SECTION 9 AFTER-SALES SERVICE

When you Request for Repair

If you suppose the product may be out of order, read the description in Section 8 carefully and check the suspected point again.
If it is still out of order, you are recommended to stop operation of the equipment and consult with the dealer from whom you purchased the product, or our branch office in your country or district, the sales department in our main office in Tokyo.

- Repair within the Warranty Period

If any failure occurs in the product during its normal operation in accordance with the instruction manual, the dealer or JRC will repair free of charge. In case that any failure is caused due to misuse, faulty operation, negligence or force major such as natural disaster and fire, the product will be repaired with charges.

- Repair after the Warranty Period

If any defective function of the product is recoverable by repair, the repair of it will be made at your own charge upon your request.

- Necessary Information for Repair

Product name, model, manufacturing date and serial number
i Trouble conditions (as detailed as possible. Refer to "Radar Failure Check List" in page 9-2.)
Name of company/organization, address and telephone number

Recommended Maintenance

The performance of the product may deteriorate due to the secular change of the parts used in it, though such deterioration depends upon the conditions of operation.
So checkup and maintenance is recommendable for the product in addition to your daily care.
For maintenance, consult with the near-by dealer or our sales department.
Such maintenance will be made with charges.
For further details of after-sale service, contact the JRC Offices in the list at the end of this manual.

Radar Failure Check List

When placing an order for repair of the product, it is requested that you could confirm the check items and fill the results and sent the sheet to our contact.
If there is any unclear items, contact the ship on which the product is installed, and give the correct information on the product.

Ship name: \qquad Phone: \qquad Fax:
Radar general model name: JMA- \qquad Serial No. :
\qquad
(Write the full model name correctly)
(1) Check the following items in the order of the number, and circle the applicable answer between YES or NO. If the item cannot be determined as YES or NO, explain in detail in the item (18), others.
(2) If any of the items (1) to (5) is marked as NO, check the fuse of the product (refer to Section 8.2 and 8.3).
(3) Check the items (4) to (17) while the transmission (TX) is ON.

* Functions mentioned in the items (14), (15) and (17) may be optional, answer is not necessary.

No.	Check Item	Result	
(1)	Power can be turned on. (The lamp on the operation panel is lit)	YES	NO
(2)	A few minutes after powering-on, it will become standby status (TX Ready).	YES	NO
(3)	When powering-on (or TX ON), CRT displays something (CRT is lit).	YES	NO
(4)	The scanner rotates at the transmission (TX) ON. (Check the following items while transmission is ON)	YES	NO
(5)	Current is supplied to the magnetron. (Refer to the instruction manual)	YES	NO
(6)	Turning is enabled. (Check with the range of 6 NM or more)	YES	NO
(7)	Fixed marker is displayed.	YES	NO
(8)	VRM is displayed.	YES	NO
(9)	While noise is displayed while set at STC and FTC minimum, GAIN maximum, IR-OFF and range 48 NM.	YES	NO
(10)	Target reflection echo is displayed.	YES	NO
(11)	Sensitivity of reflection echo is normal.	YES	NO
(12)	EBL is displayed.	YES	NO
(13)	Cursor mark moves.	YES	NO
$*(14)$	GYRO course can be set and normally displayed.	YES	NO
$*(15)$	LOG speed can be normally displayed.	YES	NO
(16)	ARPA works normally.	NO	
$*(17)$	If equipped with an interswitch, when switching from the straight mode (II) to (X), the failures (items marked NO) in the above (1) to $(16), ~ a r e ~ s w i t c h e d ~ o v e r ~ t o ~ t h e ~ o t h e r ~ u n i t . ~$	NO	

(18) Others (Error message, etc.)

SECTION 10 DISPOSAL

10.1 DISPOSAL OF THE UNIT 10-1
10.2 DISPOSAL OF USED BATTERIES..... 10-2
10.3 DISPOSAL OF USED MAGNETRON . 10-3

DISPOSAL

旺青 DISPOSAL OF THE UNIT

When disposing of this unit, be sure to follow the local laws and regulations for the place of disposal.
When disposing of used lithium batteries, be sure to insulate the batteries by
taping the \oplus and Θ terminals.
Otherwise, heat generation, explosion or a fire may occur.

In this unit, Lithium batteries are used for the following parts:
Radar Processing circuit (CDC-1198): BT1 (Maxell: CR2450)

- Do not store used lithium batteries. Dispose of them in accordance with regulations of local government.
- When disposing of used lithium batteries be sure to insulate the batteries by taping the \oplus and Θ terminals. For disposal of batteries, be sure to follow the local laws and regulations. For detail, consult with the dealer you purchased the product our business office, or local government.

Magnetron is used in the Scanner (NKE-2102/2252/1075A)

- When the magnetron is replaced with a new one, return the used magnetron to our dealer or business office.
For detail, consult with our dealer or business office.

SECTION 11 SPECIFICATIONS

11.1 JMA-5310-6 TYPE RADAR 11-1
11.2 JMA-5320-7/9/6HS TYPE RADAR 11-2
11.3 JMA-5330-12 TYPE RADAR 11-3
11.4 SCANNER (NKE-2102) 11-4
11.5 SCANNER (NKE-2252-7/9) 11-5
11.6 SCANNER (NKE-1075A) 11-6
11.7 SCANNER (NKE-2252-6HS) 11-7
11.8 DISPLAY UNIT(NCD-4510) 11-8
11.9 PROCESSOR UNIT(NDC-1273) 11-9
11.10 PLOTTER UNIT 11-11
11.11 ARPA-1 (HIGH PERFORMANCE ARPA) 11-13
11.12 ARPA-2 (NORMAL EDITION ATA) 11-14
11.13 KEYBOARD UNIT(NCE-7699) 11-15
11.14 INPUT ENABLE SIGNAL 11-16
11.15 OUTPUT ENABLE SIGNAL 11-17
11.16 STANDARD CONFIGURATION 11-18
11.17 EQUIPMENT DISTANCE BETWEEN OTHER INSTRUMENTS 11-19
11.18 OTHERS (OPTION) 11-20

JMA-5310-6 TYPE RADAR

(1) Type of Emission
(2) Display
(3) Screen
(4) Range Scale
(5) Range Resolution
(6) Minimum Detective Range
(7) Range Accuracy
(8) Bearing Accuracy
(9) Bearing Indication
(10) Ambient Condition
(11) Power Supply Input
(12) Power Consumption
(13) Power Supply Voltage Fluctuation
(14) Pre-heating Time

P0N

Color Raster Scan
18.1-inch Color LCD

Effective diameter of radar display, more than 250 mm
$0.125,0.25,0.5,0.75,1.5,3,6,12,24,48,96 \mathrm{~nm}$
Less than 25 m
Less than 28 m
Less than 1% of the maximum distance of the range scale in use or less than 15 m whichever is larger

Less than 1°
Relative Motion mode: Head-up/Course-up/North-up True Motion mode: Course-up/North-up

According to IEC60945-4
Temperature

+24VDC (Display Unit)
+24VDC (Scanner)

* Display Unit and Scanner correspond to 100VAC/220VAC when use NBA-3308.

Approx. 300W (In maximum wind velocity)

$$
\begin{aligned}
& \text { +24VDC -10/+30\% (Display Unit) } \\
& \text { +24VDC -10/+30\% (Scanner Unit) }
\end{aligned}
$$

Approx. Within 1min30sec

JMA-5320-7/9/6HS TYPE RADAR

(1) Type of Emission
(2) Display
(3) Screen
(4) Range Scale
(5) Range Resolution
(6) Minimum Detective Range
(7) Range Accuracy
(8) Bearing Accuracy
(9) Bearing Indication
(10) Ambient Condition
(11) Power Supply Input
(12) Power Consumption
(13) Power Supply Voltage Fluctuation
(14) Pre-heating Time

P0N
Color Raster Scan
18.1-inch Color LCD

Effective diameter of radar display, more than 250 mm
$0.125,0.25,0.5,0.75,1.5,3,6,12,24,48,96 \mathrm{~nm}$
Less than 25 m
Less than 28 m
Less than 1% of the maximum distance of the range scale in use or less than 15 m whichever is larger

Less than 1°
Relative Motion mode: Head-up/Course-up/North-up True Motion mode: Course-up/North-up

According to IEC60945-4
Temperature

Scanner:	-25 to $+55^{\circ} \mathrm{C}$
(Storage Temperature:	-25 to $+70^{\circ} \mathrm{C}$)
Other Unit except Scanner:	-15 to $+55^{\circ} \mathrm{C}$

Relative Humidity $\quad 93 \%$ at $+40^{\circ} \mathrm{C}$
Vibration $\quad 2$ to 13.2 Hz , amplitude $\pm 1 \mathrm{~mm} \pm 10 \%$ 13.2 to 100 Hz , Gravity acceleration $0.7 \mathrm{~m} / \mathrm{s}^{2}$

Velocity of the wind $\quad 51.5 \mathrm{~m} / \mathrm{s}$ (100kt)
+24VDC (Display Unit)
+24VDC (Scanner)

* Display Unit and Scanner correspond to $100 \mathrm{VAC} / 220 \mathrm{VAC}$ when use NBA-3308.

Approx. 400W (In maximum wind velocity)
$+24 \mathrm{VDC}-10 /+30 \%$ (Display Unit)
$+24 \mathrm{VDC}-10 /+30 \%$ (Scanner Unit)
Approx. Within 3min

JMA-5330-12 TYPE RADAR

(1) Type of Emission
(2) Display
(3) Screen
(4) Range Scale
(5) Range Resolution
(6) Minimum Detective Range
(7) Range Accuracy
(8) Bearing Accuracy
(9) Bearing Indication
(10) Ambient Condition
(11) Power Supply Input
(12) Power Consumption
(13) Power Supply Voltage Fluctuation
(14) Pre-heating Time

P0N

Color Raster Scan
18.1-inch Color LCD

Effective diameter of radar display, more than 250 mm
$0.125,0.25,0.5,0.75,1.5,3,6,12,24,48,96 \mathrm{~nm}$

Less than 25 m
Less than 28 m
Less than 1% of the maximum distance of the range scale in use or less than 15 m whichever is larger

Less than 1°
Relative Motion mode: Head-up/Course-up/North-up True Motion mode: Course-up/North-up

According to IEC60945-4
Temperature

Scanner:	-25 to $+55^{\circ} \mathrm{C}$
(Storage Temperature:	-25 to $+70^{\circ} \mathrm{C}$)
Other Unit except Scanner:	-15 to $+55^{\circ} \mathrm{C}$

Relative Humidity $\quad 93 \%$ at $+40^{\circ} \mathrm{C}$
Vibration $\quad 2$ to 13.2 Hz , amplitude $\pm 1 \mathrm{~mm} \pm 10 \%$ 13.2 to 100 Hz , Gravity acceleration $0.7 \mathrm{~m} / \mathrm{s}^{2}$

Velocity of the wind $\quad 51.5 \mathrm{~m} / \mathrm{s}(100 \mathrm{kt})$
+24VDC (Display Unit)
230VAC, $1 \Phi, 50 / 60 \mathrm{~Hz} \quad$ (Scanner)

* Display Unit correspond to $100 \mathrm{VAC} / 220 \mathrm{VAC}$ when use NBA-3308.

Approx. 100W (+600VA) (In maximum wind velocity)
$+24 \mathrm{VDC}-10 /+30 \%$ (Display Unit)
$220 \mathrm{VAC} \pm 10 \%$ (Scanner Unit)
Approx. Within 3min

SCANNER (NKE-2102)

(1) Dimensions
(2) Mass
(3) Polarization
(4) Directional Characteristic
(5) Revolution
(6) Peak Power
(7) Transmitting Frequency
(8) Transmitting Tube
(9) Pulse width/Repetition Frequency
0.125 nm
0.25 nm
0.5 nm
0.75 nm
1.5 nm
3 nm
6 nm
12 nm
24 nm
48 nm
96 nm
(10) Duplexer
(11) Mixer
(12) Intermediate Frequency Amplifier
(13) Overall Noise Figure

Height $440 \mathrm{~mm} \times$ Swing Circle 1910 mm
Approx. 31 kg
Horizontal Polarization
Horizontal Beam Width: $\quad 1.2^{\circ}(-3 \mathrm{~dB}$ width $)$
Vertical Beam Width: $\quad 20^{\circ}(-3 \mathrm{~dB}$ width $)$
Sidelobe Level:
Below -26 dB (within $\pm 10^{\circ}$)
Below -30 dB (outside $\pm 10^{\circ}$)
Approx. 27rpm (Normal)
10 kW
$9410 \pm 30 \mathrm{MHz}$
Magnetron [MSF1425B]

Short	Middle	Long
$0.08 \mu \mathrm{~S} / 2250 \mathrm{~Hz}$		
$0.08 \mu \mathrm{~S} / 2250 \mathrm{~Hz}$		
$0.08 \mu \mathrm{~S} / 2250 \mathrm{~Hz}$		
$0.08 \mu \mathrm{~S} / 2250 \mathrm{~Hz}$	$0.25 \mu \mathrm{~S} / 1700 \mathrm{~Hz}$	
$0.08 \mu \mathrm{~S} / 2250 \mathrm{~Hz}$	$0.25 \mu \mathrm{~S} / 1700 \mathrm{~Hz}$	$0.5 \mu \mathrm{~S} / 1200 \mathrm{~Hz}$
$0.25 \mu \mathrm{~S} / 1700 \mathrm{~Hz}$	$0.5 \mu \mathrm{~S} / 1200 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$
$0.5 \mu \mathrm{~S} / 1200 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$	$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
$0.5 \mu \mathrm{~S} / 1200 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$	$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
		$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
		$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
		$1.0 \mu \mathrm{~S} / 520 \mathrm{~Hz}$

Circulator + Diode Limiter
MIC Front End
Intermediate Frequency: 60 MHz
Band Width: $\quad 20 \mathrm{MHz}(0.08 \mu \mathrm{~S})$
$6 \mathrm{MHz}(0.25 \mu \mathrm{~S})$
$3 \mathrm{MHz}(0.5 \mu \mathrm{~S}, 0.8 \mu \mathrm{~S}, 1 \mu \mathrm{~S})$
Gain: More than 90 dB
Amplifying Characteristics: Logarithmic Amplifier
6dB(Average)

SCANNER (NKE-2252-7/9)

(1) Dimensions
(2) Mass
(3) Polarization
(4) Directional Characteristics
(5) Revolution
(6) Peak Power
(7) Transmitting Frequency
(8) Transmitting Tube
(9) Pulse Width/Repetition Frequency
(10) Duplexer
(11) Mixer
(12) Intermediate Frequency Amplifier

	Short	Middle	Long
0.125 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$		
0.25 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$		
0.5 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$		
0.75 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.2 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	
1.5 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.2 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$
3 nm	$0.2 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$
6 nm	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$	$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
12 nm	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$	$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
24 nm			$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
48 nm		$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$	
96 nm		$1.2 \mu \mathrm{~S} / 520 \mathrm{~Hz}$	

$25 \mathrm{~kW}-7 \mathrm{ft}$: Height $440 \mathrm{~mm} \times$ Swing Circle 2270 mm $25 \mathrm{~kW}-9 \mathrm{ft}$: Height $440 \mathrm{~mm} \times$ Swing Circle 2825 mm

25kW-7ft: Approx. 54 kg $25 \mathrm{~kW}-9 \mathrm{ft}$: Approx. 56 kg

Horizontal Polarization

Horizontal Beam Width:	$1.0^{\circ}(7 \mathrm{ft},-3 \mathrm{~dB}$ width $)$
	$0.8^{\circ}(9 \mathrm{ft},-3 \mathrm{~dB}$ width $)$
Vertical Beam Width	$20^{\circ}(7 / 9 \mathrm{ft},-3 \mathrm{~dB}$ width $)$
Sidelobe Level:	Below -26 dB
	$\left(7 / 9 \mathrm{ft}\right.$, within $\left.\pm 10^{\circ}\right)$
	Below -30 dB
	$\left(7 / 9 \mathrm{ft}\right.$, outside $\left.\pm 10^{\circ}\right)$

24rpm (7/9ft, Normal)
$25 \mathrm{~kW} \pm 50 \%$
$9410 \pm 30 \mathrm{MHz}$
Magnetron [M1568B(J)]

Circulator + Diode Limiter
MIC Front End
Intermediate Frequency: 60 MHz
Band Width: $20 \mathrm{MHz}(0.08 \mu \mathrm{~S})$ $6 \mathrm{MHz}(0.2 \mu \mathrm{~S}, 0.4 \mu \mathrm{~S})$ $3 \mathrm{MHz}(0.8 \mu \mathrm{~S}, 1 \mu \mathrm{~S}, 1.2 \mu \mathrm{~S})$
Gain: More than 90dB
Amplifying Characteristics: Logarithmic Amplifier
6dB(Average)

SCANNER (NKE-1075A)

(1) Dimensions
(2) Mass
(3) Polarization
(4) Directional Characteristics

Height $837 \mathrm{~mm} \times$ Swing Circle 3758 mm
Approx. 163kg
Horizontal Polarization
Horizontal Beam Width 12ft: 1.9°
Vertical Beam Width Sidelobe Level:
$12 \mathrm{ft}: 30^{\circ}$
Below -26dB (within $\pm 10^{\circ}$) Below -30 dB (outside $\pm 10^{\circ}$)
$24 / 21 \mathrm{rpm}(60 / 50 \mathrm{~Hz})$
$30 \mathrm{~kW} \pm 50 \%$
$3050 \pm 30 \mathrm{MHz}$
Magnetron [M1302]]
(9) Pulse Width/Repetition Frequency
0.125 nm
0.25 nm
0.5 nm
0.75 nm
1.5 nm
3 nm
6 nm
12 nm
24 nm
48 nm
96 nm
(10) Duplexer
(11) Mixer
(12) Intermediate Frequency Amplifier
(13) Overall Noise Figure

Circulator + TRHPL

MIC Front End
Intermediate Frequency: 60 MHz
Band Width: $\quad 20 \mathrm{MHz}(0.07 \mathrm{uS})$
$6 \mathrm{MHz}(0.2 \mu \mathrm{~S}, 0.3 \mu \mathrm{~S})$
$3 \mathrm{MHz}(0.6 \mu \mathrm{~S}, 1.2 \mu \mathrm{~S})$
Gain: More than 90dB
Amplifying Characteristics: Logarithmic Amplifier
5dB(Average)

SCANNER (NKE-2252-6HS)

(1) Dimensions
(2) Mass
(3) Polarization
(4) Directional Characteristics
(5) Revolution
(6) Peak Power
(7) Transmitting Frequency
(8) Transmitting Tube
(9) Pulse Width/Repetition Frequency

	Short	Middle	Long
0.125 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$		
0.25 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$		
0.5 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$		
0.75 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.2 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	
1.5 nm	$0.07 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.2 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$
3 nm	$0.2 \mu \mathrm{~S} / 2200 \mathrm{~Hz}$	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$
6 nm	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$	$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
12 nm	$0.4 \mu \mathrm{~S} / 1400 \mathrm{~Hz}$	$0.8 \mu \mathrm{~S} / 750 \mathrm{~Hz}$	$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
24 nm			$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
48 nm			$1.0 \mu \mathrm{~S} / 650 \mathrm{~Hz}$
96 nm			$1.2 \mu \mathrm{~S} / 520 \mathrm{~Hz}$

25kW-6ft: Height $440 \mathrm{~mm} \times$ Swing Circle 1920 mm
Approx. 52 kg
Horizontal Polarization

Horizontal Beam Width: 1.2°
Vertical Beam Width
Sidelobe Level:

48rpm (Normal)
$25 \mathrm{~kW} \pm 50 \%$
$9410 \pm 30 \mathrm{MHz}$
Magnetron [M1568B(J)]

Circulator + Diode Limiter
MIC Front End

Intermediate Frequency: 60 MHz
Band Width: $20 \mathrm{MHz}(0.08 \mu \mathrm{~S})$
$6 \mathrm{MHz}(0.2 \mu \mathrm{~S}, 0.4 \mu \mathrm{~S})$
$3 \mathrm{MHz}(0.8 \mu \mathrm{~S}, 1 \mu \mathrm{~S}, 1.2 \mu \mathrm{~S})$
Gain: More than 90 dB
Amplifying Characteristics: Logarithmic Amplifier
6dB(Average)
(11) Mixer
(12) Intermediate Frequency Amplifier
(13) Overall Noise Figure

DISPLAY UNIT(NCD-4510)

(1) Structure
(2) Screen
(3) Display mode
(4) Range Scale
(5) Range Marker
(6) Bearing Indication
(7) Variable Range Maker
(8) Electric Bearing lines
(9) Cursor

Desk Top Type
(LCD Monitor Unit/Keyboard Unit/Processor Unit Separation Structure)
18.1-inch Color LCD 1280×1024 dot (SXGA)

Radar mode
Synthesis mode (Synthesis Radar echo and Coastline) Plotter mode (Require Plotter Unit (option))
$0.125,0.25,0.5,0.75,1.5,3,6,12,24,48,96 \mathrm{~nm}$
$0.025,0.05,0.1,0.25,0.25,0.5,1,2,4,8,16 \mathrm{~nm}$
Rader mode/Synthesis mode
Relative motion: North-up, Course-up, Head-up
True motion: North-up, Course-up
True motion (Plotter mode (Option)): N-up, C-up
2VRM (Digital Display)
VRM unit of Display: nm, km
VRM Range:0.000 to 295 nm (0.000 to 547.0 km)
2EBL(Digital Display)
Each EBL can be floating displayed.
EBL unit of Display: 0.1°
EBL Range: 0.000° to 359.9°
Bearing Indication: Relative bearing and True bearing can be switched.
Target Range, Bearing and Latitude presentation can be possible to move with trackball.

PROCESSOR UNIT(NDC-1273)

(1) Structure
(2) Dimensions
(3) Mass
(4) Tune Method
(5) STC (SEA)
(6) FTC (RAIN)
(7) Radar Interference Rejection
(8) Scan Correlation
(9) Bearing Marker
(10) Heading Line
(11) Guard Zone Alarm (Radar Alarm)

Desk Top Type (Horizontal putting and length putting using combinedly)

Height $170 \mathrm{~mm} \times$ Width $300 \mathrm{~mm} \times$ Depth 320 mm
Approx. Below 10kg
Auto(Bar-graph indicate)

* Manual operation can be adjusted in maintenance mode.

AUTO/MANUAL
AUTO/MANUAL
Built-in (The effect can be adjusted by three stages.)
Function1/2/3, 2 Peak Hold Processing
Automatic change of processing method.
(Target range synchronize/Clutter synchronize)
$\mathrm{R} \theta$ scan correlation can be done by the addition high performance signal processing board.
360° in 1° digit.
Relative motion: Fixation
True motion: Rewrite at a position correct in every scan.
Electronic (Stern Line can be displayed.)
Invasion, Secession, OFF can be Selected.
With buzzer sound.(Possible to output to External buzzer.)
Zone-1: \quad Ring.(0.1 to 32 nm , Relative position)
Zone-2: Arbitrary polygon.(Limitation within range of display. Longitude and latitude are fixed.)
Number of zone: Can be memorized up to 16 and can be used simultaneously.
Structure of zone: 16 corner or less.
Automatically acquisition by ATA described in
Section "ARPA".
Within 66% of the radius of any range. (Except 96 nm)
Can be operated in all mode in relative motion.
Trail is succeed at Off Center mode.
Built-in (Except 96nm)
66\% of radius of any range.
Possible to manual reset.
(15) Twice zoom
(16) Radar trails indication
(17) Variety of Pulse width
(18) Target enhance
(19) Correct position
(20) Display color

The zoom center is 66% radius of any range. (Except 0.125 nm)
True motion: (Only true motion)
Relative motion:
True motion trails and relative motion trails can be selected.
Trail time length:
$15 \mathrm{sec} / 30 \mathrm{sec} / 1 \mathrm{~min} / 3 \mathrm{~min} / 6 \mathrm{~min} / 10 \mathrm{~min} / 15 \mathrm{~min} / 30 \mathrm{~min} / 60$ min/Continuous/OFF
Arbitrary trail time length can be displayed at any time.
Possible to display time series trail and continuous trail by color classification.
Built-in Trail thinning process.
Trail function can be use at true motion reset. When range is changed, Trail function can be use.
Trail function can be use at Off Center. (Relative motion) When motion indication and bearing indication changed, Trail function can be use.(Only true motion trails indication.)

Long/Middle/Short ($0.75,1.5,3,6,12 \mathrm{~nm}$)
3 stages can be changed.
When synthesis Radar and Coastline is displayed, position can be corrected by manually.

Radar echo: 16 stages (Yellow, Green, Orange, Color)
Radar trails: 16 stages (White, Light blue, Green)
Fixed Maker: Monochrome (white)
VRM1/VRM2/EBL1/EBL2: Monochrome (Cyan)
Character/Bearing Marker: 2 stages (White, Green, Orange)
Heading Line/Cursor: Monochrome (White)
Own Ship's track/Another Ship's track: 7 stages
Coastline/Isobaths: 16 stages

PLOTTER UNIT

(1) Plotter (Normal) (Synthesis mode)

Projection:
Scale:
Own ship trail:

Cursor mark :
Coastline data :
Painting out:
(2) Plotter (Option) (Synthesis mode)

Projection:
Scale:
Own ship trail:

Cursor mark:

Event mark:

Line:

Coast line data:
Painting out:
External memory:
Destination and sea route:

Position compensation:

Mercator projection (Latitude 70 degree or less.)
Radar synchronize range scale
Color of 1 stage.
Interval of storage $10 / 30 \mathrm{sec}, 1 / 3 / 5 / 10 / 30 / 60 \mathrm{~min}$ or every $1 / 3 / 5 \mathrm{~nm}$ and OFF
Storage Capacity 7,000 point
Coastline ROM Card(Option) (ERC, JRC, C-Map NT+)
One selected isobath can be displayed.
ON/OFF can be selected.

Mercator projection (Latitude 70 degree or less.)
Synchronize range scale
Color of 7 stages.
Interval of storage: $10 / 30 \mathrm{sec}, 1 / 3 / 5 / 10 / 30 / 60 \mathrm{~min}$ or every $1 / 3 / 5 \mathrm{~nm}$ and OFF
Storage capacity of Own ship trail: 7,000 point
Color of 7 stages
Storage capacity of cursor mark: 20,000 point
Variety of cursor Mark: 19
Color of 7 stages
Storage capacity of event mark: Include in cursor mark Variety of event mark: 3 kinds, (Two kinds can be switched. /8 form to selection.) Variety of external event mark: One kind, Monochrome Color of 7 stage
Storage capacity of line: Include in cursor mark
Variety of line: Solid line, broken line, alternate long and short dash line
Coast line ROM card (Option)(ERC, JRC, C-Map NT+)
Selected one isoline can be displayed.
ON/OFF can be selected.
Memory card (Option)
Destination can be set up to 99 point.
Information of destination: Azimuth, distance and the time to required destination.
Setting of sea route: 10 sea routes. (10 destination for one sea route can be set.)
Alarm of sea route: Destination, Secession, Invetion, Secession
Radar display synchronize range scale coast line by manual.
(3) Plotter (Option) (Synthesis mode) Projection:
Scale:
Own ship trail:

Cursor mark:

Event mark:

Line:

Coast line data:
Painting out:
External memory:

Destination and sea route:

Mercator projection (Latitude 85 degree or less.)
$1 / 1,000$ to $1 / 10,000,000$ are continuously selected.
10 stage can be changed (Preset can be used)
Color of 7 stages.
Interval of storage: $3 / 5 / 10 / 30 \mathrm{sec}, 1 / 3 / 5 / 10 / 30 / 60 \mathrm{~min}$ Every $1 / 3 / 5 \mathrm{~nm}$ and OFF
Storage capacity of Own ship trail: 7,000 point
Color of 7 stages
Storage capacity of cursor mark: 20,000 point Variety of cursor Mark: 19
Color of 7 stages
Storage capacity of event mark: Include in cursor mark
Variety of event mark: 3 kinds, (Two kinds can be switched. /8 form to selection.)
Variety of external event mark: One kind, Monochrome
Color of 7 stage
Storage capacity of line: Include in cursor mark
Variety of line: Solid line, broken line, alternate long and short dash line
Coast line ROM card (Option)(ERC, JRC, C-Map NT +)
Selected one isoline can be displayed.
ON/OFF can be selected.
Memory card (Option)
Own ship trail, another ship trail, cursor mark, event mark, line, destination, sea route can be memorized.
Destination can be set up to 99 point.
Information of destination: Azimuth, distance and the time to required destination.
Setting of sea route: 10 sea routes. (10 destination for one sea route can be set.)
Alarm of sea route: Destination, Secession, Invetion, Secession

ARPA-1 (HIGH PERFORMANCE ARPA)

Radar mode, synthesis mode
Manual acquisition, Automatically acquisition(by two of guard ring)
Automatic tracking of 100 targets can be done.
Maximum tracking range: 32 nm
Display of tracking data: 6 at the same time. (Can be scroll.)
Naming function: Possible to name by the alphabet up to 8 character to each target.
The range, azimuth, CPA, TCPA, true course, true speed, BCR, BCT of target can be displayed.
(When naming is displayed, $\mathrm{BCR} / \mathrm{BCT}$ can't be displayed.)
Vector display:
Past position:
Alarm of danger ship:
True/Relative
Exclusive display and another ship trail.
Depends on CPA/TCPA setting.
Synthesis mode
Another ship trail:
Display color: Color of 7 stages (The display color of each target can be set.)
(The display color of all targets can be set by the batch. In this case, the display color is one color.)
Interval of storage:
20 targets. 1000 point per one target can be displayed. (Own ship trail and marks are another.)
$3 / 5 / 10 / 30 \mathrm{sec}, 1 / 3 / 5 / 10 / 130 / 160 \mathrm{~min}, 1 / 3 / 5 / 10 \mathrm{~nm}$ Possible to storage in memory card(Option).

ARPA-2 (NORMAL EDITION ATA)

Radar mode, synthesis mode
Manual acquisition, Automatically acquisition(by two of guard ring)
Automatic tracking of 30 targets can be done.
Maximum tracking range: 32 nm
Display of tracking data: 6 at the same time. (Can be scroll.)
Naming function: Possible to name by the alphabet up to 8 character to each target.
The range, azimuth, CPA, TCPA, true course, true speed, BCR, BCT of target can be displayed.
(When naming is displayed, BCR/BCT can't be displayed.)
Vector display:
Past position:
Alarm of danger ship:

True/Relative

Exclusive display and another ship trail.
Depends on CPA/TCPA setting.
Synthesis mode
Another ship trail:
Display color:

Interval of storage:
20 target.s 1500 point per one target can be displayed. (Own ship trail and marks are another.)
Color of 7 stages (The display color of each target can be set.)
(The display color of all targets can be set by the batch. In this case, the display color is one color.)
$3 / 5 / 10 / 30 \mathrm{sec}, 1 / 3 / 5 / 10 / 60 \mathrm{~min}, 1 / 3 / 5 / 10 \mathrm{~nm}$ Possible to storage in memory card(Option).
(1) Structure
(2) Switch

KEYBOARD UNIT(NCE-7699)

Structure of keyboard unit is separate from processor unit. Desk-Top type
Correspond Flush mount
Gain (Transmit pulse width can be changed by PUSH-SW.) SEA (AUTO/MANU can be changed by PUSH-SW.) RAIN (AUTO/MANU can be changed by PUSH-SW.) MULTI (Adjustment item can be changed by PUSH-SW) EBL (Floating EBL ON/OFF can be changed by PUSH-SW.) VRM Trackball
(3) Operation switch

STBY/OFF (Standby/Power off):
TX/OFF (Transmit start/Power off): PANEL(Brightness of keyboard adjustment):
ALARM ACK(Stop Alarm):
EBL1(EBL1):
EBL2(EBL2):
VRM1(VRM1):
VRM2(VRM2):
RANGE+(Increase display range):
RANGE-(decrease display range):
ACQ(acquisition):
TGT DATA(Numeric display):
TGT CNCL(Release of selection):
MOB(Marker):
ENT(Enter):
CLR/INFO(Release/Information):
MAP(Display mode):

AZI MODE(Display azimuth):
TM/RM(True/Relative Motion):
RR/HL(Fixed ring/Heading Line):
OFF CENT(Off Center):
GZ ALARM (Guard zone alarm):
VECT T/R (True/Relative motion vector):
TRAILS (Trails):
Day/Night(Brightness of screen switch): FUNC(Function):
USER KEY1(User key1):
USER KEY2(User key2):
RADAR MENU(Radar menu):
MARK(MARK):
ATA MENU(ATA menu):

Stop transmit, Power off.
Start transmit, Power off
Brightness of keyboard switch adjust.
Acknowledge and stop alarm.
Selection display and non-display of EBL1.
Selection display and non-display of EBL2.
Selection display and non-display of VRM1.
Selection display and non-display of VRM2.
Increase display range.
decrease display range.
ATA target acquisition
Numeric display of tracking target.
Release of selection of tracking target.
Turning on and release marker.
Left side button of trackball.
Right side of trackball.
Selection display and non-display of MAP(NAV
LINE, etc...).
Selection of Rader, Synthesis and Plotter mode.
Selection of North-up, Course-Up, Head-Up.
Selection true motion, relative motion.
Selection display and non-display of fixed ring and heading line.
Off center operation
Setting and release of guard zone.
Selection of true motion and relative motion of vector.
Selection display and non-display of trails.
Selection of screen arrangement of color.
Selection of signal processing.
User assignment keyl.
User assignment key2.
Rader menu.
Selection display and non-display of mark.
ATA menu.
(1) Navigation equipment:
(2) Bearing signal:
(3) Speed signal:
(4) External event mark:
(5) Radar buoy:
(6) Depth:
(7) Water temperature:
(8) Tendency:
(9) Direction of wind, velocity of wind:

NMEA0183
Receive capability sentence.
Longitude/Latitude: GGA $>$ RMC $>$ RMA $>$ GNS/GLL
Waypoint: RMB>BWC(BWR)
COG/SOG: RMC $>$ RMA $>$ VTG
SPEED: VBW
Day/Time information: ZDA
GYRO-SYNC: 360X, 180X, 90X, 30X. (Require optional NSK unit)
GYRO-STEP: 360X, 180X, 90X, 30X. (Require optional NSK unit)
JRC-NSK format (JLR-10)
IEC61162-2 38400bps: HDT
IEC61162-1: HDT>HDG>HDM $>$ VHW
※Can't be use for ATA.
LOG-SYNC: 360X, 180X,90X, 30X. (Require optional NSK unit)
LOG-PULSE: 800, 400, 200, 100. (Require optional NSK unit)
Contact input by way of terminal board.
Negative input
$\mathrm{DPT}>\mathrm{DBK}>\mathrm{DBT}>\mathrm{DBS}$
MTW
CUR, JRC format
MWV, MWD
(1) Slave video
(2) Navigation information
(3) External alarm
(4) External monitor

NMEA0183
Radar system data: RSD
Own ship data: OSD
ARPA data: TTM
Target data latitude/longitude: TLL
Alarm: ALR
Radar video: TIY, VD, BP(2048p), BZ

Contact output by way of terminal board
Multi scan monitor, Analog RGB, HD15pin Connector

STANDARD CONFIGURATION

(1) Scanner
(2) Display unit
(3) Equipment cable $10 / 25 \mathrm{~kW}$ (Both end was connectors.)

Standard:20m, Option: 30m
30 kW (The end of display unit is a connector.)
Display unit to Power supply unit Standard:20m, Option:30m
Power supply unit to scanner Standard:15m, Option:50m(Maximum)
(4) Equipment reserve parts 1
(5) Instruction manual 1 (Japanese or English)

11.17

 EQUIPMENT DISTANCE BETWEEN

 EQUIPMENT DISTANCE BETWEEN OTHER INSTRUMENTS

(1) LCD monitor to processor unit
(2) Keyboard unit to processor unit
(3) Scanner to display unit ($10 / 25 \mathrm{kw}$)
(4) Scanner to power supply unit ($30 \mathrm{kW)}$
(5) Power supply unit to display unit(30kW)

Maximum
5 m
5m
30m
50m
30m

Standard
5m
5 m
20 m
20m
20m

111.18
 OTHERS (OPTION)

- High performance ARPA unit (Built-in)
- Normal edition ATA unit (Built-in)
- NSK unit (Built-in)
- Plotter (Built-in)
- AIS interface (Built-in)
- Coast line ROM card
- Memory card
- Inter Switch

APPENDIX INTER-SWITCH (Option)
 NQE-3141
 Instruction Manual

$\frac{\overline{\overline{\overline{\overline{\overline{\overline{\bar{\nu}}}}}}}}{}$

1. Overview A-1
1.1 Overview A-1
1.2 Configuration A-1
2. Operation A-2
2.1 Operation Flow A-2
2.2 Inter Switch Menu A-3
2.2.1 Switching an Inter-Switch Pattern A-4
2.3 Reading Inter-switch Patterns A-10
2.4 Saving Inter-switch patterns A-11
2.5 Naming Indicators A-12
2.6 Naming Scanners A-13
3. Reference A-14

1. OVERVIEW

OVERVIEW

The inter-switch enables switching connections between multiple radar indicators that are installed on a bridge and multiple antennas of different characteristics.
The NQE-3141 switches connections between multiple indicators and multiple transceivers/ scanners (referred to as MTR henceforth) on the JMA-5300 Series radar equipment.

CONFIGURATION

Connections can be switched easily using the button on the screen.

Button on the screen
(1) indicates the channel number that is connected.
(2) indicates MASTER or SLAVE.

When MASTER is displayed, the indicator can control the scanner.
When SLAVE is displayed, the indicator cannot control the scanner.
In SLAVE mode, transmission/stop and pulse width switching cannot be changed. The usage range is also restricted.

2. OPERATION

When switching an inter-switch pattern, set the inter-switch to STANDBY and operate the switches on the indicator panel according to the following flow.

OPERATION FLOW

Flow from opening to the closing of the menu

[Open the Inter Switch menu]
Click on the
ANT 1
MASTER
switch on the top-left corner of the screen.

[Switch the inter-switch pattern]

Change the indicator to which the scanner is connected and click on

SET

[Close the Inter Switch menu]
Click on EXIT

INTER SWITCH MENU

The Inter Switch menu can be opened only when the radar is in a standby mode. The Inter Switch menu can be opened during transmission, however, in this case, transmission automatically stops and the radar is set to a standby mode.

When the button on the screen is clicked on, the Inter Switch menu is displayed as shown above.
(1) indicates the scanner format.
(2) Indicates the master indicator and (3) indicates the slave indicator.

Functions of the three switches that are provided at the bottom of the Inter Switch menu are described below.

- DOWNLOAD INFORMATION button (A)

Updates information.

- SET button (B)

Sets a pattern at switching of an inter-switch pattern. See Section 2.2.1, "Switching an Inter-Switch Pattern" for details.

- EXIT button (C))

Closes the Inter Switch menu.

2.2.1 Switching an Inter-Switch Pattern

This section uses an example that controls two indicators and two scanners.

[1] Switching two indicators (cross connection)

Procedure

1. Press the [RADAR MENU] key twice.

Press the [6] key.

The Inter Switch Setting menu is opened.
Press the [1] key.
The Change Pattern screen is displayed.

* Indicators can also be switched by using the 2-9P radar screen (8) button.

Inter Switch Setting

1. Change Pattern
2. Load Pattern >
3. Save Pattern >
4. Input IND. Name >
5. Input TRX Name >
6. EXIT
7. Set the cursor to the panel of the indicator to be switched and press the [ENT] key.

Select the panel in which the indicator name is displayed within the bold frame as shown above. Panels of the indicators that are not displayed cannot be selected.

Example: Set the cursor to panel (1) and press the [ENT] key.
The panel of the selected indicator is displayed in reverse video.

3. Set the cursor to the panel of another indicator and press the [ENT] key.

Example: Set the cursor to panel (2) and press the [ENT] key.
Indicator (2) and indicator (1) are switched.

The names of indicators (1) and (2) are switched as follows.
4. Click on SET at the bottom of the Inter Switch menu.

The inter-switch pattern switching is set.
5. Click on EXIT at the bottom of the Inter Switch menu.

The Inter Switch menu is closed.
[II] Setting one indicator as a slave of another indicator (slave connection)

Procedure

1. Press the [RADAR MENU] key twice.

Press the [6] key.
The Inter Switch Setting menu is opened.
Press the [1] key.
The Change Pattern screen is displayed.

* Indicators can also be switched by using the 2-9P radar screen (8) button.

Inter Switch Setting
1. Change Pattern
2. Load Pattern $>$
3. Save Pattern $>$
4. Input IND. Name $>$
5. Input TRX Name $>$

2. Set the cursor to the panel of the indicator to be set as a slave and press the [ENT] key.

Select the panel in which the indicator name is displayed within the bold frame as shown above. Panels of the indicators that are not displayed cannot be selected.

Example: Set the cursor to panel (1) and press the [ENT] key.

The panel of the selected indicator is displayed in reverse video.
3. Set the cursor to the panel under the indicator that is to be set as a master and press the [ENT] key.

Example: Set the cursor to panel (3) and press the [ENT] key.
Indicator (1) moves to position (3).
Indicator (1) is set to a slave of indicator (2) as shown below.

4. Click on SET at the bottom of the Inter Switch menu.

The inter-switch pattern switching is set.
5. Click on EXIT at the bottom of the Inter Switch menu.

The Inter Switch menu is closed.

READING INTER-SWITCH PATTERNS

Inter-switch patterns that have been saved can be read.

Procedure

1. Press the [RADAR MENU] key twice.

Press the [6] key.
The Inter Switch Setting menu is opened.
Press the [2] key.
The Load Pattern screen is displayed.
2. Select the number of the file to which the pattern is to be loaded using any of the numeric keys [1] to [5].

The loaded inter-switch pattern is reflected.

Load Pattern
1.
2.
3.
4.
5.
9. NEXT
0. EXIT

SAVING INTER-SWITCH PATTERNS

Inter-switch patterns can be saved.

Procedure

1. Press the [RADAR MENU] key twice.

Press the [6] key.
The Inter Switch Setting menu is opened.
Press the [3] key.
The Save Pattern screen is displayed.
2. Select the number of the file in which the pattern is to be saved using any of numeric keys [1] to [5].

An alphanumeric key screen is displayed.
3. Enter a name using alphanumeric keys and press the ENT button.

The data is saved under the file name that was entered.

2.
3.
4.
5.

9. NEXT	$>$
0. EXIT	

Save Pattern

0		2	3			67		8	
A	B	C	D	E	F	G H	H	I	J
K	L	M	N	0	P	Q R	R	S	T
		W	X	Y	Z	SP		<	
EL			BS				ENT		

EXIT

NAMING INDICATORS

Names can be assigned to indicators.

Procedure

1. Press the [RADAR MENU] key twice.

Press the [6] key.
The Inter Switch Setting menu is opened.
Press the [3] key.
The Input IND. Name screen is displayed.
2. Select the number of the indicator to be named using any of numeric keys [1] to [4].

An alphanumeric key screen is displayed.
3. Enter a name using alphanumeric keys and press the ENT button.

The name that was entered is reflected in the indicator.

* Up to four indicators can be named.

NAMING SCANNERS

Names can be assigned to scanners.

Procedure

1. Press the [RADAR MENU] key twice.

Press the [6] key.
The Inter Switch Setting menu is opened.
Press the [4] key.
The Input TRX Name screen is displayed.
2. Select the number of the scanner to be named using any of numeric keys [1] to [4].

An alphanumeric key screen is displayed.
3. Enter a name using alphanumeric keys and press the ENT button.

The name that was entered is reflected in the scanner.

* Up to four scanners can be named.

3. REFERENCE

Preheating time required after pattern switching

A preheating time is required in some cases as indicated below after completion of an inter-switch pattern switching since the preheating time varies according to the connection state between the scanner (MTR) and the indicator before switching.
This delay is to protect the electron tube that delivers radiowaves.
(a) Connection was not changed to a new connection state: No preheating required
(b) Connection was changed to a new connection state and a scanner has been used before the change: No preheating required
(c) Connection was changed to a new connection state and a scanner has not been used before the change: Preheating required

Notes on pattern switching
Pattern switching may not be enabled immediately after completion of the previous pattern switching.
This is because it takes some time to prepare for the next switching after completion of the previous pattern switching. Wait for several seconds before starting the next pattern switching.

Notes on master/slave connection mode

Master/slave connection refers to the connection where the indicator that is connected to a scanner is defined as a master and the indicator that is connected to the master indicator is defined as a slave indicator.
A slave indicator cannot be set to a transmission mode unless the master indicator is in a transmission mode. When the mode of a master indicator is changed from a transmission mode to a standby mode, "MTR ST-BY" is displayed in the message area and an alarm sound is emitted.

A slave indicator is not capable of tuning control. Tuning is controlled by a master indicator. "SLAVE" is displayed on the tuning display at the top-left corner of the screen.

The range change of a slave indicator is restricted by the range of the master indicator. In principle, the range of a slave indicator cannot exceed the range of the master indicator. However, some range may be greater than the range of the master indicator if it is within the same transmission pulse width/transmission pulse rate.

Setting at installation

The inter-switch must be installed according to the installation guide that is provided separately. The setting tables are provided below.

- Setting the inter-switch circuit (CCL-304)

The contents of DIP switches SW11, SW12, and SW13 are shown below.

(1) Setting SW11 (extension mode, master/slave setting)

Unused	
1,2	Contents
ON	Unused
OFF	Unused

Set the mode to OFF when connecting 4 indicators or less.

Set the mode to ON when using the ISW circuit board on the slave side in extension mode.

Normally set to OFF.
(2) Setting SW12 (radar connection setting)

(3) SW13 (Unused)
 followed by referencing the Installation Guide.

付図 1 Fig． 1
JMA－5310－6／5320－7／9
JMA－5310－6／5320－装置回路動作説
Block Diagrams of RADAR JMA－5310－6／5320－7／9

付図 6 Fig． 6
JMA－5310－6／5320－7／9
電源系統図
Primary power supply block of RADAR JMA－5310－6／5320－7／9

付図 7 Fig． 7
JMA－5330－12
電源系統図
Primary power supply block of RADAR JMA－5330－12

付図9 Fig． 9
NDC－1273
入出力部機内接続図
Inter connection Diagrams of Interface Board

Inter connection Diagrams of keyboard Unit

W801
H－7ZCRD1021

TB801
FTS3－3P

付図11 Fig． 11
NQE－3151
接続ユニット機内接続図
Inter connection Diagrams of Junction Unit

付図13レーターメニュー階渃
Fig． 13 Over View of RADAR Menu

Since1915

MAIN PLANT

Nittochi Nishi-shinjuku bldg,
10-1,Nishi-Shinjuku 6-chome,Shinjuku-ku, Tokyo 160-8328 JAPAN
Phone :+81-3-3348-0151
Fax $\quad:+81-3-3348-3648$

1-1,Shimorenjaku 5-chome,Mitaka-shi, Tokyo 181-8510 JAPAN
Phone :+81-422-45-9111
Fax $\quad:+81-422-45-9110$

