	

SFI:System Function ID of each IEC 61162 channel will also be changed depending on the IP address.

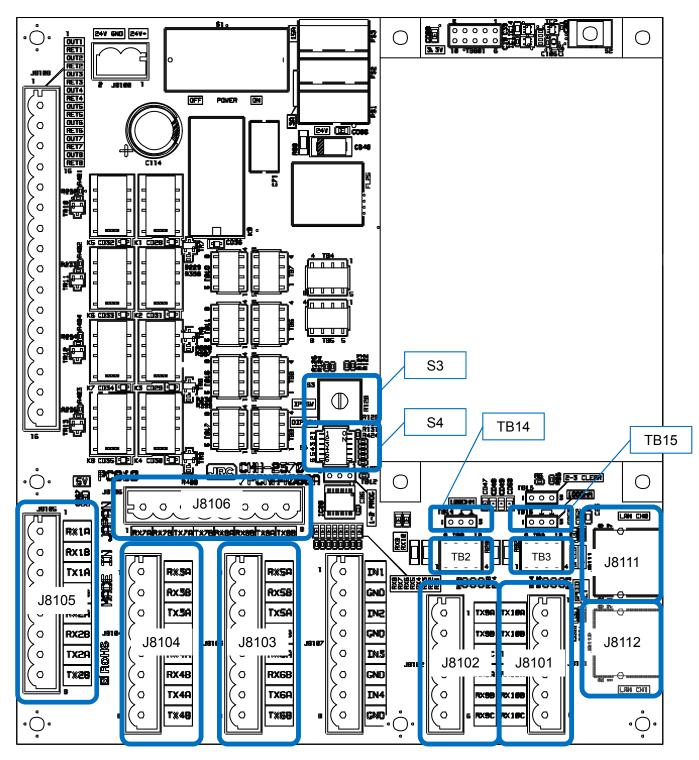


Fig. 2.5.5 Connector location of CMH-2370 Serial LAN interface circuit

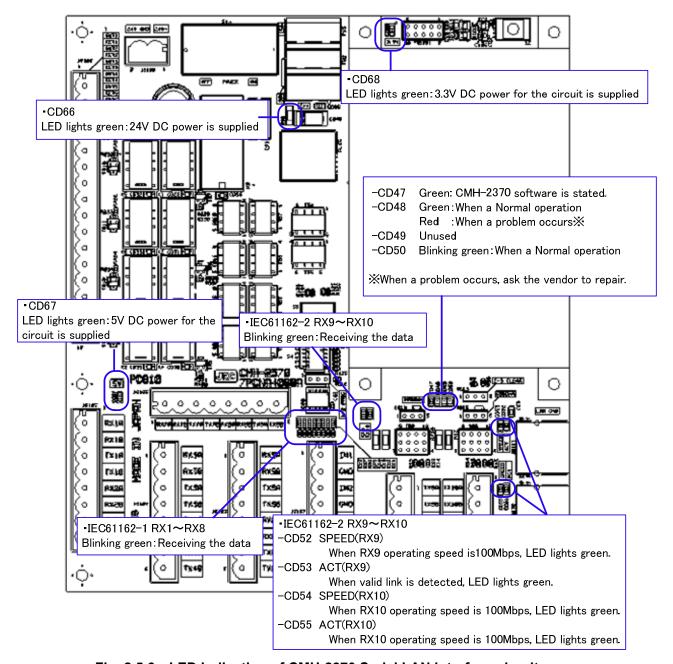
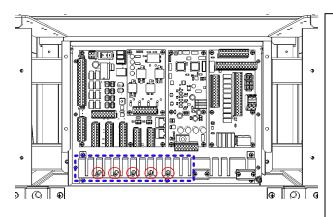


Fig. 2.5.6 LED Indication of CMH-2370 Serial LAN interface circuit


Contact Input/Output

Contact Input

Connect the dry contact of other equipment to the Input port which is on CMH-2370 in JUNCTION BOX NQE-1143. The number of Input port on CMH-2370 is 4 ports allocated at J8107. Terminal assign of J8107, refer to Table. 2.5.16.

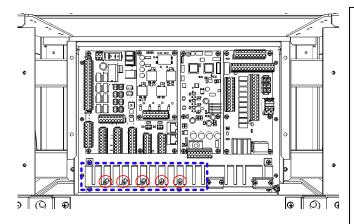
Dry contact of other equipment will be connected to terminals IN and GND.

- See **Fig. 2.5.9** Dry Contact Connector and TB location on CMH-2370about location of J8107 on CMH-2370.
- To configure the port, refer to **Chapter 4 of Installation Manual**.
- Fix the signal cable with the clamp surrounded by the dotted line in the figure below.
- Connect the cable shield to the hex spacer surrounded by the circle in the figure below.
 (Recommended crimp terminals V5.5)

So that the braided shield is not shorted to the power supply terminal block, please insulate the cable and fix with cable tie. Please put the Extra length of the cable to the bottom of the display unit so that the not shorted to the UPS or SENSOR LAN switch unit.

Table. 2.5.16 Terminal Assign of J8107

Terminal Number	J8107
1	IN1
2	GND1
3	IN2
4	GND2
5	IN3
6	GND3
7	IN4
8	GND4



Do not apply a voltage signal to contact input ports. Because they have pulled up to 5V with 1k ohm internally, connecting a voltage signal may cause malfunction.

Contact Output

Connect the input of other equipment to the output port which is located on CMH-2370 in JUNCTION BOX NQE-1143. The number of output ports on CMH-2370 is 8 ports allocated at J8108. Terminal assign of J8108, refer to **Table. 2.5.17**

- See Fig. 2.5.9. about location of J8108 on CMH-2370.
- To configure the port, refer to Chapter 4 of Installation Manual.
- Connect the cable shield to the hex spacer surrounded by the circle in the figure below. (Recommended crimp terminals V5.5)

So that the braided shield is not shorted to the power supply terminal block, please insulate the cable and fix with cable tie. Please put the Extra length of the cable to the bottom of the display unit so that the not shorted to the UPS or SENSOR LAN switch unit.

Table. 2.5.17 Terminal Assign of J8108

Terminal Number	J8107
1	OUT1
2	RET1
3	OUT2
4	RET2
5	OUT3
6	RET3
7	OUT4
8	RET4
9	OUT5
10	RET5
11	OUT6
12	RET6
13	OUT7
14	RET7
15	OUT8
16	RET8

Each Output port can be selected matched interface for your input device as below by setting TB4-TB11, TB16 and TB17 shown in Fig. 2.2.1.

Dry contact: Normally OpenDry contact: Normally Close

- 24V dc for Buzzer: Normally no Supply- 24V dc for Buzzer: Normally Supply

 \triangle

24V dc for buzzer will be supplied from main power supply of CMH-2370 via 15A fuse.

If you set OUT as dry contact, do not set the terminal to GND on TB4 or TB5 which is matched to OUT you want.

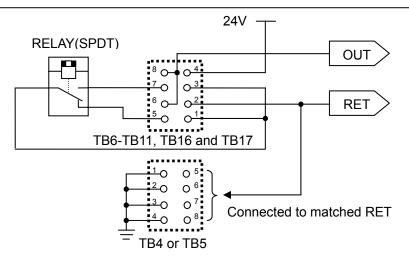


Fig. 2.5.7 Output port circuit diagram

Matched TB for each OUT and RET is shown in **Table. 2.5.18**And, to select Output, the terminals of each TB will be set by Short Plugs shown in **Fig. 2.5.8**.

Port	Jumper No.	24VDC Power GND
OUT1/RET1	TB6	TB4: 1-5 short circuit
OUT2/RET2	TB7	TB4: 2-6 short circuit
OUT3/RET3	TB8	TB4: 3-7 short circuit
OUT4/RET4	TB9	TB4: 4-8 short circuit
OUT5/RET5	TB17	TB5: 1-5 short circuit
OUT6/RET6	TB16	TB5: 2-6 short circuit
OUT7/RET7	TB11	TB5: 3-7 short circuit
OUT8/RET8	TB10	TB5: 4-8 short circuit

Table. 2.5.18 Matched TB for OUT setting

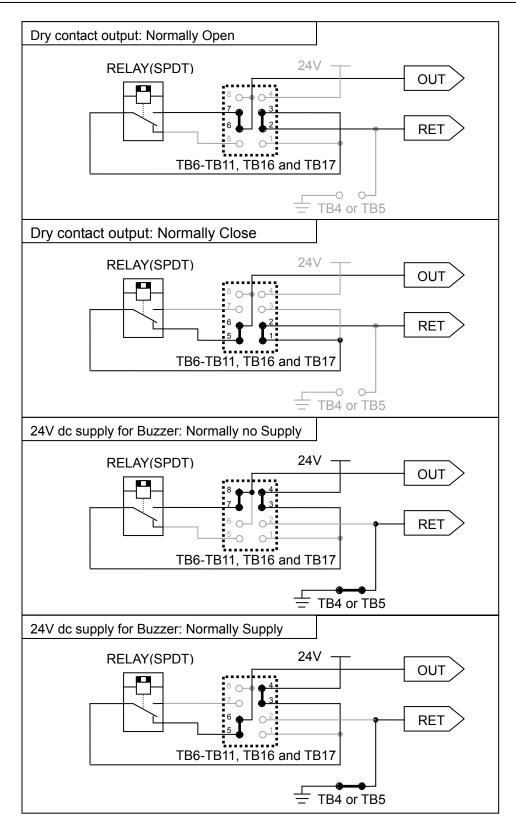


Fig. 2.5.8 Output port setting by TB

Maximum current of RELAY is 2A.

Do not connect the load including inrush current which exceed maximum current

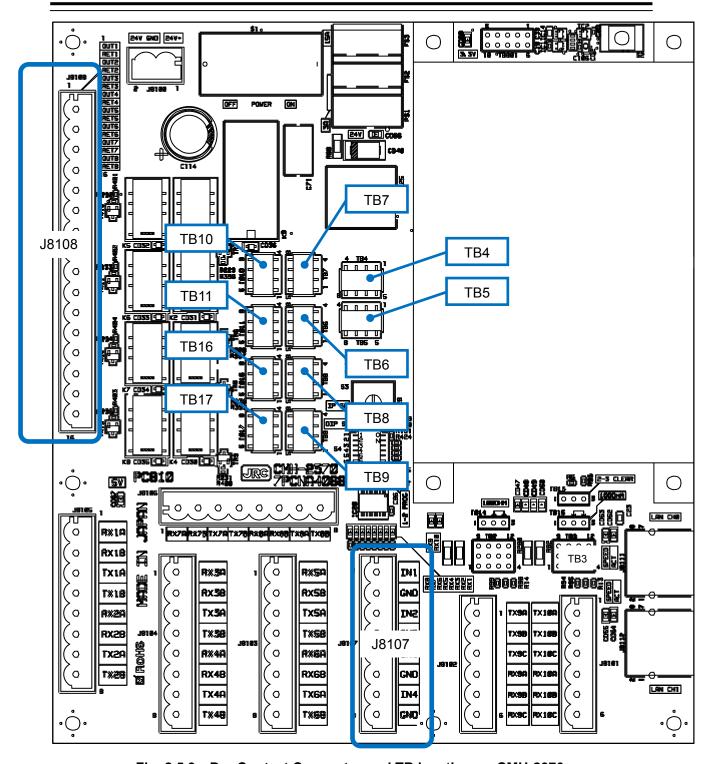
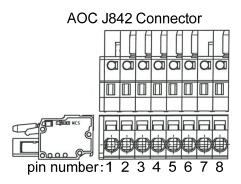
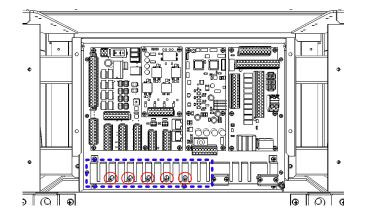



Fig. 2.5.9 Dry Contact Connector and TB location on CMH-2370


2.5.4. Settings for CMJ-560 Analog Option Circuit

Connect the analog signals from sensors to J842 located on the CMJ-560 Analog Option Circuit: AOC in JUNCTION BOX NQE-1143. AOC has four channel analog signal inputs.

The terminal assign of J842 is shown below.

- Wiring to AOC J842
 - 1 : channel 1 sensor input+
 - 2 : channel 1 sensor input-
 - 3 : channel 2 sensor input+
 - 4 : channel 2 sensor input-
 - 5 : channel 3 sensor input+
 - 6 : channel 3 sensor input-
 - 7 : channel 4 sensor input+
 - 8 : channel 4 sensor input-

So that the braided shield is not shorted to the power supply terminal block, please insulate the cable and fix with cable tie. Please put the Extra length of the cable to the bottom of the display unit so that the not shorted to the UPS or SENSOR LAN switch unit.

AOC shall be configured in accordance with the analog sensor output specifications to be connected. Set the AOC correctly by referring next page.

Set TB2-7 of CMJ-560 Analog Option Circuit according to ship's analog sensors.

Settings for voltage signal input

When Analog Sensors output specifications is Voltage, set as follows.

• Input Signal Range : -10V to +10V

Table. 2.5.19 Setting Table of Voltage Signal Input

Setting Table of Voltage Signal Input			
Channel	Reference	Setting	
1	TB2	Short-circuit the pins 1-2 or Open all pins	
	TB7(±10V)	Short-circuit the pins 1-5	
2	TB3	Short-circuit the pins 1-2 or Open all pins	
	TB7(±10V)	Short-circuit the pins 2-6	
3	TB4	Short-circuit the pins 1-2 or Open all pins	
	TB7(±10V)	Short-circuit the pins 3-7	
4	TB5	Short-circuit the pins 1-2 or Open all pins	
	TB7(±10V)	Short-circuit the pins 4-8	

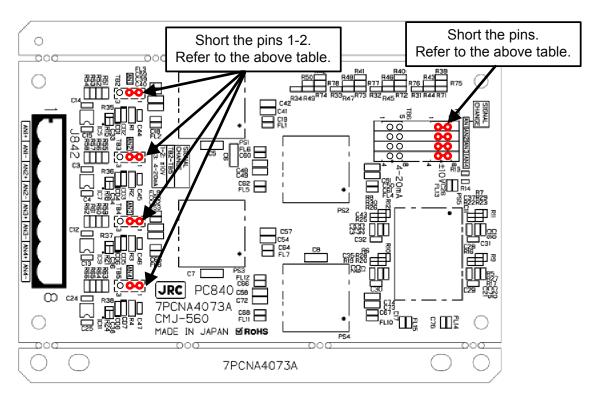


Fig. 2.5.10 Voltage input Settings for CMJ-560 Analog Option Circuit

Current Signal Input

When Analog Sensors output specifications is Current, set as follows.

· Input Signal Range : 4mA to 20mA

Table. 2.5.20 Setting Table of Current Signal Input

Setting Table of Current Signal Input				
Channel	Reference	Setting		
1	TB2	Short-circuit the pins 2-3		
	TB6(4-20mA)	Short-circuit the pins 1-5		
2	TB3	Short-circuit the pins 2-3		
	TB6(4-20mA)	Short-circuit the pins 2-6		
3	TB4	Short-circuit the pins 2-3		
	TB6(4-20mA)	Short-circuit the pins 3-7		
4	TB5	Short-circuit the pins 2-3		
	TB6(4-20mA)	Short-circuit the pins 4-8		

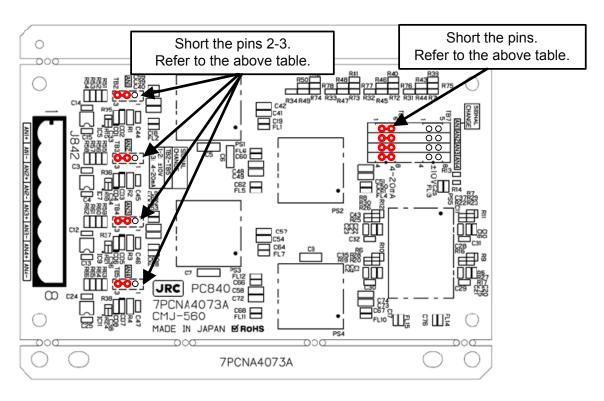


Fig. 2.5.11 Current input settings for CMJ-560 Analog Option Circuit

2.5.5. Settings for NDC-1590 Central Control Unit: CCU

If it is not suggested from JRC office, this VGA monitor setting is not necessary. Wrong monitor setting may lose video output.

Do NOT set the ID rotary switch to position "2" when a DVI monitor is / or both a DVI monitor and a VGA monitor are connected to the CCU.

Wrong monitor setting may lose video output.

Settings for ONLY connection of the VGA monitor to CCU.

This section describes the video output setting that CCU has the only VGA monitor for its display. A VGA monitor will be connected to J4025 (Analog RGB) on CCU.

- 1. Turn off the CCU power. Then, Set the ID rotary switch as follows.
- 2. Turn on the CCU power. Confirm that the VGA output displays correctly.

Table. 2.5.21 ID rotary switch settings for CCU NDC-1590

CCU NDC-1590		
ID rotary switch settings	Description	
2	Only the VGA monitor is connected to J4205	
2	(RGB_OUT) on the CCU.	
	A DVI monitor is connected to J4101 (DVI_MNU)	
Other	on the CCU.	
	Or, both a DVI monitor and a VGA monitor are	
(Factory default = 0)	connected to J4101 (DVI_MNU) and J4205	
	(RGB_OUT) respectively on the CCU.	

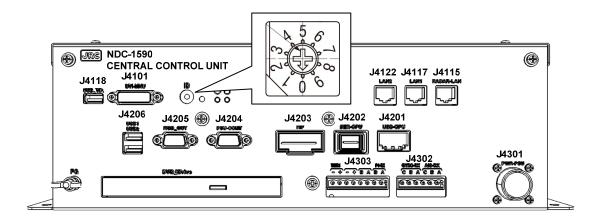


Fig. 2.5.12 ID rotary switch on CCU

NOTE

If the CCU has 16-posintions rotary switch (0 to F), it is not supported this VGA monitor setting.

Settings for J4303: WMRST / PWRFAIL contact output.

PWRFAIL and WMRST contact output configuration can be changed by TB1 and TB2 on the CCU I/F circuit CMH-2406.

- 1. Disassemble the CCU. Divide it into Upper base and Bottom base. For further information, see "Field Service Manual 4.3.3.2 Replacing with the CCU Repair Kit NZC-1590".
- 2. Set TB1 and TB2 as follows. They are on the CCU I/F circuit mounted on the Upper base.

Table. 2.5.22 TB1, TB2 settings on the CCU I/F circuit CMH-2406

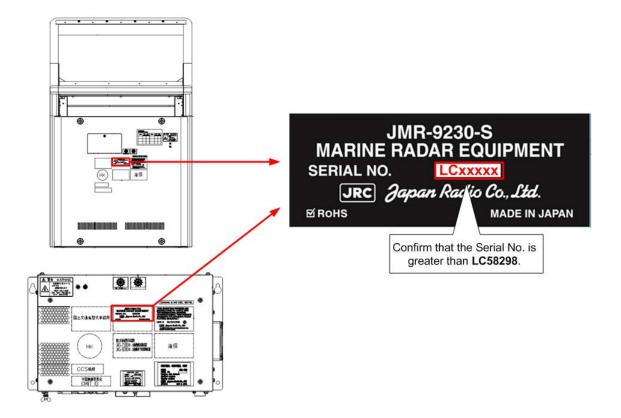
CCU I/F circuit CMH-2406			
J4303		TB setting	Description
PWRFAIL	TB1	1-2 short circuit	Normally-closed (Factory default)
		2-3 short circuit	Normally-open
WMRST	TB2	1-2 short circuit	Normally-closed
		2-3 short circuit	Normally-open (Factory default)

J4302: Termination resistor settings for GYRO-RX / AIS-RX

Termination resistor ON / OFF setting for GYRO-RX and AIS-RX can be changed by TB5 and TB6 on the CCU I/F circuit CMH-2406.

If the Display Unit has the Serial number of "LC58298" or less, this setting is not available.

1. Confirm that the Serial number of the Display unit is greater than "LC58298".


- Stand alone type : The Serial number has been affixed to the front cover of

the Display Unit mount kit.

- Desktop /

Flush mount type : The Serial number has been affixed to the top side of

NDC-1590 :CCU.

- 2. Disassemble the CCU. Divide it into Upper base and Bottom base. For further information, see "Field Service Manual 4.3.3.2 Replacing with the CCU Repair Kit NZC-1590".
- 3. Set TB5 and TB6 as follows. They are on the CCU I/F circuit mounted on the Upper base.

Table. 2.5.23 TB5, TB6 settings for CCU I/F circuit CMH-2406

CCU I/F circuit CMH-2406			
J4302	TB settings		Termination resistor
	TB5	1-2 short circuit	100 ohm termination resistor.
AIS-RX			(Factory default)
AIS-RX		2-3 short circuit	OFF
GYRO-RX	TB6	1-2 short circuit	100 ohm termination resistor.
			(Factory default)
		2-3 short circuit	OFF

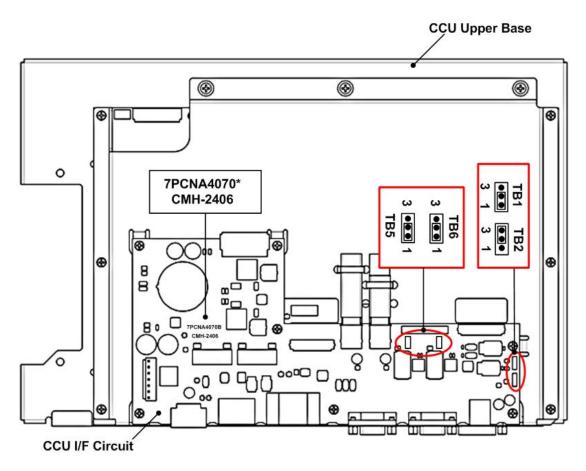


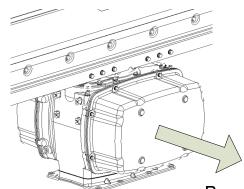
Fig. 2.5.13 CCU Upper base and CCU I/F circuit

The PCB type code of CMH-2406 which is included to the CCU of "LC58298" or less is 7PCNA4070A. Suffix "A" PCB of CMH-2406 is not supported termination resistor ON / OFF setting.

2.5.6. Settings for T/R Control circuit CMC-1205R

[DIP switch types] [Jumper pin types] • SW1, SW2 • J92, J93, J95, J96 • Jumper pin settings • DIP switch settings (■ indicates a switch.) SW2 ON Jumper pin J92, J93, J95, J96: 1-2 short circuit 2 2 3 4 • DIP switch settings (■ indicates a switch.) Jumper pin settings SW2 SW1 ON Jumper pin J92.J93.J95.J96: 1-2 short circuit 2 3 5 6 • Jumper pin settings DIP switch settings (■ indicates a switch.) SW₁ SW2 Jumper pin J92,J93,J95,J96: 1-2 short circuit 2 2 3 4 5 6 1 • Jumper pin settings • DIP switch settings (■ indicates a switch.) SW2 SW1 ON Jumper pin J92,J93,J95,J96: 1-2 short circuit 2 3 5 Jumper pin settings • DIP switch settings (■ indicates a switch.) SW1 SW2 Jumper pin ON J92,J93 • • 1-2 short circuit J95,J96 • • 2-3 short circuit 1 2 4 5 6 • Jumper pin settings DIP switch settings (■ indicates a switch.) SW1 SW2 9 1 Jumper pin

6


2.5.7. Settings for NKE-1632 Scanner Unit

Voltage Selection of Motor Driver Circuit CBD-1949

1. Set JP1 as follows according to your ship's AC voltage.

Table. 2.5.24 JP1 settings for Motor Driver Circuit CBD-1949

Motor Driver Circuit CBD-1949		
JP1 Settings	Description	
1-2 short circuit	100Vac	
2-3 short circuit	220Vac	

Remove this side cover.

Scanner Unit NKE-1632

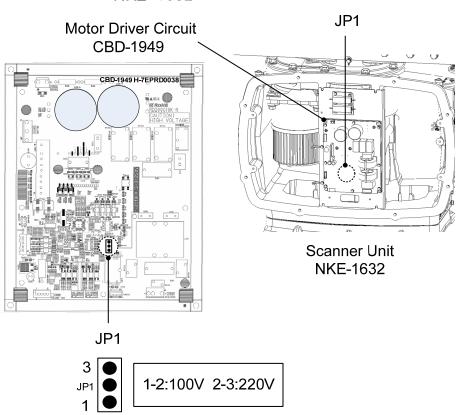
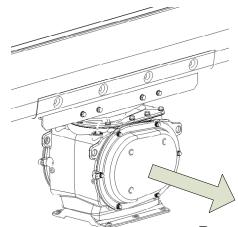


Fig. 2.5.14 Motor Driver Circuit CBD-1949 in NKE-1632


2.5.8. Settings for NKE-2632 Scanner Unit

Voltage Selection of Motor Driver Circuit CBD-1949

3. Set JP1 as follows according to your ship's AC voltage.

Table. 2.5.25 JP1 settings for Motor Driver Circuit CBD-1949

Motor Driver Circuit CBD-1949		
JP1 Settings	Description	
1-2 short circuit	100Vac	
2-3 short circuit	220Vac	

Remove this side cover.

Scanner Unit NKE-2632

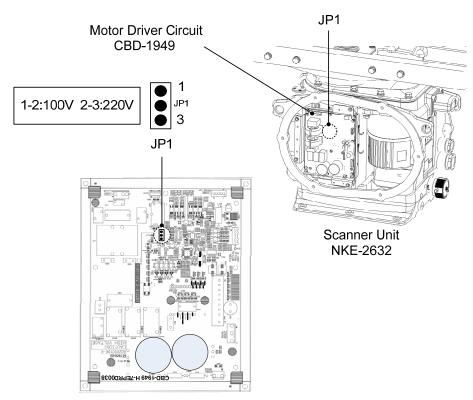
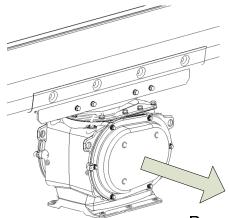


Fig. 2.5.15 Motor Driver Circuit CBD-1949 in NKE-2632


2.5.9. Settings for NKE-2632-H Scanner Unit

Voltage Selection of Motor Driver Circuit CBD-1950

1. Set JP1 as follows according to your ship's AC voltage.

Table. 2.5.26 JP1 settings for Motor Driver Circuit CBD-1950

Motor Driver Circuit CBD-1950		
JP1 Settings	Description	
1-2 short circuit	100Vac	
2-3 short circuit	220Vac	

Remove this side cover.

Scanner Unit NKE-2632-H

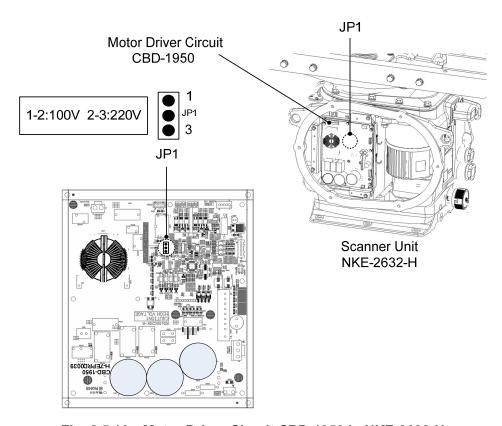


Fig. 2.5.16 Motor Driver Circuit CBD-1950 in NKE-2632-H

2.5.10. Setting for UPS

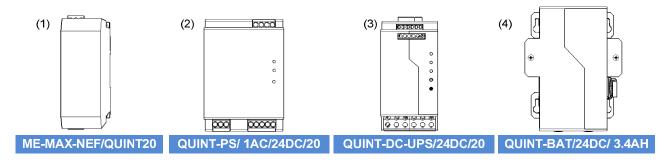


Fig. 2.5.17 UPS components

Setting for QUINT-DC-UPS/24DC/20

1. Set Bat-Select rotary switch of QUINT-DC-UPS/24DC/20 to 3.4.

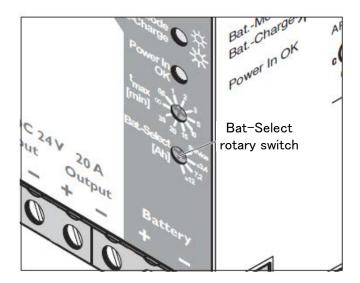


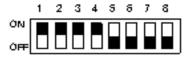
Fig. 2.5.18 QUINT-DC-UPS/24DC/20 Bat-Select rotary switch

2.5.11. Settings for Interswitch

Since settings have been normally made upon shipment from factory, do not edit them if it is not suggested from JRC office.

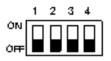
• It may cause a lower radar system performance.

4ch Interswitch NQE-3141-4A


Set dip switches SW11, SW12, and SW13 as shown below. For further information, see Chapter 5 of Installation Manual

1) SW11 setting (expansion mode, master/slave setting)

Set all OFF.


2) SW12 setting (radar connection setting)

Radar Connection Setting

1	ON	No. 1 display unit connected
	OFF	No. 1 display unit NOT connected
2	ON	No. 1 antenna unit connected
	OFF	No. 1 antenna unit NOT connected
3	ON	No. 2 display unit connected
	OFF	No. 2 display unit NOT connected
4	ON	No. 2 antenna unit connected
	OFF	No. 2 antenna unit NOT connected
5	ON	No. 3 display unit connected
	OFF	No. 3 display unit NOT connected
6	ON	No. 3 antenna unit connected
	OFF	No. 3 antenna unit NOT connected
7	ON	No. 4 display unit connected
	OFF	No. 4 display unit NOT connected
8	ON	No. 4 antenna unit connected
	OFF	No. 4 antenna unit NOT connected

3) SW13 (unused)

Set all OFF

8ch Interswitch NQE-3141-8A

8ch Interswitch has two CCL-304Rs like a two-storied structure. Although dip switches settings are basically the same as the settings shown in above, it is necessary to make settings for each of the two SW12. For further information, see **Chapter 5 of Installation Manual.**

Factory default setting (bit1-bit2-bit3-bit4)

SW11-upper OFF-OFF-ON

SW11-lower OFF-OFF-ON-ON

SW13-both OFF-OFF-OFF


Setting of upper CCL-304R, SW12 (radar connection setting)

Radar Connection Setting

1	ON	No. 1 display unit connected
	OFF	No. 1 display unit NOT connected
2	ON	No. 1 antenna unit connected
	OFF	No. 1 antenna unit NOT connected
3	ON	No. 2 display unit connected
	OFF	No. 2 display unit NOT connected
4	ON	No. 2 antenna unit connected
	OFF	No. 2 antenna unit NOT connected
5	ON	No. 3 display unit connected
	OFF	No. 3 display unit NOT connected
6	ON	No. 3 antenna unit connected
	OFF	No. 3 antenna unit NOT connected
7	ON	No. 4 display unit connected
	OFF	No. 4 display unit NOT connected
8	ON	No. 4 antenna unit connected
	OFF	No. 4 antenna unit NOT connected

• Setting of lower CCL-304R, SW12 (radar connection setting)

Radar Connection Setting

		,
1	ON	No. 5 display unit connected
	OFF	No. 5 display unit NOT connected
2	ON	No. 5 antenna unit connected
	OFF	No. 5 antenna unit NOT connected
3	ON	No. 6 display unit connected
	OFF	No. 6 display unit NOT connected
4	ON	No. 6 antenna unit connected
	OFF	No. 6 antenna unit NOT connected
5	ON	No. 7 display unit connected
	OFF	No. 7 display unit NOT connected
6	ON	No. 7 antenna unit connected
	OFF	No. 7 antenna unit NOT connected
7	ON	No. 8 display unit connected
	OFF	No. 8 display unit NOT connected
8	ON	No. 8 antenna unit connected
	OFF	No. 8 antenna unit NOT connected